
FOCUS | Review Article

IBM Research – Zurich, Rüschlikon, Switzerland. ✉e-mail: ase@zurich.ibm.com

Today’s computing systems are primarily built based on the
von Neumann architecture where data must be moved to a
processing unit. During the execution of various compu-

tational tasks, large amounts of data need to be shuttled back and
forth between the processing and memory units and this incurs
significant costs in latency and energy. The latency associated with
accessing data from the memory units is a key performance bottle-
neck for a range of applications, in particular for the increasingly
prominent artificial intelligence (AI) related workloads. There is an
increasing disparity between the speed of the memory and process-
ing units, typically referred to as the memory wall1. The energy cost
of moving data is another significant challenge given that the com-
puting systems are severely power limited due to cooling constraints
as well as the proliferation of mobile computing devices. Even at
the relatively old 45 nm complementary metal oxide semiconduc-
tor (CMOS) node, the cost of multiplying two numbers is orders
of magnitude lower than that of accessing them from memory2.
The current approaches, such as the use of hundreds of proces-
sors in parallel (for example, graphics processing units3) or appli-
cation-specific processors4,5 that are custom designed for specific
applications, are not likely to fully overcome the challenge of data
movement. Hence, it is becoming increasingly evident that novel
architectures need to be explored where memory and processing are
better collocated. One prominent idea that dates to the 1990s is that
of physically placing monolithic compute units closer to a mono-
lithic memory6. This concept known as near-memory computing
has benefitted significantly from recent advances in die stacking
technology7 and the commercialization of advanced memory mod-
ules such as the hybrid memory cube (HMC)8 and high bandwidth
memory (HBM)9. To achieve a denser and more fine-grained con-
nectivity between memory and processing units, even three-dimen-
sional (3D) monolithic integration has been proposed10. However,
in all of these approaches that aim to reduce the time and distance to
memory access, there still exists a physical separation between the
memory and the compute units.

In-memory computing is an alternate approach where certain
computational tasks are performed in place in the memory itself
organized as a computational memory unit. As schematically illus-
trated in Fig. 1, this is achieved by exploiting in tandem the physical
attributes of the memory devices, their array-level organization, the
peripheral circuitry as well as the control logic. Any computational
task that is realized within the confines of a computational memory

unit could be referred to as in-memory computing. However, the
key distinction is that at no point during computation is the memory
content read back and processed at the granularity of a single mem-
ory element. This latter scenario, where in addition the processing
is performed in close proximity to the memory array, could instead
be viewed as near-memory computing. Besides alleviating the costs
in latency and energy associated with data movement, in-memory
computing also has the potential to significantly improve the com-
putational time complexity associated with certain computational
tasks. This arises mostly from the massive parallelism afforded by
a dense array of millions of memory devices performing computa-
tion. It is also likely that by introducing physical coupling between
the memory devices, we can further reduce the computational
time complexity11. By blurring the boundary between processing
and memory units (an attribute that is also shared with the highly
energy-efficient mammalian brain where memory and process-
ing are deeply intertwined12), we gain significant improvements in
computational efficiency. However, this is at the expense of the gen-
erality afforded by the conventional approach where memory and
processing units are functionally distinct from each other. In this
Review, we first give an overview of the memory devices that facili-
tate in-memory computing as well as the key in-memory computa-
tional primitives that are enabled. Subsequently, we present a range
of applications that exploit these primitives. Finally, we present an
outlook on the opportunities and challenges.

Memory devices
Memory is at the heart of in-memory computing. One of the pri-
mary means to store information to date is through the presence
or absence of charge such as in dynamic random access memory
(DRAM), static random access memory (SRAM) and flash mem-
ory13. There is also an emerging class of memory devices where
information is stored in terms of differences in the atomic arrange-
ments or orientation of ferromagnetic metal layers. Such differences
manifest as a change of resistance and these devices are thus termed
resistive memory devices14. Sometimes they are also referred to as
memristive devices due to their relation to the circuit theoretic con-
cept of memristive systems15.

One of the primary characteristics of a memory device is the
access time, that is, how fast information can be stored (written)
and retrieved (read). Another key characteristic is cycling endur-
ance, which refers to the number of times a memory device can be

Memory devices and applications for in-memory
computing
Abu Sebastian    ✉, Manuel Le Gallo   , Riduan Khaddam-Aljameh and Evangelos Eleftheriou

Traditional von Neumann computing systems involve separate processing and memory units. However, data movement is costly
in terms of time and energy and this problem is aggravated by the recent explosive growth in highly data-centric applications
related to artificial intelligence. This calls for a radical departure from the traditional systems and one such non-von Neumann
computational approach is in-memory computing. Hereby certain computational tasks are performed in place in the memory
itself by exploiting the physical attributes of the memory devices. Both charge-based and resistance-based memory devices
are being explored for in-memory computing. In this Review, we provide a broad overview of the key computational primitives
enabled by these memory devices as well as their applications spanning scientific computing, signal processing, optimization,
machine learning, deep learning and stochastic computing.

FOCUS | Review Article
https://doi.org/10.1038/s41565-020-0655-z

Nature Nanotechnology | www.nature.com/naturenanotechnology

mailto:ase@zurich.ibm.com
http://orcid.org/0000-0001-5603-5243
http://orcid.org/0000-0003-1600-6151
http://crossmark.crossref.org/dialog/?doi=10.1038/s41565-020-0655-z&domain=pdf
http://www.nature.com/naturenanotechnology

Review Article | FOCUS NaTuRe NanoTecHnology

switched from one state to the other. The memory devices in a com-
putational memory unit are usually organized in a two-dimensional
(2D) array with horizontal and vertical wires, typically referred to as
the word line (WL) and the bit line (BL), used to access them. The
memory array in a computational memory unit can be quite similar
to that in a conventional memory unit but with certain differences
in the read/write circuitry, the format of the input/output data as
well as the control logic. For example, depending on the applica-
tions, multiple WLs need to be activated in parallel or analogue
output currents along BLs need to be sensed precisely.

Charge-based memory. An SRAM cell is a bi-stable transistor
structure typically made of two CMOS inverters connected back to
back, as shown in Fig. 2a. The output potential of one inverter is
applied as input to the other, forming a feedback loop that freezes
the cell in a given logical state (0 or 1). Two additional field-effect
transistors (FETs) serve as selectors, yielding a standard 6 transistor
(6T) SRAM cell. SRAM is built entirely from FETs and has no dedi-
cated storage element. However, one can view the charge as being
confined within the barriers formed by the FET channels and the
gate insulators. Due to the low FET barrier height (0.5 eV), how-
ever, the charge constantly needs to be replenished from an external
source and hence SRAM always needs to be connected to a power
supply. A DRAM cell consists of a capacitor placed in series with a
FET (Fig. 2b). The charge is confined within the capacitor insulator,

which forms a fixed-height barrier, and the FET. Since the maxi-
mum height of the FET barrier is limited by the band-gap of silicon
(≈1.1 eV), the charge can be retained only for a fraction of a second
and this necessitates periodic refresh. As shown in Fig. 2c, in a Flash
memory cell, the charge storage node is coupled to the gate of a FET
with charge stored either on a conductive electrode surrounded
by insulators (floating gate) or in discrete traps within a defective
insulator layer (charge trapping layer). Unlike in DRAM, the barrier
height of the storage node is sufficiently high for long-term data
retention. However, the write operation requires high voltages (typi-
cally >10 V) and entails significant latency (>10 µs) due to the need
to overcome the storage node barriers. Depending on how the flash
memory cells are organized, they are referred to as NOR or NAND
Flash. In NOR Flash, every memory cell is connected to a BL, while
in NAND Flash, several memory cells connected in series share a
single connection to the BL. A flash memory cell stores fewer elec-
trons than DRAM and SRAM. Flash memory also has a substan-
tially lower cycling endurance due to the gate oxide degradation
under strong electric fields.

A range of in-memory logic and arithmetic operations can be per-
formed using both SRAM and DRAM. Capacitive charge redistribu-
tion serves as the foundation for many of them, in particular storing
and sharing of charge across multiple storage nodes. In DRAM, simul-
taneous reading of devices along multiple rows can be used to exe-
cute basic Boolean functions within the memory array16,17. Figure 2d

Digital interface

Periphery
Memory array

(storing D)

Memory array
(storing D)

ALU C
ac

he

Conventional memoryProcessing unit

010001010101011000101010

Data D

11101001010001010100100100

Result f (D)

D

Control unit
Digital interface

Periphery

ALU

C
ac

he

1001

Computation in
memory

Command ("perform f on D ”)

Charge-based memory Resistance-based memory

Computation in
processor

Processing unit Computational memory

SRAM DRAM Flash RRAM PCM STT-MRAM

Control unit

f

f

f (D)

a

b

Fig. 1 | In-memory computing. a, In a conventional computing system, when an operation f is performed on data D, D has to be moved into a processing
unit, leading to significant costs in latency and energy. b, In the case of in-memory computing, f(D) is performed within a computational memory unit by
exploiting the physical attributes of the memory devices, thus obviating the need to move D to the processing unit. The computational tasks are performed
within the confines of the memory array and its peripheral circuitry, albeit without deciphering the content of the individual memory elements. Both
charge-based memory technologies, such as SRAM, DRAM and flash memory, and resistance-based memory technologies, such as RRAM, PCM and
STT-MRAM, can serve as elements of such a computational memory unit.

Review Article | FOCUS NaTuRe NanoTecHnology

Nature Nanotechnology | www.nature.com/naturenanotechnology

http://www.nature.com/naturenanotechnology

FOCUS | Review ArticleNaTuRe NanoTecHnology

BL

 ~ 103 electrons
Access time < 1 ns
Endurance > 1016

 ~ 105 electrons
Access time < 10 ns

Endurance > 1016

 ~ 100 electrons
Access time (read) < 100 ns

Endurance > 105

Floating
gate

n
p

n p

Gate

a

f g

SA

3

d

BL C

Bit combinations
00 01 10 11

Bit combinations
00 01 10 11

Bit combinations
00 01 10 11

Bit combinations
00 01 10 11

AND Operation

OR Operation

e

b c

WL

BL

BL

NOR operation

AND operation

WL

BL

WL

Source

A A

A NOR BA AND B

SA SA

B B

SRAM cell SRAM cell

SRAM cell SRAM cell

WL

WL

WL

WL

WL

A11 A21

A22A12

1

2 3

Vin1

Vin1

VDD VDD

Vout1

Iout1

Iout2

Vout2

Vin2

Vin2

1

2
3

1

2 3

1

2 3

–

–

–
– – –

–

– – – –

–
–
–
–– – – – – – – –

–
–

–

+

VA

CA

VB

VBL

VBL

VBL =
VA + VB + VSEL

CB

VSEL

VSEL = 0V

VSEL ≠ 0V

CSEL VREF

VREF VBL VREF

VREFVREF VREF

VDS
VGS

Vt11

Vt21 Vt22

Vt12

IDS

VREF
VBL

VBLVBL

BL

nn

BL

Fig. 2 | Charge-based memory devices and computational primitives. a, A 6T SRAM cell consists of two CMOS inverters connected back to back. The
charge is confined within the barriers formed by FET channels and by gate insulators. The stored charge retention is small and an external source constantly
replenishes the lost charge. SRAM has almost unlimited cycling endurance and sub-nanosecond read and write access times. b, A DRAM cell comprises
a capacitor (C) that serves as the storage node, which is connected in series to a FET. c, The storage node of a flash memory cell is coupled to the gate
of a FET. d, Schematic illustration of bit-wise logical operations performed using three DRAM cells. The operands are stored in cells A and B. AND or OR
operations are performed by simultaneously activating the three WLs corresponding to the cells. The logical state of cell SEL is used to dictate whether an
AND or an OR operation is performed, with logical one and zero corresponding to OR and AND operations, respectively. The BL voltage corresponds to
the average voltage across the three capacitors and is sensed using a sense amplifier with a decision threshold voltage of VREF. e, Bit-wise logical operations
using an SRAM array. The BL and BL

I
 are pre-charged to the supply voltage, VDD, prior to the execution of the operation. After deactivation of the pre-charge

signal, both the WLs are activated so that both BL and BL
I

 are discharged at different rates that depend on the data stored in the bit-cells. When the two
activated SRAM cells in a column are both 1 (0), VBL (VBL

I
) will be comparable to VDD, whereas for the other bit combinations, both VBL and VBL

I
 will be lower

than VDD. Hence, by sensing VBL and VBL
I

 with a SA, AND and NOR operations are performed, respectively. f, Schematic illustration of performing MVM
operation using an array of SRAM cells and capacitors. The SRAM cells are used to store the elements of the binary matrix. In the first step, the inputs are
provided per row that charges the capacitors on that row to a value proportional to the input. In step two, the capacitors that are associated with the SRAM
elements storing 0s are discharged. Finally, in step three, the capacitors are shorted along the columns performing a charge sharing operation so that the
final voltage on the capacitors corresponds to the analogue MVM result. g, Illustration of an MVM operation performed using Flash memory devices. The
current IDS is a function of the cell’s threshold voltage Vt as well as the drain–source voltage VDS and the gate–source voltage VGS. By fixing VDS, Kirchhoff’s
current law can be employed to perform MVM between a matrix, stored in terms of Vt, and a binary input vector that is used to modulate VGS.

