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Today’s computing systems are primarily built based on the 
von Neumann architecture where data must be moved to a 
processing unit. During the execution of various compu-

tational tasks, large amounts of data need to be shuttled back and 
forth between the processing and memory units and this incurs 
significant costs in latency and energy. The latency associated with 
accessing data from the memory units is a key performance bottle-
neck for a range of applications, in particular for the increasingly 
prominent artificial intelligence (AI) related workloads. There is an 
increasing disparity between the speed of the memory and process-
ing units, typically referred to as the memory wall1. The energy cost 
of moving data is another significant challenge given that the com-
puting systems are severely power limited due to cooling constraints 
as well as the proliferation of mobile computing devices. Even at 
the relatively old 45 nm complementary metal oxide semiconduc-
tor (CMOS) node, the cost of multiplying two numbers is orders 
of magnitude lower than that of accessing them from memory2. 
The current approaches, such as the use of hundreds of proces-
sors in parallel (for example, graphics processing units3) or appli-
cation-specific processors4,5 that are custom designed for specific 
applications, are not likely to fully overcome the challenge of data 
movement. Hence, it is becoming increasingly evident that novel 
architectures need to be explored where memory and processing are 
better collocated. One prominent idea that dates to the 1990s is that 
of physically placing monolithic compute units closer to a mono-
lithic memory6. This concept known as near-memory computing 
has benefitted significantly from recent advances in die stacking 
technology7 and the commercialization of advanced memory mod-
ules such as the hybrid memory cube (HMC)8 and high bandwidth 
memory (HBM)9. To achieve a denser and more fine-grained con-
nectivity between memory and processing units, even three-dimen-
sional (3D) monolithic integration has been proposed10. However, 
in all of these approaches that aim to reduce the time and distance to 
memory access, there still exists a physical separation between the 
memory and the compute units.

In-memory computing is an alternate approach where certain 
computational tasks are performed in place in the memory itself 
organized as a computational memory unit. As schematically illus-
trated in Fig. 1, this is achieved by exploiting in tandem the physical 
attributes of the memory devices, their array-level organization, the 
peripheral circuitry as well as the control logic. Any computational 
task that is realized within the confines of a computational memory 

unit could be referred to as in-memory computing. However, the 
key distinction is that at no point during computation is the memory  
content read back and processed at the granularity of a single mem-
ory element. This latter scenario, where in addition the processing 
is performed in close proximity to the memory array, could instead 
be viewed as near-memory computing. Besides alleviating the costs 
in latency and energy associated with data movement, in-memory 
computing also has the potential to significantly improve the com-
putational time complexity associated with certain computational 
tasks. This arises mostly from the massive parallelism afforded by 
a dense array of millions of memory devices performing computa-
tion. It is also likely that by introducing physical coupling between 
the memory devices, we can further reduce the computational 
time complexity11. By blurring the boundary between processing 
and memory units (an attribute that is also shared with the highly 
energy-efficient mammalian brain where memory and process-
ing are deeply intertwined12), we gain significant improvements in 
computational efficiency. However, this is at the expense of the gen-
erality afforded by the conventional approach where memory and 
processing units are functionally distinct from each other. In this 
Review, we first give an overview of the memory devices that facili-
tate in-memory computing as well as the key in-memory computa-
tional primitives that are enabled. Subsequently, we present a range 
of applications that exploit these primitives. Finally, we present an 
outlook on the opportunities and challenges.

Memory devices
Memory is at the heart of in-memory computing. One of the pri-
mary means to store information to date is through the presence 
or absence of charge such as in dynamic random access memory 
(DRAM), static random access memory (SRAM) and flash mem-
ory13. There is also an emerging class of memory devices where 
information is stored in terms of differences in the atomic arrange-
ments or orientation of ferromagnetic metal layers. Such differences 
manifest as a change of resistance and these devices are thus termed 
resistive memory devices14. Sometimes they are also referred to as 
memristive devices due to their relation to the circuit theoretic con-
cept of memristive systems15.

One of the primary characteristics of a memory device is the 
access time, that is, how fast information can be stored (written) 
and retrieved (read). Another key characteristic is cycling endur-
ance, which refers to the number of times a memory device can be 
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switched from one state to the other. The memory devices in a com-
putational memory unit are usually organized in a two-dimensional 
(2D) array with horizontal and vertical wires, typically referred to as 
the word line (WL) and the bit line (BL), used to access them. The 
memory array in a computational memory unit can be quite similar 
to that in a conventional memory unit but with certain differences 
in the read/write circuitry, the format of the input/output data as 
well as the control logic. For example, depending on the applica-
tions, multiple WLs need to be activated in parallel or analogue  
output currents along BLs need to be sensed precisely.

Charge-based memory. An SRAM cell is a bi-stable transistor 
structure typically made of two CMOS inverters connected back to 
back, as shown in Fig. 2a. The output potential of one inverter is 
applied as input to the other, forming a feedback loop that freezes 
the cell in a given logical state (0 or 1). Two additional field-effect 
transistors (FETs) serve as selectors, yielding a standard 6 transistor 
(6T) SRAM cell. SRAM is built entirely from FETs and has no dedi-
cated storage element. However, one can view the charge as being 
confined within the barriers formed by the FET channels and the 
gate insulators. Due to the low FET barrier height (0.5 eV), how-
ever, the charge constantly needs to be replenished from an external 
source and hence SRAM always needs to be connected to a power 
supply. A DRAM cell consists of a capacitor placed in series with a 
FET (Fig. 2b). The charge is confined within the capacitor insulator, 

which forms a fixed-height barrier, and the FET. Since the maxi-
mum height of the FET barrier is limited by the band-gap of silicon 
(≈1.1 eV), the charge can be retained only for a fraction of a second 
and this necessitates periodic refresh. As shown in Fig. 2c, in a Flash 
memory cell, the charge storage node is coupled to the gate of a FET 
with charge stored either on a conductive electrode surrounded 
by insulators (floating gate) or in discrete traps within a defective 
insulator layer (charge trapping layer). Unlike in DRAM, the barrier 
height of the storage node is sufficiently high for long-term data 
retention. However, the write operation requires high voltages (typi-
cally >10 V) and entails significant latency (>10 µs) due to the need 
to overcome the storage node barriers. Depending on how the flash 
memory cells are organized, they are referred to as NOR or NAND 
Flash. In NOR Flash, every memory cell is connected to a BL, while 
in NAND Flash, several memory cells connected in series share a 
single connection to the BL. A flash memory cell stores fewer elec-
trons than DRAM and SRAM. Flash memory also has a substan-
tially lower cycling endurance due to the gate oxide degradation 
under strong electric fields.

