1:1:1:3Tangling clustering of inertial particles in stably stratified turbulence
A. Eidelman, T. Elperin, N. Kleeorin, B. Melnik, I. Rogachevskii, Phys. Rev. E, 2010

1:1:1:17Intermittent Distribution of Inertial Particles in Turbulent Flows
E. Balkovsky, G. Falkovich, A. Fouxon, Phys. Rev. Lett., 2001

1:1:1:27Heavy Particle Concentration in Turbulence at Dissipative and Inertial Scales
J. Bec, L. Biferale, M. Cencini, A. Lanotte, S. Musacchio, F. Toschi, Phys. Rev. Lett., 2007

1:1:1:43Turbulent diffusion of chemically reacting gaseous admixtures
T. Elperin, N. Kleeorin, M. Liberman, I. Rogachevskii, Phys. Rev. E, 2014

1:1:1:48Pressure-correlated dispersion of inertial particles in free shear flows
Kun Luo, Jianren Fan, Kefa Cen, Phys. Rev. E, 2007

1:1:1:54Two-fluid approach for direct numerical simulation of particle-laden turbulent flows at small Stokes numbers
Babak Shotorban, S. Balachandar, Phys. Rev. E, 2009

1:1:1:71Preferential concentration versus clustering in inertial particle transport by random velocity fields
Piero Olla, Phys. Rev. E, 2010

1:1:1:75Concentration fluctuations of large Stokes number particles in a one-dimensional random velocity field
Piero Olla, Raffaella M. Vuolo, Phys. Rev. E, 2007

1:1:1:76Multiple collisions in turbulent flows
Michel Voßkuhle, Emmanuel Lévêque, Michael Wilkinson, Alain Pumir, Phys. Rev. E, 2013

1:1:1:79Distribution of velocity gradients and rate of caustic formation in turbulent aerosols at finite Kubo numbers
K. Gustavsson, B. Mehlig, Phys. Rev. E, 2013

1:1:1:80Behavior of heavy particles in isotropic turbulence
Jaedal Jung, Kyongmin Yeo, Changhoon Lee, Phys. Rev. E, 2008

1:1:1:81Preferred location of droplet collisions in turbulent flows
Vincent E. Perrin, Harm J. J. Jonker, Phys. Rev. E, 2014

1:1:1:82Control of particle clustering in turbulence by polymer additives
F. De Lillo, G. Boffetta, S. Musacchio, Phys. Rev. E, 2012

1:1:1:86Inertial particles driven by a telegraph noise
G. Falkovich, S. Musacchio, L. Piterbarg, M. Vucelja, Phys. Rev. E, 2007

1:1:1:89Inertial particle collisions in turbulent synthetic flows: Quantifying the sling effect
Lauris Ducasse, Alain Pumir, Phys. Rev. E, 2009

1:1:1:92Clustering of inelastic soft spheres in homogeneous turbulence
Thomas Burgener, Dirk Kadau, Hans J. Herrmann, Phys. Rev. E, 2012

1:1:1:94Clustering and collision of inertial particles in random velocity fields
Piero Olla, Phys. Rev. E, 2008

1:1:1:95Clustering of finite-size particles in turbulence
L. Fiabane, R. Zimmermann, R. Volk, J.-F. Pinton, M. Bourgoin, Phys. Rev. E, 2012

1:1:1:99Lagrangian Measurements of Inertial Particle Accelerations in Grid Generated Wind Tunnel Turbulence
S. Ayyalasomayajula, A. Gylfason, L. R. Collins, E. Bodenschatz, Z. Warhaft, Phys. Rev. Lett., 2006

1:1:1:100Mechanisms of particle clustering in Gaussian and non-Gaussian synthetic turbulence
Christopher Nilsen, Helge I. Andersson, Phys. Rev. E, 2014

1:1:1:101Aggregation of inertial particles in random flows
B. Mehlig, M. Wilkinson, K. Duncan, T. Weber, M. Ljunggren, Phys. Rev. E, 2005

1:1:1:104Caustic Activation of Rain Showers
Michael Wilkinson, Bernhard Mehlig, Vlad Bezuglyy, Phys. Rev. Lett., 2006

1:1:1:105Inertial Clustering of Particles in High-Reynolds-Number Turbulence
Ewe Wei Saw, Raymond A. Shaw, Sathyanarayana Ayyalasomayajula, Patrick Y. Chuang, Ármann Gylfason, Phys. Rev. Lett., 2008

1:1:1:108Gravity-driven clustering of inertial particles in turbulence
Yongnam Park, Changhoon Lee, Phys. Rev. E, 2014

1:1:1:110Effect of particle-particle collision in decaying homogeneous and isotropic turbulence
Nan Gui, JianRen Fan, Kefa Cen, Phys. Rev. E, 2008

1:1:1:111Measuring segregation of inertial particles in turbulence by a full Lagrangian approach
R. H. A. IJzermans, M. W. Reeks, E. Meneguz, M. Picciotto, A. Soldati, Phys. Rev. E, 2009

1:1:1:112Rapid growth of cloud droplets by turbulence
V. Dallas, J. C. Vassilicos, Phys. Rev. E, 2011

1:1:1:113Solution of the stochastic Langevin equations for clustering of particles in random flows in terms of the Wiener path integral
M. Chaichian, A. Tureanu, A. Zahabi, Phys. Rev. E, 2010

1:1:1:114Clustering by Mixing Flows
Kevin Duncan, Bernhard Mehlig, Stellan Östlund, Michael Wilkinson, Phys. Rev. Lett., 2005

1:1:1:119Distribution of relative velocities in turbulent aerosols
K. Gustavsson, B. Mehlig, Phys. Rev. E, 2011

1:1:1:120Sticky elastic collisions
Jérémie Bec, Stefano Musacchio, Samriddhi Sankar Ray, Phys. Rev. E, 2013

1:1:1:122Turbulent Thermal Diffusion of Small Inertial Particles
Tov Elperin, Nathan Kleeorin, Igor Rogachevskii, Phys. Rev. Lett., 1996

1:1:1:123Self-Excitation of Fluctuations of Inertial Particle Concentration in Turbulent Fluid Flow
Tov Elperin, Nathan Kleeorin, Igor Rogachevskii, Phys. Rev. Lett., 1996

1:1:1:124Clustering of heavy particles in random self-similar flow
J. Bec, M. Cencini, R. Hillerbrand, Phys. Rev. E, 2007

1:1:1:129Three-Dimensional Structure of the Lagrangian Acceleration in Turbulent Flows
Nicolas Mordant, Alice M. Crawford, Eberhard Bodenschatz, Phys. Rev. Lett., 2004

1:1:1:130Turbulent Transport of Material Particles: An Experimental Study of Finite Size Effects
Nauman M. Qureshi, Mickaël Bourgoin, Christophe Baudet, Alain Cartellier, Yves Gagne, Phys. Rev. Lett., 2007

1:1:1:132Clustering instability of the spatial distribution of inertial particles in turbulent flows
Tov Elperin, Nathan Kleeorin, Victor S. L’vov, Igor Rogachevskii, Dmitry Sokoloff, Phys. Rev. E, 2002

1:1:1:134Path coalescence transition and its applications
M. Wilkinson, B. Mehlig, Phys. Rev. E, 2003

1:1:1:135Dynamics of inertial particles in a random flow with strong permanent shear
Grigory A. Sizov, Phys. Rev. E, 2012

1:1:1:141Clustering of randomly advected low-inertia particles: A solvable model
Alan R. Kerstein, Steven K. Krueger, Phys. Rev. E, 2006

1:1:1:142Sweep-Stick Mechanism of Heavy Particle Clustering in Fluid Turbulence
Susumu Goto, J. C. Vassilicos, Phys. Rev. Lett., 2008

1:1:1:146Continuum description of finite-size particles advected by external flows: The effect of collisions
Cristóbal López, Andrea Puglisi, Phys. Rev. E, 2004

1:1:1:150Coagulation by Random Velocity Fields as a Kramers Problem
Bernhard Mehlig, Michael Wilkinson, Phys. Rev. Lett., 2004

1:1:1:156Quantifying Turbulence-Induced Segregation of Inertial Particles
Enrico Calzavarini, Massimo Cencini, Detlef Lohse, Federico Toschi, Phys. Rev. Lett., 2008

1:1:1:158Turbulent barodiffusion, turbulent thermal diffusion, and large-scale instability in gases
Tov Elperin, Nathan Kleeorin, Igor Rogachevskii, Phys. Rev. E, 1997

1:1:1:166Acceleration Statistics of Neutrally Buoyant Spherical Particles in Intense Turbulence
Rachel D. Brown, Z. Warhaft, Greg A. Voth, Phys. Rev. Lett., 2009

1:1:1:176Turbulent Thermal Diffusion and Barodiffusion of Passive Scalar and Dispersed Phase of Particles in Turbulent Flows
R. V. R. Pandya, F. Mashayek, Phys. Rev. Lett., 2002

1:1:1:179Memory Effects are Relevant for Chaotic Advection of Inertial Particles
Anton Daitche, Tamás Tél, Phys. Rev. Lett., 2011

1:1:1:187Acceleration Correlations and Pressure Structure Functions in High-Reynolds Number Turbulence
Haitao Xu, Nicholas T. Ouellette, Dario Vincenzi, Eberhard Bodenschatz, Phys. Rev. Lett., 2007

1:1:1:192Passive scalar transport in a random flow with a finite renewal time:  Mean-field equations
Tov Elperin, Nathan Kleeorin, Igor Rogachevskii, Dmitry Sokoloff, Phys. Rev. E, 2000

1:1:1:193Mean-field theory for a passive scalar advected by a turbulent velocity field with a random renewal time
Tov Elperin, Nathan Kleeorin, Igor Rogachevskii, Dmitry Sokoloff, Phys. Rev. E, 2001

1:1:1:194Preferential Concentration of Heavy Particles in Stably Stratified Turbulence
M. van Aartrijk, H. J. H. Clercx, Phys. Rev. Lett., 2008

1:1:1:199Separation of Heavy Particles in Turbulence
Itzhak Fouxon, Péter Horvai, Phys. Rev. Lett., 2008

1:1:1:226Distribution of Particles and Bubbles in Turbulence at a Small Stokes Number
Itzhak Fouxon, Phys. Rev. Lett., 2012

1:1:1:235Variable-Range Projection Model for Turbulence-Driven Collisions
K. Gustavsson, B. Mehlig, M. Wilkinson, V. Uski, Phys. Rev. Lett., 2008

1:1:1:262Clustering of Charged Inertial Particles in Turbulence
Jiang Lu, Hansen Nordsiek, Ewe Wei Saw, Raymond A. Shaw, Phys. Rev. Lett., 2010

1:1:1:268Particle transport in a random velocity field with Lagrangian statistics
Piero Olla, Phys. Rev. E, 2002

1:1:1:270Electron Levels in a One-Dimensional Random Lattice
H. L. Frisch, S. P. Lloyd, Phys. Rev., 1960

1:1:1:293Intermittency and predictability in turbulence
A. Crisanti, M. H. Jensen, A. Vulpiani, G. Paladin, Phys. Rev. Lett., 1993

1:1:1:304Acceleration of Passive Tracers in Compressible Turbulent Flow
Yantao Yang, Jianchun Wang, Yipeng Shi, Zuoli Xiao, X. T. He, Shiyi Chen, Phys. Rev. Lett., 2013

1:1:1:322Gravity-Driven Enhancement of Heavy Particle Clustering in Turbulent Flow
Jérémie Bec, Holger Homann, Samriddhi Sankar Ray, Phys. Rev. Lett., 2014

1:1:1:323Clustering of Particles Falling in a Turbulent Flow
K. Gustavsson, S. Vajedi, B. Mehlig, Phys. Rev. Lett., 2014

1:1:2:34 A priori study of subgrid-scale flux of a passive scalar in isotropic homogeneous turbulence
Sergei G. Chumakov, Phys. Rev. E, 2008

1:1:2:43Subfilter scalar-flux vector orientation in homogeneous isotropic turbulence
Siddhartha Verma, G. Blanquart, Phys. Rev. E, 2014

1:1:2:54Underlying mechanism of numerical instability in large-eddy simulation of turbulent flows
Masato Ida, Nobuyuki Taniguchi, Phys. Rev. E, 2004

1:1:2:151Multifractal Nature of the Dissipation Field of Passive Scalars in Fully Turbulent Flows
R. R. Prasad, C. Meneveau, K. R. Sreenivasan, Phys. Rev. Lett., 1988

1:1:2:277Can a numerically stable subgrid-scale model for turbulent flow computation be ideally accurate?: A preliminary theoretical study for the Gaussian filtered Navier-Stokes equations
Masato Ida, Nobuyuki Taniguchi, Phys. Rev. E, 2003

1:1:2:322Kolmogorov’s refined similarity hypothesis for hyperviscous turbulence
Vadim Borue, Steven A. Orszag, Phys. Rev. E, 1996

1:1:3:68Comparison between theoretical predictions and direct numerical simulation results for a decaying turbulent suspension
G. Ooms, C. Poelma, Phys. Rev. E, 2004

1:1:3:93Classification of Turbulence Modification by Dispersed Spheres Using a Novel Dimensionless Number
Tomohiko Tanaka, John K. Eaton, Phys. Rev. Lett., 2008

1:1:3:102Effect of particle inertia on turbulence in a suspension
Victor S. L’vov, Gijs Ooms, Anna Pomyalov, Phys. Rev. E, 2003

1:1:4:4Stochastic flux freezing and magnetic dynamo
Gregory L. Eyink, Phys. Rev. E, 2011

1:1:4:13Measurement of Lagrangian Velocity in Fully Developed Turbulence
N. Mordant, P. Metz, O. Michel, J.-F. Pinton, Phys. Rev. Lett., 2001

1:1:4:19Fundamentals of pair diffusion in kinematic simulations of turbulence
D. R. Osborne, J. C. Vassilicos, K. Sung, J. D. Haigh, Phys. Rev. E, 2006

