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Abstract—STT-MRAM is a promising candidate as embedded 
non-volatile memory (NVM) at 28nm and beyond. Due to its 
limited on/off ratio, STT-MRAM is often used as digital memory 
that only allows row-by-row read-out for near-memory 
computing. This work proposes design strategies to overcome this 
limitation with a new bit-cell design to enable parallel read-out 
for in-memory computing, which is of great interests for deep 
neural network (DNN) acceleration. We consider the non-ideal 
device properties that degrade inference accuracy including small 
on/off ratio, cell-to-cell MTJ conductance variation and current 
sense amplifier (CSA) offset. We propose three techniques to 
minimize inference accuracy degradation: 1) a 2T-2MTJ bit-cell 
design with high on/off ratio, 2) redundancy for MSB weights to 
mitigate the impact of MTJ conductance variations, and 3) a 
hybrid-layer mapping scheme to reduce column current thus 
mitigating CSA offset effect. DNN benchmarking results show 
that on CIFAR-10 dataset, the inference accuracy can be 
maintained at > 90% in the presence of 10% MTJ conductance 
variations, and >87.5% after considering CSA offset effect, with 
minimal 8% energy and 4% chip area overhead.  
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I. INTRODUCTION 

In-memory computing [1] is proposed to accelerate the 
intensive vector-matrix multiplication in DNN algorithms, 
where the multiplication is conducted in analog column current 
domain and the digital outputs are obtained after analog to 
digital converter (ADC). So far, in-memory computing mostly 
utilizes RRAM or PCM due to their analog nature and large 
on/off ratio [2]. Due to the lower programming voltage, STT-
MRAM is a more promising technology for embedded NVM at 
28nm and beyond. However, in-memory computing designs 
with multiple rows read-out in parallel are more sensitive to 
non-ideal device properties than binary memories. In particular, 
we find that the low on/off ratio (TMR=1.67-2.15 [3]), large 
cell-to-cell MTJ conductance variation induced by process 
variations (>7% [3]), aggregately degrade the DNN inference 
accuracy, as shown in Fig. 1(a) and 1(b). In addition, Flash 
ADC implemented by multilevel current sense amplifier (ML-
CSA) suffers from offset due to process variations [4], which 
further degrades the inference accuracy by mis-quantizing the 
partial sum (Psum) current Ipsum.  

For the inference accuracy loss induced by device variation, 
solutions have been proposed to retrain neural network after 
chip fabrication. But they either increase the workloads during 
chip testing stage or need additional circuit modules to support 
on-chip re-training [5] [6]. On the other hand, training weights 
with noise during software training stage may degrade the 
baseline accuracy [6] [7]. Moreover, the robustness of these 
solutions against CSA offset has not been studied. In addition, 

for row-parallel reads, the relatively small on-state resistance 
(RON) of STT-MRAM becomes problematic, as larger area and 
energy are consumed in the peripheral circuitry to drive and 
read STT-MRAM than PCM/RRAM.   
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Fig. 1 (a) an illustration of the non-ideal characteristics of STT-MRAM: low 
on/off ratio, high MTJ conductance variations and the impacts on in-memory 
computing. (b) Current sense amplifier (CSA) offset leads to quantization error 
for the partial sum current.  

In this work, circuit-device interaction strategies without re-
training are proposed to maintain the inference accuracy 
considering the low on/off ratio, MTJ conductance variations 
and CSA offset. The proposed strategies are validated by 
software-hardware co-simulation for a 7-layer convolutional 
neural network (CNN) with 4-bit weight precision and 6-bit 
activations in TensorFlow platform for CIFAR-10 dataset.  

II. CHALLENGES USING STT-MRAM FOR COMPUTING 

The challenges for in-memory computing using STT-
MRAM are discussed. Fig. 1(a) shows a process-element (PE) 
design with 1T-1MTJ cell for parallel read-out. The weights 
and input vectors are encoded to the 1T-1MTJ cell conductance 
and input voltage cycles, respectively. To implement 4-bit 
weights, 4 columns are grouped as one weight, and the partial 
sum digitized from each column goes through shift and add 
operations. 6-bit input is represented by 6 cycles with another 
round of shift and add. The convolution kernel is mapped into 
the array using the method proposed in [8]. The 7-layer CNN 
architecture used for simulation is listed in Table I. The PE size 
is assumed to be 64×128 memory cells in this work. Larger 
array size will be more area-efficient, however, the Ipsum may be 
too large considering the relatively low Ron of STT-MRAM. 
The ADC precision is assumed to be 5-bit with linear 
quantization.  
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Fig. 2 Parallel read-out scheme to represent negative weight and eliminate the 
effect of low on/off ratio. IOFF is eliminated by subtracting the LSB’s partial 
sum from reference column of GOFF. The partial sum from reference column 
of GON is subtracted from MSB’s partial sum to represent negative weight.  