A range of in-memory logic and arithmetic operations can be per-
formed using both SRAM and DRAM. Capacitive charge redistribu-
tion serves as the foundation for many of them, in particular storing 
and sharing of charge across multiple storage nodes. In DRAM, simul-
taneous reading of devices along multiple rows can be used to exe-
cute basic Boolean functions within the memory array16,17. Figure 2d  
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Fig. 1 | In-memory computing. a, In a conventional computing system, when an operation f is performed on data D, D has to be moved into a processing 
unit, leading to significant costs in latency and energy. b, In the case of in-memory computing, f(D) is performed within a computational memory unit by 
exploiting the physical attributes of the memory devices, thus obviating the need to move D to the processing unit. The computational tasks are performed 
within the confines of the memory array and its peripheral circuitry, albeit without deciphering the content of the individual memory elements. Both 
charge-based memory technologies, such as SRAM, DRAM and flash memory, and resistance-based memory technologies, such as RRAM, PCM and  
STT-MRAM, can serve as elements of such a computational memory unit.

Review Article | FOCUS NaTuRe NanoTecHnology

Nature Nanotechnology | www.nature.com/naturenanotechnology

http://www.nature.com/naturenanotechnology


FOCUS | Review ArticleNaTuRe NanoTecHnology

BL

 ~ 103 electrons
Access time < 1 ns
Endurance > 1016

 ~ 105 electrons
Access time < 10 ns

Endurance > 1016

 ~ 100 electrons
Access time (read) < 100 ns

Endurance > 105

Floating
gate 

n
p

n p

Gate

a

f g

SA

3

d

BL C

Bit combinations
00 01 10 11

Bit combinations
00 01 10 11

Bit combinations
00 01 10 11

Bit combinations
00 01 10 11

AND Operation

OR Operation

e

b c

WL

BL

BL

NOR operation

AND operation

WL

BL

WL

Source

A A

A NOR BA AND B

SA SA

B B

SRAM cell SRAM cell

SRAM cell SRAM cell

WL

WL

WL

WL

WL

A11 A21

A22A12

1

2 3

Vin1

Vin1

VDD VDD

Vout1

Iout1

Iout2

Vout2

Vin2

Vin2

1

2
3

1

2 3

1

2 3

–

–

–
– – –

–

– – – –

–
–
–
–– – – – – – – –

–
–

–

+

VA

CA

VB

VBL

VBL

VBL =
VA + VB + VSEL

CB

VSEL

VSEL = 0V

VSEL ≠ 0V

CSEL VREF

VREF VBL VREF

VREFVREF VREF

VDS
VGS

Vt11

Vt21 Vt22

Vt12

IDS

VREF
VBL

VBLVBL

BL

nn

BL

Fig. 2 | Charge-based memory devices and computational primitives. a, A 6T SRAM cell consists of two CMOS inverters connected back to back. The 
charge is confined within the barriers formed by FET channels and by gate insulators. The stored charge retention is small and an external source constantly 
replenishes the lost charge. SRAM has almost unlimited cycling endurance and sub-nanosecond read and write access times. b, A DRAM cell comprises 
a capacitor (C) that serves as the storage node, which is connected in series to a FET. c, The storage node of a flash memory cell is coupled to the gate 
of a FET. d, Schematic illustration of bit-wise logical operations performed using three DRAM cells. The operands are stored in cells A and B. AND or OR 
operations are performed by simultaneously activating the three WLs corresponding to the cells. The logical state of cell SEL is used to dictate whether an 
AND or an OR operation is performed, with logical one and zero corresponding to OR and AND operations, respectively. The BL voltage corresponds to 
the average voltage across the three capacitors and is sensed using a sense amplifier with a decision threshold voltage of VREF. e, Bit-wise logical operations 
using an SRAM array. The BL and BL

I
 are pre-charged to the supply voltage, VDD, prior to the execution of the operation. After deactivation of the pre-charge 

signal, both the WLs are activated so that both BL and BL
I

 are discharged at different rates that depend on the data stored in the bit-cells. When the two 
activated SRAM cells in a column are both 1 (0), VBL (VBL

I
) will be comparable to VDD, whereas for the other bit combinations, both VBL and VBL

I
 will be lower 

than VDD. Hence, by sensing VBL and VBL
I

 with a SA, AND and NOR operations are performed, respectively. f, Schematic illustration of performing MVM 
operation using an array of SRAM cells and capacitors. The SRAM cells are used to store the elements of the binary matrix. In the first step, the inputs are 
provided per row that charges the capacitors on that row to a value proportional to the input. In step two, the capacitors that are associated with the SRAM 
elements storing 0s are discharged. Finally, in step three, the capacitors are shorted along the columns performing a charge sharing operation so that the 
final voltage on the capacitors corresponds to the analogue MVM result. g, Illustration of an MVM operation performed using Flash memory devices. The 
current IDS is a function of the cell’s threshold voltage Vt as well as the drain–source voltage VDS and the gate–source voltage VGS. By fixing VDS, Kirchhoff’s 
current law can be employed to perform MVM between a matrix, stored in terms of Vt, and a binary input vector that is used to modulate VGS.
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shows a basic cell configuration that can be used to implement bit-
wise AND/OR functions. Two memory cells, A and B, are used to 
store the operands. The logic state of the third cell, SEL, is set to 0 
or 1 depending on whether an AND or an OR operation is realized, 
respectively. When all three cells are activated simultaneously, the 
bit-line voltage corresponds to the average voltage across the three 
capacitors. This voltage is sensed using a sense amplifier (SA) with 
a single decision threshold, which outputs the result of the logical 
operation. By using the negated output of the SA to also implement 
the NOT operation, a functionally complete set of Boolean functions 
is obtained. These bit-wise operations can be performed along the 
entire row of memory devices thus enabling parallel bulk bit-wise 
operations. Unlike DRAM, the SRAM cells do not contain a built-
in capacitor and hence the parasitic BL capacitance is used instead 
to enable bulk in-memory logical operations18,19. In Fig. 2e, a basic 
construct for performing in-place bit-wise logical operations using 
SRAM is shown. Here, again, both of the WLs are activated simulta-
neously and by sensing the BL and BL

I
 with an SA, AND and NOR 

operations are performed, respectively. Besides realizing the logical 
primitives, it is also essential to efficiently cascade such operations. To 
perform cascadable logic operations using both DRAM and SRAM, 
additional cloning or duplication steps need to be enabled, allow-
ing the construction of in-memory full adders and multipliers17,20. 
The overhead of having to serially execute the cascaded operations is 
overcome by the ability to process several bit lines in parallel.

SRAM arrays can also be used for matrix-vector multiplication 
(MVM) operations, Ax = b, where A is the data matrix, x is the input 
vector, and b is the output vector21–23. If the elements of A and x are 
limited to signed binary values, the multiply operation is simplified 
to a combination of XNOR and ADD functions. Here, a 12T SRAM 
cell can be designed to execute XNOR operations within every mem-
ory cell21. In cases where x is non-binary, one approach is to employ 
capacitors in addition to the SRAM cells22–24. It was recently shown 
how 6-bit inputs can be multiplied with binary matrices stored in 
SRAM22. This involves a three-step process that is illustrated in  
Fig. 2f. Note that the additional capacitors and switches could be 
shared among a group of SRAM cells at the expense of reduced par-
allelism and hence operational bandwidth. It is also possible to build 
the analogue capacitor-based circuits in the vicinity of the SRAM 
array to accelerate MVM via near-memory computing25,26.