1:1:4:20Lagrangian studies in convective turbulence
Jörg Schumacher, Phys. Rev. E, 2009

1:1:4:21Suppression of particle dispersion by sweeping effects in synthetic turbulence
Gregory L. Eyink, Damien Benveniste, Phys. Rev. E, 2013

1:1:4:25Experimental investigation of Lagrangian structure functions in turbulence
Jacob Berg, Søren Ott, Jakob Mann, Beat Lüthi, Phys. Rev. E, 2009

1:1:4:27Asymptotic results for backwards two-particle dispersion in a turbulent flow
Damien Benveniste, Theodore D. Drivas, Phys. Rev. E, 2014

1:1:4:28Backwards and forwards relative dispersion in turbulent flow: An experimental investigation
Jacob Berg, Beat Lüthi, Jakob Mann, Søren Ott, Phys. Rev. E, 2006

1:1:4:33Acceleration-based classification and evolution of fluid flow structures in two-dimensional turbulence
Tristan Faber, J. C. Vassilicos, Phys. Rev. E, 2010

1:1:4:38Two-particle dispersion in turbulentlike flows
J. Fung, J. Vassilicos, Phys. Rev. E, 1998

1:1:4:40Universality of the Kolmogorov constant in numerical simulations of turbulence
P. K. Yeung, Ye Zhou, Phys. Rev. E, 1997

1:1:4:42Time scales of turbulent relative dispersion
Rehab Bitane, Holger Homann, Jérémie Bec, Phys. Rev. E, 2012

1:1:4:44Richardson Pair Dispersion in Two-Dimensional Turbulence
Marie-Caroline Jullien, Jérôme Paret, Patrick Tabeling, Phys. Rev. Lett., 1999

1:1:4:47Presence of a Richardson’s regime in kinematic simulations
F. C. G. A. Nicolleau, A. F. Nowakowski, Phys. Rev. E, 2011

1:1:4:50Particle and particle pair dispersion in turbulence modeled with spatially and temporally correlated stochastic processes
Thomas Burgener, Dirk Kadau, Hans J. Herrmann, Phys. Rev. E, 2012

1:1:4:52Relative Dispersion in Fully Developed Turbulence: The Richardson’s Law and Intermittency Corrections
G. Boffetta, I. M. Sokolov, Phys. Rev. Lett., 2002

1:1:4:53Experimental investigation of pair dispersion with small initial separation in convective turbulent flows
Rui Ni, Ke-Qing Xia, Phys. Rev. E, 2013

1:1:4:54Richardson’s Pair Diffusion and the Stagnation Point Structure of Turbulence
J. Dávila, J. C. Vassilicos, Phys. Rev. Lett., 2003

1:1:4:55Acceleration statistics as measures of statistical persistence of streamlines in isotropic turbulence
S. Goto, D. R. Osborne, J. C. Vassilicos, J. D. Haigh, Phys. Rev. E, 2005

1:1:4:56Effect of the Reynolds number on three- and four-particle diffusion in three-dimensional turbulence using kinematic simulation
F. Nicolleau, A. ElMaihy, Phys. Rev. E, 2006

1:1:4:59Turbulence with combined stratification and rotation: Limitations of Corrsin’s hypothesis
F. Nicolleau, G. Yu, Phys. Rev. E, 2007

1:1:4:61Influence of Eulerian and Lagrangian scales on the relative dispersion properties in Lagrangian stochastic models of turbulence
A. Maurizi, G. Pagnini, F. Tampieri, Phys. Rev. E, 2004

1:1:4:62Investigation of the dispersion of heavy-particle pairs and Richardson’s law using kinematic simulation
A. ElMaihy, F. Nicolleau, Phys. Rev. E, 2005

1:1:4:63Exact relation between Eulerian and Lagrangian velocity increment statistics
O. Kamps, R. Friedrich, R. Grauer, Phys. Rev. E, 2009

1:1:4:68Diffusion approximation in turbulent two-particle dispersion
Gregory L. Eyink, Damien Benveniste, Phys. Rev. E, 2013

1:1:4:73Three-dimensional turbulent relative dispersion by the Gledzer-Ohkitani-Yamada shell model
Sagar Chakraborty, Mogens H. Jensen, Bo S. Madsen, Phys. Rev. E, 2010

1:1:4:74Dispersion of heavy particle sets in isotropic turbulence using kinematic simulation
A. Abou El-Azm Aly, F. Nicolleau, Phys. Rev. E, 2008

1:1:4:76Relative dispersion of a passive scalar plume in turbulent shear flow
Christina Vanderwel, Stavros Tavoularis, Phys. Rev. E, 2014

1:1:4:78Depletion of horizontal pair diffusion in strongly stratified turbulence: Comparison with plane two-dimensional flows
F. Nicolleau, K.-S. Sung, J. C. Vassilicos, Phys. Rev. E, 2008

1:1:4:81Superdiffusive trajectories in Brownian motion
Jérôme Duplat, Simon Kheifets, Tongcang Li, Mark G. Raizen, Emmanuel Villermaux, Phys. Rev. E, 2013

1:1:4:85Evolution of the acceleration field and a reformulation of the sweeping decorrelation hypothesis in two-dimensional turbulence
F. Schwander, E. Hascoët, J. C. Vassilicos, Phys. Rev. E, 2009

1:1:4:87Lagrangian Dispersion and Heat Transport in Convective Turbulence
Jörg Schumacher, Phys. Rev. Lett., 2008

1:1:4:99Turbulent Pair Diffusion
F. Nicolleau, J. C. Vassilicos, Phys. Rev. Lett., 2003

1:1:4:104Kinematic simulation of turbulent dispersion of triangles
M. A. I. Khan, A. Pumir, J. C. Vassilicos, Phys. Rev. E, 2003

1:1:4:106Extreme Events in the Dispersions of Two Neighboring Particles Under the Influence of Fluid Turbulence
R. Scatamacchia, L. Biferale, F. Toschi, Phys. Rev. Lett., 2012

1:1:4:108Evolution of triangles in a two-dimensional turbulent flow
Patrizia Castiglione, Alain Pumir, Phys. Rev. E, 2001

1:1:4:116Comment on “Fundamentals of pair diffusion in kinematic simulations of turbulence”
B. J. Devenish, D. J. Thomson, Phys. Rev. E, 2009

1:1:4:117Anomalous scaling for a passive scalar near the Batchelor limit
Boris I. Shraiman, Eric D. Siggia, Phys. Rev. E, 1998

1:1:4:118Varieties of Dynamic Multiscaling in Fluid Turbulence
Dhrubaditya Mitra, Rahul Pandit, Phys. Rev. Lett., 2004

1:1:4:121Pair Dispersion in Turbulence: The Subdominant Role of Scaling
Mark Peter Rast, Jean-François Pinton, Phys. Rev. Lett., 2011

1:1:4:125Line Dispersion in Homogeneous Turbulence: Stretching, Fractal Dimensions, and Micromixing
Emmanuel Villermaux, Yves Gagne, Phys. Rev. Lett., 1994

1:1:4:128Geometrical Properties of Turbulent Dispersion
B. J. Devenish, Phys. Rev. Lett., 2013

1:1:4:141Formation of the “Superconducting” Core in Turbulent Thermal Convection
J. J. Niemela, K. R. Sreenivasan, Phys. Rev. Lett., 2008

1:1:4:179On the Stability of Magneto-Hydrostatic Fields
S. Lundquist, Phys. Rev., 1951

1:1:4:202Single Flow Snapshot Reveals the Future and the Past of Pairs of Particles in Turbulence
Gregory Falkovich, Anna Frishman, Phys. Rev. Lett., 2013

1:1:4:206Two-particle dispersion by correlated random velocity fields
I. M. Sokolov, Phys. Rev. E, 1999

1:1:5:22Matrix exponential-based closures for the turbulent subgrid-scale stress tensor
Yi Li, Laurent Chevillard, Gregory Eyink, Charles Meneveau, Phys. Rev. E, 2009

1:1:5:36Local and nonlocal strain rate fields and vorticity alignment in turbulent flows
Peter E. Hamlington, Jörg Schumacher, Werner J. A. Dahm, Phys. Rev. E, 2008

1:1:5:42Lagrangian Dynamics and Statistical Geometric Structure of Turbulence
L. Chevillard, C. Meneveau, Phys. Rev. Lett., 2006

1:1:5:48Scale dependence of the coarse-grained velocity derivative tensor structure in turbulence
Aurore Naso, Alain Pumir, Phys. Rev. E, 2005

1:1:5:51Role of pressure in nonlinear velocity gradient dynamics in turbulence
Ravi K. Bikkani, Sharath S. Girimaji, Phys. Rev. E, 2007

1:1:5:54Small-scale intermittency in anisotropic turbulence
Wouter J. T. Bos, Lukas Liechtenstein, Kai Schneider, Phys. Rev. E, 2007

1:1:5:59Origin of Non-Gaussian Statistics in Hydrodynamic Turbulence
Yi Li, Charles Meneveau, Phys. Rev. Lett., 2005

1:1:5:72Route to non-Gaussian statistics in convective turbulence
Roberto Festa, Andrea Mazzino, Marco Tizzi, Phys. Rev. E, 2007

1:1:5:79Vorticity statistics and the time scales of turbulent strain
L. Moriconi, R. M. Pereira, Phys. Rev. E, 2013

1:1:5:81Lagrangian model for the evolution of turbulent magnetic and passive scalar fields
T. Hater, H. Homann, R. Grauer, Phys. Rev. E, 2011

1:1:5:84Stretching and tilting of material lines in turbulence: The effect of strain and vorticity
Michele Guala, Alexander Liberzon, Beat Lüthi, Wolfgang Kinzelbach, Arkady Tsinober, Phys. Rev. E, 2006

1:1:5:90Numerical study of comparison of vorticity and passive vectors in turbulence and inviscid flows
Koji Ohkitani, Phys. Rev. E, 2002

1:1:5:96Multiscale Model of Gradient Evolution in Turbulent Flows
Luca Biferale, Laurent Chevillard, Charles Meneveau, Federico Toschi, Phys. Rev. Lett., 2007

1:1:5:121Models of intermittency in hydrodynamic turbulence
Robert H. Kraichnan, Phys. Rev. Lett., 1990

1:1:5:133Effect of vorticity on second- and third-order statistics of passive scalar gradients
Michel Gonzalez, Phys. Rev. E, 2002

1:1:5:145Kolmogorov-Kraichnan Scaling in the Inverse Energy Cascade of Two-Dimensional Plasma Turbulence
G. Y. Antar, Phys. Rev. Lett., 2003

1:1:5:165Statistics of Fourier modes in a turbulent flow
Cédric Brun, Alain Pumir, Phys. Rev. E, 2001

1:1:5:168Kinematics of vorticity: Vorticity-strain conjugation in incompressible fluid flows
Koji Ohkitani, Phys. Rev. E, 1994

1:1:5:169Geometrical alignment properties in Fourier- and wavelet-filtered statistically stationary two-dimensional turbulence
Bartosz Protas, Kai Schneider, Marie Farge, Phys. Rev. E, 2002

1:1:5:170Planar isotropy of passive sc17alar turbulent mixing with a mean perpendicular gradient
L. Danaila, J. Dusek, P. Le Gal, F. Anselmet, C. Brun, A. Pumir, Phys. Rev. E, 1999

1:1:6:39Origin of the imbalance between energy cascade and dissipation in turbulence
P. C. Valente, R. Onishi, C. B. da Silva, Phys. Rev. E, 2014

1:1:6:53Similarity solution of temperature structure functions in decaying homogeneous isotropic turbulence
R. A. Antonia, R. J. Smalley, T. Zhou, F. Anselmet, L. Danaila, Phys. Rev. E, 2004

1:1:6:60Fractal space-scale unfolding mechanism for energy-efficient turbulent mixing
S. Laizet, J. C. Vassilicos, Phys. Rev. E, 2012

1:1:6:65Large-scale length that determines the mean rate of energy dissipation in turbulence
Hideaki Mouri, Akihiro Hori, Yoshihide Kawashima, Kosuke Hashimoto, Phys. Rev. E, 2012

1:1:6:72Structure of a turbulent crossbar near-wake studied by means of lattice Boltzmann simulation
Lyazid Djenidi, Phys. Rev. E, 2008

1:1:6:75Delayed correlation between turbulent energy injection and dissipation
Bruce R. Pearson, Tarek A. Yousef, Nils Erland L. Haugen, Axel Brandenburg, Per-Åge Krogstad, Phys. Rev. E, 2004

1:1:6:85Universal Dissipation Scaling for Nonequilibrium Turbulence
P. C. Valente, J. C. Vassilicos, Phys. Rev. Lett., 2012

1:1:6:90Kolmogorov Equation in a Fully Developed Turbulence Experiment
F. Moisy, P. Tabeling, H. Willaime, Phys. Rev. Lett., 1999

1:1:6:100Crossover from High to Low Reynolds Number Turbulence
Detlef Lohse, Phys. Rev. Lett., 1994

1:1:6:101Turbulent wakes of fractal objects
Adrian Staicu, Biagio Mazzi, J. C. Vassilicos, Willem van de Water, Phys. Rev. E, 2003

1:1:6:102Defining a New Class of Turbulent Flows
R. Stresing, J. Peinke, R. E. Seoud, J. C. Vassilicos, Phys. Rev. Lett., 2010

1:1:6:113On the Concept of Similiarity in the Theory of Isotropic Turbulence
Theodore von Kármán, C. C. Lin, Rev. Mod. Phys., 1949

1:1:6:190Statistical balance of vorticity and a new scale for vortical structures in turbulence
E. A. Novikov, Phys. Rev. Lett., 1993

1:1:6:191Scaling of structure functions in homogeneous shear-flow turbulence
J. Qian, Phys. Rev. E, 2002