First, to overcome low on/off ratio of STT-MRAM and 
represent the negative weight, we use two dummy columns 
programmed to all on-states or all off-states, which are notated 
as Ref_GON and Ref_GOFF, respectively. Fig. 2 shows this 
proposed parallel read-out scheme. To eliminate the 
contribution from IOFF current, the Psums from Ref_GOFF is 
subtracted from Psums of the regular columns except the MSB 
column. To represent the negative weight, the Psum from 
Ref_GON is subtracted from the MSB column (both MSB 
column and Ref_GON need to subtract the Psum from Ref_GOFF 
so that it cancels out). Fig. 3 (a) shows that the inference 
accuracy (without dummy column) is only around 10% when 
on/off ratio < 10 due to accumulation of IOFF. By adding dummy 
columns, it recovers the accuracy to 90.7% assuming zero MTJ 
conductance variations. However, for in-memory computing, 
when multiple rows are turned on, the Ipsum will spread out due 
to the MTJ conductance variations. Smaller on/off ratio makes 
the distribution wider and extend further into the neighboring 
partial sum’s range as shown in Fig. 1(a), thus making it easier 
to introduce an ADC quantization error. For digital memory 
applications, read accuracy is largely determined simply by the 
tail-to-tail gap between on/off distributions. However, for in-
memory computing, the sigma of the distribution itself is more 
critical as the current is added up along the column in analog 
domain. Fig. 3(b) shows that the inference accuracy drops 
sharply below 30% as the σMTJ increases above 10%. As 
expected, devices with lower on/off ratio are more vulnerable. 

CSA offset could mis-quantize Ipsum to a wrong quantization 
level [4]. Fig. 4 (a) shows the sense passing rate (SPR) obtained 

from SPICE Monte-Carlo (MC) simulations with a foundry 
28nm PDK. The SPR decreases as the Ipsum increases as higher 
BL current leads to lower sense margin [4]. When such offset 
patterns are incorporated in the TensorFlow simulations, the 
inference accuracy drops from 90.8% to around 80% even 
without MTJ conductance variations (Fig. 4(b)). The 
comparison of near-memory computing with row-by-row read-
out and in-memory computing with parallel read-out is shown 
in Fig. 4(c). Near-memory computing is more resistant to 
conductance variations and CSA offset, however, it leads to 
much longer latency as only one row is read-out at a time.  

III. VARIATION ROBUST DESIGN STRATEGIES  

To enlarge the on/off ratio, a cross-coupled 2T-2MTJ bit-
cell design is proposed in this work as shown in Fig. 5, where 
the conductance of the two MTJs G and G_bar are always 
complementary to each other. When Vread is applied at BL and 
BL_bar, the transistor connected to the MTJ with GOFF will 
operate in triode region while the transistor connected to GON 
will be cut-off. ION ≈ Vread / (ROFF_MTJ + RON_MOSFET) will flow 
through BL when G=GOFF, corresponding to stored weight of 
“1” while the IOFF is determined by Ileakage of the transistor. 
SPICE simulation was performed using the MTJ parameters in 
Table II. Fig. 6(a) shows that on/off ratio >1000 is obtained with 
transistor W > 100nm at 28nm node if the read voltage >0.6V. 
The Ion variation of the 2T-2MTJ cell is shown in Fig. 6(b), 
which is obtained by MC simulations considering variations of 
both MTJ conductance and transistors. The benefits of such 2T-
2MTJ design include highly increased on/off ratio, reduced ION, 
which are both critical for in-memory computing.  

Fig. 7(a) shows the array design based on 2T-2MTJ cell. For 
parallel-read operation in Fig. 7(b), BL and BL_bar are first 
precharged to the same voltage level. If input is “1”, both WL 
and WL_bar are grounded. If the input is “0”, a high voltage is 

      
                      (a)                                                    (b) 