FOCUS | Review ArticleNaTuRe NanoTecHnology

Nature Nanotechnology | www.nature.com/naturenanotechnology

http://www.nature.com/naturenanotechnology

Review Article | FOCUS NaTuRe NanoTecHnology

shows a basic cell configuration that can be used to implement bit-
wise AND/OR functions. Two memory cells, A and B, are used to
store the operands. The logic state of the third cell, SEL, is set to 0
or 1 depending on whether an AND or an OR operation is realized,
respectively. When all three cells are activated simultaneously, the
bit-line voltage corresponds to the average voltage across the three
capacitors. This voltage is sensed using a sense amplifier (SA) with
a single decision threshold, which outputs the result of the logical
operation. By using the negated output of the SA to also implement
the NOT operation, a functionally complete set of Boolean functions
is obtained. These bit-wise operations can be performed along the
entire row of memory devices thus enabling parallel bulk bit-wise
operations. Unlike DRAM, the SRAM cells do not contain a built-
in capacitor and hence the parasitic BL capacitance is used instead
to enable bulk in-memory logical operations18,19. In Fig. 2e, a basic
construct for performing in-place bit-wise logical operations using
SRAM is shown. Here, again, both of the WLs are activated simulta-
neously and by sensing the BL and BL

I
 with an SA, AND and NOR

operations are performed, respectively. Besides realizing the logical
primitives, it is also essential to efficiently cascade such operations. To
perform cascadable logic operations using both DRAM and SRAM,
additional cloning or duplication steps need to be enabled, allow-
ing the construction of in-memory full adders and multipliers17,20.
The overhead of having to serially execute the cascaded operations is
overcome by the ability to process several bit lines in parallel.

SRAM arrays can also be used for matrix-vector multiplication
(MVM) operations, Ax = b, where A is the data matrix, x is the input
vector, and b is the output vector21–23. If the elements of A and x are
limited to signed binary values, the multiply operation is simplified
to a combination of XNOR and ADD functions. Here, a 12T SRAM
cell can be designed to execute XNOR operations within every mem-
ory cell21. In cases where x is non-binary, one approach is to employ
capacitors in addition to the SRAM cells22–24. It was recently shown
how 6-bit inputs can be multiplied with binary matrices stored in
SRAM22. This involves a three-step process that is illustrated in
Fig. 2f. Note that the additional capacitors and switches could be
shared among a group of SRAM cells at the expense of reduced par-
allelism and hence operational bandwidth. It is also possible to build
the analogue capacitor-based circuits in the vicinity of the SRAM
array to accelerate MVM via near-memory computing25,26.

Flash memory can also be used to perform MVM operations27,28.
The gate voltage is modulated in accordance with a binary input
vector (see Fig. 2g). The matrix elements are stored as charge on the
floating gate28. Because the devices can be accessed in parallel along
a BL, NOR Flash has generally been preferred over NAND Flash
for in-memory computing. However, there is recent work describ-
ing the use of 3D NAND, consisting of vertically stacked layers of
serially connected FLASH devices, whereby each layer of the array
encodes a unique matrix29. This approach could help to overcome
the scalability issue of NOR Flash, which is difficult to scale beyond
the 28 nm technology node.

Resistance-based memory. Memristive devices can be pro-
grammed to be in a low resistance state (LRS) or a high resistance
state (HRS) through the application of electrical SET and RESET
pulses, respectively. There is also the possibility to achieve interme-
diate resistance levels in certain types of memristive devices. The
devices are typically organized in a 2D array and require a selection
device in series with each device to prevent parasitic sneak path cur-
rents during writing and reading30.

Resistive random access memory (RRAM) devices comprise
metal–insulator–metal (MIM) stacks (Fig. 3a) and the resistive
switching process typically involves the creation and disruption of
conductive filaments (CF) comprising a localized concentration of
defects. An LRS state corresponds to CFs bridging the two metal
layers. Even though the history of RRAM can be traced back to at

least the 1960s31, key technological demonstrations in the 2000s32–34
gave significant impetus to this technology. Phase change memory
(PCM), which also dates back to the 1960s35, is based on the prop-
erty of certain types of materials, such as Ge2Sb2Te5, to undergo
a Joule heating-induced, rapid and reversible transition from a
highly resistive amorphous phase to a highly conductive crystalline
phase36,37. As shown in Fig. 3b, a typical PCM device has a mush-
room shape where the bottom electrode confines heat and current.
This results in a near-hemispherical shape of the amorphous region
in the HRS state. By crystallizing the amorphous region, the LRS
state is obtained. A relative newcomer to the resistive memory fam-
ily, magnetoresistive random access memory (MRAM) consists of a
magnetic tunnel junction (MTJ) structure with two ferromagnetic
metal layers (pinned and free). These layers, for example made of
the CoFeB alloy, are separated by a thin tunnel oxide such as MgO
(Fig. 3c). In the pinned layer, the magnetic polarization is structur-
ally fixed to act as a reference, whereas in the free layer it is free to
change during the write operation. Voltage pulses of opposite polar-
ity are applied to switch the polarization of the free layer. Depending
on whether the two ferromagnetic polarizations are parallel or anti-
parallel, the LRS and HRS states are obtained due to the tunnel mag-
netoresistive effect. Spin transfer torque MRAM (STT-MRAM) is
currently the most promising MRAM technology38,39. RRAM and
PCM operate based on the rearrangement of atomic configurations
and hence have worse access times (write speed) and cycling endur-
ance than MRAM. However, they have substantially larger resis-
tance windows that enable the storage of intermediate resistances
even at an array level. RRAM has the advantage of using materi-
als that are common in semiconductor manufacturing. However,
in spite of the simplicity of the device concept, a comprehensive
understanding of the switching mechanism is still lacking compared
to PCM and MRAM.

One of the attributes of memristive devices that can be exploited
for computation is their non-volatile binary storage capability.
Logical operations are enabled through the interaction between
the voltage and resistance state variables40. One particularly inter-
esting characteristic of certain memristive logic families is stateful-
ness, where the Boolean variable is represented solely in terms of
the resistance states41–43. A schematic illustration of one such state-
ful memristive logic, MAGIC, that realizes the NOR logic opera-
tion is shown in Fig. 3d44. Both the operands and the result are
stored in terms of the resistance state variable. Stateful logic can be
realized almost entirely in the memory array and has been dem-
onstrated for RRAM41 and STT-MRAM45. Stateful logic is also cas-
cadable, whereby the output from one logical gate can directly feed
into the input of a second logic gate46,47. However, in stateful logic,
the devices repeatedly get written into during the execution of the
logical operations, which is a key drawback due to the associated
energy cost and the limited cycling endurance of the devices. H
ence, there is renewed interest in non-stateful logic such as the one
shown in Fig. 3e. Here, the logical operands are stored as resistance
values, but the result of the logical operation is computed as a volt-
age signal48,49. The operands stay fixed in the memory array and
the devices need not be programmed during the evaluation of the
logical operation. However, the sequential cascading of these logi-
cal operations requires additional circuits, typically located outside
of the memory array. Memristive threshold logic is yet another
non-stateful logic family where both the inputs and outputs
are voltage signals and the logical functions are defined using the
resistance values50.

The non-volatile storage capability, in particular, the ability to
store a continuum of conductance values, facilitates the key compu-
tational primitive of analogue MVM51–53. The physical laws that are
exploited to perform this operation are Ohm’s law and Kirchhoff ’s
current summation laws (Fig. 3f). Memristive devices also exhibit an
accumulative behaviour52,54,55, whereby the conductance of devices

Review Article | FOCUS NaTuRe NanoTecHnology

Nature Nanotechnology | www.nature.com/naturenanotechnology

http://www.nature.com/naturenanotechnology

FOCUS | Review ArticleNaTuRe NanoTecHnology

such as PCM and RRAM progressively increases or decreases with
the successive application of appropriate programming pulses. This
non-volatile accumulative behaviour, in spite of its nonlinear and
stochastic nature, can be exploited in several applications, such as
training deep neural networks, where the conductance values need
to be incrementally modified.

Applications
The computational primitives reviewed in the Memory Devices
section have been applied to a wide range of application domains,
ranging from scientific computing that requires high preci-
sion, to stochastic computing that is enabled by imprecision and

randomness. A high-level overview of the main applications that
are being researched for in-memory computing is shown in Fig. 4.
In-memory computing can be applied both to reduce the computa-
tional complexity of a problem as well as to reduce the amount of
data being accessed by performing computations inside the memory
arrays. The problems that could benefit the most from the complex-
ity reduction are the NP-hard problems involving combinatorial
optimization. Data-centric applications in machine learning and
scientific computing benefit the most from reduced memory access.
In this section, we review how in-memory computing has been
applied to those applications and discuss the challenges involved
with respect to the device properties presented previously.

V
R

E
A

D

GB

GA G11 G21

G12 G22

Top electrode
Top electrode

Bottom electrode Pinned Layer

Tunnel barrier

Bottom
electrode

Soft Layer

Resistance range = 103–107

Access time (write) = 10ns – 100 ns

Endurance = 106–109 Endurance = 106–109

1

1

0

0

0

1

1

1

1 0

1 0

>2VRESET

Stateful logic

00 01 10 11

AND

OR

Bit combinations

SA

Non-stateful logic Matrix-vector multiplication

Resistance range = 104–107

Access time (write) ~ 100 ns
Resistance range = 103–104

Access time (write) < 10 ns

Endurance > 1014

a b c

d e f

Conductive
filament

Crystalline

Amorphous

Bit combination = 00

Bit combination = 01

Bit combination = 11

Result

Operands

Iout1

Iout1

Iout2

Iout

Iout

IREF

IREF

Iout2

Vin2

Vin1

Vin1 Vin2

Fig. 3 | Resistance-based memory devices and computational primitives. a, An RRAM device in the LRS where the CF comprises a large concentration
of defects for example oxygen vacancies in metal oxides or metallic ions injected from the electrodes. By the application of appropriate voltage pulses,
the defects can be migrated back to the top electrode thus disconnecting the CF and achieving a HRS. b, A mushroom-type PCM device in the HRS
state where the amorphous phase blocks the bottom electrode. To create this state, a RESET pulse is applied that can melt a significant portion of the
phase change material. When the pulse is stopped abruptly, the molten material quenches into the amorphous phase due to glass transition. When a
current pulse of lesser amplitude is applied to the PCM device in the HRS state, a part of the amorphous region crystallizes. By fully crystallizing the
phase change material, the LRS state is obtained. c, An STT-MRAM device with two ferromagnetic layers (pinned and free) separated by a tunnel oxide
layer. The magnetic polarization of the free layer can be changed upon writing. Depending on whether the ferromagnetic polarizations are parallel or
antiparallel, the device assumes a low or high resistance, respectively. The transition to the parallel state takes place directly through conduction electrons,
which are previously spin-polarized by the pinned layer. Subsequently, the magnetic polarization of the free layer is rotated using magnetic momentum
conservation. To switch to the antiparallel state, an opposite voltage, and hence current direction, is employed. d, Schematic illustration of a stateful
NOR logic operation using 3 bipolar memristive devices44. Two devices represent the operands and one represents the result. First, the result device is
initialized to logic 1 (LRS). Subsequently, a voltage pulse with an amplitude larger than twice that of VRESET is applied simultaneously to both the operand
devices. If either operand device is at logic 1 (LRS), then at least half of the voltage drops across the result device and the latter switches to logic 0 (HRS).
Note that, due to the bipolar switching behaviour, the operand devices remain unchanged as long as VSET � 2VRESET

I
. When both the operand devices

are at logic 0 (HRS), the voltage dropped across the result device is not sufficient to switch it to logic 0. Hence it remains at logic 1. Thus, this simple
circuit implements a NOR operation where all the logic state variables are represented purely in terms of resistance values. e, Non-stateful AND and OR
operations using 2 memristive devices and a variable threshold, SA. By simultaneously activating multiple rows, and with the appropriate choice of current
thresholds, it is possible to implement logical operations such as AND and OR. f, To perform the operation Ax = b, the elements of A are mapped linearly
to the conductance values of memristive devices organized in a crossbar configuration. The x values are mapped linearly to the amplitudes or durations
of read voltages and are applied to the crossbar along the rows. The result of the computation, b, will be proportional to the resulting current measured
along the columns of the array. Note that, if the inputs are mapped onto durations, the result b will be proportional to the total charge (for example,
current integrated over a certain fixed period of time). It is also possible to perform an MVM operation with the transpose of A using the same cross-bar
configuration by applying the input voltage to the column lines and measuring the resulting current along the rows. The negative elements of x are typically
applied as negative voltages whereas the negative elements of A are coded on separate devices together with a subtraction circuit.