Flash memory can also be used to perform MVM operations27,28. 
The gate voltage is modulated in accordance with a binary input 
vector (see Fig. 2g). The matrix elements are stored as charge on the 
floating gate28. Because the devices can be accessed in parallel along 
a BL, NOR Flash has generally been preferred over NAND Flash 
for in-memory computing. However, there is recent work describ-
ing the use of 3D NAND, consisting of vertically stacked layers of 
serially connected FLASH devices, whereby each layer of the array 
encodes a unique matrix29. This approach could help to overcome 
the scalability issue of NOR Flash, which is difficult to scale beyond 
the 28 nm technology node.

Resistance-based memory. Memristive devices can be pro-
grammed to be in a low resistance state (LRS) or a high resistance 
state (HRS) through the application of electrical SET and RESET 
pulses, respectively. There is also the possibility to achieve interme-
diate resistance levels in certain types of memristive devices. The 
devices are typically organized in a 2D array and require a selection 
device in series with each device to prevent parasitic sneak path cur-
rents during writing and reading30.

Resistive random access memory (RRAM) devices comprise 
metal–insulator–metal (MIM) stacks (Fig. 3a) and the resistive 
switching process typically involves the creation and disruption of 
conductive filaments (CF) comprising a localized concentration of 
defects. An LRS state corresponds to CFs bridging the two metal 
layers. Even though the history of RRAM can be traced back to at 

least the 1960s31, key technological demonstrations in the 2000s32–34 
gave significant impetus to this technology. Phase change memory 
(PCM), which also dates back to the 1960s35, is based on the prop-
erty of certain types of materials, such as Ge2Sb2Te5, to undergo 
a Joule heating-induced, rapid and reversible transition from a 
highly resistive amorphous phase to a highly conductive crystalline 
phase36,37. As shown in Fig. 3b, a typical PCM device has a mush-
room shape where the bottom electrode confines heat and current. 
This results in a near-hemispherical shape of the amorphous region 
in the HRS state. By crystallizing the amorphous region, the LRS 
state is obtained. A relative newcomer to the resistive memory fam-
ily, magnetoresistive random access memory (MRAM) consists of a 
magnetic tunnel junction (MTJ) structure with two ferromagnetic 
metal layers (pinned and free). These layers, for example made of 
the CoFeB alloy, are separated by a thin tunnel oxide such as MgO 
(Fig. 3c). In the pinned layer, the magnetic polarization is structur-
ally fixed to act as a reference, whereas in the free layer it is free to 
change during the write operation. Voltage pulses of opposite polar-
ity are applied to switch the polarization of the free layer. Depending 
on whether the two ferromagnetic polarizations are parallel or anti-
parallel, the LRS and HRS states are obtained due to the tunnel mag-
netoresistive effect. Spin transfer torque MRAM (STT-MRAM) is 
currently the most promising MRAM technology38,39. RRAM and 
PCM operate based on the rearrangement of atomic configurations 
and hence have worse access times (write speed) and cycling endur-
ance than MRAM. However, they have substantially larger resis-
tance windows that enable the storage of intermediate resistances 
even at an array level. RRAM has the advantage of using materi-
als that are common in semiconductor manufacturing. However, 
in spite of the simplicity of the device concept, a comprehensive 
understanding of the switching mechanism is still lacking compared 
to PCM and MRAM.

One of the attributes of memristive devices that can be exploited 
for computation is their non-volatile binary storage capability. 
Logical operations are enabled through the interaction between 
the voltage and resistance state variables40. One particularly inter-
esting characteristic of certain memristive logic families is stateful-
ness, where the Boolean variable is represented solely in terms of 
the resistance states41–43. A schematic illustration of one such state-
ful memristive logic, MAGIC, that realizes the NOR logic opera-
tion is shown in Fig. 3d44. Both the operands and the result are 
stored in terms of the resistance state variable. Stateful logic can be 
realized almost entirely in the memory array and has been dem-
onstrated for RRAM41 and STT-MRAM45. Stateful logic is also cas-
cadable, whereby the output from one logical gate can directly feed 
into the input of a second logic gate46,47. However, in stateful logic, 
the devices repeatedly get written into during the execution of the  
logical operations, which is a key drawback due to the associated 
energy cost and the limited cycling endurance of the devices. H 
ence, there is renewed interest in non-stateful logic such as the one 
shown in Fig. 3e. Here, the logical operands are stored as resistance 
values, but the result of the logical operation is computed as a volt-
age signal48,49. The operands stay fixed in the memory array and 
the devices need not be programmed during the evaluation of the 
logical operation. However, the sequential cascading of these logi-
cal operations requires additional circuits, typically located outside  
of the memory array. Memristive threshold logic is yet another  
non-stateful logic family where both the inputs and outputs  
are voltage signals and the logical functions are defined using the 
resistance values50.

The non-volatile storage capability, in particular, the ability to 
store a continuum of conductance values, facilitates the key compu-
tational primitive of analogue MVM51–53. The physical laws that are 
exploited to perform this operation are Ohm’s law and Kirchhoff ’s 
current summation laws (Fig. 3f). Memristive devices also exhibit an 
accumulative behaviour52,54,55, whereby the conductance of devices 
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such as PCM and RRAM progressively increases or decreases with 
the successive application of appropriate programming pulses. This 
non-volatile accumulative behaviour, in spite of its nonlinear and 
stochastic nature, can be exploited in several applications, such as 
training deep neural networks, where the conductance values need 
to be incrementally modified.

Applications
The computational primitives reviewed in the Memory Devices 
section have been applied to a wide range of application domains, 
ranging from scientific computing that requires high preci-
sion, to stochastic computing that is enabled by imprecision and  

randomness. A high-level overview of the main applications that 
are being researched for in-memory computing is shown in Fig. 4. 
In-memory computing can be applied both to reduce the computa-
tional complexity of a problem as well as to reduce the amount of 
data being accessed by performing computations inside the memory 
arrays. The problems that could benefit the most from the complex-
ity reduction are the NP-hard problems involving combinatorial  
optimization. Data-centric applications in machine learning and 
scientific computing benefit the most from reduced memory access. 
In this section, we review how in-memory computing has been 
applied to those applications and discuss the challenges involved 
with respect to the device properties presented previously.
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phase change material. When the pulse is stopped abruptly, the molten material quenches into the amorphous phase due to glass transition. When a 
current pulse of lesser amplitude is applied to the PCM device in the HRS state, a part of the amorphous region crystallizes. By fully crystallizing the 
phase change material, the LRS state is obtained. c, An STT-MRAM device with two ferromagnetic layers (pinned and free) separated by a tunnel oxide 
layer. The magnetic polarization of the free layer can be changed upon writing. Depending on whether the ferromagnetic polarizations are parallel or 
antiparallel, the device assumes a low or high resistance, respectively. The transition to the parallel state takes place directly through conduction electrons, 
which are previously spin-polarized by the pinned layer. Subsequently, the magnetic polarization of the free layer is rotated using magnetic momentum 
conservation. To switch to the antiparallel state, an opposite voltage, and hence current direction, is employed. d, Schematic illustration of a stateful 
NOR logic operation using 3 bipolar memristive devices44. Two devices represent the operands and one represents the result. First, the result device is 
initialized to logic 1 (LRS). Subsequently, a voltage pulse with an amplitude larger than twice that of VRESET is applied simultaneously to both the operand 
devices. If either operand device is at logic 1 (LRS), then at least half of the voltage drops across the result device and the latter switches to logic 0 (HRS). 
Note that, due to the bipolar switching behaviour, the operand devices remain unchanged as long as VSET � 2VRESET