Fig. 3 (a). Inference accuracy vs. device on/off ratio for CIFAR-10. By 
using the dummy column, high inference accuracy can be achieved for 
devices with low on/off ratio. (b). Inference accuracy vs. device 
conductance variations for different on/off ratios. MTJ on/off ratio = 3, 
and σMTJ = 7%~15% [3].  
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Fig. 4 (a) Partial sum distribution for CIFAR-10 and the corresponding sense 
passing rate (SPR) considering CSA offset. SPR is obtained by Monte Carlo 
simulations with a 28nm foundry PDK. (b) Inference accuracy vs. MTJ 
conductance variations with and without CSA offset. (c) A comparison 
between the near memory computing (row-by-row read) and in-memory 
computing (parallel read) regarding to inference accuracy and latency. Layer-
by-Layer computing is assumed here.  
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applied to both WL and WL_bar so that the cell is turned off. 
Ipsum is sensed by the Flash ADC based on multi-level current 
mode S/A through BL. For write operation, the AP to P 
programming is conducted column by column (Fig. 7(c)). For 
the selected column, Vwrite is applied to both BL and BL_bar by 
SL switch matrix. WL is grounded if MTJ G is to be 
programmed and a high voltage is applied to WL_bar for 
inhibiting MTJ G_bar. Leakage path exists for MTJs at P state 
in the selected column. The P to AP programming is conducted 
row-by-row (Fig. 7(d)). Vwrite are applied to both WL and 
WL_bar for the selected rows while they are grounded for the 
unselected rows. The BL (or BL_bar) of the selected MTJ is 
grounded to allow programming current while Vwrite is applied 
to their BL (or BL_bar) for inhibition. Leakage path exists for 
MTJs at AP state in the same row.  
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Fig. 7 (a) Schematic of the array design with 2T-2MTJ cells. (b) Parallel read 
operation. The partial sum current at BL is sensed by multi-level CSA to get the 
digitized partial sum. (c) AP state to P state programming, which is conducted 
column by column. (d) P state to AP state programming, which is conducted 
row by row.  Leakage current path exists but it will not disturb the state of the 
cells. 

The variations of Ipsum corresponding to MSB have more 
significant impact on the inference accuracy because it has 
higher weight significance and the quantization error will be 
magnified. We propose to have a redundant column for the 

MSB column.  During read operation, the averages of the partial 
sums from these two columns are taken to reduce the variations, 
as shown in Fig. 8 (a).  

As the sense passing rate reduces for large Ipsum, a partial 
parallel read that activates only a part of the rows is proposed 
to reduce Ipsum distribution to the range with higher SPR. In 
addition, the smaller 2T-2MTJ cell’s ION (than 1T-1MTJ) also 
helps reduce Ipsum. To mitigate the latency increase, a hybrid-
layer mapping scheme is proposed as Fig. 8(b). In conventional 
mapping, one PE contains the weights from the same layer. If 
half of the rows are read out at a time, the PE latency is doubled. 
However, with hybrid-layer mapping scheme, the weights from 
the same layer are split into two parts and mapped to two PEs. 
The partial sum is added up from the two PEs externally, as 
shown in Fig. 8(b). Since different layers are computed 
sequentially in a layer-by-layer computing scheme, the two PEs 
can operate at the same time for one layer, thus the proposed 
scheme could maintain the same latency.   

IV.     BENCHMARK RESULTS AND DISCUSSIONS 

Now we evaluate the efficacy of the proposed designs. First, 
we consider MTJ conductance variations. Fig. 9(a) shows that 
2T-2MTJ cell maintains about 90.3% inference accuracy with 
σMTJ = 10% while the accuracy for 1T-1MTJ is reduced to ~20%. 
However, the inference accuracy for 2T-2MTJ cell is reduced 
to about 14% when σMTJ = 15%. With redundancy for MSB cell, 
the inference accuracy for 2T-2MTJ cell can be improved to 
~84 % at σMTJ = 15%. It can also be noted that partial parallel 

          
                                  (a)                                           (b) 
Fig. 6 (a) Simulated on/off ratio for the 2T-2MTJ bit cell design. On-off > 
1000 is obtained if Vread > 0.6V.  (b) The Monte Carlo simulation results of 
the ION distribution for the proposed 2T-2MTJ bit cell, where different MTJ 
conductance variations are considered. The simulation is conducted with a 
foundry 28nm PDK. IOFF for the bit cell is a few nA and therefore negligible.   
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the partial sum outside PE.  
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read-out does not increase the robustness to MTJ conductance 
variation but it is robust to CSA offset, as shown in Fig. 9(b) 
where only CSA offset is considered. The performance 
overhead is evaluated with the latest DNN+NeuroSim 
simulator at 28nm node [9]. Adding MSB redundancy increases 
the chip area and read energy as more weights are stored and 
read (Fig. 10(a)). The partial parallel read-out increases the 
energy consumption as more periphery operations are needed 
to read-out all the weights. It should be noted that the latency 
overhead is negligible with hybrid-layer mapping, as shown in 
Fig. 10(b).  