FOCUS | Review ArticleNaTuRe NanoTecHnology

Nature Nanotechnology | www.nature.com/naturenanotechnology

http://www.nature.com/naturenanotechnology

Review Article | FOCUS NaTuRe NanoTecHnology

Scientific computing. Linear algebra computational kernels,
such as MVM, are common not only to machine learning but
also to scientific computing applications. However, both memris-
tive and charge-based memory devices suffer from significant
inter-device variability and inhomogeneity across an array.
Moreover, they exhibit intra-device variability and random-
ness that is intrinsic to how they operate. Hence, the precision of
analogue MVM operations with these devices is rather low.
Although approximate solutions are sufficient for many computa-
tional tasks in the domain of AI, building an in-memory computing
unit that can effectively address scientific computing and data ana-
lytics problems—which typically require high numerical accuracy—
remains challenging.

The aforementioned accuracy limitation can, to a certain extent,
be remedied by an old technique in computer architecture called ‘bit
slicing’. Bit slicing is a general approach for constructing a proces-
sor from modules of smaller bit width. Each of the modules pro-
cesses one bit field or ‘slice’ of an operand56. The grouped processing
components will then have the capability to process, in parallel, an
arbitrarily chosen full word-length of a particular task. This con-
cept has been proposed for increasing the accuracy of the in-place
MVM based on in-memory computing (Fig. 5a)57–60. According
to this technique, an n-bit element of the matrix is mapped onto
device conductance values of n binary crossbar arrays, that is, n bit
slices. Thus, each bit slice contains the binary values of the matrix
elements in a particular bit position. Similarly, bit slicing can also
be applied to the input vector elements, where each bit slice is input
to the crossbar arrays one at a time. To perform an in-place MVM,
a vector bit slice is multiplied with a matrix bit slice, with 0(1)
time complexity, and the partial products of these operations are
combined outside of the crossbar arrays through a shift-and-add
reduction network57. Note that the bit slices can also be implemented
on the same crossbar array in a column-by-column manner. In this
case, columns at a distance n from each other represent a single bit
slice. Although the above concept has been described based on bit
slices, that is, binary memristive arrays, it can easily be generalized

to multi-level memristive devices. The bit slice approach applied
to a 16-bit input vector sliced into 16 1-bit slices for increasing
numerical precision has been demonstrated experimentally where a
numerical differential equation solver using a small Ta2O5–x RRAM
16x3 crossbar array was successfully implemented61.

Although the bit slice technique appears to address the limita-
tions surrounding the precision of analogue MVM operations, there
are still inaccuracies arising from the analogue summation along
columns, which potentially could be more detrimental in larger
crossbar arrays. Moreover, the extra peripheral circuitry of the shift-
and-add external reduction networks could substantially increase
the energy consumption and area. Mixed-precision computing is an
alternate approach to achieve high precision processing based on in-
memory computing. This approach is based on the well-established
iterative refinement technique for improving a computed solution
to a system of linear equations62. Through this technique, the time
complexity of iterative linear solvers can be reduced by combining
low-precision with high-precision arithmetic63. The adaptation of
this concept for in-memory computing and experimental demon-
stration of solving a system of 5,000 linear equations using 998,752
PCM devices with arbitrarily high accuracy was presented in ref. 64.
Here, the idea is to use fast but imprecise MVM, via in-memory
computing in an iterative linear solver, to obtain an approximate
solution, and then refine this solution based on the residual error
calculated precisely through digital computing (Fig. 5b). The main
limitation of this technique is that the data need to be stored both in
crossbar arrays as well as in the memory of a high-precision digital
processing unit, which increases the resources needed to solve the
problem. Moreover, the achievable speedup comes from reducing
the number of iterations needed to solve the problem, resulting in
an overall computational complexity of 0(N2) for a NxN matrix, that
is, still proportional to the problem size.

Several extensions to these two techniques are imaginable to fur-
ther improve the performance benefits and reliability. One way to
potentially speed up linear solvers further is to realize a one-step lin-
ear solver in the analogue domain65, which has been demonstrated

Computational precision
High degree
of precision

Low degree
of precision

Signal processing, optimization and machine learning

Stochastic
computing

and security

Scientific
computing

Deep learning

Deep learning
training

Principal
component
analysis

Solving linear
and partial

differential equations

Data accesses

Low High

Compressed
sensing

C
om

pu
ta

tio
na

l c
om

pl
ex

ity

Unclonable
functions

Random
number

generation

Reservoir
computing

Associative
memory

Image
filtering and
compression

Combinatorial
optimization

Deep learning
inference

Spiking neural
networks

Sparse
coding

Fig. 4 | The application landscape for in-memory computing. The applications are grouped into three main categories based on the overall degree of
computational precision that is required. A qualitative measure of the computational complexity and data accesses involved in the different applications
is also shown.

Review Article | FOCUS NaTuRe NanoTecHnology

Nature Nanotechnology | www.nature.com/naturenanotechnology

http://www.nature.com/naturenanotechnology

FOCUS | Review ArticleNaTuRe NanoTecHnology

using a 3x3 RRAM crossbar array66. This approach is based on
an old idea of analogue matrix inversion67, whereby a known vec-
tor, forced as currents on the columns of the crossbar, establishes
an output voltage vector at the rows, which is equal to the prod-
uct of the inverse of the conductance matrix multiplied by the vec-
tor of currents. Although the high parallelism provided by this
approach is promising, its implementation is hardwired and there-
fore not scalable, and requires very precise conductance tuning
and high linearity of current–voltage characteristics. There are also
initial results on error correction schemes68 as well as extensions
to the bit-slicing concept for achieving floating-point accuracy69
on memristive crossbar arrays. These research avenues could
enlarge the application space of in-memory computing to encom-
pass applications in scientific computing where high computational
accuracy is required.

Signal processing, optimization and machine learning. There are
several applications in the domain of signal processing, optimiza-
tion and machine learning where approximate solutions can be
considered acceptable, and the bulk of the computation could thus
be performed with in-memory computing. The crossbar-based ana-
logue MVM can be used in many applications such as image com-
pression, compressed sensing, combinatorial optimization, sparse
coding, principal component analysis, associative memories and
reservoir computing.

The application of in-memory computing to analogue image
compression has been studied experimentally in ref. 70. The idea
is to encode a transform matrix, for example, a discrete cosine
transform, as the conductance values of devices organized in a
crossbar array. The image pixel intensities, represented as voltages,
are applied to the crossbar first row by row and, in a second step,

column by column. The compression is then performed by keeping
only a certain ratio of the highest coefficients of the transformed
image and discarding the rest. Compression experiments using a
128x64 crossbar array of hafnium oxide (HfO2) devices yielded
reasonably well-reconstructed images, although with a few vis-
ible artefacts due to device non-idealities70. The transform coding
described above for sparsifying large signals is fundamental to com-
mon compression schemes such as JPEG or MPEG, but can also be
used for compressed sensing. The basic idea of compressed sens-
ing is to acquire a few (M) sampling measurements from a high-
dimensional signal of size N, and to subsequently recover that signal
accurately. Compressed sensing can be realized via in-memory
computing by encoding the MxN measurement matrix used for this
process, which typically contains randomly distributed elements, in
a crossbar array of memory devices65,71. This array can be used to
perform the MVM operations associated with both the compression
and recovery tasks. The efficacy of this scheme has been experimen-
tally demonstrated through 128x128 image compression and recon-
struction tasks using more than 256,000 PCM devices71. However,
here as well, device non-idealities such as conductance noise were
found to reduce the reconstruction accuracy.

In the field of optimization, a promising application of in-mem-
ory computing is for combinatorial optimization problems, such as
the travelling salesman problem, Boolean satisfiability and integer
linear programming. Combinatorial optimization is the process of
searching for maxima or minima of an objective function whose
domain is a discrete but large configuration space. To address
these computationally intensive typically NP-hard problems, simu-
lated annealing inspired approaches, such as the massively parallel
Boltzmann machines and Hopfield networks, have been proposed.
The basic idea is to compute the inner products, the fundamental

Fast imprecise matrix-
vector multiplication via
computational memory

0

1

3

2

[0 1 3 2]T
Input

<<

<< <<

+

0

Low-precision computational memory unit

High-precision digital processing unit

Central processing unit

Memory

Digital interface

Crossbar array(s)

Control
unit

Arithmetic and
logic unit

Iterative refinement to
accurate solution via

digital processing

0

1

1

1

1

0 1 0

0 0 1

0

1

3

6

2

0

1

1

0

0

1

1

<<

<< <<

+
<<+

[3 6 2 1] = 14

MSB LSB MSB LSB

4 4 0

8

0 2 1
6

14

Analogue to digital
converters

Input MSB

Input LSB

a b

Data

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

Result

Fig. 5 | Increasing the precision of in-memory computing for scientific computing. a, Implementation of the bit slicing concept in a crossbar array for an
inner product operation. The 3-bit data vector is sliced into three 1-bit vectors stored on three separated columns of the crossbar array. The 2-bit input
vector is sliced into two 1-bit vectors sequentially applied to the crossbar array as voltages. The outputs of the crossbar from the first input bit slice go
through an analogue to digital conversion and appropriate shifting prior to accumulation and storage in a local buffer as a partial inner product result. The
second input bit slice undergoes the same process, producing the second partial inner product result. These two partial inner product results are added up,
yielding the final result of the in-place inner-product vector operation. b, The concept of mixed-precision in-memory computing used to iteratively improve
the computed solution to a system of linear equations based on inaccurate MVM operations performed via analogue in-memory computing.

FOCUS | Review ArticleNaTuRe NanoTecHnology

Nature Nanotechnology | www.nature.com/naturenanotechnology

http://www.nature.com/naturenanotechnology

Review Article | FOCUS NaTuRe NanoTecHnology

building blocks in Boltzmann machines57 or Hopfield networks72,
in place via in-memory computing. For solving the problem, the
network is run until convergence, that is, the energy is minimized,
which involves updating only the state variables, while the weights
implemented in the crossbar array remain constant. An interesting
prospect is to utilize the device noise as an explicit source of noise
to force the network to continuously explore the solution space,
which is necessary to achieve proper convergence72,73. However, it
is required to precisely control this noise via an annealing schedule,
which is challenging to implement. Another intriguing approach,
going beyond simply accelerating the inner products in recurrent
networks, is to use a network of coupled nonlinear analogue oscil-
lators whose dynamics execute an efficient search for solutions of
combinatorial optimization problems73. Volatile memristive devices
based on Mott insulator–metal transition materials, such as VO2
(ref. 74) and NbO2 (ref. 75), as well as spintronic oscillators based on
MTJs (ref. 76) can be used to realize compact nanoscale oscillators
that facilitate this form of computing.

Several memory-centric problems in machine learning could
also benefit from in-memory computing. One is sparse diction-
ary learning, a learning framework in which a sparse representa-
tion of input data is obtained in the form of a linear combination of
basic elements, which form the so-called dictionary of features. As
opposed to the transform coding approach described earlier, both
the dictionary and the sparse representation are learned from the
input data. If the learned dictionary is mapped onto device conduc-
tance values in a crossbar array, it is possible to obtain the sparse
representation using the iterative-shrinking threshold77 or locally
competitive algorithms78. The matrix-vector and the transpose-
matrix-vector multiplications associated with the algorithms are
performed in the crossbar. Dictionary learning requires updating
the conductance values by exploiting the accumulative behaviour
of the memristive devices, based on, for example, stochastic gradi-
ent descent77,79, which is challenging due to device stochasticity and
nonlinear conductance change with the number of applied pulses79.
Another application is principal component analysis, a dimension-
ality reduction technique to reveal the internal structure of data
by using a limited number of principal components. It is usually
achieved by finding the eigenvectors of the data covariance matrix.
This can be realized using the ‘power iteration’ method in which
the MVM operations can be performed using in-memory comput-
ing65. An alternative approach is to use a linear feedforward neural
network in which the weights are implemented in a crossbar array.
The network is optimized via unsupervised learning using Sanger’s
rule to obtain the principal components, given by the weights con-
nected to each output neuron representing the classes in which the
data is clustered80.

Another relevant application for in-memory computing, which
is used in several machine learning algorithms, is associative mem-
ory. An associative memory compares input search data with the
data stored in it and finds the address of the data with the closest
match to the input data81. This capability is used in several learn-
ing frameworks, such as brain-inspired hyperdimensional com-
puting82,83 and memory-augmented neural networks84,85. One way
to realize associative memory is to use a Hopfield network, which
can be trained to minimize the energy of the states that it should
remember. This has been successfully demonstrated on small arrays
of PCM86 and RRAM87 devices. Another more straightforward way
to realize associative memory is simply to encode the stored data
directly in a crossbar array and compute, in parallel, the Hamming
distances of each stored data vector with the input search data vec-
tor via in-memory dot-products88.

