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Many features of glasses below 1 K are explicable in terms of localized tunneling levels, for which a spin-

1
2

1 analogy exists. Here we show that spectral diffusion, resulting from fluctuations in resonant frequency, is

essential to our understanding of recent ultrasonic experiments. Our model involves a coupling among the
levels of the form J,jS;S{ , which acquires a time dependence when a spin-flipping rate T ' is introduced.
For two- and three-pulse phonon-echo experiments near T = 20 mK, we predict phase-memory times which
agree qualitatively with the experimental results of Golding and Graebner. For saturation recovery, we
predict a linewidth whose time dependence should be observable near T = 100 mK. Estimates of tunneling-
model parameters and comparison with specific-heat experiments suggest that glasses may contain two types

of tunneling levels.

I. INTRODUCTION

A. General features of glasses at low temperatures

For some time it has been known that glasses in
general exhibit anomalous behavior at low temper-
atures (7<1 K).!"* The specific heat contains a
large term which is roughly proportional to T,
and the thermal conductivity, varying as 7?2, is
very small compared to that of crystalline dielec-
trics. Direct measurements of phonon mean free
paths dramatically demonstrate that nonlinear ef-
fects (saturation) occur except at very low ultra-
sonic power levels.*® A variety of other phenom-
ena including anomalous sound velocity,””® anom-
alous dielectric response,® and cross saturation
between microwave fields and ultrasonic pulses!®
have also been observed. Most remarkable of all,
however, has been the recent discovery of phonon
echoes by Golding and Graebner.!

All of the properties discussed so far can be
understood by assuming that the glassy state in-
cludes localized low-lying excitations, which have
a roughly constant density of states of order 10%°
eV'lem™. It is sufficient to assume that these ex-
citations are two-level systems, and as such they
may be treated as pseudospins. Since the poten-
tial energy of a “spin” depends on its atomic en-
vironment, each spin is coupled to the local strain
field. This coupling not only causes phonon scat-
tering, but it also leads to a strain-mediated cou-
pling among the spins. It has recently been sug-
gested by Joffrin and Levelut'? and by Hunklinger
and Arnold* that certain aspects of nonlinear ultra-
sonic propagation can be understood only by taking
into account these “spin-spin” interactions. We
have adopted this point of view, paying particular
attention to the time-dependent shifts in a spin’s

16

resonant trequency. Such shifts arise through
spin-spin interactions whenever neighboring spins
undergo thermal flips. We have treated this phe-
nomenon in glasses within the framework of spec-
tral diffusion as developed by Klauder and Ander-
son for electron spin resonance.’® Using this
formulation we are able to make predictions for
the loss of phase coherence in phonon-echo ex-
periments. We also predict some new time-de-
pendent phenomena which should be observable in
ultrasonic saturation experiments.

B. Are there two types of excitations?

An additional objective of this paper is to probe
the nature of these hypothetical spins by placing
restrictions upon the models which describe them.
For this purpose we treat the spins within the
framework of the tunneling model, in which we
envision groups of atoms tunneling between local
minima in the potential energy.

In the usual formulation of this model,**'” a dis-
tribution of spin-lattice relaxation times is as-
sumed for each tunneling level energy splitting.
Long relaxation times correspond to levels which
are weakly coupled to phonons. These weakly
coupled levels have little direct effect on the ultra-
sonic properties, which include attenuation, satu-
ration, and phonon echoes. On the other hand, some
of these weakly coupled levels contribute to the
specific heat, depending on the time scale of the
specific-heat experiment. Thus one of the key is-
sues in the tunneling model is understanding the
relationship between the strongly coupled excita-
tions, which determine the ultrasonic properties,
and the totality of excitations contributing to the
specific heat.
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The simplest approach to this problem is to as-
sume that all of the localized excitations are of a
“standard” type as discussed in Sec. II. These
“standard” levels have identical phonon coupling
constants v and belong to a single smooth distribu-
tion of barrier heights. The ultrasonic experi-
ments to be discussed in this paper allow us to
estimate P, the density of strongly coupled “stan-
dard” tunneling levels per unit energy and volume
[cf. Eq. (8)]. We are also able to estimate the
spin-phonon coupling constant ¥, which allows us
to compute the relaxation times using Eq. (9).

As is shown in Sec. II, the value of P is too
small to be consistent with the specific-heat den-
sity of states n,, which is observed'®'® on a long-
time scale (5 sec). Furthermore a specific-heat
experiment performed® on a short-time scale
(<50 psec) shows little difference from the long-
time-scale experiments. This observation may
also be inconsistent with an assumption that all of
the levels are of the standard type. On the other
hand, the standard levels do yield quite reasonable
frequency and temperature dependences for the
phonon mean free path [cf. Eq. (8)].

Since the only difficulties arise when we attempt
to deduce #n, for the specific heat directly from P,
we are led to adopt the following point of view. All
ultrasonic properties (e.g., all results in Secs.
II-VI) are attributed to interactions between pho-
nons and standard tunneling levels. The specific-
heat density of states n,, however, has contribu-
tions from both the standard tunneling levels and
additional excitations which we call “anomalous”
tunneling levels. Experimental justification for
this approach comes from the fact that sample-
dependent variations in the specific heat are usual-
ly not accompanied by variations in the phonon
mean free path.'®'® Thus the spin-phonon coupling
of the anomalous levels must be weaker than that
of the standard levels. On the other hand, the
anomalous levels must be sufficiently strongly
coupled so as to have relaxation times which are
shorter than the duration of the heat-pulse experi-
ments.?® We shall see in Sec. II that there remain
difficulties in choosing anomalous-level param-
eters so as to satisfy both of these conditions.

Having introduced anomalous levels to help ex-
plain specific-heat results, we will focus our at-
tention on the standard levels throughout the re-
mainder of this paper. We do this because we are
primarily interested in the effect of spin-spin in-
teractions upon ultrasonic properties. Neverthe-
less our concentration on standard levels will be
useful in discussing the more general question of
anomalous levels and specific heat. In particular
our approach yields estimates of P and y for the
standard levels, thereby determining the standard-
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level contribution to the specific heat on various
time scales. The anomalous levels then account
for the difference between the standard-level
contribution and the experimentally observed value
of the specific heat.

II. TUNNELING MODEL
A. Definition of the model

As mentioned above, most of the low-tempera-
ture properties of glasses can be explained in
terms of localized two-level excitations of un-
known origin.*!*"'7 For such excitations there
exists a complete analogy**''? with a collection of
S=3 “spins” in a “static magnetic field” E*, whose
magnitude varies over a wide range (k™'E_, = 20
GHz) from site to site. We thus have a contribution
to the Hamiltonian

3=y E's;. (1)

Note that S! has eigenvalues +3 and that E' is the
energy splitting at site 7. The conventions used
for S,, S,, and S, are shown in Eq. (Al’). It is
well established that the two-level excitations are
coupled to strain fields and to electric fields,
yielding a “spin-magnetic field” interaction of the
schematic form (suppressing vector and tensor
indices):

3¢, = — p_(B'e'Si+ Die!St + GIFISL+ uiFiSh) . (2)

1

In this expression €' is the strain field at site i,
Bt is the off-diagonal elastic-coupling tensor, and
D! is the diagonal elastic-coupling tensor. Cor-
respondingly F! is the electric field at site i, {1
is the off-diagonal dipole moment, and u? is the
diagonal dipole moment. The off-diagonal cou-
plings are responsible for radiation-induced reso-
nant transitions, while the diagonal couplings are
responsible for shifts in the effective static mag-
netic field. The remainder of this paper will be
restricted to strain couplings, which are
more intrinsic (less sample dependent) than
the electric field couplings.® It is worth noting,
however, that the two coupling mechanisms may
be considered as parallel contributors to spin-
spin interactions (cf. Sec. III).

The tunneling model is an appealing way to en-
vision the two-level excitations which we have
been discussing. The use of this model has the
additional advantage of prescribing the relation-
ship between the diagonal coupling D* and the off-
diagonal coupling B*. The most reliable low-tem-
perature measurements of phonon attenuation? 2!
give information only about Bf, yet we will also
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need to know D! in order to discuss spin-spin in-
teractions in Sec. IIL

The physical content of the tunneling model is
that certain atoms or groups of atoms of mass m
may tunnel between roughly equivalent potential
energy minima separated in energy by an asym-
metry splitting A. The tunneling coupling energy
is given by A,=#@,e™, where %@, is a typical zero-
point energy in the wells and A =% "'d(2m V)2 is a
parameter describing the extent of wave-function
overlap between the states in the wells. Figure 1
shows the prototype configuration with barrier
height V and well separation d.