I
. When both the operand devices 

are at logic 0 (HRS), the voltage dropped across the result device is not sufficient to switch it to logic 0. Hence it remains at logic 1. Thus, this simple 
circuit implements a NOR operation where all the logic state variables are represented purely in terms of resistance values. e, Non-stateful AND and OR 
operations using 2 memristive devices and a variable threshold, SA. By simultaneously activating multiple rows, and with the appropriate choice of current 
thresholds, it is possible to implement logical operations such as AND and OR. f, To perform the operation Ax = b, the elements of A are mapped linearly 
to the conductance values of memristive devices organized in a crossbar configuration. The x values are mapped linearly to the amplitudes or durations 
of read voltages and are applied to the crossbar along the rows. The result of the computation, b, will be proportional to the resulting current measured 
along the columns of the array. Note that, if the inputs are mapped onto durations, the result b will be proportional to the total charge (for example, 
current integrated over a certain fixed period of time). It is also possible to perform an MVM operation with the transpose of A using the same cross-bar 
configuration by applying the input voltage to the column lines and measuring the resulting current along the rows. The negative elements of x are typically 
applied as negative voltages whereas the negative elements of A are coded on separate devices together with a subtraction circuit.
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Scientific computing. Linear algebra computational kernels,  
such as MVM, are common not only to machine learning but  
also to scientific computing applications. However, both memris-
tive and charge-based memory devices suffer from significant  
inter-device variability and inhomogeneity across an array. 
Moreover, they exhibit intra-device variability and random-
ness that is intrinsic to how they operate. Hence, the precision of  
analogue MVM operations with these devices is rather low. 
Although approximate solutions are sufficient for many computa-
tional tasks in the domain of AI, building an in-memory computing 
unit that can effectively address scientific computing and data ana-
lytics problems—which typically require high numerical accuracy— 
remains challenging.

The aforementioned accuracy limitation can, to a certain extent, 
be remedied by an old technique in computer architecture called ‘bit 
slicing’. Bit slicing is a general approach for constructing a proces-
sor from modules of smaller bit width. Each of the modules pro-
cesses one bit field or ‘slice’ of an operand56. The grouped processing 
components will then have the capability to process, in parallel, an 
arbitrarily chosen full word-length of a particular task. This con-
cept has been proposed for increasing the accuracy of the in-place 
MVM based on in-memory computing (Fig. 5a)57–60. According 
to this technique, an n-bit element of the matrix is mapped onto 
device conductance values of n binary crossbar arrays, that is, n bit 
slices. Thus, each bit slice contains the binary values of the matrix 
elements in a particular bit position. Similarly, bit slicing can also 
be applied to the input vector elements, where each bit slice is input 
to the crossbar arrays one at a time. To perform an in-place MVM, 
a vector bit slice is multiplied with a matrix bit slice, with 0(1) 
time complexity, and the partial products of these operations are  
combined outside of the crossbar arrays through a shift-and-add 
reduction network57. Note that the bit slices can also be implemented 
on the same crossbar array in a column-by-column manner. In this 
case, columns at a distance n from each other represent a single bit 
slice. Although the above concept has been described based on bit 
slices, that is, binary memristive arrays, it can easily be generalized 

to multi-level memristive devices. The bit slice approach applied 
to a 16-bit input vector sliced into 16 1-bit slices for increasing 
numerical precision has been demonstrated experimentally where a 
numerical differential equation solver using a small Ta2O5–x RRAM 
16x3 crossbar array was successfully implemented61.

Although the bit slice technique appears to address the limita-
tions surrounding the precision of analogue MVM operations, there 
are still inaccuracies arising from the analogue summation along 
columns, which potentially could be more detrimental in larger 
crossbar arrays. Moreover, the extra peripheral circuitry of the shift-
and-add external reduction networks could substantially increase 
the energy consumption and area. Mixed-precision computing is an 
alternate approach to achieve high precision processing based on in-
memory computing. This approach is based on the well-established 
iterative refinement technique for improving a computed solution 
to a system of linear equations62. Through this technique, the time 
complexity of iterative linear solvers can be reduced by combining 
low-precision with high-precision arithmetic63. The adaptation of 
this concept for in-memory computing and experimental demon-
stration of solving a system of 5,000 linear equations using 998,752 
PCM devices with arbitrarily high accuracy was presented in ref. 64.  
Here, the idea is to use fast but imprecise MVM, via in-memory 
computing in an iterative linear solver, to obtain an approximate 
solution, and then refine this solution based on the residual error 
calculated precisely through digital computing (Fig. 5b). The main 
limitation of this technique is that the data need to be stored both in 
crossbar arrays as well as in the memory of a high-precision digital 
processing unit, which increases the resources needed to solve the 
problem. Moreover, the achievable speedup comes from reducing 
the number of iterations needed to solve the problem, resulting in 
an overall computational complexity of 0(N2) for a NxN matrix, that 
is, still proportional to the problem size.

Several extensions to these two techniques are imaginable to fur-
ther improve the performance benefits and reliability. One way to 
potentially speed up linear solvers further is to realize a one-step lin-
ear solver in the analogue domain65, which has been demonstrated  
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using a 3x3 RRAM crossbar array66. This approach is based on 
an old idea of analogue matrix inversion67, whereby a known vec-
tor, forced as currents on the columns of the crossbar, establishes 
an output voltage vector at the rows, which is equal to the prod-
uct of the inverse of the conductance matrix multiplied by the vec-
tor of currents. Although the high parallelism provided by this 
approach is promising, its implementation is hardwired and there-
fore not scalable, and requires very precise conductance tuning 
and high linearity of current–voltage characteristics. There are also  
initial results on error correction schemes68 as well as extensions  
to the bit-slicing concept for achieving floating-point accuracy69  
on memristive crossbar arrays. These research avenues could 
enlarge the application space of in-memory computing to encom-
pass applications in scientific computing where high computational 
accuracy is required.

Signal processing, optimization and machine learning. There are 
several applications in the domain of signal processing, optimiza-
tion and machine learning where approximate solutions can be 
considered acceptable, and the bulk of the computation could thus 
be performed with in-memory computing. The crossbar-based ana-
logue MVM can be used in many applications such as image com-
pression, compressed sensing, combinatorial optimization, sparse 
coding, principal component analysis, associative memories and 
reservoir computing.