1:1:6:203Vibrations of strongly irregular or fractal resonators
B. Sapoval, Th. Gobron, Phys. Rev. E, 1993

1:1:7:7Fluctuations of a passive scalar in a turbulent mixing layer
Antonio Attili, Fabrizio Bisetti, Phys. Rev. E, 2013

1:1:7:45Passive Scalar Intermittency in Low Temperature Helium Flows
F. Moisy, H. Willaime, J. S. Andersen, P. Tabeling, Phys. Rev. Lett., 2001

1:1:7:46Preconditions and limitations of the postulate of scalar-dissipation–conductivity independence in a variable conductivity medium
Gaurav Kumar, Sharath S. Girimaji, Johannes Kerimo, Phys. Rev. E, 2011

1:1:7:53Temperature structure functions in turbulent shear flows
R. A. Antonia, E. J. Hopfinger, Y. Gagne, F. Anselmet, Phys. Rev. A, 1984

1:1:7:57Universality and Saturation of Intermittency in Passive Scalar Turbulence
A. Celani, A. Lanotte, A. Mazzino, M. Vergassola, Phys. Rev. Lett., 2000

1:1:7:61Joint multifractal measures: Theory and applications to turbulence
Charles Meneveau, K. R. Sreenivasan, P. Kailasnath, M. S. Fan, Phys. Rev. A, 1990

1:1:7:73Structures and Multipoint Correlators for Turbulent Advection: Predictions and Experiments
Laurent Mydlarski, Alain Pumir, Boris I. Shraiman, Eric D. Siggia, Zellman Warhaft, Phys. Rev. Lett., 1998

1:1:7:76Intermittency in Passive Scalar Advection
U. Frisch, A. Mazzino, M. Vergassola, Phys. Rev. Lett., 1998

1:1:7:78Sign-symmetry of temperature structure functions
Konstantinos G. Aivalis, Susan Kurien, Jörg Schumacher, Katepalli R. Sreenivasan, Phys. Rev. E, 2004

1:1:7:83Anomalous Scaling and Structure Instability in Three-Dimensional Passive Scalar Turbulence
Shiyi Chen, Nianzheng Cao, Phys. Rev. Lett., 1997

1:1:7:115Self-similarity of two flows induced by instabilities
Timothy T. Clark, Ye Zhou, Phys. Rev. E, 2003

1:1:7:141Large deviation statistics of the energy-flux fluctuation in the shell model of turbulence
Takeshi Watanabe, Yasuya Nakayama, Hirokazu Fujisaka, Phys. Rev. E, 2000

1:1:7:150Double scaling and intermittency in shear dominated flows
C. M. Casciola, R. Benzi, P. Gualtieri, B. Jacob, R. Piva, Phys. Rev. E, 2001

1:1:8:9Velocity-gradient statistics along particle trajectories in turbulent flows: The refined similarity hypothesis in the Lagrangian frame
Roberto Benzi, Luca Biferale, Enrico Calzavarini, Detlef Lohse, Federico Toschi, Phys. Rev. E, 2009

1:1:8:12Spectral analysis of structure functions and their scaling exponents in forced isotropic turbulence
W. D. McComb, S. R. Yoffe, M. F. Linkmann, A. Berera, Phys. Rev. E, 2014

1:1:8:14Simple multifractal cascade model for fully developed turbulence
C. Meneveau, K. R. Sreenivasan, Phys. Rev. Lett., 1987

1:1:8:17Vortex filament model and multifractal conjecture
K. P. Zybin, V. A. Sirota, Phys. Rev. E, 2012

1:1:8:19Comparisons between different approximations to energy dissipation rate in a self-preserving far wake
T. Zhou, Z. Hao, L. P. Chua, Y. Zhou, Phys. Rev. E, 2006

1:1:8:20Large deviation theory for coin tossing and turbulence
Sagar Chakraborty, Arnab Saha, Jayanta K. Bhattacharjee, Phys. Rev. E, 2009

1:1:8:22Anomalous scaling for Lagrangian velocity structure functions in fully developed turbulence
Guo-Wei He, Phys. Rev. E, 2011

1:1:8:23Scaling of longitudinal and transverse velocity increments in a cylinder wake
T. Zhou, Z. Hao, L. P. Chua, S. C. M. Yu, Phys. Rev. E, 2005

1:1:8:26Stochastic dynamical model of intermittency in fully developed turbulence
Domingos S. P. Salazar, Giovani L. Vasconcelos, Phys. Rev. E, 2010

1:1:8:27Measuring noninertial physics of turbulence: Quasiscaling analysis
Jian-Zhou Zhu, Phys. Rev. E, 2005

1:1:8:30Experimental test of revised similarity hypotheses without Taylor's hypothesis
Duo Xu, Jun Chen, Phys. Rev. E, 2013

1:1:8:32Similarity of intermittency characteristics of temperature and transverse velocity
G. Xu, T. Zhou, S. Rajagopalan, Phys. Rev. E, 2007

1:1:8:34Log-Poisson cascade description of turbulent velocity-gradient statistics
M. Kholmyansky, L. Moriconi, R. M. Pereira, A. Tsinober, Phys. Rev. E, 2009

1:1:8:35Structure functions of fully developed hydrodynamic turbulence: An analytical approach
K. P. Zybin, V. A. Sirota, A. S. Ilyin, Phys. Rev. E, 2010

1:1:8:37Universal Intermittent Properties of Particle Trajectories in Highly Turbulent Flows
A. Arnèodo, R. Benzi, J. Berg, L. Biferale, E. Bodenschatz, A. Busse, E. Calzavarini, B. Castaing, M. Cencini, L. Chevillard, R. T. Fisher, R. Grauer, H. Homann, D. Lamb, A. S. Lanotte, E. Lévèque, B. Lüthi, J. Mann, N. Mordant, W.-C. Müller, S. Ott, N. T. Ouellette, J.-F. Pinton, S. B. Pope, S. G. Roux, F. Toschi, H. Xu, P. K. Yeung, Phys. Rev. Lett., 2008

1:1:8:42Refined Similarity Hypothesis for Transverse Structure Functions in Fluid Turbulence
Shiyi Chen, Katepalli R. Sreenivasan, Mark Nelkin, Nianzheng Cao, Phys. Rev. Lett., 1997

1:1:8:47Multifractality in the statistics of the velocity gradients in turbulence
R. Benzi, L. Biferale, G. Paladin, A. Vulpiani, M. Vergassola, Phys. Rev. Lett., 1991

1:1:8:48Intermittency in fully developed turbulence: Log-Poisson statistics and generalized scale covariance
Bérengère Dubrulle, Phys. Rev. Lett., 1994

1:1:8:52Multifractal scaling of velocity derivatives in turbulence
Mark Nelkin, Phys. Rev. A, 1990

1:1:8:53Cascade model for particle concentration and enstrophy in fully developed turbulence with mass-loading feedback
R. C. Hogan, J. N. Cuzzi, Phys. Rev. E, 2007

1:1:8:54Transition between viscous and inertial-range scaling of turbulence structure functions
Charles Meneveau, Phys. Rev. E, 1996

1:1:8:56Probability density of velocity increments in turbulent flows
P. Kailasnath, K. R. Sreenivasan, G. Stolovitzky, Phys. Rev. Lett., 1992

1:1:8:57Lagrangian Velocity Statistics in Turbulent Flows: Effects of Dissipation
L. Chevillard, S. G. Roux, E. Levêque, N. Mordant, J.-F. Pinton, A. Arneodo, Phys. Rev. Lett., 2003

1:1:8:64Inertial Range Scalings of Dissipation and Enstrophy in Isotropic Turbulence
Shiyi Chen, Katepalli R. Sreenivasan, Mark Nelkin, Phys. Rev. Lett., 1997

1:1:8:66Kolmogorov’s refined similarity hypotheses
G. Stolovitzky, P. Kailasnath, K. R. Sreenivasan, Phys. Rev. Lett., 1992

1:1:8:67Large-scale intermittency in the atmospheric boundary layer
M. Kholmyansky, L. Moriconi, A. Tsinober, Phys. Rev. E, 2007

1:1:8:69Kolmogorov's refined similarity hypotheses for turbulence and general stochastic processes
G. Stolovitzky, K. R. Sreenivasan, Rev. Mod. Phys., 1994

1:1:8:73Application of extended self-similarity in turbulence
Siegfried Grossmann, Detlef Lohse, Achim Reeh, Phys. Rev. E, 1997

1:1:8:74Measurement of Local Dissipation Scales in Turbulent Pipe Flow
S. C. C. Bailey, M. Hultmark, J. Schumacher, V. Yakhot, A. J. Smits, Phys. Rev. Lett., 2009

1:1:8:75Statistics of Dissipation and Enstrophy Induced by Localized Vortices
Guowei He, Shiyi Chen, Robert H. Kraichnan, Raoyang Zhang, Ye Zhou, Phys. Rev. Lett., 1998

1:1:8:76Degrees of freedom of turbulence
Giovanni Paladin, Angelo Vulpiani, Phys. Rev. A, 1987

1:1:8:78Lagrangian Refined Kolmogorov Similarity Hypothesis for Gradient Time Evolution and Correlation in Turbulent Flows
Huidan Yu, Charles Meneveau, Phys. Rev. Lett., 2010

1:1:8:81Scaling of structure functions
G. Stolovitzky, K. R. Sreenivasan, Phys. Rev. E, 1993

1:1:8:83Lagrangian statistics and temporal intermittency in a shell model of turbulence
G. Boffetta, F. De Lillo, S. Musacchio, Phys. Rev. E, 2002

1:1:8:89Lagrangian Statistical Theory of Fully Developed Hydrodynamical Turbulence
K. P. Zybin, V. A. Sirota, A. S. Ilyin, A. V. Gurevich, Phys. Rev. Lett., 2008

1:1:8:90Effect of initial conditions on the mean energy dissipation rate and the scaling exponent
R. A. Antonia, B. R. Pearson, Phys. Rev. E, 2000

1:1:8:95Towards a nonperturbative theory of hydrodynamic turbulence: Fusion rules, exact bridge relations, and anomalous viscous scaling functions
Victor L'vov, Itamar Procaccia, Phys. Rev. E, 1996

1:1:8:96Lagrangian and Eulerian Velocity Structure Functions in Hydrodynamic Turbulence
K. P. Zybin, V. A. Sirota, Phys. Rev. Lett., 2010

1:1:8:102Invariants for Correlations of Velocity Differences in Turbulent Fields
Victor S. L'vov, Evgenii Podivilov, Itamar Procaccia, Phys. Rev. Lett., 1997

1:1:8:107Isotropic Turbulence: Important Differences between True Dissipation Rate and Its One-Dimensional Surrogate
Iwao Hosokawa, Shin-ichi Oide, Kiyoshi Yamamoto, Phys. Rev. Lett., 1996

1:1:8:108Is the Kolmogorov Refined Similarity Relation Dynamic or Kinematic?
Shiyi Chen, Gary D. Doolen, Robert H. Kraichnan, Lian-Ping Wang, Phys. Rev. Lett., 1995

1:1:8:114Scaling Properties of Circulation in Moderate-Reynolds-Number Turbulent Wakes
K. R. Sreenivasan, A. Juneja, A. K. Suri, Phys. Rev. Lett., 1995

1:1:8:115Closure Approach to High-Order Structure Functions of Turbulence
J. Qian, Phys. Rev. Lett., 2000

1:1:8:120Velocity and temperature scaling in a rough wall boundary layer
R. A. Antonia, R. J. Smalley, Phys. Rev. E, 2000

1:1:8:136Local anisotropic effects on multifractality of turbulence
A. Bershadskii, A. Tsinober, Phys. Rev. E, 1993

1:1:8:144Scaling properties of particle density fields formed in simulated turbulent flows
Robert C. Hogan, Jeffrey N. Cuzzi, Anthony R. Dobrovolskis, Phys. Rev. E, 1999

1:1:8:146Intermittency in dynamical models of turbulence
Jens Eggers, Phys. Rev. A, 1992

1:1:8:148Finite size corrections to scaling in high Reynolds number turbulence
Siegfried Grossmann, Detlef Lohse, Victor L’vov, Itamar Procaccia, Phys. Rev. Lett., 1994

1:1:8:149Normal and anomalous scaling of turbulence
J. Qian, Phys. Rev. E, 1998

1:1:9:2Evolution of energy in flow driven by rising bubbles
Irene M. Mazzitelli, Detlef Lohse, Phys. Rev. E, 2009

1:1:9:13Heat transfer mechanisms in bubbly Rayleigh-Bénard convection
Paolo Oresta, Roberto Verzicco, Detlef Lohse, Andrea Prosperetti, Phys. Rev. E, 2009

1:1:9:36Effect of vapor bubbles on velocity fluctuations and dissipation rates in bubbly Rayleigh-Bénard convection
Rajaram Lakkaraju, Laura E. Schmidt, Paolo Oresta, Federico Toschi, Roberto Verzicco, Detlef Lohse, Andrea Prosperetti, Phys. Rev. E, 2011

1:1:9:54Induced agitation in homogeneous bubbly flows at moderate particle Reynolds number
Alain Cartellier, Marcelo Andreotti, Philippe Sechet, Phys. Rev. E, 2009

1:1:9:66Large-Scale Simulations of Bubble-Induced Convection in a Liquid Layer
Eric Climent, Jacques Magnaudet, Phys. Rev. Lett., 1999

1:1:10:22Two-point closure strategy in the mapping closure approximation approach
Guo-Wei He, Zi-Fan Zhang, Phys. Rev. E, 2004

1:1:10:33Probability distribution of a stochastically advected scalar field
Hudong Chen, Shiyi Chen, Robert H. Kraichnan, Phys. Rev. Lett., 1989

1:1:10:46Stochastic mixing model with power law decay of variance
Sergei Fedotov, Matthias Ihme, Heinz Pitsch, Phys. Rev. E, 2005