Before diagonalization, the Hamiltonian for each
tunneling level (unperturbed by external fields) has
the form!*"!¢

1
3(3{):'2" A % ’ (3)
Ay, =4

where, for simplicity, we have suppressed the site
index 7. The dominant term in the spin-phonon
coupling is given by'*'? (suppressing tensor in-
dices; see Appendix.)

sr=—er(t 0, (4)
0 -

where vy is a deformation-potential tensor with a
rough magnitude of 1 eV. After diagonalization,
Eq. (3) assumes the form of one term in Eq. (1)
with E¥=(A%+A2)Y2, Under the same diagonalizing
transformation, Eq. (4) generates both the diago-
nal and the off-diagonal interactions in Eq. (2).
The coupling tensors are related to ¥ unambigu-
ously by

B=2(A,/E)y, D=2(A/E)y. (5)

Detailed predictions of the tunneling model de-
pend upon assumptions made about the distribu-
tion of quantities such as A, X, and ¥y over the en-
semble of spins in the sample.'” A reasonably gen-

FIG. 1. Tunneling-level potential-energy curve. Pa-
rameters shown are asymmetry energy A, barrier en-
ergy V, and well separation d.

eral prescription is to assume that the distribu-
tion function is a slowly varying function of A, for
A in the range of interest (10 mK<A/ky<1 K).
Then

P(A,\)dAady = P(0,\)dAd\ = P(\)dAdh (6)

is the number of spins per volume with asymme-
try A and tunneling parameter . The excitations
described by P(A) will be called “standard” tun-
neling levels. The coupling constant y is assumed
to have a single value for all such spins. The
form of P(\) is not known a pviori, but the gen-
eric behavior for a continuous distribution of bar-
rier heights is shown in Fig. 2. For a given en-
ergy splitting E, the parameter A must exceed a
minimum value A (E) = In(#3,/E), which corre-
sponds to the maximum value of B(= 2y) and the
minimum value of D(=0) according to Egs. (5).
The characteristics of the spins with energy split-
ting E vary continuously as X varies between

A oia(E) and some cutoff value A_,,. This variation
leads to the definition of a parameter 1 which de-
scribes the width of P(\) with the energy fixed at
E:

NE) =X 00 = Apin(E) + 102, (7)
For the purpose of describing ultrasonic properties
it is sufficient to assume that P(A\)= P in the range
Apin <A<A_... Thus we can conveniently specify the

distribution of standard tunneling levels by the pa-
rameter set (P,y,n).

B. Phonon scattering, relaxation, and specific heat

With the above assumptions, the standard tun-
neling level contribution to the phonon mean free
path due to resonant phonon absorption and emis-
sion is given by!'*:1®

= (ro/pe) P, tanh(ie /26, T) ®

where a=1,t designates longitudinal or transverse
phonon polarization. In Eq. (8), ¢, is the appropri-
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FIG. 2. Sketch of the distribution function P(\), which
has dimensions (energy)™ (length)™3. The parameter 7
defines the width of the distribution between A, and the
cutoff Ap, (E) = In(Edy/E).
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ate sound velocity, p is the mass density of the
glass, and w is the phonon frequency. Direct mea-
surements of longitudinal and transverse ultra-
sonic attenuation®?! are in good agreement with
the form of Eq. (8) and determine the products
Py?, thereby reducing the parameter set to (v, n)
or (P,n).

Phonon emission and absorption processes also
lead to spin-lattice relaxation for the standard
levels. The rate of such relaxation is given by the
expression®:1*1¢

2

2 E
THE,\)= <ZL+2ZL cothzr—r . (9)
B

5 5

) ESe-Z (K')‘mh‘)
€ Cy

2nitp

From this result it is easy to see that for reason-
ably large values of 1 (e.g., 71>5), the relaxation
times vary over several orders of magnitude be-
tween the fastest levels (A=2_, ) and the slowest
levels (A\=X_,,). These relaxation times play a
crucial role in determining C,, the specific heat
of the standard tunneling levels*™!S;

C,= é-nzkfansT. (10a)

Here k, is Boltzmann’s constant and »n, is the
(roughly constant) density of states for the stan-
dard levels whose spin-lattice relaxation times
are shorter than the experimental duration ¢. The
expression for »g is calculated to be approximate-
1y14,17

ng=Pmin[n,z In(4R_, )], (10b)

where R, = T{(E=2kyT, X=X_,,) is the maximum
spin-lattice relaxation rate for levels with E
=2kpT.

We can now proceed to derive estimates for n,
for various values of {. Recent pulse area mea-
surements done in conjunction with phonon-echo
experiments'' (see Sec. V) have yielded v,=1.6 eV.
By employing the value of Py? obtained® from
ultrasonic attenuation experiments at w/27=0.5
GHz, P is estimated to be 2.2 x 10% erg™'cm™® for
Suprasil W. Specific-heat measurements® on the
same material yield values for the observed den-
sity of states n,, ranging from 3.0 x 10°? erg™*cm™®
at E/2ky =25 mK to 9.0x 10% erg™cm™ at E/2k,
=1 K. From Eq. (10b) we can see that the factor
multiplying P would have to lie roughly between
15 and 40 if we were to demand that », equal z,.
This turns out to be impossible for the following
reason. Using the estimates''**y;=1.6 eV and
Y;=27}, Ry, is found to be 1.26 X 10°T3usec™.
Consequently %1n4Rmut ranges from 6.4 at E/2k,
=25 mK to 12.0 at E/2k; =1 K for an experimental
time of 5 sec. Thus we see that »n, alone cannot
account for the density of states seen in long-time
(5 sec) specific-heat experiments.

Even if we could adjust P to bring », into agree-
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ment with »,, we would still run into problems
with the heat pulse experiment of Goubau and
Tait.*® For example, at 7=160 mK, 3Ind4R_, ¢
changes from 9.2 to 1.5 as the experimental time
scale is reduced from 5 sec to 1 psec (the time
required for the heat pulse to cross the sample
in the absence of tunneling levels). This change
corresponds to an 84% reduction in the specific
heat, but such a reduction is not observed in the
experiment.?®

C. ‘‘Anomalous” tunneling levels

Difficulties of the type discussed in Sec. IIB
suggest that standard tunneling levels alone may
not be able to explain the specific heat observed
in glasses. Consequently we are suggesting the
possibility that “anomalous” tunneling levels may
exist. These levels may be thought of as a second
set of tunneling levels with a density of states n,
and coupling strengths B = 2(Ag/E)'ya and D,
= 2(A“/E)ya. Phonon-scattering rates and relaxa-
tion times are given by the analogs of Egs. (8) and
(9), respectively. In order that the anomalous lev-
els not contribute significantly to the observed
phonon scattering rate, the condition n,[(A%/E)y,]?
<Py? must hold. To have no effect on spectral dif-
fusion at small times (see Sec. IV) these levels
must also satisfy n,|2(A%/E)y,|[(a%/E)y,]?
<Ply|y2.

As a test of these ideas, consider the case T
=160 mK, which we discussed above. At this tem-
perature n, is roughly®? 5.2 x 103 erg™cm™, and
Eq. (10b) predicts that n, is 2.0 X 10* erg™cm™,
Thus n, must account for the difference between
n, and n,, which is 3.2x 10 erg™cm™. In order
for these “anomalous” levels to contribute to the
specific heat on 1-usec time scale, we must have
[((a2/E)y,]*=2x 10"y% On the other hand, the
condition 7,[(A%/E)y,]2< Py® requires that [(&,/
E)y,]?<7x107%72. The incompatibility of these
two conditions indicates that the heat-pulse re-
sults are difficult to explain even with anomalous
levels present.

Having seen that anomalous levels are only par-
tially successful in explaining specific heat ex-
periments, we will focus throughout this paper on
the standard tunneling levels. It is this type of
level which determines the interesting ultrasonic
properties related to spin-spin interactions.