The application of in-memory computing to analogue image 
compression has been studied experimentally in ref. 70. The idea 
is to encode a transform matrix, for example, a discrete cosine 
transform, as the conductance values of devices organized in a 
crossbar array. The image pixel intensities, represented as voltages, 
are applied to the crossbar first row by row and, in a second step,  

column by column. The compression is then performed by keeping 
only a certain ratio of the highest coefficients of the transformed 
image and discarding the rest. Compression experiments using a 
128x64 crossbar array of hafnium oxide (HfO2) devices yielded 
reasonably well-reconstructed images, although with a few vis-
ible artefacts due to device non-idealities70. The transform coding 
described above for sparsifying large signals is fundamental to com-
mon compression schemes such as JPEG or MPEG, but can also be 
used for compressed sensing. The basic idea of compressed sens-
ing is to acquire a few (M) sampling measurements from a high-
dimensional signal of size N, and to subsequently recover that signal 
accurately. Compressed sensing can be realized via in-memory 
computing by encoding the MxN measurement matrix used for this 
process, which typically contains randomly distributed elements, in 
a crossbar array of memory devices65,71. This array can be used to 
perform the MVM operations associated with both the compression 
and recovery tasks. The efficacy of this scheme has been experimen-
tally demonstrated through 128x128 image compression and recon-
struction tasks using more than 256,000 PCM devices71. However, 
here as well, device non-idealities such as conductance noise were 
found to reduce the reconstruction accuracy.

In the field of optimization, a promising application of in-mem-
ory computing is for combinatorial optimization problems, such as 
the travelling salesman problem, Boolean satisfiability and integer 
linear programming. Combinatorial optimization is the process of 
searching for maxima or minima of an objective function whose 
domain is a discrete but large configuration space. To address 
these computationally intensive typically NP-hard problems, simu-
lated annealing inspired approaches, such as the massively parallel 
Boltzmann machines and Hopfield networks, have been proposed. 
The basic idea is to compute the inner products, the fundamental 
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building blocks in Boltzmann machines57 or Hopfield networks72, 
in place via in-memory computing. For solving the problem, the 
network is run until convergence, that is, the energy is minimized, 
which involves updating only the state variables, while the weights 
implemented in the crossbar array remain constant. An interesting 
prospect is to utilize the device noise as an explicit source of noise 
to force the network to continuously explore the solution space, 
which is necessary to achieve proper convergence72,73. However, it 
is required to precisely control this noise via an annealing schedule, 
which is challenging to implement. Another intriguing approach, 
going beyond simply accelerating the inner products in recurrent 
networks, is to use a network of coupled nonlinear analogue oscil-
lators whose dynamics execute an efficient search for solutions of 
combinatorial optimization problems73. Volatile memristive devices 
based on Mott insulator–metal transition materials, such as VO2 
(ref. 74) and NbO2 (ref. 75), as well as spintronic oscillators based on 
MTJs (ref. 76) can be used to realize compact nanoscale oscillators 
that facilitate this form of computing.

Several memory-centric problems in machine learning could 
also benefit from in-memory computing. One is sparse diction-
ary learning, a learning framework in which a sparse representa-
tion of input data is obtained in the form of a linear combination of 
basic elements, which form the so-called dictionary of features. As 
opposed to the transform coding approach described earlier, both 
the dictionary and the sparse representation are learned from the 
input data. If the learned dictionary is mapped onto device conduc-
tance values in a crossbar array, it is possible to obtain the sparse 
representation using the iterative-shrinking threshold77 or locally 
competitive algorithms78. The matrix-vector and the transpose-
matrix-vector multiplications associated with the algorithms are 
performed in the crossbar. Dictionary learning requires updating 
the conductance values by exploiting the accumulative behaviour 
of the memristive devices, based on, for example, stochastic gradi-
ent descent77,79, which is challenging due to device stochasticity and 
nonlinear conductance change with the number of applied pulses79. 
Another application is principal component analysis, a dimension-
ality reduction technique to reveal the internal structure of data 
by using a limited number of principal components. It is usually 
achieved by finding the eigenvectors of the data covariance matrix. 
This can be realized using the ‘power iteration’ method in which 
the MVM operations can be performed using in-memory comput-
ing65. An alternative approach is to use a linear feedforward neural 
network in which the weights are implemented in a crossbar array. 
The network is optimized via unsupervised learning using Sanger’s 
rule to obtain the principal components, given by the weights con-
nected to each output neuron representing the classes in which the 
data is clustered80.

Another relevant application for in-memory computing, which 
is used in several machine learning algorithms, is associative mem-
ory. An associative memory compares input search data with the 
data stored in it and finds the address of the data with the closest 
match to the input data81. This capability is used in several learn-
ing frameworks, such as brain-inspired hyperdimensional com-
puting82,83 and memory-augmented neural networks84,85. One way 
to realize associative memory is to use a Hopfield network, which 
can be trained to minimize the energy of the states that it should 
remember. This has been successfully demonstrated on small arrays 
of PCM86 and RRAM87 devices. Another more straightforward way 
to realize associative memory is simply to encode the stored data 
directly in a crossbar array and compute, in parallel, the Hamming 
distances of each stored data vector with the input search data vec-
tor via in-memory dot-products88.

Finally, the collective dynamics of an ensemble of dynamical 
systems could be exploited to perform certain machine learning 
tasks. One prominent example of this is reservoir computing (RC). 
The essential idea of reservoir computing is to map inputs into a 

high-dimensional space such that it is possible to classify the input 
patterns with a simple linear classifier. One of the approaches to 
implement RC is to feed the input into a fixed physically realized 
dynamical system. Memristive devices could play a key role in these 
types of physical RC. For example, Du et al. proposed the use of a 
collection of memristive devices with short-term temporal dynam-
ics to serve as the physical reservoir and to classify temporal sig-
nals89. Sebastian et al. used a reservoir of a million PCM devices and 
exploited their accumulative behaviour to classify binary random 
processes into correlated and uncorrelated classes90.

Deep learning. Recently, deep artificial neural networks, loosely 
inspired by biological neural networks, have shown a remarkable 
human-like performance in tasks such as image processing and 
voice recognition91. A deep neural network (DNN) consists of at 
least two layers of nonlinear neuron units interconnected by adjust-
able synaptic weights. Modern DNNs can have over 1000 layers92. 
By tuning the adjustable weights, for instance, optimizing them by 
using millions of labelled examples, these networks can solve cer-
tain problems remarkably well. Dedicated mixed-signal chips that 
could implement multi-layer networks were already developed in 
the early 1990s but were eventually abandoned in favour of field-
programmable gate arrays (FPGAs) and general-purpose graphics 
processing units (GPGPUs), partly due to lack of flexibility93. While 
high-performance GPGPUs are incontestably the hardware that has 
been primarily responsible for the recent success of deep learning, 
mixed-signal architectures based on in-memory computing are 
being actively researched, targeting mostly edge computing applica-
tions where high energy efficiency is critical.