Finally, the collective dynamics of an ensemble of dynamical
systems could be exploited to perform certain machine learning
tasks. One prominent example of this is reservoir computing (RC).
The essential idea of reservoir computing is to map inputs into a

high-dimensional space such that it is possible to classify the input
patterns with a simple linear classifier. One of the approaches to
implement RC is to feed the input into a fixed physically realized
dynamical system. Memristive devices could play a key role in these
types of physical RC. For example, Du et al. proposed the use of a
collection of memristive devices with short-term temporal dynam-
ics to serve as the physical reservoir and to classify temporal sig-
nals89. Sebastian et al. used a reservoir of a million PCM devices and
exploited their accumulative behaviour to classify binary random
processes into correlated and uncorrelated classes90.

Deep learning. Recently, deep artificial neural networks, loosely
inspired by biological neural networks, have shown a remarkable
human-like performance in tasks such as image processing and
voice recognition91. A deep neural network (DNN) consists of at
least two layers of nonlinear neuron units interconnected by adjust-
able synaptic weights. Modern DNNs can have over 1000 layers92.
By tuning the adjustable weights, for instance, optimizing them by
using millions of labelled examples, these networks can solve cer-
tain problems remarkably well. Dedicated mixed-signal chips that
could implement multi-layer networks were already developed in
the early 1990s but were eventually abandoned in favour of field-
programmable gate arrays (FPGAs) and general-purpose graphics
processing units (GPGPUs), partly due to lack of flexibility93. While
high-performance GPGPUs are incontestably the hardware that has
been primarily responsible for the recent success of deep learning,
mixed-signal architectures based on in-memory computing are
being actively researched, targeting mostly edge computing applica-
tions where high energy efficiency is critical.

A DNN can be mapped onto multiple crossbar arrays of memory
devices that communicate with each other as illustrated in Fig. 6a.
A layer of the DNN can be implemented on (at least) one crossbar,
in which the weights Wij of that layer are stored in the charge or con-
ductance state of the memory devices at the crosspoints. The propa-
gation of data through that layer is performed in a single step by
inputting the data to the crossbar rows and deciphering the results
at the columns. The results are then passed through the neuron non-
linear function and input to the next layer. The neuron nonlinear
function is typically implemented at the crossbar periphery, using
analogue or digital circuits. Because every layer of the network is
stored physically on different arrays, each array needs to communi-
cate at least with the array(s) storing the next layer for feed-forward
networks, such as multi-layer perceptrons (MLPs) or convolutional
neural networks (CNNs). For recurrent neural networks (RNNs),
the output of an array needs to communicate with its input. Array-
to-array communication can be realized using a flexible on-chip
network, akin to those used in digital DNN accelerators94. However,
their efficient adaptation to in-memory computing based architec-
tures is still being explored95.

The efficient MVM realized via in-memory computing is very
attractive for inference-only applications, where data is propagated
through the network on offline-trained weights. With respect to
specialized inference accelerators operating at reduced digital pre-
cision (4 to 8-bit), such as Google’s tensor processing unit4 and
low-power GPGPUs such as NVIDIA T496, in-memory computing
aims to improve the energy efficiency even further by eliminat-
ing the separation between memory and processing for the MVM
operations. Implementations using SRAM-based in-memory com-
puting has focused on binary weight networks, in which weights
are represented by a single bit97. Various implementations, such
as current-based21 and charge-based22,23 computational circuits,
have been proposed and were able to demonstrate 1-bit arithme-
tic energy efficiencies of >100 tera operations per second per watt
(TOPS W−1) for MVM. Chips using in-memory computing on
non-volatile memory devices have also been fabricated using NOR-
Flash28 and RRAM98–100. Using non-volatile memory ensures that

Review Article | FOCUS NaTuRe NanoTecHnology

Nature Nanotechnology | www.nature.com/naturenanotechnology

http://www.nature.com/naturenanotechnology

FOCUS | Review ArticleNaTuRe NanoTecHnology

the weights will be retained when the power supply is turned off,
unlike with SRAM. Also, the multi-level storage capability of these
devices can be exploited to implement non-binary networks, which
yield higher accuracy and are easier to train than binary weight net-
works. Usually, at least two devices per weight are used in a differ-
ential configuration to implement positive and negative weights101.
Multiple binary/multi-level devices using the bit-slicing technique
can be used to further increase the precision58,59,98,102. The state-of-
the-art experimental demonstrations of DNN inference based on
in-memory computing have reported a competitive energy effi-
ciency of ≥10 TOPS W−1 for reduced-precision MVM (Table 1).
Nonetheless, for all these implementations, custom training103–105
and/or on-chip retraining25,100 of the network is needed to mitigate
the effect of defects, and device and circuit level non-ideality on
the network accuracy. The training procedure should be generic
and as agnostic as possible to the hardware such that the network
would have to be trained only once to be deployed on a multitude of

different chips. Another important research topic is the design
of efficient intra- and inter-layer pipelines58 to ensure that all the
arrays on the chip are always active during inference, together with
flexible array-to-array communication and control. It is especially
important for CNNs, in which a large image is passed through small
kernels at only a few pixels at a time106, leading to prohibitive laten-
cies and buffer requirements if no pipelining is used.

In-memory computing can also be used in the context of
supervised training of DNNs with backpropagation. This training
involves three stages: forward propagation of labelled data through
the network, backward propagation of the error gradients from
output to the input of the network, and weight update based on the
computed gradients with respect to the weights of each layer. This
procedure is repeated over a large dataset of labelled examples for
multiple epochs until satisfactory performance is reached by the
network. This makes the training of state-of-the-art networks very
time and energy-consuming even with high-performance GPGPUs.

...

...

...

...

...

...

...

...

...

...

...

...

1:
 F

or
w

ar
d

...

...

...

...

Compute
∆Wij

D
ig

ita
l p

ro
ce

ss
or

a

b c

Peripheral circuits

P
er

ip
he

ra
l c

irc
ui

ts

Control
unit

Communication network

Cow

1: Forward

2:
 B

ac
kw

ar
d

2: Backward

3: Update

3:
 U

pd
at

e

D
ig

ita
l i

nt
er

fa
ce

Computational memory

1:
 F

or
w

ar
d

...

...

...

...

1: Forward

2:
 B

ac
kw

ar
d

2: Backward
∆Wij

3: Update

δj

δj

δj

δj

Σ j
δ jW

ij

xi

Σj
δjW

ij

ΣixiWij ΣixiWij

x i x i x i

Fig. 6 | Deep learning training and inference using in-memory computing. a, Implementation of a feed-forward DNN on multiple crossbar arrays of
memory devices. The synaptic weights Wij are stored in the conductance or charge state of the memory devices. Each layer of the network is implemented
in a different crossbar. Forward propagation of data through the network is performed by applying, for each layer, input data on the crossbar rows, and
deciphering the results at the column level. The results are then passed through a nonlinear function implemented at the periphery and input to the next
layer. A global communication network is used to send data from one array to another. b, A first possible implementation of the three steps performed
in training a layer of a neural network in a crossbar array. Forward and backward propagations are implemented by inputting activations xi and errors δj
on the rows and columns, respectively. An in-place weight update can be performed by sending pulses based on the values of xi and δj from the rows and
columns simultaneously. This implements an approximate outer product and programs the devices at the same time. c, A second possible implementation,
whereby the weight update ∆Wij is computed in the digital domain and applied via programming pulses to the corresponding devices.

FOCUS | Review ArticleNaTuRe NanoTecHnology

Nature Nanotechnology | www.nature.com/naturenanotechnology

http://www.nature.com/naturenanotechnology

Review Article | FOCUS NaTuRe NanoTecHnology

When performing training of a neural network encoded in crossbar
arrays, forward propagation is performed in the same way as for the
inference described above. The only difference is that all the activa-
tions xi of each layer have to be stored locally in the periphery. Next,
backward propagation is performed by inputting the error gradient
δj from the subsequent layer onto the columns of the current layer
and deciphering the result from the rows. The resulting weighted
sum

P
j
δjWij

I

 needs to be multiplied by the derivative of the neuron

nonlinear function, which is computed externally, to obtain the error
gradient of the current layer. Finally, the weight update is performed
based on the outer product of activations and error gradients xiδj of
each layer. One approach is to perform a parallel weight update by
sending deterministic or stochastic overlapping pulses from the rows
and columns simultaneously to implement an approximate outer
product and program the devices at the same time (Fig. 6b)107–111.
While this parallelism may be efficient in terms of speed, each outer
product needs to be applied to the arrays one at a time (either after
every training example or one by one after a batch of examples),
leading to a large number of pulses applied to the devices. This
results in stringent requirements on the device granularity, asym-
metry and linearity to obtain accurate training109,112, and high device
endurance is critical. Using multiple devices per synapse with a peri-
odic carry can relax some of the device requirements, at the price
of a costly reprogramming of the entire array every time the carry
is performed110,111. Another approach is a mixed analogue/digital
weight update whereby ∆Wij is computed digitally and applied to
the arrays row-by-row or column-by-column (Fig. 6c). ∆Wij can be
applied either at every individual training example (online train-
ing) or batch of training examples (by accumulating all the updates
within one batch in a digital memory)113–115. ∆Wij can also be accu-
mulated in a digital memory across batches and specific devices are
programmed when their corresponding accumulated values reach a
threshold116. This approach is more flexible than the parallel weight
update based on overlapping pulses because it can implement any
learning rule, not only stochastic gradient descent, and the digi-
tal computation and accumulation of weight updates significantly
relax the requirements on the device granularity and endurance116.
However, the cost is the need for additional digital computing and
memory hardware. The training approaches presented here are still
at the stage of functionality demonstration and need to overcome
the device-related challenges before they could be employed on edge
devices in applications where online learning is desirable.

A third application domain for in-memory computing in deep
learning is spiking neural networks (SNNs). The main difference
between SNNs and the non-spiking neural networks discussed so
far is that SNN neurons compute with asynchronous spikes that are
temporally precise, as opposed to continuous-valued activations

that operate on a common clock cycle. Hence, SNNs are ideally
suited for processing spatio-temporal event-driven information
from neuromorphic sensors. There has been significant progress
in recent years in designing deep SNNs trained with supervised
learning that can perform close to conventional DNNs117. The main
approaches rely either on converting weights from a previously
trained non-spiking DNN118,119, or implementing backpropagation
training using spike signals on the SNN itself120,121. Recently it has
been shown that a spiking neuron can be transformed into a recur-
rent neural network unit, and thus it is possible to apply the existing
deep learning frameworks for seamless training of any SNN archi-
tecture with backpropagation through time122. However, most of the
efforts in applying in-memory computing to SNNs have focused on
unsupervised learning with local learning rules. The best-known
example for this is spike-timing-dependent plasticity (STDP),
which adjusts a synaptic weight based on the relative timing
between its output and input neuron spikes. In-memory implemen-
tations of SNNs have traditionally been done using slow subthresh-
old analogue CMOS circuits that directly emulate the functions of
neurons and synapses, together with fast event-driven digital com-
munication12,123. Support for STDP learning was also successfully
implemented124. Non-volatile nanoscale devices, such as PCM125–128
and RRAM129,130, have been proposed to be integrated as part of the
synapse and neuron circuits in a hardware SNN. Support for STDP
learning with these devices has been generally implemented using
rather complex schemes based on overlapping pulses. However,
STDP-based learning rules have still not been able to reach the
accuracy of conventional DNNs trained with backpropagation,
despite significant recent progress131. Although SNNs are believed
to be computationally more powerful than conventional DNNs
because of the added temporal dimension, an application where this
advantage is clearly demonstrated and exploited is still lacking. This
is one of the reasons why generally SNNs have not been as widely
adopted as conventional DNNs. However, with the incorporation
of additional bio-inspired neuronal and synaptic dynamics132, SNNs
could transcend conventional deep learning in certain application
domains and memristive devices could be exploited to natively
implement such dynamics133.

Stochastic computing and security. The stochasticity associ-
ated with the switching behaviour in memristive devices can also
be exploited for in-memory computing134. In an MRAM, the MTJ
switching is inherently stochastic due to the thermal fluctuations
affecting the free layer and the write voltage and duration can be
used to tune the switching probability. In RRAM, if the write volt-
age is comparable to VSET, then the SET transition takes place after a
certain time delay. This delay time exhibits significant cycle to cycle
statistical variations135. This behaviour is also observed in PCM

Table 1 | State-of-the-art chip-level experimental demonstrations of neural network inference based on in-memory computing

Device SRAM SRAM SRAM nor-Flash RRAM RRAM

CMOS technology 65 nm 65 nm 65 nm 180 nm 130 nm 55 nm

Array size 16 kb 16 kb 2.4 Mb 100 kb 16 kb 1 Mb

Weight/activation precision 1 bit/6 bit 1 bit/ternary 1 bit/1 bit Analogue/analogue Analogue/8 bit 3 bit/2 bit

Network LeNet-5 CNN MLP/CNN 5/9-layer CNN 2-layer MLP 5-layer CNN CNN

Dataset MNIST MNIST/CIFAR-10 MNIST/CIFAR-10 MNIST MNIST CIFAR-10

Accuracy 98.3% 98.3%/85.7% 98.6%/83.3% 94.7% 96.2% 88.52%

Peak MAC efficiency1 40.3 TOPS W−1 139 TOPS W−1 658 TOPS W−1 10 TOPS W−1 11 TOPS W−1 21.9 TOPS W−1

Reference 22 21 23 28 100 98
11 multiply-and-accumulate (MAC) = 2 Operations (OPs).