1:1:11:1Anomalous scaling of a passive scalar advected by the Navier-Stokes velocity field: Two-loop approximation
L. Ts. Adzhemyan, N. V. Antonov, J. Honkonen, T. L. Kim, Phys. Rev. E, 2005

1:1:11:2Anomalous scaling of a passive scalar advected by a turbulent velocity field with finite correlation time and uniaxial small-scale anisotropy
E. Jurčišinová, M. Jurčišin, Phys. Rev. E, 2008

1:1:11:3Influence of anisotropy on anomalous scaling of a passive scalar advected by the Navier-Stokes velocity field
E. Jurčišinová, M. Jurčišin, R. Remecký, Phys. Rev. E, 2009

1:1:11:4Anomalous scaling of passive scalar fields advected by the Navier-Stokes velocity ensemble: Effects of strong compressibility and large-scale anisotropy
N. V. Antonov, M. M. Kostenko, Phys. Rev. E, 2014

1:1:11:5Anomalous scaling of a passive scalar field near two dimensions
A. V. Gladyshev, E. Jurčišinová, M. Jurčišin, R. Remecký, P. Zalom, Phys. Rev. E, 2012

1:1:11:6Influence of helicity on anomalous scaling of a passive scalar advected by the turbulent velocity field with finite correlation time: Two-loop approximation
O. G. Chkhetiani, M. Hnatich, E. Jurčišinová, M. Jurčišin, A. Mazzino, M. Repašan, Phys. Rev. E, 2006

1:1:11:7Anomalous scaling of a randomly advected passive scalar
Robert H. Kraichnan, Phys. Rev. Lett., 1994

1:1:11:9Turbulent Prandtl number of a passively advected vector field in helical environment: Two-loop renormalization group result
E. Jurčišinová, M. Jurčišin, P. Zalom, Phys. Rev. E, 2014

1:1:11:10Anomalous scaling of passively advected magnetic field in the presence of strong anisotropy
M. Hnatich, J. Honkonen, M. Jurcisin, A. Mazzino, S. Sprinc, Phys. Rev. E, 2005

1:1:11:11Turbulent magnetic Prandtl number in kinematic magnetohydrodynamic turbulence: Two-loop approximation
E. Jurčišinová, M. Jurčišin, R. Remecký, Phys. Rev. E, 2011

1:1:11:12Anomalous scaling and large-scale anisotropy in magnetohydrodynamic turbulence: Two-loop renormalization-group analysis of the Kazantsev-Kraichnan kinematic model
N. V. Antonov, N. M. Gulitskiy, Phys. Rev. E, 2012

1:1:11:13 Improved ε expansion for three-dimensional turbulence: Two-loop renormalization near two dimensions
L. Ts. Adzhemyan, J. Honkonen, M. V. Kompaniets, A. N. Vasil’ev, Phys. Rev. E, 2005

1:1:11:14Influence of helicity on the Kolmogorov regime in fully developed turbulence
E. Jurčišinová, M. Jurčišin, R. Remecký, Phys. Rev. E, 2009

1:1:11:15Anomalous scaling and anisotropy in models of passively advected vector fields
Heikki Arponen, Phys. Rev. E, 2009

1:1:11:16Scaling and statistical geometry in passive scalar turbulence
Andrea Mazzino, Paolo Muratore-Ginanneschi, Phys. Rev. E, 2009

1:1:11:17Four-point correlation function of a passive scalar field in rapidly fluctuating turbulence: Numerical analysis of an exact closure equation
Y. Mizuno, K. Ohi, T. Sogabe, Y. Yamamoto, Y. Kaneda, Phys. Rev. E, 2010

1:1:11:18Normal and anomalous scaling of the fourth-order correlation function of a randomly advected passive scalar
M. Chertkov, G. Falkovich, I. Kolokolov, V. Lebedev, Phys. Rev. E, 1995

1:1:11:19Anomalous scaling of the magnetic field in the compressible Kazantsev-Kraichnan model: Two-loop renormalization group analysis
E. Jurčišinová, M. Jurčišin, Phys. Rev. E, 2013

1:1:11:20Energy spectra of certain randomly-stirred fluids
C. DeDominicis, P. C. Martin, Phys. Rev. A, 1979

1:1:11:21Steady-state existence of passive vector fields under the Kraichnan model
Heikki Arponen, Phys. Rev. E, 2010

1:1:11:25Two-loop calculation of the turbulent Prandtl number
L. Ts. Adzhemyan, J. Honkonen, T. L. Kim, L. Sladkoff, Phys. Rev. E, 2005

1:1:11:26Disentangling Scaling Properties in Anisotropic and Inhomogeneous Turbulence
Itai Arad, Luca Biferale, Irene Mazzitelli, Itamar Procaccia, Phys. Rev. Lett., 1999

1:1:11:27Turbulence with pressure: Anomalous scaling of a passive vector field
N. V. Antonov, Michal Hnatich, Juha Honkonen, Marian Jurčišin, Phys. Rev. E, 2003

1:1:11:28Turbulent Prandtl number in a model of passively advected vector field: Two-loop renormalization group result
E. Jurčišinová, M. Jurčišin, R. Remecký, Phys. Rev. E, 2013

1:1:11:30Statistics of active versus passive advections in magnetohydrodynamic turbulence
Thomas Gilbert, Dhrubaditya Mitra, Phys. Rev. E, 2004

1:1:11:31Statistical Geometry in Scalar Turbulence
A. Celani, M. Vergassola, Phys. Rev. Lett., 2001

1:1:11:32Renormalization group, operator product expansion, and anomalous scaling in a model of advected passive scalar
Loran Ts. Adzhemyan, Nikolaj V. Antonov, Alexander N. Vasil’ev, Phys. Rev. E, 1998

1:1:11:33Persistence of small-scale anisotropies and anomalous scaling in a model of magnetohydrodynamics turbulence
N. V. Antonov, A. Lanotte, A. Mazzino, Phys. Rev. E, 2000

1:1:11:35Anomalous Scaling Exponents of a White-Advected Passive Scalar
M. Chertkov, G. Falkovich, Phys. Rev. Lett., 1996

1:1:11:36Structure of the three-point correlation function of a passive scalar in the presence of a mean gradient
Alain Pumir, Phys. Rev. E, 1998

1:1:11:37Dynamics of the passive scalar in compressible turbulent flow: Large-scale patterns and small-scale fluctuations
Tov Elperin, Nathan Kleeorin, Igor Rogachevskii, Phys. Rev. E, 1995

1:1:11:39Manifestation of anisotropy persistence in the hierarchies of magnetohydrodynamical scaling exponents
N. V. Antonov, J. Honkonen, A. Mazzino, P. Muratore-Ginanneschi, Phys. Rev. E, 2000

1:1:11:40 Calculation of the anomalous exponents in the rapid-change model of passive scalar advection to order ɛ 3
L. Ts. Adzhemyan, N. V. Antonov, V. A. Barinov, Yu. S. Kabrits, A. N. Vasil’ev, Phys. Rev. E, 2001

1:1:11:41 Anomalous scaling in the N -point functions of a passive scalar
D. Bernard, K. Gawȩdzki, A. Kupiainen, Phys. Rev. E, 1996

1:1:11:42Anomalous scaling, nonlocality, and anisotropy in a model of the passively advected vector field
L. Ts. Adzhemyan, N. V. Antonov, A. V. Runov, Phys. Rev. E, 2001

1:1:11:43Anisotropic nonperturbative zero modes for passively advected magnetic fields
Alessandra Lanotte, Andrea Mazzino, Phys. Rev. E, 1999

1:1:11:44Intermittency and anomalous scaling for magnetic fluctuations
I. Rogachevskii, N. Kleeorin, Phys. Rev. E, 1997

1:1:11:46Renormalization group and anomalous scaling in a simple model of passive scalar advection in compressible flow
Loran Ts. Adzhemyan, Nikolaj V. Antonov, Phys. Rev. E, 1998

1:1:11:48Turbulent magnetic Prandtl number in helical kinematic magnetohydrodynamic turbulence: Two-loop renormalization group result
E.  Jurčišinová, M. Jurčišin, R. Remecký, P. Zalom, Phys. Rev. E, 2013

1:1:11:49Isotropic and anisotropic spectra of passive scalar fluctuations in turbulent fluid flow
Tov Elperin, Nathan Kleeorin, Igor Rogachevskii, Phys. Rev. E, 1996

1:1:11:50Slow modes in passive scalar turbulent advection
Thomas Gilbert, Phys. Rev. E, 2004

1:1:11:51Nonperturbative spectrum of anomalous scaling exponents in the anisotropic sectors of passively advected magnetic fields
Itai Arad, Luca Biferale, Itamar Procaccia, Phys. Rev. E, 2000

1:1:11:55Anomalous scaling of a passive scalar in the presence of strong anisotropy
L. Ts. Adzhemyan, N. V. Antonov, M. Hnatich, S. V. Novikov, Phys. Rev. E, 2000

1:1:11:56Anomalous scaling regimes of a passive scalar advected by the synthetic velocity field
N. V. Antonov, Phys. Rev. E, 1999

1:1:11:57Anomalous scaling of a passive scalar advected by the turbulent velocity field with finite correlation time: Two-loop approximation
L. Ts. Adzhemyan, N. V. Antonov, J. Honkonen, Phys. Rev. E, 2002

1:1:11:58Anomalous scaling in two models of passive scalar advection: Effects of anisotropy and compressibility
N. V. Antonov, Juha Honkonen, Phys. Rev. E, 2001

1:1:11:61Interface dimension in intermittent turbulence
Charles Meneveau, K. R. Sreenivasan, Phys. Rev. A, 1990

1:1:11:62Field-theoretic renormalization group and turbulence
David Ronis, Phys. Rev. A, 1987

1:1:11:65 Anomalous exponents to order ɛ 3 in the rapid-change model of passive scalar advection
L. Ts. Adzhemyan, N. V. Antonov, V. A. Barinov, Yu. S. Kabrits, A. N. Vasil’ev, Phys. Rev. E, 2001

1:1:11:66Nonuniversality of the Scaling Exponents of a Passive Scalar Convected by a Random Flow
M. Chertkov, G. Falkovich, V. Lebedev, Phys. Rev. Lett., 1996

1:1:11:69Statistical Conservation Laws in Turbulent Transport
Itai Arad, Luca Biferale, Antonio Celani, Itamar Procaccia, Massimo Vergassola, Phys. Rev. Lett., 2001

1:1:11:74Spectrum of anisotropic exponents in hydrodynamic systems with pressure
Itai Arad, Itamar Procaccia, Phys. Rev. E, 2001

1:1:11:78Magnetic Dynamo action at Low Magnetic Prandtl Numbers
Leonid M. Malyshkin, Stanislav Boldyrev, Phys. Rev. Lett., 2010

1:1:11:80Remarks on the renormalization group in statistical fluid dynamics
J. -D. Fournier, U. Frisch, Phys. Rev. A, 1983

1:1:11:81Symmetry and Scaling of Turbulent Mixing
Boris I. Shraiman, Eric D. Siggia, Phys. Rev. Lett., 1996

1:1:11:84Anomalous scaling in the anisotropic sectors of the Kraichnan model of passive scalar advection
Itai Arad, Victor S. L’vov, Evgenii Podivilov, Itamar Procaccia, Phys. Rev. E, 2000

1:1:11:87Stability of Kolmogorov scaling in anisotropically forced turbulence
J. Busa, M. Hnatich, J. Honkonen, D. Horvath, Phys. Rev. E, 1997

1:1:11:88Anomalous Scaling of a Passive Scalar in Turbulence and in Equilibrium
Gregory Falkovich, Alexander Fouxon, Phys. Rev. Lett., 2005

1:1:11:92Comment on “Two-loop calculation of the turbulent Prandtl number”
E. Jurčišinová, M. Jurčišin, R. Remecký, Phys. Rev. E, 2010

1:1:11:96Multifractals, operator-product expansion, and field theory
Bertrand Duplantier, Andreas W. W. Ludwig, Phys. Rev. Lett., 1991

1:1:11:98Intermittency and anomalous scaling of passive scalars in any space dimension
Gregory L. Eyink, Phys. Rev. E, 1996

1:1:11:103Scaling exponents in anisotropic hydrodynamic turbulence
Victor S. L’vov, Itamar Procaccia, Vasil Tiberkevich, Phys. Rev. E, 2003

1:1:11:104Anomalous scaling of anisotropy of second-order moments in a model of a randomly advected solenoidal vector field
Kyo Yoshida, Yukio Kaneda, Phys. Rev. E, 2000

1:1:11:105Renormalization-group method for anisotropic turbulent transport
D. Carati, L. Brenig, Phys. Rev. A, 1989

1:1:11:106Multiscaling in passive scalar advection as stochastic shape dynamics
Omri Gat, Reuven Zeitak, Phys. Rev. E, 1998

1:1:11:108Large-Scale Anisotropy in Scalar Turbulence
Antonio Celani, Agnese Seminara, Phys. Rev. Lett., 2006

1:1:11:111Improved ɛ expansion for three-dimensional turbulence: Summation of nearest dimensional singularities
L. Ts. Adzhemyan, J. Honkonen, M. V. Kompaniets, A. N. Vasil’ev, Phys. Rev. E, 2003

1:1:11:121Advection of a passive scalar near two dimensions
M. Hnatich, J. Honkonen, D. Horvath, R. Semancik, Phys. Rev. E, 1999

1:1:11:127Direct Numerical Simulations of the Kraichnan Model: Scaling Exponents and Fusion Rules
Adrienne L. Fairhall, Barak Galanti, Victor S. L'vov, Itamar Procaccia, Phys. Rev. Lett., 1997

1:1:11:128Anomalous Scaling in Passive Scalar Advection: Monte Carlo Lagrangian Trajectories
Omri Gat, Itamar Procaccia, Reuven Zeitak, Phys. Rev. Lett., 1998

1:1:11:129Structures and Intermittency in a Passive Scalar Model
M. Vergassola, A. Mazzino, Phys. Rev. Lett., 1997