A DNN can be mapped onto multiple crossbar arrays of memory 
devices that communicate with each other as illustrated in Fig. 6a.  
A layer of the DNN can be implemented on (at least) one crossbar, 
in which the weights Wij of that layer are stored in the charge or con-
ductance state of the memory devices at the crosspoints. The propa-
gation of data through that layer is performed in a single step by 
inputting the data to the crossbar rows and deciphering the results 
at the columns. The results are then passed through the neuron non-
linear function and input to the next layer. The neuron nonlinear 
function is typically implemented at the crossbar periphery, using 
analogue or digital circuits. Because every layer of the network is 
stored physically on different arrays, each array needs to communi-
cate at least with the array(s) storing the next layer for feed-forward 
networks, such as multi-layer perceptrons (MLPs) or convolutional 
neural networks (CNNs). For recurrent neural networks (RNNs), 
the output of an array needs to communicate with its input. Array-
to-array communication can be realized using a flexible on-chip 
network, akin to those used in digital DNN accelerators94. However, 
their efficient adaptation to in-memory computing based architec-
tures is still being explored95.

The efficient MVM realized via in-memory computing is very 
attractive for inference-only applications, where data is propagated 
through the network on offline-trained weights. With respect to 
specialized inference accelerators operating at reduced digital pre-
cision (4 to 8-bit), such as Google’s tensor processing unit4 and 
low-power GPGPUs such as NVIDIA T496, in-memory computing 
aims to improve the energy efficiency even further by eliminat-
ing the separation between memory and processing for the MVM 
operations. Implementations using SRAM-based in-memory com-
puting has focused on binary weight networks, in which weights 
are represented by a single bit97. Various implementations, such 
as current-based21 and charge-based22,23 computational circuits, 
have been proposed and were able to demonstrate 1-bit arithme-
tic energy efficiencies of >100 tera operations per second per watt 
(TOPS W−1) for MVM. Chips using in-memory computing on 
non-volatile memory devices have also been fabricated using NOR-
Flash28 and RRAM98–100. Using non-volatile memory ensures that 
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the weights will be retained when the power supply is turned off, 
unlike with SRAM. Also, the multi-level storage capability of these 
devices can be exploited to implement non-binary networks, which 
yield higher accuracy and are easier to train than binary weight net-
works. Usually, at least two devices per weight are used in a differ-
ential configuration to implement positive and negative weights101. 
Multiple binary/multi-level devices using the bit-slicing technique 
can be used to further increase the precision58,59,98,102. The state-of-
the-art experimental demonstrations of DNN inference based on 
in-memory computing have reported a competitive energy effi-
ciency of ≥10 TOPS W−1 for reduced-precision MVM (Table 1). 
Nonetheless, for all these implementations, custom training103–105 
and/or on-chip retraining25,100 of the network is needed to mitigate 
the effect of defects, and device and circuit level non-ideality on 
the network accuracy. The training procedure should be generic 
and as agnostic as possible to the hardware such that the network 
would have to be trained only once to be deployed on a multitude of  

different chips. Another important research topic is the design 
of efficient intra- and inter-layer pipelines58 to ensure that all the 
arrays on the chip are always active during inference, together with 
flexible array-to-array communication and control. It is especially 
important for CNNs, in which a large image is passed through small 
kernels at only a few pixels at a time106, leading to prohibitive laten-
cies and buffer requirements if no pipelining is used.

In-memory computing can also be used in the context of 
supervised training of DNNs with backpropagation. This training 
involves three stages: forward propagation of labelled data through 
the network, backward propagation of the error gradients from  
output to the input of the network, and weight update based on the 
computed gradients with respect to the weights of each layer. This 
procedure is repeated over a large dataset of labelled examples for 
multiple epochs until satisfactory performance is reached by the 
network. This makes the training of state-of-the-art networks very 
time and energy-consuming even with high-performance GPGPUs. 
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When performing training of a neural network encoded in crossbar 
arrays, forward propagation is performed in the same way as for the 
inference described above. The only difference is that all the activa-
tions xi of each layer have to be stored locally in the periphery. Next, 
backward propagation is performed by inputting the error gradient 
δj from the subsequent layer onto the columns of the current layer 
and deciphering the result from the rows. The resulting weighted 
sum 

P
j
δjWij

I

 needs to be multiplied by the derivative of the neuron 

nonlinear function, which is computed externally, to obtain the error 
gradient of the current layer. Finally, the weight update is performed 
based on the outer product of activations and error gradients xiδj of 
each layer. One approach is to perform a parallel weight update by 
sending deterministic or stochastic overlapping pulses from the rows 
and columns simultaneously to implement an approximate outer 
product and program the devices at the same time (Fig. 6b)107–111.  
While this parallelism may be efficient in terms of speed, each outer 
product needs to be applied to the arrays one at a time (either after 
every training example or one by one after a batch of examples), 
leading to a large number of pulses applied to the devices. This 
results in stringent requirements on the device granularity, asym-
metry and linearity to obtain accurate training109,112, and high device 
endurance is critical. Using multiple devices per synapse with a peri-
odic carry can relax some of the device requirements, at the price 
of a costly reprogramming of the entire array every time the carry 
is performed110,111. Another approach is a mixed analogue/digital 
weight update whereby ∆Wij is computed digitally and applied to 
the arrays row-by-row or column-by-column (Fig. 6c). ∆Wij can be 
applied either at every individual training example (online train-
ing) or batch of training examples (by accumulating all the updates 
within one batch in a digital memory)113–115. ∆Wij can also be accu-
mulated in a digital memory across batches and specific devices are 
programmed when their corresponding accumulated values reach a 
threshold116. This approach is more flexible than the parallel weight 
update based on overlapping pulses because it can implement any 
learning rule, not only stochastic gradient descent, and the digi-
tal computation and accumulation of weight updates significantly 
relax the requirements on the device granularity and endurance116. 
However, the cost is the need for additional digital computing and 
memory hardware. The training approaches presented here are still 
at the stage of functionality demonstration and need to overcome 
the device-related challenges before they could be employed on edge 
devices in applications where online learning is desirable.

A third application domain for in-memory computing in deep 
learning is spiking neural networks (SNNs). The main difference 
between SNNs and the non-spiking neural networks discussed so 
far is that SNN neurons compute with asynchronous spikes that are 
temporally precise, as opposed to continuous-valued activations  

that operate on a common clock cycle. Hence, SNNs are ideally 
suited for processing spatio-temporal event-driven information 
from neuromorphic sensors. There has been significant progress 
in recent years in designing deep SNNs trained with supervised 
learning that can perform close to conventional DNNs117. The main 
approaches rely either on converting weights from a previously 
trained non-spiking DNN118,119, or implementing backpropagation 
training using spike signals on the SNN itself120,121. Recently it has 
been shown that a spiking neuron can be transformed into a recur-
rent neural network unit, and thus it is possible to apply the existing 
deep learning frameworks for seamless training of any SNN archi-
tecture with backpropagation through time122. However, most of the 
efforts in applying in-memory computing to SNNs have focused on 
unsupervised learning with local learning rules. The best-known 
example for this is spike-timing-dependent plasticity (STDP), 
which adjusts a synaptic weight based on the relative timing 
between its output and input neuron spikes. In-memory implemen-
tations of SNNs have traditionally been done using slow subthresh-
old analogue CMOS circuits that directly emulate the functions of 
neurons and synapses, together with fast event-driven digital com-
munication12,123. Support for STDP learning was also successfully 
implemented124. Non-volatile nanoscale devices, such as PCM125–128 
and RRAM129,130, have been proposed to be integrated as part of the 
synapse and neuron circuits in a hardware SNN. Support for STDP 
learning with these devices has been generally implemented using 
rather complex schemes based on overlapping pulses. However, 
STDP-based learning rules have still not been able to reach the 
accuracy of conventional DNNs trained with backpropagation, 
despite significant recent progress131. Although SNNs are believed 
to be computationally more powerful than conventional DNNs 
because of the added temporal dimension, an application where this 
advantage is clearly demonstrated and exploited is still lacking. This 
is one of the reasons why generally SNNs have not been as widely 
adopted as conventional DNNs. However, with the incorporation 
of additional bio-inspired neuronal and synaptic dynamics132, SNNs 
could transcend conventional deep learning in certain application 
domains and memristive devices could be exploited to natively 
implement such dynamics133.