HI. “SPIN-SPIN” COUPLING

As mentioned in Sec. II, the term Die'S! in Eq.
(2) reflects the shift in a “spin’s” energy splitting
which results from strain fields in the sample. If
these strains are due to an ultrasonic pulse, then
such a shift leads to relaxational absorption and
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dispersion of sound.*® On the other hand, strains
may exist in the absence of any external source.
Such internal strains lead to interactions among
spins as discussed previously by Joffrin and
Levelut'? and Hunklinger and Arnold.* These in-
teractions arise because D'S! is an “elastic-dipole
moment” and may be viewed as a source for the
strain field just as a magnetic dipole is a source
for the magnetic field. By eliminating the strain
field, an interaction of the form

Jcspln-svin= Z Jijs.‘esi (11)

i>j

is obtained. The coupling energy is given by
Jy;=Ci (A ENBI/EN1/73) (12)

where 7, is the distance between spin i and spin j.
The quantity C,; depends on the tensor of deforma-
tion-potential coupling constants at sites 7 and j
and on the spatial orientation of these tensors (see
below).

A comment about this derivation is in order. In-
teraction terms of the form SiS! could be derived
in a similar manner. Such terms have been ig-
nored here because they are unimportant for the
applications to be discussed in Secs. V and VI
Their lack of importance is a result of the fact
that any two spins can interact through such a
term only if they are at resonance with each other.
Since the distribution of energy splittings is very
large (extreme inhomogenous broadening) the
fraction of spins which are at resonance with a
given spin is very small compared to the fraction
of spins which can interact via Eq. (11). As we
shall see in the next section, this latter fraction
is determined by the spins which are thermally
active (E¥<2k,T).

In order to estimate the magnitude of J;;, it is
necessary to consider the tensor character of the
coupling constant Y. For example it can be shown
[cf. Eq. (A9)] that J;; vanishes in the case of pure-
ly isotropic coupling (y,5=79,,). A general ap-
proach is to assume that y,; can be decomposed
into three eigenvalues with three mutually ortho-
gonal eigenvectors.!” It is then straightforward
to average J;; over (a) the orientation of the three
eigenvectors at site j relative to those at site i
and (b) the orientation of the unit vector #;, rela-
tive to the eigenvectors at site i. Such an average
is carried out explicitly in the Appendix. There
it is shown that the rms average value of J;; is
determined by ¥} and v%. By using the value of
¥, obtained from pulse area measurements!! and
the relation v; =éyf obtained from ultrasonic at-
tenuation experiments,* we have derived the es-
timate [see Eq. (A15)]

(C3]Y2=C ,=1.6 X10" ergem®. (13)

The quantity C,_,|Afaf|/E*E/Y; is then to be
understood [see Eq. (12)] as the average magni-
tude of the shift in the energy of spin i when spin
j flips (AS{=+1). The problems of determining
74, of determining A/E, and of estimating errors
in our averaging procedure will be discussed in
Sec. IV. The smallness of the dimensionless con-
stant n,C ., which is less than or equal to 3.2

x 107? (using the maximum value of n, as esti-
mated in Sec. II) guarantees that the energy shift
of most spins is only a small fraction of their un-
perturbed energy splitting E. This enables us to
treat the system as a collection of nearly indepen-
dent spins, ignoring most collective effects.*?

IV. SPECTRAL DIFFUSION

In this section we begin a discussion of the im-
portant dynamical consequences of Eq. (11). The
effective Hamiltonian for “spin” i can be written

3Chep= Bl Si+ Bie'S], (14)
where
Ey=E'+" J;,Sh. (15)

J#i

If the neighboring spins are described by values
of S{ which are independent of time, their only ef-
fect on spin 7 is a static shift of the energy split-
ting E*. Such an effect is, however, quite unob-
servable because the spectrum of energy split-
tings in a glass is already much wider (i.e., in-
homogeneously broadened) than any static width
due to J;, (cf. comment at the end of Sec. III).
Thus any static shifts can be assumed to have
been incorporated into the definition of E*.

On the other hand, if S{ is a time-dependent
quantity, no simple redefinition of E* will suffice.
Interesting effects then arise wherein E:;ff changes
during the course of an experiment. The possi-
bility of such fluctuations in resonant frequency
was first mentioned by Hunklinger and Arnold in
connection with ultrasonic saturation experiments.
In order to treat this time-dependent effect, we
introduce the concept of spectral diffusion’® in
glasses.

We focus our attention on a test spin at site 7,
which has an energy splitting E‘;”=h‘wo at time ¢
=0. In the standard terminology for spectral dif-
fusion,'®?* this test spin is known as an “A spin.”
In general the A spins are distinguished from all
the other spins (“B spins”) by having values of w,
roughly equal to the frequency of the ultrasonic
pulse in a spin-echo or saturation experiment. In
an inhomogeneously broadened spectrum, B spins
will generally outnumber A spins. As time pro-
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gresses and B spins flip, the A-spin energy split-
ting Ei“ will wander away from %Zw,. To describe
this process, we define the spectral diffusion ker-
nal*®?* D(w — w,, ). This function is defined so
that D(w - w,, H)dw is the probability that spin i has
acquired an energy splitting Ei“=ﬁw at time ¢£.
For dipolar interactions it is an established re-
sult that the spectral diffusion kernel has the ap-
proximate form!3:2*

1 Aw(t)
T (W —we)+ [bw()]?”

D(w - wy, §) = (16)
The diffusion width Aw(f) is proportional to (|J;;|)
with #7} replaced by n/{), the density of B spins
which have flipped during the interval {. The ef-
fects of all neighboring spins (not just nearest
neighbors) are included, assuming that they are
distributed at random in the sample. The result
of the standard calculation for the width is'3*?*

X

3
The average® (Ia/E|), refers to the A spins,
whose time-dependent energy splittings have the
experimental consequences discussed in Secs. V
and VI. As mentioned above, these spins are in
resonance with an ultrasonic pulse and thus have
energy splittings E which are constrained to lie
near the pulse frequency. The average
(IA/E Inft)),, g refers to the numerically superior
B spins whose flipping leads to spectral diffusion.
Since these spins are not in resonance with an
ultrasonic pulse, we must include contributions
from B spins with all energy splittings E.

We should note that expression (17) for Aw(?)
represents an upper bound to the actual value of
Aw(t). This is the case because in deriving Eq.
(17) from Eq. (12), we have replaced the exact
quantity (IC;,1) by the tractable quantity [(Cf!)]"z,
which we call C_ . [see Eq. (A11)]. Estimates
based upon the simpler case of a true electric di-
pole suggest that the actual width is roughly 85%
of the rms upper bound value [cf. Eq. (A12)].

The next step is to calculate n/f), the spatial
density of flipped B spins. To be more precise,
nA1) is the density of B spins which have flipped
an odd number of times. In this discussion we
make the plausible assumption that all flipping re
sults from contact with a bath of thermal phonons.
Recall that direct phonon absorption and emission
processes lead to spin-phonon relaxation at the
rate given by Eq. (9). The same processes con-
trol the rate at which S} fluctuates (flips) in ther-
mal equilibrium. Simple rate equations predict
that for B spins with a fixed value of E and A, the
contribution to n¢) is

A
E

A

E

n,,(t)>E R (17)
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dn{E X, 1)=3n(E,)) sech(E/2k,T)
x(l_e"”Tl‘E'”)dEdA, (18)

where n(E, ) is the spatial density of such spins.
The factor sech®(E/2k,T) restricts consideration
to those B spins with small enough energy split-
tings so as not to be frozen into their ground
states.

The final result is now obtained by integrating
Eq. (18) over E and A, using P and the “standard”
tunneling level assumptions of Sec. II to deter-
mine n(E,\). The result of such a calculation
when substituted into Eq. (17) is

Aw(t, T)= Aw(t= o, T) -z—mi—lnz)

v e
X f dx secthJ’ — (1 —erT1 W)
0 4e~2n ¥V

(19)

where x = E/2k,T and 7 =exp[-2(X =A_;,)]. The
quantity T7'(x) is the maximum B-spin flipping
rate for a particular value of E(= 2xk,T). Using
the coupling constant estimates discussed prior to
Eq. (13) and in Sec. IIB, we derive T ;'(x)
=9607%>cothx psec™ from Eq. (9). The integral
over 7 takes into account the dependence of
n(E,)\),T,, and |1A/E| upon A when E is fixed.
Equation (19) has been written in such a way as

to explicitly indicate that Aw approaches a limit
as f—- whenever <%, This limit can be under-
stood by noting that for long times half of the ther-
mally active (E < 2k, T) B spins have flipped an odd
number of times. This fact leads to a final width
proportional to 7 given by

2
Awlt==, T)=2%%Cm<’%l> (N -1n2)Pk,T. (20)
A

Using the value of C_ from Eq. (13), the value®
(la/Ely =3, and the value of P derived in Sec.
II, we estimate that (27)"'Aw(t=, T)
=23(n - 1n2)T MHz with T measured in degrees.
A spectral width of this magnitude with =10 is
in reasonable agreement with experiment as will
be seen in Secs. V and VI

The important new feature of this calculation is
that Aw increases monotonically with time. For
short times (¢ < 7T,) the probability that a neigh-
boring B spin has flipped once is proportional to ¢,
which allows us to evaluate Eq. (19) explicitly as

1

swlt, T)=dwlt==,T) gr—pme

X f 1T 7'(x) sech®v dx
0

1 m?
=A = o —— — 3
1=, T) gr—qss 7 9607 (212)
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FIG. 3. Spectral diffusion width (27)Aw(¢, T) from
Eq. (19) at a temperature of 20 mK. Solid curve cor-
responds to n>5; dashed curve is for n=1.