1:1:11:131Statistically preserved structures in shell models of passive scalar advection
Yoram Cohen, Thomas Gilbert, Itamar Procaccia, Phys. Rev. E, 2002

1:1:11:132 Stability of scaling regimes in d >~ 2 developed turbulence with weak anisotropy
M. Hnatich, E. Jonyova, M. Jurcisin, M. Stehlik, Phys. Rev. E, 2001

1:1:11:133Passive scalar turbulence in high dimensions
Andrea Mazzino, Paolo Muratore-Ginanneschi, Phys. Rev. E, 2000

1:1:11:135Large-Scale Structure of Passive Scalar Turbulence
Antonio Celani, Agnese Seminara, Phys. Rev. Lett., 2005

1:1:11:148Shell model for time-correlated random advection of passive scalars
K. H. Andersen, P. Muratore-Ginanneschi, Phys. Rev. E, 1999

1:1:11:149Dynamical Anomalies and Intermittency in Burgers Turbulence
Michael Lässig, Phys. Rev. Lett., 2000

1:1:11:158Anomalous scaling in a model of passive scalar advection: Exact results
Adrienne L. Fairhall, Omri Gat, Victor L'vov, Itamar Procaccia, Phys. Rev. E, 1996

1:1:11:159Perturbative and nonperturbative analysis of the third-order zero modes in the Kraichnan model for turbulent advection
Omri Gat, Victor S. L’vov, Itamar Procaccia, Phys. Rev. E, 1997

1:1:11:168Influence of compressibility on scaling regimes of strongly anisotropic fully developed turbulence
N. V. Antonov, M. Hnatich, M. Yu. Nalimov, Phys. Rev. E, 1999

1:1:11:169Passive scalar intermittency in compressible flow
A. Celani, A. Lanotte, A. Mazzino, Phys. Rev. E, 1999

1:1:11:171Analytic Calculation of Anomalous Scaling in Random Shell Models for a Passive Scalar
R. Benzi, L. Biferale, A. Wirth, Phys. Rev. Lett., 1997

1:1:11:178 Erratum: Influence of helicity on the Kolmogorov regime in fully developed turbulence [Phys. Rev. E 79 , 046319 (2009)]
E. Jurčišinová, M. Jurčišin, R. Remecký, Phys. Rev. E, 2012

1:1:11:179 Renormalization-group theory of turbulence: A d -dimensional ε expansion
D. Carati, Phys. Rev. A, 1990

1:1:11:184Theory of fully developed hydrodynamic turbulent flow: Applications of renormalization-group methods
Jian-Yang Yuan, David Ronis, Phys. Rev. A, 1992

1:1:11:185Renormalized eddy viscosity and Kolmogorov’s constant in forced Navier-Stokes turbulence
Ye Zhou, George Vahala, Murshed Hossain, Phys. Rev. A, 1989

1:1:11:188Anomalous Scaling Exponents in Nonlinear Models of Turbulence
Luiza Angheluta, Roberto Benzi, Luca Biferale, Itamar Procaccia, Federico Toschi, Phys. Rev. Lett., 2006

1:1:11:192Cascade model for intermittency in fully developed magnetohydrodynamic turbulence
Vincenzo Carbone, Phys. Rev. Lett., 1993

1:1:11:193 Erratum: Anomalous scaling and large-scale anisotropy in magnetohydrodynamic turbulence: Two-loop renormalization-group analysis of the Kazantsev-Kraichnan kinematic model [Phys. Rev. E 85 , 065301(R) (2012)]
N. V. Antonov, N. M. Gulitskiy, Phys. Rev. E, 2013

1:1:12:23Characteristics of the turbulent/non-turbulent interface of a non-isothermal jet
J. Westerweel, A. Petracci, R. Delfos, J. C. R. Hunt, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011

1:1:12:26Lagrangian statistics across the turbulent-nonturbulent interface in a turbulent plane jet
Rodrigo R. Taveira, José S. Diogo, Diogo C. Lopes, Carlos B. da Silva, Phys. Rev. E, 2013

1:1:12:37Laminar Superlayer at the Turbulence Boundary
M. Holzner, B. Lüthi, Phys. Rev. Lett., 2011

1:1:12:47Geometry of Intensive Scalar Dissipation Events in Turbulence
Dan Kushnir, Jörg Schumacher, Achi Brandt, Phys. Rev. Lett., 2006

1:1:12:50Multiscale Geometry and Scaling of the Turbulent-Nonturbulent Interface in High Reynolds Number Boundary Layers
Charitha M. de Silva, Jimmy Philip, Kapil Chauhan, Charles Meneveau, Ivan Marusic, Phys. Rev. Lett., 2013

1:1:12:111 Publisher’s Note: Mechanics of the Turbulent-Nonturbulent Interface of a Jet [Phys. Rev. Lett. 95 , 174501 (2005)]
J. Westerweel, C. Fukushima, J. M. Pedersen, J. C. R. Hunt, Phys. Rev. Lett., 2005

1:1:13:30Nonlocal form of the rapid pressure-strain correlation in turbulent flows
Peter E. Hamlington, Werner J. A. Dahm, Phys. Rev. E, 2009

1:1:14:13Multifractal Statistics of Lagrangian Velocity and Acceleration in Turbulence
L. Biferale, G. Boffetta, A. Celani, B. J. Devenish, A. Lanotte, F. Toschi, Phys. Rev. Lett., 2004

1:1:14:14Simulation of particle mixing in turbulent channel flow due to intrinsic fluid velocity fluctuation
Thomas Burgener, Dirk Kadau, Hans J. Herrmann, Phys. Rev. E, 2011

1:1:14:16Intermittency of acceleration in isotropic turbulence
Sang Lee, Changhoon Lee, Phys. Rev. E, 2005

1:1:14:18One-dimensional Langevin models of fluid particle acceleration in developed turbulence
A. K. Aringazin, M. I. Mazhitov, Phys. Rev. E, 2004

1:1:14:19Simple model for turbulence intermittencies based on self-avoiding random vortex stretching
Nicolas Rimbert, Phys. Rev. E, 2010

1:1:14:23Conditional Lagrangian acceleration statistics in turbulent flows with Gaussian-distributed velocities
A. K. Aringazin, Phys. Rev. E, 2004

1:1:14:24Point-vortex model for Lagrangian intermittency in turbulence
Mark Peter Rast, Jean-Francois Pinton, Phys. Rev. E, 2009

1:1:14:29Long Time Correlations in Lagrangian Dynamics: A Key to Intermittency in Turbulence
N. Mordant, J. Delour, E. Léveque, A. Arnéodo, J.-F. Pinton, Phys. Rev. Lett., 2002

1:1:14:30Lagrangian statistics in forced two-dimensional turbulence
O. Kamps, R. Friedrich, Phys. Rev. E, 2008

1:1:14:32Lagrangian particle statistics in turbulent flows from a simple vortex model
M. Wilczek, F. Jenko, R. Friedrich, Phys. Rev. E, 2008

1:1:14:33Anisotropy of acceleration in turbulent flows
A. M. Reynolds, K. Yeo, C. Lee, Phys. Rev. E, 2004

1:1:14:35Intermittent Nature of Acceleration in Near Wall Turbulence
Changhoon Lee, Kyongmin Yeo, Jung-Il Choi, Phys. Rev. Lett., 2004

1:1:14:42Joint Statistics of the Lagrangian Acceleration and Velocity in Fully Developed Turbulence
Alice M. Crawford, Nicolas Mordant, Eberhard Bodenschatz, Phys. Rev. Lett., 2005

1:1:14:45Statistical Laws of Random Strained Vortices in Turbulence
Nozomu Hatakeyama, Tsutomu Kambe, Phys. Rev. Lett., 1997

1:1:14:46Experimental evaluation of acceleration correlations for locally isotropic turbulence
Reginald J. Hill, S. T. Thoroddsen, Phys. Rev. E, 1997

1:1:14:54Transition at dissipative scales in large-Reynolds-number turbulence
Patrick Tabeling, Herve Willaime, Phys. Rev. E, 2002

1:1:15:16Statistics of pressure fluctuations in decaying isotropic turbulence
Chirag Kalelkar, Phys. Rev. E, 2006

1:1:15:21 Vortex tubes in turbulence velocity fields at Reynolds numbers Re λ 300 1300
Hideaki Mouri, Akihiro Hori, Yoshihide Kawashima, Phys. Rev. E, 2004

1:1:15:27Structural studies of decaying fluid turbulence: Effect of initial conditions
Chirag Kalelkar, Phys. Rev. E, 2005

1:1:15:28Time-resolved volumetric measurement of fine-scale coherent structures in turbulence
N. A. Worth, T. B. Nickels, Phys. Rev. E, 2011

1:1:15:44Vortex tubes in velocity fields of laboratory isotropic turbulence: Dependence on the Reynolds number
Hideaki Mouri, Akihiro Hori, Yoshihide Kawashima, Phys. Rev. E, 2003

1:1:15:62Wavelet analysis of vortex tubes in experimental turbulence
Hideaki Mouri, Masanori Takaoka, Phys. Rev. E, 2002

1:1:15:64Fractal level sets and multifractal fields in direct simulations of turbulence
Axel Brandenburg, Itamar Procaccia, Daniel Segel, Alain Vincent, Phys. Rev. A, 1992

1:1:15:67Cluster statistics of homogeneous fluid turbulence
Tsutomu Sanada, Phys. Rev. A, 1991

1:1:16:9Perturbative evaluation of universal numbers in homogeneous shear turbulence
Kishore Dutta, Malay K. Nandy, Phys. Rev. E, 2013

1:1:16:15Extraction of Anisotropic Contributions in Turbulent Flows
Itai Arad, Brindesh Dhruva, Susan Kurien, Victor S. L'vov, Itamar Procaccia, K. R. Sreenivasan, Phys. Rev. Lett., 1998

1:1:16:17Anisotropic scaling contributions to high-order structure functions in high-Reynolds-number turbulence
Susan Kurien, Katepalli R. Sreenivasan, Phys. Rev. E, 2000

1:1:16:21Correlation functions in isotropic and anisotropic turbulence: The role of the symmetry group
Itai Arad, Victor S. L’vov, Itamar Procaccia, Phys. Rev. E, 1999

1:1:16:28Scaling Properties in the Production Range of Shear Dominated Flows
C. M. Casciola, P. Gualtieri, B. Jacob, R. Piva, Phys. Rev. Lett., 2005

1:1:16:29Anisotropic Homogeneous Turbulence: Hierarchy and Intermittency of Scaling Exponents in the Anisotropic Sectors
Luca Biferale, Federico Toschi, Phys. Rev. Lett., 2001

1:1:16:31Persistent Small Scale Anisotropy in Homogeneous Shear Flows
Alain Pumir, Boris I. Shraiman, Phys. Rev. Lett., 1995

1:1:16:37Scaling structure of the velocity statistics in atmospheric boundary layers
Susan Kurien, Victor S. L’vov, Itamar Procaccia, K. R. Sreenivasan, Phys. Rev. E, 2000

1:1:16:40Anomalous and dimensional scaling in anisotropic turbulence
L. Biferale, I. Daumont, A. Lanotte, F. Toschi, Phys. Rev. E, 2002

1:1:16:49Turbulence anisotropy and the SO(3) description
Adrian Staicu, Bart Vorselaars, Willem van de Water, Phys. Rev. E, 2003

1:1:16:50Small Scale Velocity Jumps in Shear Turbulence
Adrian Staicu, Willem van de Water, Phys. Rev. Lett., 2003

1:1:16:54Dynamical equations for high-order structure functions, and a comparison of a mean-field theory with experiments in three-dimensional turbulence
Susan Kurien, Katepalli R. Sreenivasan, Phys. Rev. E, 2001

1:1:16:55Fluid Mixing in Stratified Gravity Currents: The Prandtl Mixing Length
P. Odier, J. Chen, M. K. Rivera, R. E. Ecke, Phys. Rev. Lett., 2009

1:1:16:66Scaling of Low-Order Structure Functions in Homogeneous Turbulence
Nianzheng Cao, Shiyi Chen, Katepalli R. Sreenivasan, Phys. Rev. Lett., 1996

1:1:16:75Dissipation field asymmetry and intermittency in fully developed turbulence
S. I. Vainshtein, Phys. Rev. E, 2000

1:1:19:21Analytical investigation of the combined effect of fluid inertia and unsteadiness on low-Re particle centrifugation
F. Candelier, J. R. Angilella, Phys. Rev. E, 2006

1:1:19:27Time-dependent lift force acting on a particle moving arbitrarily in a pure shear flow, at small Reynolds number
F. Candelier, M. Souhar, Phys. Rev. E, 2007

1:1:19:92Length Scales of Acceleration for Locally Isotropic Turbulence
Reginald Hill, Phys. Rev. Lett., 2002

1:1:20:14Fast-convergent iterative scheme for filtering velocity signals and finding Kolmogorov scales
J. Mi, R. C. Deo, G. J. Nathan, Phys. Rev. E, 2005

1:1:20:70Anomalous scaling of velocity and temperature structure functions
R. A. Antonia, R. J. Smalley, Phys. Rev. E, 2001

1:1:21:33Effect of the Scalar Injection Mechanism on Passive Scalar Structure Functions in a Turbulent Flow
J. Lepore, L. Mydlarski, Phys. Rev. Lett., 2009

1:1:22:7Path Instability of a Rising Bubble
Guillaume Mougin, Jacques Magnaudet, Phys. Rev. Lett., 2001

1:1:24:12Coherent Vortex Extraction in 3D Turbulent Flows Using Orthogonal Wavelets
Marie Farge, Giulio Pellegrino, Kai Schneider, Phys. Rev. Lett., 2001

1:1:24:22Wavelet methods to eliminate resonances in the Galerkin-truncated Burgers and Euler equations
R. M. Pereira, R. Nguyen van yen, M. Farge, K. Schneider, Phys. Rev. E, 2013