Stochastic computing and security. The stochasticity associ-
ated with the switching behaviour in memristive devices can also 
be exploited for in-memory computing134. In an MRAM, the MTJ 
switching is inherently stochastic due to the thermal fluctuations 
affecting the free layer and the write voltage and duration can be 
used to tune the switching probability. In RRAM, if the write volt-
age is comparable to VSET, then the SET transition takes place after a 
certain time delay. This delay time exhibits significant cycle to cycle 
statistical variations135. This behaviour is also observed in PCM 

Table 1 | State-of-the-art chip-level experimental demonstrations of neural network inference based on in-memory computing

Device SRAM SRAM SRAM nor-Flash RRAM RRAM

CMOS technology 65 nm 65 nm 65 nm 180 nm 130 nm 55 nm

Array size 16 kb 16 kb 2.4 Mb 100 kb 16 kb 1 Mb

Weight/activation precision 1 bit/6 bit 1 bit/ternary 1 bit/1 bit Analogue/analogue Analogue/8 bit 3 bit/2 bit

Network LeNet-5 CNN MLP/CNN 5/9-layer CNN 2-layer MLP 5-layer CNN CNN

Dataset MNIST MNIST/CIFAR-10 MNIST/CIFAR-10 MNIST MNIST CIFAR-10

Accuracy 98.3% 98.3%/85.7% 98.6%/83.3% 94.7% 96.2% 88.52%

Peak MAC efficiency1 40.3 TOPS W−1 139 TOPS W−1 658 TOPS W−1 10 TOPS W−1 11 TOPS W−1 21.9 TOPS W−1

Reference 22 21 23 28 100 98
11 multiply-and-accumulate (MAC) = 2 Operations (OPs). 

MNIST, Modified national institute of standards and technology database. CIFAR, Canadian institute for advanced research.
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devices and is attributed to the threshold switching dynamics as 
well as the variability associated with the HRS states136,137. In both 
RRAM and PCM, the dependence of the delay time on the write 
voltage provides us a means to tune its distribution. PCM exhib-
its additional stochasticity associated with crystallization time. It is 
attributed to the small variations in the atomic configurations of the 
amorphous volume created upon the preceding RESET. This results 
in variability associated with the number of pulses that are needed 
to fully crystallize the amorphous volume137.

Random number generation is important for a variety of areas, 
such as stochastic computing, data encryption, machine learning 
and deep learning138,139. Therefore, there is a significant interest in 
employing memristive devices as an entropy source for a compact 
and efficient true random number generator (TRNG). As opposed 
to a pseudo-random number generator (PRNG), a TRNG does 
not require a seed and uses the entropy arising from physical phe-
nomena such as Johnson-Nyquist noise, time-dependent dielectric 
breakdown or ring oscillator jitter140. The stochastically switching 
memristive device in conjunction with a simple circuitry, compris-
ing a comparator and some digital logic, can be used to realize a 
TRNG (Fig. 7a)141. Several variants of this idea have been explored 
using RRAM142,143, PCM137 and STT-MRAM144,145.

The stochastic number streams generated by memristive TRNG 
blocks have also been employed to realize efficient multiply units142. 
For example, a multiply operation between two numbers between 0 
and 1 can be efficiently realized by performing an AND operation 
between binary random bit streams representing those numbers138. 
Another interesting application is that of performing probabilistic 
inference using Bayes’s rule (Fig. 7b). For example, the required 
probability distributions can be generated as random bit streams 
using a stochastically switching MRAM device146. The stochastic-
ity associated with memristive devices has also found applications 
in spiking neural networks where stochastically firing neurons147,148 
(Fig. 7c) and stochastic binary synapses149 have been proposed.

Another promising application is in the domain of security.  
A physically unclonable function is a physical system that statisti-
cally maps an input digital word to an output one through a secret 
key depending on an intrinsically stochastic property of the chip. 
Typically, silicon process variations or the inherent physical vari-
ability of device parameters are exploited. PUF can be viewed as 
a computational unit that returns an output response, r = f(c), for 
each input challenge, c. f describes the unique internal physical 
characteristics of the PUF. A specific PUF instance is defined by 
a set of possible challenge-response pairs (CRPs). SRAM devices 
are commonly used to implement PUF circuitry by exploiting the 
metastable states of cross-coupled inverters150. However, memristive 
devices organized in a crossbar array can be exploited to design a 
much stronger PUF with a significantly larger CRP set (Fig. 7d). 
The key idea is to exploit the broad distribution of memristive resis-
tance values as well as the exponential number of available current 
sneak paths151–153.

Opportunities, challenges and perspective
There are different attributes in the applications discussed in the 
‘Applications’ section that can be leveraged through in-memory 
computing in order to increase the overall system performance. To 
take advantage of in-memory computing for MVM, it is preferable 
for the application to perform many MVMs on large squarish and 
dense matrices that stay constant throughout its execution. In this 
way, only smaller vector data have to be moved in and out of the 
crossbar arrays. This effectively reduces the overall data movement 
by eliminating frequent accesses to the matrix data. Applications 
that fall into this category include deep learning inference, dense 
iterative linear solvers, compressed sensing, sparse coding and asso-
ciative memories. Although there has been some work on leverag-
ing sparse MVM through in-memory computing69 as well, more 

research is needed to efficiently orchestrate the allocation of the 
partial vector components across different arrays and maximize the 
areal efficiency in coding sparse matrices on crossbars. The inherent 
parallelism offered by analogue computations can also potentially 
reduce the computational complexity of a problem. For instance, 
NP-hard problems involving combinatorial optimization can ben-
efit from analogue acceleration of MVMs or using networks of cha-
otic and nonlinear memristive elements to accelerate the solution 
search. For applications in stochastic computing, in which memris-
tive devices are not employed to reduce data accesses, the overall 
benefits can be expected only from the memristive TRNG accelera-
tion over a conventional implementation. For the logic primitives, 
performance benefits come from avoiding moving data to a proces-
sor to perform the logic operations. However, efficiently cascading 
the logic primitives to perform more complex logic operations, such 
as a full adder47,154,155 or fixed-point multiplier156, is critical in achiev-
ing end-to-end benefits in applications. Candidate applications in 
which in-memory logic could be leveraged include database query 
and encryption of data157, object detection and evaluation of fast 
Fourier transforms50 and image processing kernels156.