When ¢ is measured in microseconds and 7T is
measured in degrees, we obtain

(2m)Aaw(t, T) = 1.7 X 10*T* MHz (21Db)

in this short-time limit. For longer times
Aw(t, T) rises more slowly than linearly in ¢ as
B spins undergo multiple flips.

The behavior of Aw(#,T) in the regime inter-
mediate to Eqs. (20) and (21) is shown in Figs.
3-5 for various values of T and 7. In these curves
it is evident that the time scale varies as T "* and
the Aw scale varies as 7. The dependence upon
7 is more complicated. At small times there is
virtually no 1 dependence because Aw is deter-
mined by the B spins which flip fastest (A=, ),
whose density is given by P. For longer times
the slower spins begin to have an effect. These
B spins with A ;, <A<X__ lead to a long-time tail,
causing Aw to rise very slowly as Inf. This slow
rise has the same origin as the Inf behavior pre-
dicted for the “standard” level specific heat.*
This rising stops when B spins with A= . have
begun to flip. The observation that larger values

WIDTH (MHz)
T

1 L 1 1 Il 1 1 1 |
0O 10 20 30 40 50 60 70 80 90 100
TIME (MICROSECONDS)
FIG. 4. Spectral diffusion width (27)"'Aw(¢,T) at

100 mK. Solid curve is for n>5; dashed curve is for
n=1.

WIDTH (MHz)

(o] 1 2 3 4 5 6 7 8 9 10
TIME (MICROSECONDS)

FIG. 5. Spectral diffusion width (27)"'Aw(t,T) at 500
mK. Solid curve is for n=10; dotted curve is for n=5;
dashed curve is for n=1.

of 7 imply longer periods of slow rise explains
why curves with different values of 1 are more
easily distinguished at long times.

V. PHONON ECHO DECAY

The recent observation of phonon echoes in
fused silica'! constitutes a powerful tool for study-
ing the dynamics of the two-level systems
(“spins”). Echoes occur when a series of phonon
pulses in resonance with a small fraction of the
spins (i.e., the A spins) leads to coherent emis-
sion of ultrasonic radiation by these spins. The
mechanism is the same as in NMR echoes,*

ESR echoes,? and photon echoes.”” In a two-pulse
echo sequence (see Fig. 6), the first pulse puts
the A spin labeled by i into a nonstationary state,
causing it to precess at its resonant frequency
w'=/"'E*. As this free precession occurs, the
spin emits ultrasonic radiation. This signal soon
dies, however, because the large spread in pre-
cessional frequencies leads to a rapid loss of
phase coherence among the A spins. If a second
pulse which reverses the direction of precession
is applied at time 7 after the first pulse, the spins
will retrace their various accumulations of phase.
At a time 27 after the first pulse, the A spins will
all have the same phase, and the resulting ultra-
sonic radiation can be detected. Three-pulse

%’ pulse T pulse echo

1 1
t=0 t=7 t=27

FIG. 6. Two-pulse (spontaneous) echo sequence.
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T ouse I pulse I pulse echo
P 2

2 2
No Precession *j ﬂ
1 1 \ 1 1

t=0 t=7, t=T3 t=T+ T

FIG. 7. Three-pulse (stimulated) echo sequence,
showing the long interval during which no precession
of the A spins occurs.

echoes® result from a modified two-pulse se-
quence in which the second pulse is split into two
parts separated by a time interval during which
no precession occurs (see Fig. 7).

A. Two-pulse echoes

Much information can be gained by observing the
amplitude of an echo signal as a function of the
time intervals between the pulses. Such depen-
dence occurs only when some mechanism inter-
feres with the phase cancellation discussed above.
A static line broadening, of course, is not capable
of causing such interference. On the other hand,
a dynamic effect such as spectral diffusion can
have dramatic consequences. The key concept
connecting phonon echoes and spectral diffusion
is the loss of phase coherence which occurs when
the precessional frequency of an A spin changes
during the course of an echo experiment. For a
two-pulse sequence the resulting echo amplitude

is given by13,24,28,29
T 2T

E(2‘r)=<exp<z' J dt w(t) —i j dtw(t)>> s (22)
0 T

where (+ - + ) devotes an average over all A spins

and over all flip histories of their B-spin neigh-
bors. In the limit that T is much less than the
shortest thermal (E < 2k,T) B-spin T, [cf. Eq.
(21a)], the small-time limit of the spectral diffu-
sion kernel yields the result first derived by
Klauder and Anderson'®

2

E(27)=e™" (23a)
where
m=lim M Aaw(t, T). (23b)
t=0

As we shall see below, there is good reason to
believe that this small-time limit applies to the
actual experiments on glasses. Nevertheless it is
useful to understand the qualitative features of
E(27) for longer times. Hu and Hartmann?® have
derived E(27T) with no restrictions on 7 for the
case of B spins with a single flipping rate and an
equal probability of being “up” or “down.” Since
the glass problem allows a wide distribution of
rates [cf. Eqs. (9) and (19)] and also has B spins

which are more likely to be down than up, a simi-
lar derivation of a general E(27) for glasses is
nontrivial. The general features of Hu and Hart-
mann’s solution will, however, apply to glasses.
These features are (a) a regime of short times
where (23) applies, (b) a crossover region in
which E(27) falls off more slowly than exp(—mT?)
and has a roughly exponential decay bounded from
below by exp(-7*/3mT,7), and (c) a long-time
limit in which E(27) falls off slowly as
exp(—8*/2q=1/ 2% 2y 71/ 2)

In making estimates of the echo envelope func-
tion E(27), we have used the coupling constants
values which led to Eq. (21b). These same coupling
constants permit the evaluation of B-spin flipping
times as was discussed following Eq. (19). For
example at 7=20 mK the minimum flipping time
for B spins with E=2k,T is found to be 99 usec.
This time decreases at T3, becoming roughly
1.6 usecat 80 mK. Another important time, which
is distinct from a B-spin flipping time, is the
time required for an A spin (i.e., a direct con-
tributor to the echo) to relax to thermal equilib-
rium. This particular time is given by Eq. (9)
with E determined by the ultrasonic frequency
(E=hw). For A spins resonant with a 0.68-GHz
pulse, the minimum relaxation time (A=2_, ) at
20 mK (80 mK) is 160 usec (49 usec). In view of
the fact that the two-pulse experiments in Ref.

11 have a maximum duration of roughly 15 usec
at 20 mK, it appears unlikely that this direct re-
laxation of the A spins contributes to the observed
echo decay. Furthermore the magnitude of the
B-spin flipping time suggests that the small-time
approximation for the spectral diffusion mecha-
nism [cf. Eq. (23a)] should be reasonable. Using
Eq. (21b) this theory predicts that

m=1.1%x10°T* usec™2. (24)

If we define the phase-memory time 7} as the
time 27 in which the echo envelope falls to 1/e,
we find, using the estimate (24),

T3=6.0x1073T"2 usec. (25)

Experimental results for two-pulse echoes at
0.68 GHz in Suprasil W yield values of T, equal
to 14 and 3 usec at T=20 mK and T=45 mK, re-
spectively.'! The corresponding theoretical pre-
dictions from Eq. (25) are 15 and 3.0 gusec. The
agreement between theory and experiment in both
the magnitude and the temperature dependence of
T; is remarkably good. We should mention, how-
ever, that the experiments show a more nearly ex-
ponential decay in E(27) as opposed to the Gaussian
shape predicted by Eq. (23a). Furthermore some
frequency dependence of T} is observed above 0.68
GHz, and this is difficult to understand in terms of



spectral diffusion.®® At first glance such fre-
quency dependence suggests that direct relaxation
of the A spins is occurring, but an A-spin T, on
the order of 15 usec is extremely difficult to rec-
oncile with the observation of three-pulse echoes
at times exceeding 100 usec (Ref. 30) (see below).
It is more likely that these difficulties are related
to the presence of pulse attenuation during the
echo sequence. Such attenuation is known to oc-
cur'! and to be frequency dependent.?* The agree-
ment we have found with experimental measure-
ments of T can be interpreted as an independent
check on Golding and Graebner’s determination of
the coupling tensor vy, from their pulse area mea-
surements.'' Note that our rms averaging pro-
cedure tends to overestimate m [see the discus-
sion following Eq. (17)] and thus to underestimate
T}. Lowering m by 15% increases T} by 10% and
slightly diminishes the agreement between theory
and experiment.