Then, two design schemes are considered: 1) 1T-1MTJ cell 
with MSB redundancy and 32-row partial parallel read; 2) 2T-
2MTJ cell with MSB redundancy and 32-row partial parallel 
read. 1T-1MTJ and 2T-2MTJ design with full 64-row parallel 
read are used as baselines. Without CSA offset, Scheme 2) 
maintains about 89% accuracy at σMTJ = 15% while the 
accuracy for Scheme 1) drops from about 88% to 20% as σMTJ  
increases from 10% to 15% (Fig. 11(a)). This indicates that high 
device on/off ratio is important to make the chip resistant to the 
MTJ conductance variations. Considering CSA offset, 
inference accuracy can be maintained at 85% with Scheme 2) 
even at σMTJ = 15%, as shown in Fig. 11(b). This can be 
attributed to the fact that Ipsums are more concentrated in the 
range with high SPR when less rows are read out 
simultaneously. The hardware performance of the proposed 
schemes obtained from NeuroSim are shown in Table III.  Note 
that the cell size for 1T-1MTJ and 2T-2MTJ are assumed to be 
36F2 and 72F2, respectively. The ION reduction in the 2T-2MTJ 
design enables a reduction in both the total chip area and read 
energy compared to the 1T-1MTJ option. Comparing Scheme 
2 with 1T-1MTJ baseline, only 8% more energy consumption 
and 4% chip area overhead is observed, while it could maintain 

87.5% inference accuracy at σMTJ=10% and with CSA offset. 
The chip area and energy breakdown are shown in Fig. 12.  

V. CONCLUSIONS 

In this paper, the impact of non-ideal effects of STT-MRAM 
is studied for in-memory computing. Design strategies 
including 2T-2MTJ bit cell, MSB redundancy and hybrid-layer 
mapping scheme are proposed. Benchmark results suggest that 
with an optimized design, the parallel read-out with high 
accuracy is feasible for STT-MRAM array even under 
significant MTJ conductance variations and CSA offset 
induced by process variations. Compared to a 1T-1MTJ bit-
cell, the 2T-2MTJ bit-cell enables an overall reduction in chip 
area, read latency and energy despite the increase in the bit-cell 
area. This is due to a significant reduction in the on-state 
conductance, which in turn reduces the overhead of the 
peripheral circuitry. This work paves the way for a practical 
STT-MRAM based inference engine tape-out.  
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TABLE I. THE 7-LAYER 
CNN FOR CIFAR-10 
Layer Kernel Size 

1 (3,3,3,64) 
2 (3,3,64,64) 
 MaxPool 
3 (3,3,64,128) 
4 (3,3,128,128) 
 MaxPool 
5 (3,3,128,256) 
6 (3,3,128,256) 
 MaxPool 
7 (4096,10) 

 

TABLE II. THE DEVICE 
PARAMETERS FOR SPICE 

SIMULATION FOR 2T-2MTJ BIT 
CELL 

 
 

Parameters Value 
Technology 

node 
28nm 

Ron (Rp) 14.8kΩ [10] 
Roff (Rap) 41.4kΩ [10] 

TMR 1.8 [3] 
σMTJ 7% ~ 15% [3] 
tread 10ns 

TABLE III. ESTIMATED CHIP PERFORMANCE FOR DIFFERENT DESIGN SCHEMES (28NM NODE) 
 1T-1MTJ 2T-2MTJ Scheme 1 Scheme 2 

CIFAR10 Inference accuracy 
(σMTJ=10%,w/CSA offset) ~19.45% ~73% ~85% ~87.5% 

Chip area (mm2) 11.65 10.33 13.68 12.09 
Read Dynamic Energy (layer-

by-layer, μJ) 
52.09 29.67 89.09 56.26 

Leakage Energy (μJ) 0.11 0.044 0.130 0.053 
Latency (ms) 2.875 1.167 2.881 1.173 

Energy efficient (TOPS/W) 2.93 5.14 1.712 2.71 
Throughput (FPS) 347.86 856.625 347.16 852.74 

Scheme1: 1T-1MTJ cell + MSB redundancy + 32row partial parallel read 
Scheme2: 2T-2MTJ cell + MSB redundancy + 32row partial parallel read 
Software accuracy baseline = 90.8% 

       
(a)                                               (b)  

Fig. 10 (a) The overhead for implementing MSB redundancy. Both chip area 
and read energy increases when more redundancy is used. (b) The overhead 
for implementing partial parallel read. Energy consumption is increased when 
less rows are read-out as the periphery circuit needs to operate multiple times 
to read-out all the weights. However, with layer hybrid mapping, the 
overhead of latency is negligible.    
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Fig. 12 (a) Chip area and (b) read dynamic energy breakdown for the 
CIFAR-10 benchmark results from Table III. 2T-2MTJ based designs shows 
less area cost and energy consumption in the periphery circuits due to 
smaller ION.  The area reduction of periphery circuits are mainly attributed to 
the area reduction of mux due to smaller transmission gate size.  
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Scheme1: 1T-1MTJ cell + MSB redundancy + 32row partial parallel read  
Scheme2: 2T-2MTJ cell + MSB redundancy + 32row partial parallel read 

Fig.11 (a) Inference accuracy vs. MTJ conductance variations without 
CSA offset (b) Inference accuracy vs. MTJ conductance variations with 
CSA offset. Scheme2 shows robustness against conductance variations. 
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