MNIST, Modified national institute of standards and technology database. CIFAR, Canadian institute for advanced research.

Review Article | FOCUS NaTuRe NanoTecHnology

Nature Nanotechnology | www.nature.com/naturenanotechnology

http://www.nature.com/naturenanotechnology

FOCUS | Review ArticleNaTuRe NanoTecHnology

devices and is attributed to the threshold switching dynamics as
well as the variability associated with the HRS states136,137. In both
RRAM and PCM, the dependence of the delay time on the write
voltage provides us a means to tune its distribution. PCM exhib-
its additional stochasticity associated with crystallization time. It is
attributed to the small variations in the atomic configurations of the
amorphous volume created upon the preceding RESET. This results
in variability associated with the number of pulses that are needed
to fully crystallize the amorphous volume137.

Random number generation is important for a variety of areas,
such as stochastic computing, data encryption, machine learning
and deep learning138,139. Therefore, there is a significant interest in
employing memristive devices as an entropy source for a compact
and efficient true random number generator (TRNG). As opposed
to a pseudo-random number generator (PRNG), a TRNG does
not require a seed and uses the entropy arising from physical phe-
nomena such as Johnson-Nyquist noise, time-dependent dielectric
breakdown or ring oscillator jitter140. The stochastically switching
memristive device in conjunction with a simple circuitry, compris-
ing a comparator and some digital logic, can be used to realize a
TRNG (Fig. 7a)141. Several variants of this idea have been explored
using RRAM142,143, PCM137 and STT-MRAM144,145.

The stochastic number streams generated by memristive TRNG
blocks have also been employed to realize efficient multiply units142.
For example, a multiply operation between two numbers between 0
and 1 can be efficiently realized by performing an AND operation
between binary random bit streams representing those numbers138.
Another interesting application is that of performing probabilistic
inference using Bayes’s rule (Fig. 7b). For example, the required
probability distributions can be generated as random bit streams
using a stochastically switching MRAM device146. The stochastic-
ity associated with memristive devices has also found applications
in spiking neural networks where stochastically firing neurons147,148
(Fig. 7c) and stochastic binary synapses149 have been proposed.

Another promising application is in the domain of security.
A physically unclonable function is a physical system that statisti-
cally maps an input digital word to an output one through a secret
key depending on an intrinsically stochastic property of the chip.
Typically, silicon process variations or the inherent physical vari-
ability of device parameters are exploited. PUF can be viewed as
a computational unit that returns an output response, r = f(c), for
each input challenge, c. f describes the unique internal physical
characteristics of the PUF. A specific PUF instance is defined by
a set of possible challenge-response pairs (CRPs). SRAM devices
are commonly used to implement PUF circuitry by exploiting the
metastable states of cross-coupled inverters150. However, memristive
devices organized in a crossbar array can be exploited to design a
much stronger PUF with a significantly larger CRP set (Fig. 7d).
The key idea is to exploit the broad distribution of memristive resis-
tance values as well as the exponential number of available current
sneak paths151–153.

Opportunities, challenges and perspective
There are different attributes in the applications discussed in the
‘Applications’ section that can be leveraged through in-memory
computing in order to increase the overall system performance. To
take advantage of in-memory computing for MVM, it is preferable
for the application to perform many MVMs on large squarish and
dense matrices that stay constant throughout its execution. In this
way, only smaller vector data have to be moved in and out of the
crossbar arrays. This effectively reduces the overall data movement
by eliminating frequent accesses to the matrix data. Applications
that fall into this category include deep learning inference, dense
iterative linear solvers, compressed sensing, sparse coding and asso-
ciative memories. Although there has been some work on leverag-
ing sparse MVM through in-memory computing69 as well, more

research is needed to efficiently orchestrate the allocation of the
partial vector components across different arrays and maximize the
areal efficiency in coding sparse matrices on crossbars. The inherent
parallelism offered by analogue computations can also potentially
reduce the computational complexity of a problem. For instance,
NP-hard problems involving combinatorial optimization can ben-
efit from analogue acceleration of MVMs or using networks of cha-
otic and nonlinear memristive elements to accelerate the solution
search. For applications in stochastic computing, in which memris-
tive devices are not employed to reduce data accesses, the overall
benefits can be expected only from the memristive TRNG accelera-
tion over a conventional implementation. For the logic primitives,
performance benefits come from avoiding moving data to a proces-
sor to perform the logic operations. However, efficiently cascading
the logic primitives to perform more complex logic operations, such
as a full adder47,154,155 or fixed-point multiplier156, is critical in achiev-
ing end-to-end benefits in applications. Candidate applications in
which in-memory logic could be leveraged include database query
and encryption of data157, object detection and evaluation of fast
Fourier transforms50 and image processing kernels156.

Computing with charge-based computing devices is attractive
due to their technological maturity, even though SRAM has a rela-
tively large areal footprint even at advanced technology nodes and
DRAM and Flash memory face severe scaling challenges. Charge-
based analogue computation is inherently subject to thermal noise,
which sets an upper limit to the precision achievable for a given
capacitor size and ambient temperature. Additionally, the manu-
facturing process introduces non-idealities in the form of capaci-
tor size variations, thus limiting the maximum achievable accuracy.
Memristive devices, on the other hand, could potentially be scaled
to dimensions of a few nanometers158–161. The key challenges for
memristive devices are write variability and conductance variations.
Write variability captures the inaccuracies associated with writing
an array of devices to desired conductance values. In RRAM, the
physical origin of this variability lies mostly in the stochastic nature
of filamentary switching and one prominent approach to counter
this is that of establishing preferential paths for CF formation162,163.
Representing single computational elements by using multiple mem-
ory devices could also mitigate variability issues164. Conductance
variations refer to the temporal and temperature-induced variations
of the programmed conductance values. One prominent example is
‘drift’ in PCM devices, which is attributed to the intrinsic structural
relaxation of the amorphous phase. A promising approach towards
addressing drift is that of projected phase change memory, which
comprises a non-insulating material segment parallel to the phase
change material segment165,166.

There are also several challenges to be tackled at the periph-
eral circuit level for in-memory computing. A critical issue is the
need for digital-to-analogue (analogue-to-digital) conversion every
time data goes in to (out of) the crossbar arrays. There are solu-
tions that employ fully analogue peripheral circuits to avoid such
conversions28,111, at the cost of less flexibility and accuracy. Usually,
the preferred method for inputting digital data to memristive cross-
bars is pulse-width modulation, because the result of the computa-
tion based on Ohm’s law will not be affected by the nonlinearity
of the current–voltage characteristics of the devices. For digitizing
the crossbar output, most works have employed analogue-to-digital
converters (ADCs)21,22 or sense amplifiers98. The precision of the
digitization needs to be sufficient to properly resolve the analogue
multiply–accumulate operations, and a precision of at least four bits
(including sign) has so far been necessary for DNN inference appli-
cations21,22,98. Because of their large area and power consumption,
it is typically required to multiplex ADCs across multiple columns,
which increases the latency. Moreover, it is critical to properly scale
the input and output ranges, such that the crossbar output falls
within the limited dynamic range of the ADC; otherwise there

FOCUS | Review ArticleNaTuRe NanoTecHnology

Nature Nanotechnology | www.nature.com/naturenanotechnology

http://www.nature.com/naturenanotechnology

Review Article | FOCUS NaTuRe NanoTecHnology

would be a prohibitive loss of computational precision. Another
important challenge is the finite resistance of the crossbar wires. It
can lead to parasitic voltage drops on the devices during readout
when a high current is flowing through them (referred to as the IR
drop), creating errors in the analog computation results. This not

only limits the maximum crossbar size that can be reliably oper-
ated, but also the integration density because of the difficulty to use
the metal layers close to the CMOS front-end due to their higher
resistivity. From an architectural point of view, a computational
memory unit could have multiple in-memory computing cores

LRS

Duration

Amplitude

Write pulse

HRS

Axon

Output spike
train

Memristive
membrane

Dendrites

Spike event
generation

Biology Technology

Cloudy
0 1

0.5 0.5

Springler
0 1

0.5

Cloudy

0
1 0.10.9

0.5

Rain

0 1

0.8

Cloudy

0

1

0.2

0.2 0.8

Wet Grass
0 1

1

Springler Rain

0

0
1

0
0

1
1

0.1
1.0

0.1
0.01

0.9
0.0

0.9
0.99

P(S = 1 W = 1)

P(S = 1/W = 1)

P(W = 1)

Rain (R)

Springler (S)

Cloudy (C)

Divide

Wet Grass (W)

....01000110000...

....01000100010...

AND

Clock

Counter (even or odd)

Comparator

VREF

I1 I2 ININ-1

Pulse

AND

Time

Time

Time

Time

1

Switching
delay
time

V

V

0

0

a b

c d

Lipid bilayer

– – – – – – – – –

+ + + + + + + + +
BE

Top electrode

Phase-change
cell

C
ha

lle
ng

e

Response

Current sense amplifier

Fig. 7 | Stochasticity associated with memristive devices and applications in computing. Resistance switching in memristive devices is intrinsically
stochastic, with an ability to control the stochasticity via the voltage and duration of write pulses. a, Schematic illustration of a circuitry that exploits
memristive stochasticity for the generation of true random numbers141. The device is connected in series with a resistor in a voltage divider configuration.
A write pulse of a certain fixed duration is applied to the device. A SET transition in the device after a stochastic delay time will cause the comparator to
output a 1. The difference between the pulse duration and the delay time is measured by a counter in units of a fixed clock period. Based on whether this
time is an even or odd multiple of the clock period, a 0 or 1 bit is assigned. By applying a sequence of write pulses, a stochastic bit stream is generated.
b, A Bayesian network is shown where each node represents random variables and each link describes the direct dependence among them, quantified
in terms of the transitional conditional probabilities. Such networks can be used to estimate the probability of hidden causes from a given observation.
The required probability distributions to perform such probabilistic inference can be generated efficiently using stochastically switching memristive
devices. For example, the probabilities can be encoded within Poisson distributed binary bit streams generated using MRAM devices146. The associated
computations such as the intersection operation can be implemented by multiplying the two bit streams with an AND gate. c, The stochasticity associated
with the SET process in PCM can be used to realize stochastically firing neurons. The key computational element is the neuronal membrane, which stores
the membrane potential in the phase configuration of a PCM device. These devices enable the emulation of large and dense populations of neurons
for bioinspired signal representation and computation. d, Memristive crossbar arrays can be used to generate physically unclonable functions (PUF).
The broad distribution of resistance values as well as the current sneak paths are exploited to obtain a large set of challenge-response pairs (CRP). For
example, in an NxN crossbar PUF depicted here, the challenge consists of an N-bit vector applied to the N rows. The current from the N columns is then
read and converted to an N-bit response. The theoretical number of CRPs is 2N.

Review Article | FOCUS NaTuRe NanoTecHnology

Nature Nanotechnology | www.nature.com/naturenanotechnology

http://www.nature.com/naturenanotechnology

FOCUS | Review ArticleNaTuRe NanoTecHnology

connected through an on-chip network95. Besides the memory
arrays and associated peripheral circuitry, each in-memory com-
pute core could also have some rudimentary digital processing
units as well as conventional memory such as registers and buffers.
There is significant on-going research on defining such hierarchical
organizations of in-memory computing cores to tackle a range of
applications58,167,168. Another crucial aspect is the design of a soft-
ware stack that extends from the user-level application to the low-
level driver that directly controls the computational memory unit.
The software stack is responsible for transparently compiling, for
example a machine learning model, into optimized operations and
routing, and orchestrating data movement to and from the unit.
Recent works have started to explore some of these aspects for spe-
cific DNN inference workloads168,169.

The specific requirements that the devices need to fulfill when
employed for computational memory are likely to be different from
those needed for conventional memory and will also be highly
application dependent. One requirement for memristive devices,
which is common to most computing applications, is that the low-
resistance state should be resistive enough to limit the impact of the
IR drop during writing and readout of the array. For memristive
stateful logic, the requirements include an abrupt, fast and low-
power threshold switching characteristic170, high cycling endurance
>1012 cycles) as well as low device-to-device variability of switching
voltages and LRS/HRS values. For computational tasks involving
read-only operations, such as MVM, endurance is much less critical
as long as the conductance states remain unchanged during their
execution. However, a gradual analogue-type switching characteris-
tic is desirable for programming a continuum of conductance values
in a single device, and temporal conductance variations, device fail-
ures and variability can severely affect the performance171. Gradual,
linear and symmetric conductance changes are also desired in appli-
cations where the device conductance needs to be incrementally
modified such as neural network training112. For stochastic com-
puting applications, random device variability is not an issue, but
graceful device degradation is137. Moreover, very fast and low-power
switching devices with high endurance are necessary for being com-
petitive with efficient CMOS-based implementations140.