B. Three-pulse echoes

We turn now to the three-pulse echoes, a good
discussion of which has been given by Mims,?*:3!
For this sequence the echo envelope is given
by!3:2428:29 (see Fig. 7)

F(Ty5, Tyo) = exp[—(T 5+ 712)/T1]Es(713’ Tia), (26a)
where
Es(713,712)=<exp <z f Patwt) —i f " 12dtw(t)>>.
0 Tis
(26b)

In Eq. (26a), the first factor results from direct
A -spin relaxation, a process which we neglected
for two-pulse echoes but which may be important
for three-pulse echoes (see below). The second
factor in (26a), E (7, 7,,), is the spectral diffu-
sion contribution to three-pulse decay and is the
analog of E(27) in Eq. (22). It is apparent that
during the intervals 0<¢<7, and 7,<#{<T;;+7T,,
the echo amplitude E(,;, 7,,) decays as a result
of simultaneous precession and spectral diffusion
just as in the two-pulse sequence. The interval
T,,<t<T,5, however, introduces a new feature:
spectral diffusion in the absence of spin preces-
sion. Since no phase is accumulated, the effect of
spectral diffusion in this interval is to contribute
an effectively static line broadening Aw(T, 7,
—T,,). This broadening leads to additional decay
as the spins precess in the interval 7,,<¢<T ,+7T,
just as static line broadening causes decay of a
free precession signal.?® When 7, < T,, this de-
cay mechanism leads to a factor in the expression
for E(7,,, 7,,) which is the result of the Fourier
transform of the diffusion kernel®' [cf. Eq. (16)]

16 SPECTRAL DIFFUSION, PHONON ECHOES, AND SATURATION... 2887

E (T4, 712)/E(2712) =exp[-TAw(T s =T, T)] . (27)

This factor can be seen explicitly in the standard
expression for the short-time limit'*?® (1,7,
<< Tl.):

E(T)3, 1) = exp(—mT,7,,)

= exp(-mT3,) exp[-T,m(T,, = T,)], (28)

where Aw(T,; = T),, T)=m(T,, — T,,) and exp(-mT%,)
is recognized as the two-pulse envelope E(27,,)

in Eq. (27). Furthermore for arbitrary values of
T,s — Ty, With 7, < T, the validity of Eq. (27) has
been established by Hu and Hartmann for the case
of a single B-spin flipping rate.* Extension to

the glass problem follows the arguments preceding
Eq. (27) and the discussion of spectral diffusion

by Mims.3!

In the three-pulse experiments we are typically
in the regime where 7,, is sufficiently small so
that Eq. (27) applies with the added simplification
E(27,,)=1. For example Golding and Graebner
report preliminary results at 20 mK in which
T,,=1 psec and 7,,100 usec.*® The curves for
Aw(t, T) discussed in Sec. IV show that E(7,,,T,,)
should fall exponentially only for small values of
T,;. For longer times the envelope factor
E (7,3, 7,,) should fall more slowly, eventually
ceasing to decline. [Note, however, that
F(7,,7,,) in Eq. (26a) will continue to decline as
a result of A-spin T, processes.] These qualita-
tive features of E(7,,,7,,) are exhibited by the
theoretical curves in Figs. 8 and 9 for various
values of T, n, and 7,,. Such nonexponential 7,-
dependent decay has been observed recently in
three-pulse experiments.*® To facilitate com-
parison with experiment, we show in Fig. 10 a
decay time (7Y),, defined as that value of 7,;, -7,
at which E (7, 7,,) falls to e if we set E(27,,)=1.
For T below about 20 mK and n=10, (7T}),, be-
comes very long as the Aw(¢, T) curves level off
for large times. The computed values of (T}),,
all occur in the nonexponential region, where the
flatness of the echo envelope will make an experi-
mental determination of (77}),, uncertain.

Values of T, for A spins resonant at a frequency
of 0.68 GHz are also shown in Fig. 10. These val-
ues are derived from Eq. (9) with X=X, . using
the coupling constant values (y,=1.6 eV, y2 =%yf)
discussed in Sec. IIB. It is important to note that
the condition 7,,< 7T, may not hold for the values
of 7,; shown in Figs. 8-10. When 7,2 T,, direct
relaxation of the A spins will make a 7,,-indepen-
dent contribution to the three-pulse echo decay
when 7,, <7, [cf. Eq. (26a)]. As is evident in
Fig. 10, this process eventually causes a decay
which is faster than spectral diffusion as 7 de-
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FIG. 8. Theoretical three-pulse spectral diffusion
decay envelopes E¢(Ty3,T(,) given by Eq. (27) when 7y,
<« Ty. The temperature is 20 mK. Solid curves are
for n=10; dashed curves arefor n=1. (a) 7{,=0.5 y4 sec;
(b) T,=1.5 psec.

creases. Thus the observed decay time (T7),.,
should be roughly equal to the lower of the two
curves in Fig. 10 [i.e., (T]) i =(T)3 +(TD%]. 1t
should be emphasized again that the experimentally
observed inequality T, <<(T}),,, cannot be under-
stood in terms of A-spin T, processes alone. A
strong argument in favor of spectral diffusion de-
cay is that it allows the two-pulse decay time T}
to be much shorter than both the A-spin T, and
the three-pulse decay time (779),,,. Furthermore
spectral diffusion decay yields echo envelopes
which depend parametrically on 7, in agreement
with preliminary experimental results.3°

VI. SATURATION AND RECOVERY

A. Saturation

Another type of experiment to which spectral
diffusion applies is saturation of the “spins” by

L. BLACK AND B. I.
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TIME (MICROSECONDS)

ECHO ENVELOPE

. .
o 5 0 15 20 25 30 35 40 45 50
TIME (MICROSECONDS)

FIG. 9. Theoretical three-pulse spectral diffusion
decay envelopes E(T3,Ty,) given by Eq. (27) when 7,
<«T;. The temperature is 50 mK. Solid curves are for
1n=10; dashed curves are for n=1. (a) 7y,=0.5 usec;
(b) Ty,=1.5 usec.

an ultrasonic pulse. In Eq. (8) the factor tanh(7w/
2kyT) represents the difference (in thermal equi-
librium) between the number of “up” spins and
the number of “down” spins with energy splitting
E=7hw. Any reduction in this population difference
resulting from a strong ultrasonic pulse leads to
a decrease in the attenuation of that pulse and of
subsequent pulses.*® This phenomenon is closely
related to self-induced transparency,®? in which
a coherent time-dependent variation of the popu-
lation difference leads to pulse shaping, pulse de-
lay, and anomalously low attenuation.

In order to treat saturation effects, we intro-
duce phenomenological Bloch equations**5:12

dM (w’)

T - oM y(w) - TIM W) (29a)
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FIG. 10. Theoretical temperature dependence of three-
pulse echo decay time. Solid curve is the value of (T{)g,
calculated from Eq. (27) with 7, < T;. This curve was
calculated withn=10 and 7;,=0.5 psec. The dashed
curve is Ty with A=2_;, for A spins at resonance with a
0.68-GHz ultrasonic pulse.

aM ! B o ,
;_iw) =w'M (') +_ﬁ_e M w") = T3M(w"),
(29Db)
dM w') B i
——dz%)_) - 76- Mw’) =T w")
X [M(w") = My(w"], (29¢)

where? M(w’) = (§"), with the constraint E=fiw’.

In this definition we have explicitly displayed the
resonant frequency w’ as a reminder that we are
dealing with an inhomogeneously broadened spec-
trum. Thus M(w’) corresponds to those A spins

in a “spin packet” centered at w’ with a homo-
geneous width 7;'. Furthermore, M(w’) is ob-
tained from Sf by an average which is weighted

in favor of those A spins which are strongly
coupled to ultrasonic pulses.”® The “spin-lattice”
relaxation time 7 7*(w’) for such spins is given by
Eq. (9) with x=x_, and E=7w’. The quantity
—2M%w’) = tanh(zBkw’) is the population difference
for spins in thermal equilibrium with the “lattice.”
The free precession terms proportional to +w’ and
Be/n in Egs. (29) follow from Egs. (1) and (2). The
strain field € is a time-dependent quantity which
oscillates at the ultrasonic pulse frequency, w.
That is,

€=€(t)= Re(g,e™'*?) ,

where €, is related to the energy density & (per
unit volume) in the ultrasonic pulse, by
1

E=3pcied (a=1,1). (30)

The energy density is related in turn to the average

pulse energy flux (¢ = 8c,) and to the areal energy
density (E,=&c,7,), where 7, is the pulse dura-
tion.