1:1:24:23Predictability of Small-Scale Motion in Isotropic Fluid Turbulence
L. Machiels, Phys. Rev. Lett., 1997

1:1:25:6Inertial range scaling in numerical turbulence with hyperviscosity
Nils Erland L. Haugen, Axel Brandenburg, Phys. Rev. E, 2004

1:1:25:9Transition from dissipative to conservative dynamics in equations of hydrodynamics
Debarghya Banerjee, Samriddhi Sankar Ray, Phys. Rev. E, 2014

1:1:25:11Kolmogorov constants for the second-order structure function and the energy spectrum
Rui Ni, Ke-Qing Xia, Phys. Rev. E, 2013

1:1:25:14 Bottleneck Effects in Turbulence: Scaling Phenomena in r versus p Space
Detlef Lohse, Axel Müller-Groeling, Phys. Rev. Lett., 1995

1:1:25:17Bottleneck effect in three-dimensional turbulence simulations
Wolfgang Dobler, Nils Erland L. Haugen, Tarek A. Yousef, Axel Brandenburg, Phys. Rev. E, 2003

1:1:25:19Hyperviscosity, Galerkin Truncation, and Bottlenecks in Turbulence
Uriel Frisch, Susan Kurien, Rahul Pandit, Walter Pauls, Samriddhi Sankar Ray, Achim Wirth, Jian-Zhou Zhu, Phys. Rev. Lett., 2008

1:1:25:21Anisotropy and scaling corrections in turbulence
Detlef Lohse, Axel Müller-Groeling, Phys. Rev. E, 1996

1:1:25:24Energy spectrum of homogeneous and isotropic turbulence in far dissipation range
Lawrence Sirovich, Leslie Smith, Victor Yakhot, Phys. Rev. Lett., 1994

1:1:25:42Analogy between scale symmetry and relativistic mechanics. II. Electric analog of turbulence
B. Dubrulle, F. Graner, Phys. Rev. E, 1997

1:1:26:11Drag reduction by compressible bubbles
T. S. Lo, Victor S. L’vov, Itamar Procaccia, Phys. Rev. E, 2006

1:1:26:16Drag Reduction in Bubbly Taylor-Couette Turbulence
Thomas H. van den Berg, Stefan Luther, Daniel P. Lathrop, Detlef Lohse, Phys. Rev. Lett., 2005

1:1:26:24Drag Reduction by Microbubbles in Turbulent Flows: The Limit of Minute Bubbles
Victor S. L’vov, Anna Pomyalov, Itamar Procaccia, Vasil Tiberkevich, Phys. Rev. Lett., 2005

1:1:26:26Bubbly Turbulent Drag Reduction Is a Boundary Layer Effect
Thomas H. van den Berg, Dennis P. M. van Gils, Daniel P. Lathrop, Detlef Lohse, Phys. Rev. Lett., 2007

1:1:28:2Influence of the history force on inertial particle advection: Gravitational effects and horizontal diffusion
Ksenia Guseva, Ulrike Feudel, Tamás Tél, Phys. Rev. E, 2013

1:1:28:3Coagulation and fragmentation dynamics of inertial particles
Jens C. Zahnow, Rafael D. Vilela, Ulrike Feudel, Tamás Tél, Phys. Rev. E, 2009

1:1:28:4Moving finite-size particles in a flow: A physical example of pitchfork bifurcations of tori
Jens C. Zahnow, Ulrike Feudel, Phys. Rev. E, 2008

1:1:28:5Dynamics of a Small Neutrally Buoyant Sphere in a Fluid and Targeting in Hamiltonian Systems
Armando Babiano, Julyan H. E. Cartwright, Oreste Piro, Antonello Provenzale, Phys. Rev. Lett., 2000

1:1:28:6Finite-size effects on open chaotic advection
Rafael D. Vilela, Alessandro P. S. de Moura, Celso Grebogi, Phys. Rev. E, 2006

1:1:28:7Signatures of fractal clustering of aerosols advected under gravity
Rafael D. Vilela, Tamás Tél, Alessandro P. S. de Moura, Celso Grebogi, Phys. Rev. E, 2007

1:1:28:8Particle segregation by Stokes number for small neutrally buoyant spheres in a fluid
Phanindra Tallapragada, Shane D. Ross, Phys. Rev. E, 2008

1:1:28:9Chaotic saddles in a gravitational field: The case of inertial particles in finite domains
Gábor Drótos, Tamás Tél, Phys. Rev. E, 2011

1:1:28:10Dynamics of impurities in a three-dimensional volume-preserving map
Swetamber Das, Neelima Gupte, Phys. Rev. E, 2014

1:1:28:15Clustering, chaos, and crisis in a bailout embedding map
N. Nirmal Thyagu, Neelima Gupte, Phys. Rev. E, 2007

1:1:28:16Selective Sensitivity of Open Chaotic Flows on Inertial Tracer Advection: Catching Particles with a Stick
I. J. Benczik, Z. Toroczkai, T. Tél, Phys. Rev. Lett., 2002

1:1:28:17Reactive dynamics of inertial particles in nonhyperbolic chaotic flows
Adilson E. Motter, Ying-Cheng Lai, Celso Grebogi, Phys. Rev. E, 2003

1:1:28:18Advective Coalescence in Chaotic Flows
Takashi Nishikawa, Zoltán Toroczkai, Celso Grebogi, Phys. Rev. Lett., 2001

1:1:28:19Aggregation and fragmentation dynamics of inertial particles in chaotic flows
Jens C. Zahnow, Rafael D. Vilela, Ulrike Feudel, Tamás Tél, Phys. Rev. E, 2008

1:1:28:21Can Aerosols Be Trapped in Open Flows?
Rafael D. Vilela, Adilson E. Motter, Phys. Rev. Lett., 2007

1:1:28:24Advection of finite-size particles in open flows
Izabella Julia Benczik, Zoltán Toroczkai, Tamás Tél, Phys. Rev. E, 2003

1:1:28:25Suspension and Fall of Heavy Particles in Random Two-Dimensional Flow
Claudia Pasquero, Antonello Provenzale, Edward A. Spiegel, Phys. Rev. Lett., 2003

1:1:28:29Bailout Embeddings and Neutrally Buoyant Particles in Three-Dimensional Flows
Julyan H. E. Cartwright, Marcelo O. Magnasco, Oreste Piro, Idan Tuval., Phys. Rev. Lett., 2002

1:1:28:33Attraction of Minute Particles to Invariant Regions of Volume Preserving Flows by Transients
T. Shinbrot, M. M. Alvarez, J. M. Zalc, F. J. Muzzio, Phys. Rev. Lett., 2001

1:1:28:35Spatial structure of passive particles with inertia transported by a chaotic flow
Cristóbal López, Phys. Rev. E, 2002

1:1:28:41Bubbling and on-off intermittency in bailout embeddings
Julyan H. E. Cartwright, Marcelo O. Magnasco, Oreste Piro, Idan Tuval, Phys. Rev. E, 2003

1:1:28:42Symmetry-breaking bifurcations for the magnetohydrodynamic equations with helical forcing
F. Feudel, N. Seehafer, B. Galanti, S. Rüdiger, Phys. Rev. E, 1996

1:1:28:45Quasiperiodic Transitions to Chaos of Instabilities in an Electron-Hole Plasma Excited by ac Perturbations at One and at Two Frequencies
G. A. Held, Carson Jeffries, Phys. Rev. Lett., 1986

1:1:28:53Large particle number limit in rain
S. Lovejoy, M. Lilley, N. Desaulniers-Soucy, D. Schertzer, Phys. Rev. E, 2003

1:1:29:3Eulerian field-theoretic closure formalisms for fluid turbulence
Arjun Berera, Matthew Salewski, W. D. McComb, Phys. Rev. E, 2013

1:1:29:4Eulerian spectral closures for isotropic turbulence using a time-ordered fluctuation-dissipation relation
W. D. McComb, K. Kiyani, Phys. Rev. E, 2005

1:1:29:5Direct-numerical-simulation-based measurement of the mean impulse response of homogeneous isotropic turbulence
Marco Carini, Maurizio Quadrio, Phys. Rev. E, 2010

1:1:29:7Time-ordered fluctuation-dissipation relation for incompressible isotropic turbulence
K. Kiyani, W. D. McComb, Phys. Rev. E, 2004

1:1:29:8Simplification of local energy transfer theory of incompressible, isotropic, nonstationary turbulence
R. Pandya, Phys. Rev. E, 2004

1:1:29:11Irreversible Statistical Mechanics of Incompressible Hydromagnetic Turbulence
Robert H. Kraichnan, Phys. Rev., 1958

1:1:29:47Classical Fluctuation-Relaxation Theorem
Robert H. Kraichnan, Phys. Rev., 1959

1:1:29:50Perturbation theory for classical random processes with arbitrary preparation
Uli Deker, Phys. Rev. A, 1979

1:1:29:52Relation of Fourth-Order to Second-Order Moments in Stationary Isotropic Turbulence
Robert H. Kraichnan, Phys. Rev., 1957

1:1:29:72Solution of functional equations and reduction of dimension in the local energy transfer theory of incompressible, three-dimensional turbulence
M. Oberlack, W. D. McComb, A. P. Quinn, Phys. Rev. E, 2001

1:1:29:73The Theory of Quantized Fields. I
Julian Schwinger, Phys. Rev., 1951

1:1:29:74Quantum Electrodynamics. I. A Covariant Formulation
Julian Schwinger, Phys. Rev., 1948

1:1:30:1Space-time correlations of fluctuating velocities in turbulent shear flows
Xin Zhao, Guo-Wei He, Phys. Rev. E, 2009

1:1:30:3Elliptic model for space-time correlations in turbulent shear flows
Guo-Wei He, Jin-Bai Zhang, Phys. Rev. E, 2006

1:1:30:6Scale-similarity model for Lagrangian velocity correlations in isotropic and stationary turbulence
Guo-Wei He, Guodong Jin, Xin Zhao, Phys. Rev. E, 2009

1:1:30:8Temporal decorrelations in compressible isotropic turbulence
Dong Li, Xing Zhang, Guowei He, Phys. Rev. E, 2013

1:1:30:13Wave-number–frequency spectrum for turbulence from a random sweeping hypothesis with mean flow
M. Wilczek, Y. Narita, Phys. Rev. E, 2012

1:1:30:14Taylor's frozen-flow hypothesis in Burgers turbulence
A. Bahraminasab, M. D. Niry, J. Davoudi, M. Reza Rahimi Tabar, A. A. Masoudi, K. R. Sreenivasan, Phys. Rev. E, 2008

1:1:30:23Intermittency of Velocity Time Increments in Turbulence
L. Chevillard, S. G. Roux, E. Lévêque, N. Mordant, J.-F. Pinton, A. Arnéodo, Phys. Rev. Lett., 2005

1:1:30:37Fluctuation-response relations for multitime correlations
Gregory L. Eyink, Phys. Rev. E, 2000

1:1:30:54Richardson’s Pair Diffusion and the Stagnation Point Structure of Turbulence
J. Dávila, J. C. Vassilicos, Phys. Rev. Lett., 2003

1:1:31:11Local geometry of isoscalar surfaces
César Dopazo, Jesús Martín, Juan Hierro, Phys. Rev. E, 2007

1:1:31:19Scaling of the two-point velocity difference along scalar gradient trajectories in fluid turbulence
Lipo Wang, Phys. Rev. E, 2009

1:1:31:21Scaling Relations for a Randomly Advected Passive Scalar Field
Robert H. Kraichnan, Victor Yakhot, Shiyi Chen, Phys. Rev. Lett., 1995

1:1:31:30Passive scalar advected by a rapidly changing random velocity field: Probability density of scalar differences
Victor Yakhot, Phys. Rev. E, 1997

1:1:32:5Dispersed phase of particles in rotating turbulent fluid flows
R. V. R. Pandya, P. Stansell, J. Cosgrove, Phys. Rev. E, 2004

1:1:32:7Drift-free kinetic equations for turbulent dispersion
A. Bragg, D. C. Swailes, R. Skartlien, Phys. Rev. E, 2012

1:1:32:10Stochastic transport of particles in straining flows
D. C. Swailes, Y. Ammar, M. W. Reeks, Y. Drossinos, Phys. Rev. E, 2009

1:1:32:14Probability density function modeling of dispersed two-phase turbulent flows
Jacek Pozorski, Jean-Pierre Minier, Phys. Rev. E, 1999

1:1:32:34Anomalous scalings for fluctuations of inertial particles concentration and large-scale dynamics
Tov Elperin, Nathan Kleeorin, Igor Rogachevskii, Phys. Rev. E, 1998

1:1:32:56Bimodality and transient trimodality for Brownian particles in shear flows: A path-integral approach
Horacio S. Wio, Damián H. Zanette, Phys. Rev. E, 1993

1:1:33:30Heat flow and mass diffusion in binary Lennard-Jones mixtures
Sten Sarman, Denis J. Evans, Phys. Rev. A, 1992

1:1:35:24Probabilistic formalism and hierarchy of models for polydispersed turbulent two-phase flows
Eric Peirano, Jean-Pierre Minier, Phys. Rev. E, 2002

1:1:36:7Heat waves
D. D. Joseph, Luigi Preziosi, Rev. Mod. Phys., 1989

1:1:36:11Geometric Features of the Mixing of Passive Scalars at High Schmidt Numbers
Jörg Schumacher, Katepalli R. Sreenivasan, Phys. Rev. Lett., 2003

1:1:36:13Intermittent Dissipation of a Passive Scalar in Turbulence
M. Chertkov, G. Falkovich, I. Kolokolov, Phys. Rev. Lett., 1998

1:1:36:21Robustness of the nonequilibrium entropy related to the Maxwell-Cattaneo heat equation
F. X. Alvarez, J. Casas-Vázquez, D. Jou, Phys. Rev. E, 2008