Besides the conventional memory devices presented in this
Review, several new memory concepts are being proposed for in-
memory computing172–174. Even though promising, it is difficult to
fully assess their benefits in the absence of large-scale experimen-
tal demonstrations and/or integration with CMOS technology.
Ferroelectric devices, such as ferroelectric random access mem-
ory175, ferroelectric field effect transistors176 and ferroelectric tunnel
junctions177, have also been explored for in-memory computing and
the newly discovered ferroelectricity in hafnium oxide has given
significant impetus to this research. There is also a recent interest
in photonic memory devices178,179, where data can be written, erased
and read optically. Such devices are being explored for all-photonic
chip-scale information processing. For example, by integrating
phase-change materials onto an integrated photonics chip, the ana-
logue multiplication of an incoming optical signal by a scalar value,
encoded in the state of the phase change material, was performed180.
One of the primary advantages of the optical approach is the poten-
tial for inherent wavelength division multiplexing.

The explosive growth of AI, in particular deep neural networks,
has created a market for high performance and efficient inference
and training chips, both in the cloud and on the edge. Moreover,
mobile devices, which are particularly hampered by energy
constraints, are playing an increasingly important role in defin-
ing the future of computing. Yet another reason is that the cost
per transistor is plateauing even though transistor sizes continue
to get smaller (albeit not at the rate envisaged by Gordon Moore
anymore). This could prompt many chip manufacturers to sustain
older technology nodes but instead equip the chips with high per-

formance computing engines such as computational memory. Note
that most of the memristive device technologies are amenable to
back end of line integration, thus enabling their integration with
a wide range of front end CMOS technologies. To conclude, in-
memory computing, using both charge-based as well as resistance-
based memory devices, is poised to have a significant impact on
improving the energy/area efficiency as well as the latency com-
pared to conventional computing systems and given the condu-
cive market environment, this could usher in a new era of non-von
Neumann computing.

Received: 16 September 2019; Accepted: 10 February 2020;
Published: xx xx xxxx

References
	1.	 Mutlu, O., Ghose, S., Gómez-Luna, J. & Ausavarungnirun, R. Processing

data where it makes sense: Enabling in-memory computation. Microprocess.
Microsyst. 67, 28–41 (2019).

	2.	 Horowitz, M. Computing’s energy problem (and what we can do about it).
In Proc. International Solid-state Circuits Conference (ISSCC) 10–14
(IEEE, 2014).

	3.	 Keckler, S. W., Dally, W. J., Khailany, B., Garland, M. & Glasco, D. GPUs
and the future of parallel computing. IEEE Micro 31, 7–17 (2011).

	4.	 Jouppi, N. P. et al. In-datacenter performance analysis of a tensor
processing unit. In Proc. International Symposium on Computer Architecture
(ISCA) 1–12 (IEEE, 2017).

	5.	 Sze, V., Chen, Y.-H., Yang, T.-J. & Emer, J. S. Efficient processing
of deep neural networks: A tutorial and survey. Proc. IEEE 105,
2295–2329 (2017).

	6.	 Patterson, D. et al. A case for intelligent RAM. IEEE Micro 17, 34–44 (1997).
	7.	 Farooq, M. et al. 3D copper TSV integration, testing and reliability. In

Proc. International Electron Devices Meeting 7–1 (IEEE, 2011).
	8.	 Pawlowski, J. T. Hybrid memory cube (HMC). In Proceedings of the Hot

Chips Symposium (HCS) 1–24 (IEEE, 2011).
	9.	 Kim, J. & Kim, Y. HBM: Memory solution for bandwidth-hungry

processors. In Proc. Hot Chips Symposium (HCS) 1–24 (IEEE, 2014).
	10.	 Shulaker, M. M. et al. Three-dimensional integration of nanotechnologies

for computing and data storage on a single chip. Nature 547, 74 (2017).
	11.	 Di Ventra, M. & Pershin, Y. V. The parallel approach. Nat. Phys. 9,

200 (2013).
	12.	 Indiveri, G. & Liu, S.-C. Memory and information processing in

neuromorphic systems. Proc. The IEEE 103, 1379–1397 (2015).
	13.	 Zhirnov, V. V. & Marinella, M. J. in Emerging Nanoelectronic Devices

(eds Chen, A.) Ch. 3 (Wiley Online Library, 2015).
	14.	 Wong, H.-S. P. & Salahuddin, S. Memory leads the way to better

computing. Nat. Nanotechnol. 10, 191 (2015).
	15.	 Chua, L. Resistance switching memories are memristors. Appl. Phys. A

Mater. Sci. Process. 102, 765–783 (2011).
	16.	 Li, S. et al. DRISA: A DRAM-based reconfigurable in-situ accelerator.

In Proc. International Symposium on Microarchitecture (MICRO)
288–301 (IEEE, 2017).

	17.	 Seshadri, V. et al. Ambit: In-memory accelerator for bulk bitwise operations
using commodity DRAM technology. In Proc. International Symposium on
Microarchitecture 273–287 (IEEE, 2017).

	18.	 Jeloka, S., Akesh, N. B., Sylvester, D. & Blaauw, D. A 28 nm configurable
memory (TCAM/BCAM/SRAM) using push-rule 6T bit cell enabling
logic-in-memory. IEEE J. Solid-State Circuits 51, 1009–1021 (2016).

	19.	 Aga, S. et al. Compute caches. In Proc. International Symposium on High
Performance Computer Architecture (HPCA) 481–492 (IEEE, 2017).

	20.	 Wang, J. et al. A compute SRAM with bit-serial integer/floating-point
operations for programmable in-memory vector acceleration. In Proc.
International Solid- State Circuits Conference (ISSCC) 224–226 (IEEE, 2019).

	21.	 Jiang, Z., Yin, S., Seok, M. & Seo, J. XNOR-SRAM: In-memory computing
SRAM macro for binary/ternary deep neural networks. In Proc. Symposium
on VLSI Technology 173–174 (IEEE, 2018).

	22.	 Biswas, A. & Chandrakasan, A. P. CONV-SRAM: an energy-efficient SRAM
with in-memory dot-product computation for low-power convolutional
neural networks. IEEE J. Solid-State Circuits 54, 217–230 (2019).

	23.	 Valavi, H., Ramadge, P. J., Nestler, E. & Verma, N. A 64-tile 2.4-Mb
in-memory-computing CNN accelerator employing charge-domain
compute. IEEE J. Solid-State Circuits 54, 1789–1799 (2019).

	24.	 Verma, N. et al. In-memory computing: Advances and prospects.
IEEE J. Solid-State Circuits 11, 43–55 (2019).

	25.	 Gonugondla, S. K., Kang, M. & Shanbhag, N. R. A variation-tolerant
in-memory machine learning classifier via on-chip training. IEEE J.
Solid-State Circuits 53, 3163–3173 (2018).

FOCUS | Review ArticleNaTuRe NanoTecHnology

Nature Nanotechnology | www.nature.com/naturenanotechnology

http://www.nature.com/naturenanotechnology

Review Article | FOCUS NaTuRe NanoTecHnology

	26.	 Bankman, D., Yang, L., Moons, B., Verhelst, M. & Murmann, B. An
always-on 3.8 μ J/86% CIFAR-10 mixed-signal binary CNN processor with
all memory on chip in 28-nm CMOS. IEEE J. Solid-State Circuits 54,
158–172 (2019).

	27.	 Diorio, C., Hasler, P., Minch, A. & Mead, C. A. A single-transistor silicon
synapse. IEEE Transactions on Electron Devices 43, 1972–1980 (1996).

	28.	 Merrikh-Bayat, F. et al. High-performance mixed-signal neurocomputing
with nanoscale floating-gate memory cell arrays. IEEE Trans. Neural Netw.
Learn. Syst. 29, 4782–4790 (2018).

	29.	 Wang, P. et al. Three-dimensional NAND flash for vector-matrix multiplica
tion. EEE Trans. Very Large Scale Integr. VLSI Syst. 27, 988–991 (2019).

	30.	 Burr, G. W. et al. Access devices for 3D crosspoint memory. J. Vac. Sci.
Technol. B Nanotechnol. Microelectron. 32, 040802 (2014).

	31.	 Hickmott, T. Low-frequency negative resistance in thin anodic oxide films.
J. Appl. Phys. 33, 2669–2682 (1962).

	32.	 Beck, A., Bednorz, J., Gerber, C., Rossel, C. & Widmer, D. Reproducible
switching effect in thin oxide films for memory applications. Applied Physics
Letters 77, 139–141 (2000).

	33.	 Waser, R. & Aono, M. Nanoionics-based resistive switching memories.
Nat. Mater. 6, 833–840 (2007).

	34.	 Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing
memristor found. Nature 453, 80 (2008).

	35.	 Ovshinsky, S. R. Reversible electrical switching phenomena in disordered
structures. Phys. Rev. Lett. 21, 1450 (1968).

	36.	 Wong, H.-S. P. et al. Phase change memory. Proc. IEEE 98, 2201–2227 (2010).
	37.	 Burr, G. W. et al. Recent progress in phase-change memory technology.

IEEE J. Emerg. Sel. Top. Circuits Syst. 6, 146–162 (2016).
	38.	 Khvalkovskiy, A. et al. Basic principles of STT-MRAM cell operation in

memory arrays. J. Phys. D Appl. Phys. 46, 074001 (2013).
	39.	 Kent, A. D. & Worledge, D. C. A new spin on magnetic memories.

Nat. Nanotechnol. 10, 187 (2015).
	40.	 Vourkas, I. & Sirakoulis, G. C. Emerging memristor-based logic circuit

design approaches: A review. IEEE Circuits and Systems Magazine 16,
15–30 (2016).

	41.	 Borghetti, J. et al. Memristive switches enable stateful logic operations via
material implication. Nature 464, 873 (2010).

	42.	 Linn, E., Rosezin, R., Tappertzhofen, S., Böttger, U. & Waser, R. Beyond von
neumann-logic operations in passive crossbar arrays alongside memory
operations. Nanotechnology 23, 305205 (2012).

	43.	 Jeong, D. S., Kim, K. M., Kim, S., Choi, B. J. & Hwang, C. S. Memristors
for energy-efficient new computing paradigms. Adv. Electron. Mater. 2,
1600090 (2016).

	44.	 Kvatinsky, S. et al. MAGIC-memristor-aided logic IEEE Trans. Circuits Syst.
II Express Briefs 61, 895–899 (2014).

	45.	 Mahmoudi, H., Windbacher, T., Sverdlov, V. & Selberherr, S. Implication
logic gates using spin-transfer-torque-operated magnetic tunnel junctions
for intrinsic logic-in-memory. Solid State Electron. 84, 191–197 (2013).

	46.	 Kim, K. M. et al. Single-cell stateful logic using a dual-bit memristor. Phys.
Status Solidi Rapid Res. Lett. 13, 1800629 (2019).

	47.	 Xu, N., Fang, L., Kim, K. M. & Hwang, C. S. Time-efficient stateful dual-
bit-memristor logic. Phys. Status Solidi Rapid Res. Lett. 13, 1900033 (2019).

	48.	 Li, S. et al. Pinatubo: A processing-in-memory architecture for bulk bitwise
operations in emerging non-volatile memories. In Proc. The Design
Automation Conference (DAC) 173 (ACM, 2016).

	49.	 Xie, L. et al. Scouting logic: A novel memristor-based logic design for
resistive computing. In Proc. The IEEE Symposium on VLSI (ISVLSI)
176–181 (IEEE, 2017).

	50.	 Maan, A. K., Jayadevi, D. A. & James, A. P. A survey of memristive
threshold logic circuits. IEEE Trans. Neural Netw. Learn. Syst. 28,
1734–1746 (2016).

	51.	 Burr, G. W. et al. Neuromorphic computing using non-volatile memory.
Adv Phys X 2, 89–124 (2017).

	52.	 Ielmini, D. & Wong, H.-S. P. In-memory computing with resistive switching
devices. Nat. Electron. 1, 333 (2018).

	53.	 Wang, Z. et al. Resistive switching materials for information processing.
Nat. Rev. Mater. https://doi.org/10.1038/s41578-019-0159-3 (2020).

	54.	 Wright, C. D., Hosseini, P. & Diosdado, J. A. V. Beyond von-neumann
computing with nanoscale phase-change memory devices. Adv. Funct.
Mater. 23, 2248–2254 (2013).