To date, most theoretical treatments of satura-
tion in glasses have employed the steady-state
solutions of Egs. (29) in the reference frame ro-
tating about the z axis at frequency w.**''* The
steady -state energy absorption from each “spin
packet” is then summed over the inhomogeneous
distribution of w’, just as in the saturation theory
of Portis.®® This theory leads to saturation when
the factor (Be,/2/)T, T, exceeds unity. The pho-
non mean free path falls off as [1+(Be,/
2%1)2T,T,]™"/? and the absorption line is power
broadened to a width given by T;![1+(Be,/
2n)°T,T,]"2.

There are several difficulties with using steady-
state solutions of Eqs. (29) to describe the satura-
tion process in glasses. One such difficulty is
that the pulse length 7, is generally much shorter
than the estimated value of T, for the A spins
(spins resonant with pulses). For example, based
on our coupling constant estimates (cf. Sec. IIB),
T, for w'/2m=0.68 GHz and X=X, ranges from
7.8 usec at T7=500 mK to 160 psec at 7=20 mK
(cf. Fig. 10). On the other hand, experimental
values of 7, rarely exceed 1 pusec.”® Thus it ap-
pears unlikely that the vector M(w’) in Eqgs. (29)
has sufficient time during an ultrasonic pulse to
reach a steady-state value. The inequality 7,<<T,
suggests that a time-dependent approach similar
to that employed in the theory of self-induced
transparency®? is more appropriate than steady-
state saturation theory.

A second difficulty related to Eqs. (29) is the
question of what to use for 7';'. For a simple
homogeneously broadened line, T, is the “dephas-
ing time” and yields the linewidth, the free pre-
cession decay time, and the spin-echo decay
time.?® For an inhomogeneously broadened line,
as we have in glasses, T;' no longer represents
the total linewidth. Instead T;' is the width of a
“spin-packet,”*® 3 which is a subset of the spins
characterized by a common resonant frequency
(i.e., the A spins are a spin packet). A weak ultra-
sonic p_glse with a well-defined frequency w will
affect M(w’) only for those values of w’ lying
roughly between w — T;' and w+ T;!. In this con-
text T, remains a “dephasing time” and yields an
estimate of the spin-echo decay time.

It should now be clear that spectral diffusion is
potentially a major contributor to the phenomeno-
logical parameter 7', viewed as a dephasing
time and as a spin-packet width. Certainly the
dephasing due to spectral diffusion leads to spin-
echo decay (cf. Sec. V). Furthermore the width
of a spin packet obviously depends on the diffusion
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of spins in frequency space. The difficulty as-
sociated with 7' stems from the fact that spin-
echo decay is not a simple exponential process
and that the spectral diffusion spin-packet width
Aw(f) (cf. Sec. IV) is a function of time. Thus no
single time-independent parameter, such as T3},
can possibly describe the dephasing and spin-pac-
ket width resulting from spectral diffusion. Con-
sequently the suggestion'? that spin-spin inter-
actions can be incorporated into a time-indepen-
dent T;' must be viewed with some caution.

Unfortunately there exists no complete theory
to describe the dynamics of saturation in the pres-
ence of the type of spectral diffusion we have been
discussing. Some progress has been made in de-
scribing steady-state saturation in the presence of
cross-relaxation (another type of “spectral diffu-
sion” associated with energy transfer rather than
resonant frequency shifts).3** In more closely
related work, Wolf* has developed a theory for
steady -state saturation in the presence of large
resonant frequency shifts due to spatial diffusion
of spins. In his theory the spin-packet width even-
tually equals the full inhomogeneous linewidth as
the rate of diffusion increases.

In the absence of a complete theory, we wish to
retain the essential features of Eqgs. (29) by de-
fining an effective spin-packet width 7';'. Of
course one contribution to T;' is 77!, which rep-
resents a lifetime broadening due to the uncer-
tainty principle. In order to estimate the spectral
diffusion contribution to T';', we make the plausible
assumption that spectral diffusion occurs for a
time interval equal to the ultrasonic pulse dura-

tion T,. Thus

T;'= Traw(r, 7). (31)

We are now in a position to make an estimate of
T3;' with 7= 10 for a spin packet (i.e., A spins) at
resonance with an ultrasonic pulse of frequency
w/27=0.68 GHz and duration 7,=1 pusec. The two
terms contributing to T';' are shown in Table I for
various values of the temperature. It is apparent
that spectral diffusion is the dominant broaden-
ing mechanism in Eq. (31), becoming more domi-
nant at higher temperatures.

We now wish to apply the phenomenological the-
ory of Eqs. (29) to actual ultrasonic experiments,
using estimates of 7, and T, such as are shown in
Table I. One interesting issue, to which we have
already alluded, is the question of the relative
magnitudes of T',, T,, and 7,. We have already
seen that 7, << T, and that T, < T,. From Table I
it is apparent that 7,< 7, for temperatures above
roughly 50 mK and that T,> 7, for temperatures
below roughly 50 mK. Thus below 50 mK, 7, is
shorter than both T, and T,, a situation which is
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TABLE I. Two contributions to the spin packet width
in Eq. (31). Ti!is calculated for w’/27r=0.68 GHz. The
values of Aw (7,,T) come from Figs. 3—5 with T,=1usec
and n=10.

Aw(ty, T)
7 (mK) T (usec™) Aw (1,,T) 2T
500 0.13 150 psec™ (24 MHz)
100 2.6x 1072 4.7 psec™' (0.75 MHz)
20 6.2 x 1073 1.5x 107 psec™! (2.4 KHz)

favorable to self-induced transparency.** Above
50 mK we have 7,<7,<T,, a situation in which
neither self-induced transparency nor steady-state
saturation is likely to occur. This is a regime of
noncoherent transient saturation.

A second experimental issue is the width of the
“purned hole” created by a strong saturating
pulse.** For the moment we will be concerned
only with the initial width of the hole, a quantity
which we will call 8. We defer any consideration
of what happens to the hole width at later times
(after the pulse is turned off) to the discussion of
saturation recovery (see below). We have already
discussed some of the contributions to the initial
hole width 6. The spin-packet width T3;'=Aw(7,, T)
is one such contribution. The frequency uncer-
tainty in the ultrasonic pulse, given by T;l, also
contributes to 8. Finally, the magnitude €, of the
saturating field €(¢) [cf. Eqs. (29) and (30)] can
influence the frequency range over which the
burned hole extends.?® For example at a “typi-
cal”*?! saturating ultrasonic energy per area,
E,=5x10"° erg/cm?, we find that €,=1.5% 107
using ¢;=5.8 X 10° cm/sec and p=2.2 g/cm?® in
Eq. (30). This strain corresponds to a frequency
w, =€,B/2l=¢€yy,/h, using Eq. (5). Fory,=1.6
eV, we obtain w, =38 psec™ (w,/27=6 MHz).
Likewise for ¢,=3.8x 10° cm/sec and v,=1.1 eV,
we obtain w, =50 psec™ (w,/2m=8 MHz).

Comparison with values of 73! from Table I and
with T;1= 1 psec™ leads us to believe that 8 is most
strongly influenced by T;' at higher temperatures
(T2 200 mK) and by “power broadening” (w,) at
lower temperatures (7 < 200 mK). Hunklinger and
Arnold have reported a power-independent width
8/2m =50 MHz at T=550 mK in borosilicate glass.*
These results are in rough accord with the value
(2nT,)"' =24 MHz obtained from Table I. Never-
theless it must be kept in mind that the theoretical
hole width will exceed 24 MHz if we allow spectral
diffusion to take place for a time longer than the
pulse width, 7,=1 usec. Consideration of spec-
tral diffusion after the pulse has been turned off

brings us naturally to the subject of saturation re-
covery.