1:1:36:24Far-dissipation range of turbulence
Shiyi Chen, Gary Doolen, Jackson R. Herring, Robert H. Kraichnan, Steven A. Orszag, Zhen Su She, Phys. Rev. Lett., 1993

1:1:36:29Distribution of scales in turbulence
Haris J. Catrakis, Phys. Rev. E, 2000

1:1:36:35Scale Distributions and Fractal Dimensions in Turbulence
Haris J. Catrakis, Paul E. Dimotakis, Phys. Rev. Lett., 1996

1:1:36:39Extended irreversible thermodynamics of liquid helium II
Maria Stella Mongiovì, Phys. Rev. B, 1993

1:1:40:1Two phenomenological constants explain similarity laws in stably stratified turbulence
Gabriel G. Katul, Amilcare Porporato, Stimit Shah, Elie Bou-Zeid, Phys. Rev. E, 2014

1:1:40:2Cospectral budget of turbulence explains the bulk properties of smooth pipe flow
Gabriel G. Katul, Costantino Manes, Phys. Rev. E, 2014

1:1:40:3Mean scalar concentration profile in a sheared and thermally stratified atmospheric surface layer
Gabriel G. Katul, Dan Li, Marcelo Chamecki, Elie Bou-Zeid, Phys. Rev. E, 2013

1:1:40:7Anisotropic Velocity Correlation Spectrum at Small Scales in a Homogeneous Turbulent Shear Flow
Takashi Ishihara, Kyo Yoshida, Yukio Kaneda, Phys. Rev. Lett., 2002

1:1:40:9Spectral Theory of the Turbulent Mean-Velocity Profile
Gustavo Gioia, Nicholas Guttenberg, Nigel Goldenfeld, Pinaki Chakraborty, Phys. Rev. Lett., 2010

1:1:40:17Mean Velocity Profile in a Sheared and Thermally Stratified Atmospheric Boundary Layer
Gabriel G. Katul, Alexandra G. Konings, Amilcare Porporato, Phys. Rev. Lett., 2011

1:1:40:37 Publisher's Note: Mean scalar concentration profile in a sheared and thermally stratified atmospheric surface layer [Phys. Rev. E 87 , 023004 (2013)]
Gabriel G. Katul, Dan Li, Marcelo Chamecki, Elie Bou-Zeid, Phys. Rev. E, 2013

1:1:41:9Instability of Poiseuille flow at extreme Mach numbers: Linear analysis and simulations
Zhimin Xie, Sharath S. Girimaji, Phys. Rev. E, 2014

1:1:41:16Measures of intermittency in driven supersonic flows
D. Porter, A. Pouquet, P. Woodward, Phys. Rev. E, 2002

1:1:41:24Scaling and Statistics in Three-Dimensional Compressible Turbulence
Jianchun Wang, Yipeng Shi, Lian-Ping Wang, Zuoli Xiao, X. T. He, Shiyi Chen, Phys. Rev. Lett., 2012

1:1:42:1Anomalous scaling and intermittency in three-dimensional synthetic turbulence
Carlos Rosales, Charles Meneveau, Phys. Rev. E, 2008

1:1:42:3Synthetic turbulence, fractal interpolation, and large-eddy simulation
Sukanta Basu, Efi Foufoula-Georgiou, Fernando Porté-Agel, Phys. Rev. E, 2004

1:1:42:4Three-dimensional synthetic turbulence constructed by spatially randomized fractal interpolation
Zhi-Xiong Zhang, Ke-Qi Ding, Yi-Peng Shi, Zhen-Su She, Phys. Rev. E, 2011

1:1:42:5Synthetic turbulence constructed by spatially randomized fractal interpolation
Ke-Qi Ding, Zhi-Xiong Zhang, Yi-Peng Shi, Zhen-Su She, Phys. Rev. E, 2010

1:1:42:11Similarity scaling of pressure fluctuation in turbulence
Yoshiyuki Tsuji, Takashi Ishihara, Phys. Rev. E, 2003

1:1:42:13Mimicking a turbulent signal:  Sequential multiaffine processes
L. Biferale, G. Boffetta, A. Celani, A. Crisanti, A. Vulpiani, Phys. Rev. E, 1998

1:1:42:14Fractal Model for Coarse-Grained Nonlinear Partial Differential Equations
Alberto Scotti, Charles Meneveau, Phys. Rev. Lett., 1997

1:1:42:16Synthetic turbulence
A. Juneja, D. P. Lathrop, K. R. Sreenivasan, G. Stolovitzky, Phys. Rev. E, 1994

1:1:42:18Probability distribution functions of derivatives and increments for decaying Burgers turbulence
J. Bec, U. Frisch, Phys. Rev. E, 2000

1:1:42:22Effect of dissipation fluctuations on anomalous velocity scaling in turbulence
Jens Eggers, Siegfried Grossmann, Phys. Rev. A, 1992

1:1:42:30Fractal dimension of velocity signals in high-Reynolds-number hydrodynamic turbulence
Alberto Scotti, Charles Meneveau, Seyed G. Saddoughi, Phys. Rev. E, 1995

1:1:43:3Exact relation with two-point correlation functions and phenomenological approach for compressible magnetohydrodynamic turbulence
Supratik Banerjee, Sébastien Galtier, Phys. Rev. E, 2013

1:1:43:5Analysis of intermittency in under-resolved smoothed-particle-hydrodynamics direct numerical simulations of forced compressible turbulence
Yilei Shi, Marco Ellero, Nikolaus A. Adams, Phys. Rev. E, 2012

1:1:43:8Intermittency and Universality in Fully Developed Inviscid and Weakly Compressible Turbulent Flows
Roberto Benzi, Luca Biferale, Robert T. Fisher, Leo P. Kadanoff, Donald Q. Lamb, Federico Toschi, Phys. Rev. Lett., 2008

1:1:43:13Compressible Turbulence: The Cascade and its Locality
Hussein Aluie, Phys. Rev. Lett., 2011

1:1:43:14Exact Relation for Correlation Functions in Compressible Isothermal Turbulence
Sébastien Galtier, Supratik Banerjee, Phys. Rev. Lett., 2011

1:1:43:15Is the Scaling of Supersonic Turbulence Universal?
Wolfram Schmidt, Christoph Federrath, Ralf Klessen, Phys. Rev. Lett., 2008

1:1:43:17Density probability distribution in one-dimensional polytropic gas dynamics
Thierry Passot, Enrique Vázquez-Semadeni, Phys. Rev. E, 1998

1:1:43:19Dissipative Structures in Supersonic Turbulence
Liubin Pan, Paolo Padoan, Alexei G. Kritsuk, Phys. Rev. Lett., 2009

1:1:43:22Scaling Laws of Turbulence and Heating of Fast Solar Wind: The Role of Density Fluctuations
V. Carbone, R. Marino, L. Sorriso-Valvo, A. Noullez, R. Bruno, Phys. Rev. Lett., 2009

1:1:43:24Three-dimensional supersonic homogeneous turbulence: A numerical study
D. H. Porter, A. Pouquet, P. R. Woodward, Phys. Rev. Lett., 1992

1:1:43:27Statistical description of acoustic turbulence
V. S. L’vov, Yu. L’vov, A. C. Newell, V. Zakharov, Phys. Rev. E, 1997

1:1:43:46Supersonic Turbulence and Structure of Interstellar Molecular Clouds
Stanislav Boldyrev, Åke Nordlund, Paolo Padoan, Phys. Rev. Lett., 2002

1:1:43:61Nature of the energy transfer process in compressible turbulence
F. Bataille, Ye Zhou, Phys. Rev. E, 1999

1:1:44:6Kármán-Howarth closure equation on the basis of a universal eddy viscosity
F. Thiesset, R. A. Antonia, L. Danaila, L. Djenidi, Phys. Rev. E, 2013

1:1:44:21Identifying Turbulent Energy Distributions in Real, Rather than Fourier, Space
P. A. Davidson, B. R. Pearson, Phys. Rev. Lett., 2005

1:1:44:29Calculation of spectra of turbulence in the energy-containing and inertial ranges
L. Ts. Adzhemyan, M. Hnatich, D. Horváth, M. Stehlik, Phys. Rev. E, 1998

1:1:44:32Turbulent Pressure Structure Function
M. Ould-Rouis, R. A. Antonia, Y. Zhu, F. Anselmet, Phys. Rev. Lett., 1996

1:1:45:3 Existence of k 1 power-law scaling in the equilibrium regions of wall-bounded turbulence explained by Heisenberg's eddy viscosity
Gabriel G. Katul, Amilcare Porporato, Vladimir Nikora, Phys. Rev. E, 2012

1:1:45:7Slow decay of the finite Reynolds number effect of turbulence
J. Qian, Phys. Rev. E, 1999

1:1:45:8Inertial range and the finite Reynolds number effect of turbulence
J. Qian, Phys. Rev. E, 1997

1:1:45:10Analysis of fully developed turbulence in terms of Tsallis statistics
T. Arimitsu, N. Arimitsu, Phys. Rev. E, 2000

1:1:45:30Probability Density Distribution of Velocity Differences at Very High Reynolds Numbers
Alexander Praskovsky, Steven Oncley, Phys. Rev. Lett., 1994

1:1:51:2Hierarchical structure analysis describing abnormal base composition of genomes
Zhengqing Ouyang, Jian-Kun Liu, Zhen-Su She, Phys. Rev. E, 2005

1:1:51:3Hierarchical structure description of spatiotemporal chaos
Jian Liu, Zhen-Su She, Hongyu Guo, Liang Li, Qi Ouyang, Phys. Rev. E, 2004

1:1:51:4Passive scalar structures in supersonic turbulence
Liubin Pan, Evan Scannapieco, Phys. Rev. E, 2011

1:1:51:6Scalings and structures in turbulent Couette-Taylor flow
Zhen-Su She, Kui Ren, Gregory S. Lewis, Harry L. Swinney, Phys. Rev. E, 2001

1:1:51:10Intermittency of velocity fluctuations in turbulent thermal convection
Emily S. C. Ching, C. K. Leung, X.-L. Qiu, P. Tong, Phys. Rev. E, 2003

1:1:51:11An Invariant Measure of Disorder in Patterns
Gemunu H. Gunaratne, Ronald E. Jones, Qi Ouyang, Harry L. Swinney, Phys. Rev. Lett., 1995

1:1:51:13Geometrical Extended Self-Similarity and Intermittency in Diffusion-Limited Aggregates
D. Queiros-Conde, Phys. Rev. Lett., 1997

1:1:51:15Scaling and Hierarchical Structures in DNA Sequences
Zhengqing Ouyang, Chao Wang, Zhen-Su She, Phys. Rev. Lett., 2004

1:1:51:16Scaling hypothesis leading to generalized extended self-similarity in turbulence
Hirokazu Fujisaka, Yasuya Nakayama, Takeshi Watanabe, Siegfried Grossmann, Phys. Rev. E, 2002

1:1:51:19Transition to Spiral-Defect Chaos in Low Prandtl Number Convection
Yuchou Hu, Robert E. Ecke, Guenter Ahlers, Phys. Rev. Lett., 1995

1:1:51:25Emergence of order in textured patterns
Gemunu H. Gunaratne, Anuradha Ratnaweera, K. Tennekone, Phys. Rev. E, 1999

1:1:51:27Scalings and Relative Scalings in the Navier-Stokes Turbulence
Nianzheng Cao, Shiyi Chen, Zhen-Su She, Phys. Rev. Lett., 1996

1:1:51:28Structure Function Scaling in Compressible Super-Alfvénic MHD Turbulence
Paolo Padoan, Raul Jimenez, Åke Nordlund, Stanislav Boldyrev, Phys. Rev. Lett., 2004

1:1:52:5Stationarity of linearly forced turbulence in finite domains
E. Gravanis, E. Akylas, Phys. Rev. E, 2011

1:1:53:6Reynolds number of transition and self-organized criticality of strong turbulence
Victor Yakhot, Phys. Rev. E, 2014

1:1:53:30Theory of Turbulence
Steven A. Orszag, Martin D. Kruskal, Phys. Rev. Lett., 1966

1:1:54:3:11Size-dependent photoabsorption and photoemission of small metal particles
W. Ekardt, Phys. Rev. B, 1985

1:1:54:3:13 Application of a scaled homogeneous nucleation-rate formalism to experimental data at T≪ T c
Barbara N. Hale, Phys. Rev. A, 1986

1:1:55:2Mixing and clustering in compressible chaotic stirred flows
Vicente Pérez-Muñuzuri, Phys. Rev. E, 2014

1:1:55:3Intermittent particle distribution in synthetic free-surface turbulent flows
Lauris Ducasse, Alain Pumir, Phys. Rev. E, 2008

1:1:55:5Power-law distributions of particle concentration in free-surface flows
Jason Larkin, M. M. Bandi, Alain Pumir, Walter I. Goldburg, Phys. Rev. E, 2009

1:1:55:6Decorrelating a compressible turbulent flow: An experiment
Jason Larkin, Walter I. Goldburg, Phys. Rev. E, 2010

1:1:55:8Multifractal Clustering in Compressible Flows
Jérémie Bec, Krzysztof Gawȩdzki, Péter Horvai, Phys. Rev. Lett., 2004

1:1:55:9How Waves Affect the Distribution of Particles that Float on a Liquid Surface
P. Denissenko, G. Falkovich, S. Lukaschuk, Phys. Rev. Lett., 2006

1:1:55:10Lagrangian Tracers on a Surface Flow: The Role of Time Correlations
Guido Boffetta, Jahanshah Davoudi, Bruno Eckhardt, Jörg Schumacher, Phys. Rev. Lett., 2004

1:1:55:11Clustering dynamics of Lagrangian tracers in free-surface flows
Jörg Schumacher, Bruno Eckhardt, Phys. Rev. E, 2002

1:1:55:13Inverse versus Direct Cascades in Turbulent Advection
M. Chertkov, I. Kolokolov, M. Vergassola, Phys. Rev. Lett., 1998