	55.	 Sebastian, A. et al. Brain-inspired computing using phase-change memory
devices. J. Appl. Phys. 124, 111101 (2018).

	56.	 Godse, A. P. & Godse, D. A. Computer Organization and Architecture
(Technical Publications, 2008).

	57.	 Bojnordi, M. N. & Ipek, E. Memristive boltzmann machine: A hardware
accelerator for combinatorial optimization and deep learning. In Proc. The
International Symposium on High Performance Computer Architecture
(HPCA) 1–13 (IEEE, 2016).

	58.	 Shafiee, A. et al. ISAAC: A convolutional neural network accelerator with
in-situ analog arithmetic in crossbars. Comput. Archit. News 44, 14–26 (2016).

	59.	 Chi, P. et al. PRIME: A novel processing-in-memory architecture for neural
network computation in ReRAM-based main memory. In Proc. 43rd
Annual International Symposium on Computer Architecture (ISCA) News
27–39 (IEEE, 2016).

	60.	 Song, L., Qian, X., Li, H. & Chen, Y. PIPELAYER: A pipelined ReRAM-
based accelerator for deep learning. In Proc. The International Symposium
on High Performance Computer Architecture (HPCA), 541–552 (IEEE, 2017).

	61.	 Zidan, M. A. et al. A general memristor-based partial differential equation
solver. Nat. Electron. 1, 411 (2018).

	62.	 Higham, N. J. Accuracy and Stability of Numerical Algorithms, Vol. 80
(Society for Industrial and Applied Mathematics, 2002).

	63.	 Bekas, C., Curioni, A. & Fedulova, I. Low cost high performance
uncertainty quantification. In Proc. 2nd Workshop on High Performance
Computational Finance 1–8 (ACM, 2009).

	64.	 Le Gallo, M. et al. Mixed-precision in-memory computing. Nat. Electron. 1,
246–253 (2018).

	65.	 Liu, S., Wang, Y., Fardad, M. & Varshney, P. K. A memristor-based
optimization framework for artificial intelligence applications. IEEE Circuits
and Systems Magazine 18, 29–44 (2018).

	66.	 Sun, Z. et al. Solving matrix equations in one step with cross-point resistive
arrays. Proc. Natl. Acad. Sci. USA 116, 4123–4128 (2019).

	67.	 Sturges, R. H. Analog matrix inversion (robot kinematics). IEEE Journal on
Robotics and Automation 4, 157–162 (1988).

	68.	 Feinberg, B., Wang, S. & Ipek, E. Making memristive neural network
accelerators reliable. In Proc. The International Symposium on High
Performance Computer Architecture (HPCA) 52–65 (IEEE, 2018).

	69.	 Feinberg, B., Vengalam, U. K. R., Whitehair, N., Wang, S. & Ipek, E.
Enabling scientific computing on memristive accelerators. In Proc.
International Symposium on Computer Architecture (ISCA) 367–382
(IEEE, 2018).

	70.	 Li, C. et al. Analogue signal and image processing with large memristor
crossbars. Nat. Electron. 1, 52–59 (2018).

	71.	 Le Gallo, M., Sebastian, A., Cherubini, G., Giefers, H. & Eleftheriou, E.
Compressed sensing with approximate message passing using in-memory
computing. IEEE Trans. Electron Devices 65, 4304–4312 (2018).

	72.	 Cai, F. et al. Harnessing intrinsic noise in memristor hopfield neural
networks for combinatorial optimization. Preprint at https://arxiv.org/
abs/1903.11194 (2019).

	73.	 Mostafa, H., Müller, L. K. & Indiveri, G. An event-based architecture for
solving constraint satisfaction problems. Nat. Commun. 6, 8941 (2015).

	74.	 Parihar, A., Shukla, N., Jerry, M., Datta, S. & Raychowdhury, A. Vertex
coloring of graphs via phase dynamics of coupled oscillatory networks.
Sci. Rep. 7, 911 (2017).

	75.	 Kumar, S., Strachan, J. P. & Williams, R. S. Chaotic dynamics in nanoscale
NbO2 Mott memristors for analogue computing. Nature 548, 318 (2017).

	76.	 Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic
oscillators. Nature 547, 428–431 (2017).

	77.	 Seo, J. et al. On-chip sparse learning acceleration with CMOS and resistive
synaptic devices. IEEE Trans. Nanotechnol. 14, 969–979 (2015).

	78.	 Sheridan, P. M. et al. Sparse coding with memristor networks.
Nat. Nanotechnol. 12, 784–789 (2017).

	79.	 Sheridan, P. M., Du, C. & Lu, W. D. Feature extraction using memristor
networks. IEEE Trans. Neural Netw. Learn. Syst. 27, 2327–2336 (2016).

	80.	 Choi, S., Sheridan, P. & Lu, W. D. Data clustering using memristor
networks. Sci. Rep. 5, 10492 (2015).

	81.	 Karam, R., Puri, R., Ghosh, S. & Bhunia, S. Emerging trends in design and
applications of memory-based computing and content-addressable
memories. Proc. IEEE 103, 1311–1330 (2015).

	82.	 Rahimi, A. et al. High-dimensional computing as a nanoscalable paradigm.
IEEE Trans. Circuits Syst. I Regul. Pap. 64, 2508–2521 (2017).

	83.	 Wu, T. F. et al. Hyperdimensional computing exploiting carbon nanotube
FETs, resistive RAM, and their monolithic 3D integration. IEEE J.
Solid-State Circuits 53, 3183–3196 (2018).

	84.	 Graves, A. et al. Hybrid computing using a neural network with dynamic
external memory. Nature 538, 471 (2016).

	85.	 Ni, K. et al. Ferroelectric ternary content-addressable memory for one-shot
learning. Nat. Electron. 2, 521–529 (2019).

	86.	 Eryilmaz, S. B. et al. Brain-like associative learning using a nanoscale
non-volatile phase change synaptic device array. Front. Neurosci. 8,
205 (2014).

	87.	 Hu, S. et al. Associative memory realized by a reconfigurable memristive
Hopfield neural network. Nat. Commun. 6, 7522 (2015).

	88.	 Kavehei, O. et al. An associative capacitive network based on nanoscale
complementary resistive switches for memory-intensive computing.
Nanoscale 5, 5119–5128 (2013).

	89.	 Du, C. et al. Reservoir computing using dynamic memristors for temporal
information processing. Nat. Commun. 8, 2204 (2017).

	90.	 Sebastian, A. et al. Temporal correlation detection using computational
phase-change memory. Nat. Commun. 8, 1115 (2017).

Review Article | FOCUS NaTuRe NanoTecHnology

Nature Nanotechnology | www.nature.com/naturenanotechnology

https://doi.org/10.1038/s41578-019-0159-3
https://arxiv.org/abs/1903.11194
https://arxiv.org/abs/1903.11194
http://www.nature.com/naturenanotechnology

FOCUS | Review ArticleNaTuRe NanoTecHnology

	91.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436 (2015).
	92.	 He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image

recognition. In Proc. Conference on Computer Vision and Pattern
Recognition (CVPR) 770–778 (IEEE, 2016).

	93.	 LeCun, Y. Deep learning hardware: Past, present, and future. In Proc.
International Solid-State Circuits Conference (ISSCC) 12–19 (IEEE, 2019).

	94.	 Chen, Y., Yang, T., Emer, J. & Sze, V. Eyeriss v2: A flexible accelerator for
emerging deep neural networks on mobile devices. IEEE J. Em. Sel. Top. C
9, 292–308 (2019).

	95.	 Dazzi, M. et al. 5 parallel prism: A topology for pipelined implementations
of convolutional neural networks using computational memory. In Proc.
NeurIPS MLSys Workshop (NeurIPS, 2019); http://learningsys.org/
neurips19/acceptedpapers.html

	96.	 Jia, Z., Maggioni, M., Smith, J. & Scarpazza, D. P. Dissecting the NVidia
Turing T4 GPU via microbenchmarking. Preprint at https://arxiv.org/
abs/1903.07486 (2019).

	97.	 Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R. & Bengio, Y.
Quantized neural networks: Training neural networks with low precision
weights and activations. J. Mach. Learn. Res. 18, 6869–6898 (2017).

	98.	 Xue, C. et al. 24.1 a 1mb multibit ReRAM computing-in-memory macro
with 14.6ns parallel MAC computing time for CNN based AI edge
processors. In Proc. The International Solid-State Circuits Conference
(ISSCC) 388–390 (IEEE, 2019).

	99.	 Hu, M. et al. Memristor-based analog computation and neural network
classification with a dot product engine. Advanced Materials 30,
1705914 (2018).

	100.	 Yao, P. et al. Fully hardware-implemented memristor convolutional neural
network. Nature 577, 641–646 (2020).

	101.	 Suri, M. et al. Phase change memory as synapse for ultra-dense
neuromorphic systems: Application to complex visual pattern extraction.
In Proc. The International Electron Devices Meeting (IEDM) 4.4.1–44.4
(IEEE, 2011).

	102.	 Chen, W.-H. et al. CMOS-integrated memristive non-volatile computing-in-
memory for AI edge processors. Nat. Electron. 2, 420–428 (2019).

	103.	 Murray, A. F. & Edwards, P. J. Enhanced mlp performance and fault
tolerance resulting from synaptic weight noise during training. IEEE T.
Neural Networ. 5, 792–802 (1994).

	104.	 Liu, B. et al. Vortex: Variation-aware training for memristor X-bar. In
Proc. The Design Automation Conference (DAC) 1–6 (DAC, 2015).

	105.	 Sebastian, A. et al. Computational memory-based inference and training of
deep neural networks. In Proc. The Symposium on VLSI Technology
T168–T169 (IEEE, 2019).

	106.	 Gokmen, T., Onen, M. & Haensch, W. Training deep convolutional
neural networks with resistive cross-point devices. Front. Neurosci. 11,
538 (2017).

	107.	 Alibart, F., Zamanidoost, E. & Strukov, D. B. Pattern classification by
memristive crossbar circuits using ex situ and in situ training. Nat. Commun.
4, 2072 (2013).

	108.	 Burr, G. W. et al. Experimental demonstration and tolerancing of a
large-scale neural network (165 000 synapses) using phase-change
memory as the synaptic weight element. IEEE T. Electron Dev. 62,
3498–3507 (2015).

	109.	 Gokmen, T. & Vlasov, Y. Acceleration of deep neural network training
with resistive cross-point devices: design considerations. Front. Neurosci. 10,
333 (2016).

	110.	 Agarwal, S. et al. Achieving ideal accuracies in analog neuromorphic
computing using periodic carry. In Proc. The Symposium on VLSI
Technology T174–T175 (IEEE, 2017).

	111.	 Ambrogio, S. et al. Equivalent-accuracy accelerated neural-network training
using analogue memory. Nature 558, 60–67 (2018).

	112.	 Yu, S. Neuro-inspired computing with emerging nonvolatile memory.
Proc. IEEE 106, 260–285 (2018).

	113.	 Prezioso, M. et al. Training and operation of an integrated neuromorphic
network based on metal-oxide memristors. Nature 521, 61–64 (2015).

	114.	 Yao, P. et al. Face classification using electronic synapses. Nat. Commun. 8,
15199 (2017).

	115.	 Li, C. et al. Efficient and self-adaptive in-situ learning in multilayer
memristor neural networks. Nat. Commun. 9, 2385 (2018).

	116.	 Nandakumar, S. et al. Mixed-precision architecture based on computational
memory for training deep neural networks. In Proc. The International
Symposium on Circuits and Systems (ISCAS) 1–5 (IEEE, 2018).

	117.	 Pfeiffer, M. & Pfeil, T. Deep learning with spiking neurons: Opportunities
and challenges. Front. Neurosci. 12, 774 (2018).

	118.	 Diehl, P. U. et al. Fast-classifying, high-accuracy spiking deep networks
through weight and threshold balancing. In Proc. International Joint
Conference on Neural Networks (IJCNN) 1–8 (IEEE, 2015).

	119.	 Sengupta, A., Ye, Y., Wang, R., Liu, C. & Roy, K. Going deeper in spiking
neural networks: VGG and residual architectures. Front. Neurosci. 13,
95 (2019).

	120.	 Esser, S. K., Appuswamy, R., Merolla,P., Arthur, J. V. & Modha, D. S.
Backpropagation for energy-efficient neuromorphic computing. In Proc.
Advances in Neural Information Processing Systems (Eds. Cortes, C. et al)
1117–1125 (NIPS, 2015).

	121.	 Lee, J. H., Delbruck, T. & Pfeiffer, M. Training deep spiking neural networks
using backpropagation. Front. Neurosci. 10, 508 (2016).

	122.	 Woźniak, S., Pantazi, A. & Eleftheriou, E. Deep networks incorporating
spiking neural dynamics. Preprint at https://arxiv.org/abs/1812.07040 (2018).

	123.	 Benjamin, B. V. et al. Neurogrid: A mixed-analog-digital multichip system
for large-scale neural simulations. Proc. IEEE 102, 699–716 (2014).

	124.	 Qiao, N. et al. A reconfigurable on-line learning spiking neuromorphic
processor comprising 256 neurons and 128k synapses. Front. Neurosci. 9,
141 (2015).