16 SPECTRAL DIFFUSION, PHONON ECHOES, AND SATURATION... 2891

B. Saturation recovery

Let us consider the recovery of M, (w’) toward
MY w’) following a saturating pulse at frequency
w. Here we ignore the details of the saturation
process itself and simply assume that the pulse
“burns a hole” in M (w’) at =0 as shown by the
solid curve in Fig. 11. The subsequent change as
M, (w’) recovers can be measured by observing the
changes in the ultrasonic attenuation of a nonsatu-
rating pulse withfrequency w’ata later time . The
width of a hole in M, (w’) can be determined by
varying the probe frequency w’.

As an illustrative example we assume that the
saturating pulse at frequency w depresses M, (w’)
according to the idealized expression®®

(W' —w)?
(w' _w)2+62 ’

where 0 is the initial hole width, which depends
on the details of the saturation process discussed
above. Equation (29¢) with € =0 describes the
thermal relaxation (A-spin T,) contribution to the
recovery of M,(w’), a process in which the pattern
expressed by Eq. (32) simply disappecrs in time
T, without further broadening. If only this pro-
cess occurred, then a measurement of M (w’,?)
at w’=w would constitute a direct measurement
of T,. Furthermore a measurement of the hole
width would yield a time-independent result,
thereby determining 6. Hunklinger and Arnold
have given such an interpretation to their experi-
mental results, thereby obtaining 7,=1 psec and

M (w’, t=0)=M%w) (32)

1 L 1 I 1 1
-4 -3 -2 -1 0 1 2 3 4

1 .
2—77_(0.) w) ( MHz)

FIG. 11. Theoretical saturation recovery curves for
M, (w’,t) following a strong ultrasonic pulse at a fre-
quency w. The curves are derived from Eq. (33) with
Aw(t) taken from Fig. 4 at T=100 mK. The “burned
hole” of assumed width 6/2r =1 MHz at =0 is shown as
the solid curve. The effect of spectral diffusion is shown
by the dotted curve (a) at t=2 psec and by the dashed
curve (b) at t=10 usec.

6/2m =50 MHz with 7=550 mK and w/27=0.74
GHz.* They also observe that 8 is proportional
to T [cf. Eq. (20)] and ascribe this width to spin-
spin interactions.

We wish to point out that spectral diffusion, as
discussed in Sec. IV, is the correct description
of the effects of spin-spin interactions upon satu-
ration recovery experiments. The spectral diffu-
sion kernel of Eq. (16) describes processes in
which spins wander in and out of the hole, leading
to the type of evolution indicated by curves (a)
and (b) in Fig. 11. The hole becomes broader and
shallower as time increases. This result® can
be seen explicitly by convoluting Egs. (16) and (32):

M (w', b= '[ dw” D(w’ - w”, )M (0", t=0)

(33)

8[6+Aw(f)] >
(W —w)2+[0+2w())]?

From this expression we see that the hole width
increases in time as 6 + Aw(f). On the other hand,
the depth of the hole decreases with time as may
be seen from (33) at the center of the hole (w’=w):

=M 2(w)<1 -

M(w,t)=MYw)dw()/[5+rw(t)] . (34)

The observability of the diffusion-induced time-
dependent recovery effects summarized in Eqgs.
(33) and (34) depends upon several factors. Ob-
servation of time-dependent hole widths and hole
depths requires that Aw(#) be of the order of 6 in
a time interval where Aw(f) shows significant
time dependence. Furthermore the condition /<T,
must hold to ensure that erasure of the hole due to
direct A-spin relaxation does not occur. Finally
for hole width experiments Aw(f) must exceed the
instrumental frequency resolution.

From Figs. 3-5 we can draw the following quali-
tative conclusions. At the lowest temperatures
(T=20mK), Aw(t)/27<0.2 MHz for times less than
T, (we estimate 7,~160 psec for w’/2m=0.68 GHz).
Thus the time-dependent width and hole depth may
be very difficult to observe at this temperature as
a result of resolution problems. At the highest
temperature (T=500mK), Fig. 5 shows that for 7
=10, Aw(#)/2m has the values 24 and 36 MHz at
the times 1 and 10 psec, respectively. At this
temperature the A-spin T, for a 0.74-GHz phonon
pulse is estimated to be 6 usec. For times less
than this value, a time-dependent hole width should
be observable. As mentioned earlier, Hunklinger
and Arnold report a width of 50 MHz at 7=550 mK,
in rough agreement with our predictions. Unfor-
tunately no attempt to measure the time dependence
of the hole width was reported. Their measure-
ment of hole depth led to a value of 1 usec for T,
at 7=550 mK and w/27=0.74 GHz. This T, is con-
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siderably shorter than the value we predicted
above. It is possible that this conflict may be re-
solved by including Eq. (34) to describe the recov-
ery of the hole. Unfortunately, we are hampered
by our lack of knowledge about 6. If we assume
that 6=150 usec™, we obtain M, (w,?)/MYw)=0.5
after 1 usec when n=10. Thus spectral diffusion
provides a plausible explanation for the observed
recovery. Finally for temperatures intermediate
between 20 and 500 mK (cf. Fig. 4), the overall
magnitude of Aw(¢, T) decreases from the high-
temperature value, making measurements of hole
width more difficult. On the other hand the larger
value of the A-spin T, at this temperature (we es-
timate 39 psec for w’/27=0.68 GHz) may make it
easier to directly observe the time dependence of
Aw(t, T). In Fig. 11 we show the predictions de-
duced from Eq. (33) and Fig. 4 for recovery at ¢
=2 psec and t=10 usec following saturation. For
simplicity we have made the somewhat arbitrary
choice, 6/2r=1 MHz. In a real experiment 6 will
depend on the spin packet width 7';' and on the
saturating pulse power. Nevertheless it is quite
conceivable that the time dependence of the re-
covering hole width, as shown in Fig. 11, will be
observable near 7=100 mK.

VII. SUMMARY

The primary result of this paper is the confir-
mation of earlier work*'? which indicated that
“spin-spin” interactions are essential to our
understanding of the ultrasonic properties of
glasses at low temperatures. The new feature
which we have presented is spectral diffusion,
which is derived from the time-dependent fluctua-
tions of the local field seen by a spin (i.e., fre-
quency modulation). We have argued, in fact, that
such dynamic effects are the only observable con-
sequences of spin-spin interactions in glasses.
Using this concept of spectral diffusion, we have
made predictions for phonon echo experiments and
saturation experiments. The details of our pre-
dictions rely upon the “standard” tunneling level
model of glasses, but we also note that our ap-
proach will apply to any type of excitation which
couples to phonons.

By assuming that standard tunneling-level spins,
parametrized by (T’,ya,n), are responsible for
ultrasonic attenuation and echoes, we are able to
place some restrictions on the parameters of
these tunneling levels. The reasonable agreement
between theory and experiment for two-pulse echo
decay is support for the values of P and Yo deter-
mined from unsaturated ultrasonic attenuation and
echo pulse area measurements.'!*?! It must be
noted, however, that our theory does not deter-
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mine these parameters uniquely. The parameter
n, which describes the extent of long relaxation
times, has little effect on the ultrasonic experi-
ments we have discussed. The short-time two-
pulse echo decay envelopes are essentially inde-
pendent of 7 (cf. Fig. 3) unless 7 is unreasonably
small. The three-pulse experiments permit a
probe of longer times, thus giving n a more visible
effect (cf. Figs. 8 and 9). Nevertheless it seems
unlikely that these experiments can ever extend

to long enough times (because of A-spin T, pro-
cesses) to distinguish between various reasonable
values of 1. Thus we should view the echo ex-
periments as a way of verifying the spectral dif-
fusion mechanism and of estimating P and v,,.
Predictions for saturation experiments have a
similar importance. It is apparent that a direct
measurement® of an A-spin T, [cf. Eq. (9)]by sat-
uration recovery [M,(w, )] would constitute a very
straightforward way of determining the all-impor-
tant coupling constants v,. Our discussion in Sec.
VI, however, serves as a warning that measure-
ments of M,(w, /) may be strongly affected by spec-
tral diffusion so as not to be directly related to an
A-spin T,. The coupling constants y, do, of
course, determine the rate at which spectral dif-
fusion occurs (through T, for B spins). This
means that any observation of a time-dependent
hole depth or hole width provides indirect infor-
mation on the coupling constants. In addition the
observation of a time-dependent hole width would
provide a striking confirmation of the existence

of spectral diffusion in glasses.