Computing with charge-based computing devices is attractive 
due to their technological maturity, even though SRAM has a rela-
tively large areal footprint even at advanced technology nodes and 
DRAM and Flash memory face severe scaling challenges. Charge-
based analogue computation is inherently subject to thermal noise, 
which sets an upper limit to the precision achievable for a given 
capacitor size and ambient temperature. Additionally, the manu-
facturing process introduces non-idealities in the form of capaci-
tor size variations, thus limiting the maximum achievable accuracy. 
Memristive devices, on the other hand, could potentially be scaled 
to dimensions of a few nanometers158–161. The key challenges for 
memristive devices are write variability and conductance variations. 
Write variability captures the inaccuracies associated with writing 
an array of devices to desired conductance values. In RRAM, the 
physical origin of this variability lies mostly in the stochastic nature 
of filamentary switching and one prominent approach to counter 
this is that of establishing preferential paths for CF formation162,163. 
Representing single computational elements by using multiple mem-
ory devices could also mitigate variability issues164. Conductance 
variations refer to the temporal and temperature-induced variations 
of the programmed conductance values. One prominent example is 
‘drift’ in PCM devices, which is attributed to the intrinsic structural 
relaxation of the amorphous phase. A promising approach towards 
addressing drift is that of projected phase change memory, which 
comprises a non-insulating material segment parallel to the phase 
change material segment165,166.

There are also several challenges to be tackled at the periph-
eral circuit level for in-memory computing. A critical issue is the 
need for digital-to-analogue (analogue-to-digital) conversion every 
time data goes in to (out of) the crossbar arrays. There are solu-
tions that employ fully analogue peripheral circuits to avoid such 
conversions28,111, at the cost of less flexibility and accuracy. Usually, 
the preferred method for inputting digital data to memristive cross-
bars is pulse-width modulation, because the result of the computa-
tion based on Ohm’s law will not be affected by the nonlinearity 
of the current–voltage characteristics of the devices. For digitizing 
the crossbar output, most works have employed analogue-to-digital 
converters (ADCs)21,22 or sense amplifiers98. The precision of the 
digitization needs to be sufficient to properly resolve the analogue 
multiply–accumulate operations, and a precision of at least four bits 
(including sign) has so far been necessary for DNN inference appli-
cations21,22,98. Because of their large area and power consumption,  
it is typically required to multiplex ADCs across multiple columns, 
which increases the latency. Moreover, it is critical to properly scale 
the input and output ranges, such that the crossbar output falls 
within the limited dynamic range of the ADC; otherwise there 
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would be a prohibitive loss of computational precision. Another 
important challenge is the finite resistance of the crossbar wires. It 
can lead to parasitic voltage drops on the devices during readout 
when a high current is flowing through them (referred to as the IR 
drop), creating errors in the analog computation results. This not 

only limits the maximum crossbar size that can be reliably oper-
ated, but also the integration density because of the difficulty to use 
the metal layers close to the CMOS front-end due to their higher 
resistivity. From an architectural point of view, a computational 
memory unit could have multiple in-memory computing cores 
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connected through an on-chip network95. Besides the memory 
arrays and associated peripheral circuitry, each in-memory com-
pute core could also have some rudimentary digital processing 
units as well as conventional memory such as registers and buffers. 
There is significant on-going research on defining such hierarchical 
organizations of in-memory computing cores to tackle a range of 
applications58,167,168. Another crucial aspect is the design of a soft-
ware stack that extends from the user-level application to the low-
level driver that directly controls the computational memory unit. 
The software stack is responsible for transparently compiling, for 
example a machine learning model, into optimized operations and 
routing, and orchestrating data movement to and from the unit. 
Recent works have started to explore some of these aspects for spe-
cific DNN inference workloads168,169.

The specific requirements that the devices need to fulfill when 
employed for computational memory are likely to be different from 
those needed for conventional memory and will also be highly 
application dependent. One requirement for memristive devices, 
which is common to most computing applications, is that the low-
resistance state should be resistive enough to limit the impact of the 
IR drop during writing and readout of the array. For memristive 
stateful logic, the requirements include an abrupt, fast and low-
power threshold switching characteristic170, high cycling endurance 
>1012 cycles) as well as low device-to-device variability of switching 
voltages and LRS/HRS values. For computational tasks involving 
read-only operations, such as MVM, endurance is much less critical 
as long as the conductance states remain unchanged during their 
execution. However, a gradual analogue-type switching characteris-
tic is desirable for programming a continuum of conductance values 
in a single device, and temporal conductance variations, device fail-
ures and variability can severely affect the performance171. Gradual, 
linear and symmetric conductance changes are also desired in appli-
cations where the device conductance needs to be incrementally 
modified such as neural network training112. For stochastic com-
puting applications, random device variability is not an issue, but 
graceful device degradation is137. Moreover, very fast and low-power 
switching devices with high endurance are necessary for being com-
petitive with efficient CMOS-based implementations140.

Besides the conventional memory devices presented in this 
Review, several new memory concepts are being proposed for in-
memory computing172–174. Even though promising, it is difficult to 
fully assess their benefits in the absence of large-scale experimen-
tal demonstrations and/or integration with CMOS technology. 
Ferroelectric devices, such as ferroelectric random access mem-
ory175, ferroelectric field effect transistors176 and ferroelectric tunnel 
junctions177, have also been explored for in-memory computing and 
the newly discovered ferroelectricity in hafnium oxide has given 
significant impetus to this research. There is also a recent interest 
in photonic memory devices178,179, where data can be written, erased 
and read optically. Such devices are being explored for all-photonic 
chip-scale information processing. For example, by integrating 
phase-change materials onto an integrated photonics chip, the ana-
logue multiplication of an incoming optical signal by a scalar value, 
encoded in the state of the phase change material, was performed180. 
One of the primary advantages of the optical approach is the poten-
tial for inherent wavelength division multiplexing.

The explosive growth of AI, in particular deep neural networks, 
has created a market for high performance and efficient inference 
and training chips, both in the cloud and on the edge. Moreover, 
mobile devices, which are particularly hampered by energy  
constraints, are playing an increasingly important role in defin-
ing the future of computing. Yet another reason is that the cost 
per transistor is plateauing even though transistor sizes continue 
to get smaller (albeit not at the rate envisaged by Gordon Moore 
anymore). This could prompt many chip manufacturers to sustain 
older technology nodes but instead equip the chips with high per-

formance computing engines such as computational memory. Note 
that most of the memristive device technologies are amenable to 
back end of line integration, thus enabling their integration with 
a wide range of front end CMOS technologies. To conclude, in- 
memory computing, using both charge-based as well as resistance-
based memory devices, is poised to have a significant impact on 
improving the energy/area efficiency as well as the latency com-
pared to conventional computing systems and given the condu-
cive market environment, this could usher in a new era of non-von 
Neumann computing.
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