	125.	 Kuzum, D., Jeyasingh, R. G., Lee, B. & Wong, H.-S. P. Nanoelectronic
programmable synapses based on phase change materials for brain-inspired
computing. Nano Letters 12, 2179–2186 (2011).

	126.	 Kim, S. et al. NVM neuromorphic core with 64k-cell (256-by-256) phase
change memory synaptic array with on-chip neuron circuits for continuous
in-situ learning. In Proc. The International Electron Devices Meeting (IEDM)
17–1 (IEEE, 2015).

	127.	 Tuma, T., Le Gallo, M., Sebastian, A. & Eleftheriou, E. Detecting
correlations using phase-change neurons and synapses. IEEE Electr. Device
L. 37, 1238–1241 (2016).

	128.	 Pantazi, A., Woźniak, S., Tuma, T. & Eleftheriou, E. All-memristive
neuromorphic computing with level-tuned neurons. Nanotechnology 27,
355205 (2016).

	129.	 Covi, E. et al. Analog memristive synapse in spiking networks
implementing unsupervised learning. Front. Neurosci. 10, 482 (2016).

	130.	 Serb, A. et al. Unsupervised learning in probabilistic neural networks with
multi-state metal-oxide memristive synapses. Nat. Commun. 7, 12611 (2016).

	131.	 Kheradpisheh, S. R., Ganjtabesh, M., Thorpe, S. J. & Masquelier, T.
STDP-based spiking deep convolutional neural networks for object
recognition. Neural Networks 99, 56–67 (2018).

	132.	 Moraitis, T., Sebastian, A. & Eleftheriou, E. The role of short-term plasticity
in neuromorphic learning: Learning from the timing of rate-varying events
with fatiguing spike-timing-dependent plasticity. IEEE Nanotechnology
Magazine 12, 45–53 (2018).

	133.	 Wang, Z. et al. Memristors with diffusive dynamics as synaptic emulators
for neuromorphic computing. Nat. Mater. 16, 101 (2017).

	134.	 Carboni, R. & Ielmini, D. Stochastic memory devices for security and
computing. Adv. Electron. Mater. 1900198 (2019).

	135.	 Jo, S. H., Kim, K.-H. & Lu, W. Programmable resistance switching in
nanoscale two-terminal devices. Nano letters 9, 496–500 (2008).

	136.	 Le Gallo, M., Athmanathan, A., Krebs, D. & Sebastian, A. Evidence for
thermally assisted threshold switching behavior in nanoscale phase-change
memory cells. J. Appl. Phys. 119, 025704 (2016).

	137.	 Le Gallo, M., Tuma, T., Zipoli, F., Sebastian, A. & Eleftheriou, E. Inherent
stochasticity in phase-change memory devices. In Proc. 2016 46th European
Solid-State Device Research Conference (ESSDERC) 373–376 (IEEE, 2016).

	138.	 Alaghi, A. & Hayes, J. P. Survey of stochastic computing. ACM T Embed.
Comput. S. 12, 92 (2013).

	139.	 Gupta, S., Agrawal, A., Gopalakrishnan, K. & Narayanan, P. Deep learning
with limited numerical precision. In Proc. International Conference on
Machine Learning 1737–1746 (2015).

	140.	 Yang, K. et al. 16.3 a 23mb/s 23pj/b fully synthesized true-random-number
generator in 28nm and 65nm CMOS. In Proc. Proceedings of the
International Solid-State Circuits Conference (ISSCC) 280–281 (IEEE, 2014).

	141.	 Jiang, H. et al. A novel true random number generator based on a
stochastic diffusive memristor. Nat. Commun. 8, 882 (2017).

	142.	 Gaba, S., Sheridan, P., Zhou, J., Choi, S. & Lu, W. Stochastic memristive
devices for computing and neuromorphic applications. Nanoscale 5,
5872–5878 (2013).

	143.	 Balatti, S. et al. Physical unbiased generation of random numbers with coupled
resistive switching devices. IEEE T. Electron Dev. 63, 2029–2035 (2016).

	144.	 Choi, W. H. et al. A magnetic tunnel junction based true random number
generator with conditional perturb and real-time output probability tracking.
In Proc. The International Electron Devices Meeting 12–5 (IEEE, 2014).

	145.	 Carboni, R. et al. Random number generation by differential read of
stochastic switching in spin-transfer torque memory. IEEE Electr. Device L.
39, 951–954 (2018).

	146.	 Shim, Y., Chen, S., Sengupta, A. & Roy, K. Stochastic spin-orbit torque
devices as elements for bayesian inference. Sci. Rep. 7, 14101 (2017).

	147.	 Tuma, T., Pantazi, A., Le Gallo, M., Sebastian, A. & Eleftheriou, E.
Stochastic phase-change neurons. Nat. Nanotechnol. 11, 693–699 (2016).

	148.	 Mizrahi, A. et al. Neural-like computing with populations of
superparamagnetic basis functions. Nat. Commun. 9, 1533 (2018).

	149.	 Bichler, O. et al. Visual pattern extraction using energy-efficient 2-PCM
synapse neuromorphic architecture. IEEE T. Electron Dev. 59,
2206–2214 (2012).

FOCUS | Review ArticleNaTuRe NanoTecHnology

Nature Nanotechnology | www.nature.com/naturenanotechnology

http://learningsys.org/neurips19/acceptedpapers.html
http://learningsys.org/neurips19/acceptedpapers.html
https://arxiv.org/abs/1903.07486
https://arxiv.org/abs/1903.07486
https://arxiv.org/abs/1812.07040
http://www.nature.com/naturenanotechnology

Review Article | FOCUS NaTuRe NanoTecHnology

	150.	 Holcomb, D. E., Burleson, W. P. & Fu, K. Power-up SRAM state as an
identifying fingerprint and source of true random numbers. IEEE T.
Comput. 58, 1198–1210 (2009).

	151.	 Gao, L., Chen, P.-Y., Liu, R. & Yu, S. Physical unclonable function
exploiting sneak paths in resistive cross-point array. IEEE Transactions on
Electron Devices 63, 3109–3115 (2016).

	152.	 Nili, H. et al. Hardware-intrinsic security primitives enabled by analogue
state and nonlinear conductance variations in integrated memristors.
Nat. Electron. 1, 197 (2018).

	153.	 Jiang, H. et al. A provable key destruction scheme based on memristive
crossbar arrays. Nat. Electron. 1, 548 (2018).

	154.	 Talati, N., Gupta, S., Mane, P. & Kvatinsky, S. Logic design within
memristive memories using memristor-aided logic (MAGIC). IEEE T.
Nanotechnol. 15, 635–650 (2016).

	155.	 Cheng, L. et al. Functional demonstration of a memristive arithmetic logic
unit (MemALU) for in-memory computing. Adv. Funct. Mater. (2019).

	156.	 Haj-Ali, A., Ben-Hur, R., Wald, N., Ronen, R. & Kvatinsky, S. IMAGING:
In-memory algorithms for image processing. IEEE T. Circuits Systems-I 65,
4258–4271 (2018).

	157.	 Hamdioui, S. et al. Applications of computation-in-memory architectures
based on memristive devices. In Proc. The Design, Automation & Test in
Europe Conference & Exhibition (DATE) 486–491 (IEEE, 2019).

	158.	 Xiong, F., Liao, A. D., Estrada, D. & Pop, E. Low-power switching of
phase-change materials with carbon nanotube electrodes. Science 332,
568–570 (2011).

	159.	 Li, K.-S. et al. Utilizing sub-5 nm sidewall electrode technology for
atomic-scale resistive memory fabrication. In Proc. Symposium on VLSI
Technology 1–2 (IEEE, 2014).

	160.	 Salinga, M. et al. Monatomic phase change memory. Nat. Mater. 17,
681–685 (2018).

	161.	 Pi, S. et al. Memristor crossbar arrays with 6-nm half-pitch and 2-nm
critical dimension. Nat. Nanotechnol. 14, 35 (2019).

	162.	 Brivio, S., Frascaroli, J. & Spiga, S. Role of Al doping in the filament
disruption in HfO2 resistance switches. Nanotechnology 28, 395202 (2017).

	163.	 Choi, S. et al. SiGe epitaxial memory for neuromorphic computing with
reproducible high performance based on engineered dislocations.
Nat. Mater. 17, 335 (2018).

	164.	 Boybat, I. et al. Neuromorphic computing with multi-memristive synapses.
Nat. Commun. 9, 2514 (2018).

	165.	 Koelmans, W. W. et al. Projected phase-change memory devices.
Nat. Commun. 6, 8181 (2015).

	166.	 Giannopoulos, I. et al. 8-bit precision in-memory multiplication with
projected phase-change memory. In Proc. The International Electron Devices
Meeting (IEDM) 27–7 (IEEE, 2018).

	167.	 Chen, Y. et al. DaDianNao: A machine-learning supercomputer. In Proc.
The 47th Annual IEEE/ACM International Symposium on Microarchitecture
609–622 (IEEE Computer Society, 2014).

	168.	 Ankit, A. et al. PUMA: A programmable ultra-efficient memristor-based
accelerator for machine learning inference. In Proc. The International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 715–73 (ACM, 2019).

	169.	 Eleftheriou, E. et al. Deep learning acceleration based on in-memory
computing. IBM Journal of Research and Development (2019).

	170.	 Yoon, K. J., Bae, W., Jeong, D.-K. & Hwang, C. S. Comprehensive writing
margin analysis and its application to stacked one diode-one memory
device for high-density crossbar resistance switching random access
memory. Adv. Electron. Mater. 2, 1600326 (2016).

	171.	 Le Gallo, M., Sebastian, A., Cherubini, G., Giefers, H. & Eleftheriou, E.
Compressed sensing recovery using computational memory.
In Proc. The International Electron Devices Meeting (IEDM) 28–3
(IEEE, 2017).

	172.	 van de Burgt, Y. et al. A non-volatile organic electrochemical device as a
low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16,
414 (2017).

	173.	 Tang, J. et al. ECRAM as scalable synaptic cell for high-speed, low-power
neuromorphic computing. In Proc. The International Electron Devices
Meeting (IEDM) 13–1 (IEEE, 2018).

	174.	 Fuller, E. J. et al. Parallel programming of an ionic floating-gate
memory array for scalable neuromorphic computing. Science 364,
570–574 (2019).

	175.	 Kimura, H. et al. Complementary ferroelectric-capacitor logic for
low-power logic-in-memory VLSI. IEEE Journal of Solid-State Circuits 39,
919–926 (2004).

	176.	 Aziz, A. et al. Computing with ferroelectric FETs: Devices, models, systems,
and applications. In Proc. The Design, Automation & Test in Europe
Conference & Exhibition (DATE) 1289–1298 (IEEE, 2018).

	177.	 Chanthbouala, A. et al. A ferroelectric memristor. Nat. Mater. 11,
860 (2012).

	178.	 Ríos, C. et al. Integrated all-photonic non-volatile multi-level memory.
Nat. Photon. 9, 725 (2015).

	179.	 Wuttig, M., Bhaskaran, H. & Taubner, T. Phase-change materials for
non-volatile photonic applications. Nat. Photon. 11, 465 (2017).

	180.	 Ríos, C. et al. In-memory computing on a photonic platform. Sci. Adv. 5,
eaau5759 (2019).

Acknowledgements
We would like to thank T. Tuma for technical discussions and assistance with scientific
illustrations, G. Sarwat and I. Boybat for critical review of the manuscript, and L. Rudin
and N. Gustafsson for editorial help. A.S. acknowledges funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement number 682675).

Competing interests
The authors declare no competing interests.

Additional information
Correspondence should be addressed to A.S.

Peer review information Nature Nanotechnology thanks Cheol Seong Hwang and the
other, anonymous, reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© Springer Nature Limited 2020

Review Article | FOCUS NaTuRe NanoTecHnology

Nature Nanotechnology | www.nature.com/naturenanotechnology

http://www.nature.com/reprints
http://www.nature.com/naturenanotechnology

	Memory devices and applications for in-memory computing

	Memory devices

	Charge-based memory.
	Resistance-based memory.

	Applications

	Scientific computing.
	Signal processing, optimization and machine learning.
	Deep learning.
	Stochastic computing and security.

	Opportunities, challenges and perspective

	Acknowledgements

	Fig. 1 In-memory computing.
	Fig. 2 Charge-based memory devices and computational primitives.
	Fig. 3 Resistance-based memory devices and computational primitives.
	Fig. 4 The application landscape for in-memory computing.
	Fig. 5 Increasing the precision of in-memory computing for scientific computing.
	Fig. 6 Deep learning training and inference using in-memory computing.
	Fig. 7 Stochasticity associated with memristive devices and applications in computing.
	Table 1 State-of-the-art chip-level experimental demonstrations of neural network inference based on in-memory computing.

		2020-03-20T17:12:48+0530
	Preflight Ticket Signature