In summary the spectral diffusion treatment of
spin-spin interactions allows us to test the con-
sistency among estimates of P and v, for standard
tunneling levels. The experiments to which spec-
tral diffusion applies generally do not involve long
enough times to distinguish among values of 1 un-
less we allow 71 to be unreasonable small (n< 3).
On the other hand, measurements of the specific
heat of glasses do address the question of long re-
laxation times and could in principle be used to
estimate 7 from Eqgs. (10a) and (10b) using our
knowledge of P. Unfortunately we have seen in
Sec. II that ng, the standard-level density of states
contributing to the specific heat, cannot be larger
than 3P 1In(4¢R_,,) for any choice of 7. Thus with
the parameters we have used in this paper, it is
impossible to account for the observed specific
heat with “standard” levels alone. This situation
has led us to introduce “anomalous” tunneling
levels which affect the specific heat but not the
ultrasonic properties. Preliminary considera-
tions discussed in Sec. II suggest that even this
scheme has difficulty in explaining the heat-pulse
experiments of Gaubau and Tait.'®* We must bear
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in mind, however, that to this date the crucial
experiments®!+!%2! have been performed on dif-
ferent types of vitreous silica so that no rigorous
comparisons can be made. Furthermore experi-
mental uncertainties®!*2! in such quantities as P
and v, are large enough (i.e., factors of 2) to al-
low for the possibility of reconciliation between
theory and experiment. What we have seen in this
paper is that one particular choice of parameters
is not able to explain all experimental results.
Detailed predictions for time-dependent specific-
heat experiments in the presence of standard and
anomalous levels with various choices of param-
eters will be presented in a separate publication.
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APPENDIX

Here we derive the “spin-spin” coupling energy
J;;- We explicitly consider the tensor character
of the coupling between spins and the elastic de-
grees of freedom. To this end we rewrite the
relevant terms from Eq. (2) as

xflastic= _ Z (BLBGLBS;;+DLB€LBS:) , (A1)
iaB

where €i; is the strain tensor at site i, and

1/01 _1/0 —i>
S"_2<1 0>-‘ Sv‘i(i 0/’

and (A17)

1/10
Se=3 <o-1>‘
Using Eq. (5) the tensors D and B are related to
a tensor y whose eigenvalues are assumed to be
site independent:
D}, =2y ,AY/EY, (A2)
Bi, =2y Al/E .

The eigenvalues of y are determined by ultrasonic
attenuation as in Eq. (8) and as in Eq. (A13).

A. Elastic-dipole strain field

The spins of Eq. (Al) are considered to be em-
bedded in an isotropic elastic continuum described
by longitudinal and transverse sound velocities c,
and c¢,. The strain tensor is related to the dis-
placement vector u, by (see, for example, Ref.
40)

€= 2(0 5+ 0gu,) . (A3)

The term D?,S! in Eq. (A1) represents an exter-
nal stress localized at site j. By requiring that
this external stress be balanced by internal stress
in the elastic continuum, we obtain® (taking site j
to be the origin and suppressing the superscript j)

pciVPu, + plci = ¢2),(8,u,) = (D ,S,)8,0(F) . (A4)

In deriving (A4) we have used (A3) and Hooke’s
law. Equation (A4) may now be solved to yield the
displacement field at T resulting from a single
elastic dipole at the origin:

- _ S 1 1\(r,D, ¥4 7%, Dy
ua(r)=ﬁ l:(’c—f' "_2>( 3 L _3-& ysv V>

c; r
2 D 7
734 )
c 7 ] (A5)

The strain field at T is then obtained with the use
of Eq. (A3):

€ () = =S(A/ENL/P)T () ,

where
N 1 y2y 1 2
Tas(7)=m§——“ﬁc? +3<Z‘? _c_f>
« (r T e VY >
¥
-3z
? _C? “YaB 2 Yw

+3(0,-2878) 22| L (o)

and we imply summation over repeated indices.

In the case of purely isotropic coupling (v,;=78,,),
Eq. (A6) reduces to an expression reminiscent of
the familiar electric-dipole field:

~  =29(A/E)S 3r 7
= L (b))

In general, however, we cannot assume that vy,
has the simple form which leads Eq. (A7). In-
stead we employ Eq. (A6) and use the fact that the
symmetric tensor v, is uniquely determined by
its three eigenvalues and its mutually orthogonal
eigenvectors (see, for example, Ref. 17).

B. Interaction energy and angular averaging

It is now straightforward to obtain the inter-
action energy J;; of Eqgs. (11) and (12). The in-
ternal strain at site 7 arising from a spin at site
j is given by Eq. (A6) with S,=S5], v,5=vls, T=T,;,
and T,g=T,s. This strain is then substituted for
¢!, in the second term of Eq. (Al), yielding an in-
teraction as in Eq. (12) with
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At Lo\/al 1 o
Ti5= 3 <2ET YLBX‘ET =h Tiﬂ‘“i’)
aB
At al 1

=CuETE T, (A8)
where
Ci;= 25 Thp(7:)) (A87)

In these expressions, we have employed Eq. (A2)
in order to explicitly display the factors in J;

which depend upon the tunneling model parameter
A/E. We have verified that Eq. (A8) agrees with
the results of Joffrin and Levelut? in the special
cases they considered. For example, in the case
of isotropic coupling as in Eq. (A7), we obtain

;A 2yA//E 3
o= 2 S ot (- 2)0 a9
in agreement with their results.

In order to estimate the magnitude of J;; we
must take into account its complicated dependence
upon ¥, vig, and F;; as expressed in Eq. (A8).

As mentioned above, the tensors v, and 7{;8 are
each described by the orientation of their eigen-
vectors. We can always choose a reference frame
whose axes coincide with the eigenvectors at site
7. We must then average over the three Euler an-
gles which determine the orientation of the eigen-
vectors at site j in this reference frame. We must
also average over the orientation of #;; in this ref-
erence frame. A straightforward but tedious cal-
culation yields

Cims = <C%j>

2 /1\
:7_5_(%;) {[(13A,+A2)2 -4(37Af+3A§)]c;4

+(34, = A,)%(c? -9} ~Tc?) }

(A10)

where A, =Try® and A,=(Try)?. The constants 4,,
A, are related to the measurable coupling con-
stants v§, ¥, as is shown in Eq. (A13). Lt isa
simple matter to check that C__ =0 (as it should)
for the case of isotropic coupling, in which A,
=34,.

It is important to notice that C___ is an upper
bound for the quantity {|C;;|) since

(el =de b=y -(c,hr=0. (a1
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It is the quantity (lC“l) which appears in the exact
expression for the spectral diffusion width in the
case of 1/#° interactions.'®*®* Unfortunately the
calculation of (|C,,[) is not feasible because of

the difficulty in keeping track of the sign changes
in Eq. (A8).

It is very difficult to determine exactly how good
Cpms 15 25 an upper bound to (|C,|). One simple
case in which we can compare results is the
“semi-isotropic” case. Here we assume that
v!,=776,, so that Eq. (A7) replaces Eq. (A6). If
we also assume that v{,=7'6_,, we get the trivial
result of Eq. (A9). Instead we assume that the
coupling at site i is anisotropic. In particular we
assume that site i is described by A, =A,=7%, cor-
responding to one nonzero eigenvalue y¥, and two
zero eigenvalues of v%,. In this simple case we
find

Crme = 0.89] 27| | 2vF| /4mpc?
(Ci; ) =0.717] 27| | 29F| /4mpcz .
Taking the ratio, we find {|C,,|)/C,,_,=0.87.

(A12)

C. Calculating C

ms from coupling constants

In order to determine C__, it is necessary to
have values for A, and A,. These two coupling
constants are uniquely determined by the coupling
constants y, and ¥, which appear in Eq. (8). Our
task now is to relate these two sets of parameters.
This calculation has already been performed else-
where,'” and involves averaging over the relative
orientations of y,, and the phonon propagation vec-
tor. The results are

yf:l—15(2A1+A2) , yf:%(3Al -A,). (A13)
Substituting into Eq. (A10), we obtain
Coms = (V6/mp)[y2(47% = 3v3)c;?
+7 e =92 - Tc?)] . (A14)

Measurements of pulse areas in echo experi-
ments'' suggest a value of 1.6 eV for y,. Further-
more the relation y; =§yf is suggested by mea-
surements of both transverse and longitudinal

ultrasonic attenuation.?* Thus we obtain
Coms=1.6X10"% ergcm?, (A15)

by using the values ¢,=5.8 x 10° cm/sec, c,=3.8
X 10° cm/sec and p=2.2 g/cm®, which are ap-
propriate for vitreous silica.?

*Research supported in part by the NSF through the
Materials Research Laboratory Program and Grant
No. DMR72-02977-A03.
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