1:1:57:2Isotropy and the Kármán-Howarth-Kolmogorov relation in experimental and numerical turbulence
Masanori Takaoka, Hideaki Mouri, Akihiro Hori, Yoshihide Kawashima, Phys. Rev. E, 2007

1:1:57:11Statistical Dependence of Inertial Range Properties on Large Scales in a High-Reynolds-Number Shear Flow
Katepalli R. Sreenivasan, Gustavo Stolovitzky, Phys. Rev. Lett., 1996

1:1:57:16Probability density function of turbulent velocity fluctuations in a rough-wall boundary layer
Hideaki Mouri, Masanori Takaoka, Akihiro Hori, Yoshihide Kawashima, Phys. Rev. E, 2003

1:1:57:17Probability density function of turbulent velocity fluctuations
Hideaki Mouri, Masanori Takaoka, Akihiro Hori, Yoshihide Kawashima, Phys. Rev. E, 2002

1:1:58:2Wavelet multiresolution analysis of the three vorticity components in a turbulent far wake
T. Zhou, A. Rinoshika, Z. Hao, Y. Zhou, L. P. Chua, Phys. Rev. E, 2006

1:1:58:5Effects of initial conditions on a wavelet-decomposed turbulent near-wake
Akira Rinoshika, Yu Zhou, Phys. Rev. E, 2005

1:1:58:6Reynolds number effects on wavelet components of self-preserving turbulent structures
Akira Rinoshika, Yu Zhou, Phys. Rev. E, 2009

1:1:59:2Clustering of matter in waves and currents
Marija Vucelja, Gregory Falkovich, Itzhak Fouxon, Phys. Rev. E, 2007

1:1:59:5Evolution of a passive scalar spectrum in the flow of random waves
Gregory Falkovich, Doron Shlomo, Phys. Rev. E, 2005

1:1:59:9Turbulence and passive scalar transport in a free-slip surface
Bruno Eckhardt, Jörg Schumacher, Phys. Rev. E, 2001

1:1:59:14Relative Particle Motion in Capillary Waves
Elsebeth Schröder, Jacob Sparre Andersen, Mogens T. Levinsen, Preben Alstrøm, Walter I. Goldburg, Phys. Rev. Lett., 1996

1:1:59:17Growth of Density Inhomogeneities in a Flow of Wave Turbulence
A. M. Balk, G. Falkovich, M. G. Stepanov, Phys. Rev. Lett., 2004

1:1:59:26Turbulent Fluctuation and Transport of Passive Scalars by Random Wave Fields
Peter B. Weichman, Roman E. Glazman, Phys. Rev. Lett., 1999

1:1:61:3One-point velocity statistics in decaying homogeneous isotropic turbulence
Iwao Hosokawa, Phys. Rev. E, 2008

1:1:61:4Dynamical origins for non-Gaussian vorticity distributions in turbulent flows
Michael Wilczek, Rudolf Friedrich, Phys. Rev. E, 2009

1:1:61:6Probability distribution of power fluctuations in turbulence
M. M. Bandi, Sergei G. Chumakov, Colm Connaughton, Phys. Rev. E, 2009

1:1:61:9Comment on “Probability distribution of power fluctuations in turbulence”
Saralees Nadarajah, Zuonaki Ongodiebi, Phys. Rev. E, 2014

1:1:61:11Monin-Lundgren hierarchy versus the Hopf equation in the statistical theory of turbulence
Iwao Hosokawa, Phys. Rev. E, 2006

1:1:61:12Single-Point Velocity Distribution in Turbulence
G. Falkovich, V. Lebedev, Phys. Rev. Lett., 1997

1:1:61:13General formula for stationary or statistically homogeneous probability density functions
Emily S. C. Ching, Phys. Rev. E, 1996

1:1:61:18Single-Point Velocity Statistics of Forced and Decaying Two-Dimensional Turbulence
Yonggun Jun, X. L. Wu, Jie Zhang, Phys. Rev. Lett., 2006

1:1:61:21Conditionally averaged vorticity field and turbulence modeling
R. C. Y. Mui, D. G. Dommermuth, E. A. Novikov, Phys. Rev. E, 1996

1:1:61:28 Publisher's Note: Dynamical origins for non-Gaussian vorticity distributions in turbulent flows [Phys. Rev. E 80 , 016316 (2009)]
Michael Wilczek, Rudolf Friedrich, Phys. Rev. E, 2009

1:1:61:29Closure of two-dimensional turbulence: The role of pressure gradients
G. Boffetta, M. Cencini, J. Davoudi, Phys. Rev. E, 2002

1:1:61:32 Erratum: Monin-Lundgren hierarchy versus the Hopf equation in the statistical theory of turbulence [Phys. Rev. E 73 , 067301 (2006)]
Iwao Hosokawa, Phys. Rev. E, 2006

1:1:62:1Gas-kinetic schemes for direct numerical simulations of compressible homogeneous turbulence
Wei Liao, Yan Peng, Li-Shi Luo, Phys. Rev. E, 2009

1:1:62:2Effects of multitemperature nonequilibrium on compressible homogeneous turbulence
Wei Liao, Yan Peng, Li-Shi Luo, Phys. Rev. E, 2010

1:1:63:1Statistical properties of four-dimensional turbulence
Toshiyuki Gotoh, Yusaku Watanabe, Yoshitaka Shiga, Tohru Nakano, Eijiro Suzuki, Phys. Rev. E, 2007

1:1:63:3On the edge of an inverse cascade
Kannabiran Seshasayanan, Santiago Jose Benavides, Alexandros Alexakis, Phys. Rev. E, 2014

1:1:63:5Local flow structure of turbulence in three, four, and five dimensions
T. Yamamoto, H. Shimizu, T. Inoshita, T. Nakano, T. Gotoh, Phys. Rev. E, 2012

1:1:63:7Mean-field approximation and a small parameter in turbulence theory
Victor Yakhot, Phys. Rev. E, 2001

1:1:63:8 d -dimensional turbulence
Jean-Daniel Fournier, Uriel Frisch, Phys. Rev. A, 1978

1:1:63:11Scaling theory of hydrodynamic turbulence
Mark Nelkin, Phys. Rev. A, 1975

1:1:63:12Turbulence in Noninteger Dimensions by Fractal Fourier Decimation
Uriel Frisch, Anna Pomyalov, Itamar Procaccia, Samriddhi Sankar Ray, Phys. Rev. Lett., 2012

1:1:63:14Turbulence, critical fluctuations, and intermittency
Mark Nelkin, Phys. Rev. A, 1974

1:1:63:19Crossover Dimensions for Fully Developed Turbulence
U. Frisch, M. Lesieur, P. L. Sulem, Phys. Rev. Lett., 1976

1:1:63:20Roles of convection, pressure, and dissipation in three-dimensional turbulence
Tohru Nakano, Toshiyuki Gotoh, Daigen Fukayama, Phys. Rev. E, 2003

1:1:63:21Comment on “Isotropic Turbulence: Important Differences between True Dissipation Rate and Its One-Dimensional Surrogate”
G. Stolovitzky, C. Meneveau, K. R. Sreenivasan, Phys. Rev. Lett., 1998

1:1:63:23Critical “dimension” in shell model turbulence
Paolo Giuliani, Mogens H. Jensen, Victor Yakhot, Phys. Rev. E, 2002

1:1:64:7Nonequilibrium effect of the turbulent-energy-production process on the inertial-range energy spectrum
Akira Yoshizawa, Phys. Rev. E, 1994

1:1:64:8Response maxima in modulated turbulence
Anna von der Heydt, Siegfried Grossmann, Detlef Lohse, Phys. Rev. E, 2003

1:1:64:17Periodically kicked turbulence
Detlef Lohse, Phys. Rev. E, 2000

1:1:64:22Response maxima in modulated turbulence. II. Numerical simulations
Anna von der Heydt, Siegfried Grossmann, Detlef Lohse, Phys. Rev. E, 2003

1:1:71:5Generalized Basset-Boussinesq-Oseen Equation for Unsteady Forces on a Sphere in a Compressible Flow
M. Parmar, A. Haselbacher, S. Balachandar, Phys. Rev. Lett., 2011

1:1:73:2Correlation between non-Gaussian statistics of a scalar and its dissipation rate in turbulent flows
Jianchun Mi, Phys. Rev. E, 2006

1:1:73:3Limiting probability distributions of a passive scalar in a random velocity field
Ya. G. Sinai, Victor Yakhot, Phys. Rev. Lett., 1989

1:1:73:5Probability distribution of a passive scalar in grid-generated turbulence
Jayesh, Z. Warhaft, Phys. Rev. Lett., 1991

1:1:73:7Simple models of non-Gaussian statistics for a turbulently advected passive scalar
Mark Holzer, Alain Pumir, Phys. Rev. E, 1993

1:1:73:12Probability distributions in high-Rayleigh number Bénard convection
Victor Yakhot, Phys. Rev. Lett., 1989

1:1:73:21Mean-field theories of random advection
Alan R. Kerstein, Patrick A. McMurtry, Phys. Rev. E, 1994

1:1:74:2Pressure and kinetic energy transport across the cavity mouth in resonating cavities
Peter Roger Bailey, Antonella Abbá, Daniela Tordella, Phys. Rev. E, 2013

1:1:74:3Sufficient condition for Gaussian departure in turbulence
Daniela Tordella, Michele Iovieno, Peter Roger Bailey, Phys. Rev. E, 2008

1:1:74:15Small-Scale Anisotropy in Turbulent Shearless Mixing
Daniela Tordella, Michele Iovieno, Phys. Rev. Lett., 2011

1:1:74:16 Publisher's Note: Pressure and kinetic energy transport across the cavity mouth in resonating cavities [Phys. Rev. E 87 , 013013 (2013)]
Peter Roger Bailey, Antonella Abbá, Daniela Tordella, Phys. Rev. E, 2013

1:1:75:3Bubble behavior in a Taylor vortex
Rensheng Deng, Chi-Hwa Wang, Kenneth A. Smith, Phys. Rev. E, 2006

1:1:75:11Mass transport in turbulent Couette-Taylor flow
W. Y. Tam, Harry L. Swinney, Phys. Rev. A, 1987

1:1:75:19Superposition of Traveling Waves in the Circular Couette System
R. S. Shaw, C. David Andereck, L. A. Reith, Harry L. Swinney, Phys. Rev. Lett., 1982

1:1:78:3Transit times in turbulent flows
H. L. Pécseli, J. Trulsen, Phys. Rev. E, 2010

1:1:78:4On Physically Similar Systems; Illustrations of the Use of Dimensional Equations
E. Buckingham, Phys. Rev., 1914

1:1:78:5Pair dispersion in synthetic fully developed turbulence
G. Boffetta, A. Celani, A. Crisanti, A. Vulpiani, Phys. Rev. E, 1999

1:1:78:8Predator-prey encounters in turbulent waters
J. Mann, S. Ott, H. L. Pécseli, J. Trulsen, Phys. Rev. E, 2002

1:1:78:11Experimental studies of occupation times in turbulent flows
J. Mann, S. Ott, H. L. Pécseli, J. Trulsen, Phys. Rev. E, 2003

1:1:79:1Reexamination of the infrared properties of randomly stirred hydrodynamics
A. Berera, S. R. Yoffe, Phys. Rev. E, 2010

1:1:79:2Asymptotic freedom, non-Gaussian perturbation theory, and the application of renormalization group theory to isotropic turbulence
W. D. McComb, Phys. Rev. E, 2006

1:1:79:3Galilean invariance and vertex renormalization in turbulence theory
W. D. McComb, Phys. Rev. E, 2005

1:1:79:4Galilean invariance and homogeneous anisotropic randomly stirred flows
Arjun Berera, David Hochberg, Phys. Rev. E, 2005

1:1:79:5Long-Time Tails and the Large-Eddy Behavior of a Randomly Stirred Fluid
Dieter Forster, David R. Nelson, Michael J. Stephen, Phys. Rev. Lett., 1976

1:1:79:7Renormalization-group estimates of transport coefficients in the advection of a passive scalar by incompressible turbulence
Ye Zhou, George Vahala, Phys. Rev. E, 1993

1:1:79:9Reformulation of the statistical equations for turbulent shear flow
W. D. McComb, Phys. Rev. A, 1982

1:1:79:10Conditional averaging procedure for the elimination of the small-scale modes from incompressible fluid turbulence at high Reynolds numbers
W. D. McComb, A. G. Watt, Phys. Rev. Lett., 1990

1:1:79:13Multicomponent turbulence, the spherical limit, and non-Kolmogorov spectra
Chung-Yu Mou, Peter B. Weichman, Phys. Rev. E, 1995

1:1:79:14Multifractality in the stochastic Burgers equation
F. Hayot, C. Jayaprakash, Phys. Rev. E, 1996

1:1:79:15Symmetrization of the self-energy integral in the Yakhot-Orszag renormalization-group calculation
Malay K. Nandy, Phys. Rev. E, 1997

1:1:79:16Conditional-averaging procedure for problems with mode-mode coupling
W. D. McComb, W. Roberts, A. G. Watt, Phys. Rev. A, 1992

1:1:79:17Two-field theory of incompressible-fluid turbulence
W. D. McComb, A. G. Watt, Phys. Rev. A, 1992

1:1:79:21Solvable model in renormalization group analysis for effective eddy viscosity
Chien C. Chang, Bin-Shei Lin, Chi-Tzung Wang, Phys. Rev. E, 2003

1:1:79:23Locality hypothesis in the renormalized Navier-Stokes equation
D. Carati, Phys. Rev. A, 1991

1:1:79:24One modification to the Yakhot-Orszag calculation in the renormalization-group theory of turbulence
Xiao-Hong Wang, Feng Wu, Phys. Rev. E, 1993

1:1:79:25Renormalization-group theory for the eddy viscosity in subgrid modeling
Ye Zhou, George Vahala, Murshed Hossain, Phys. Rev. A, 1988

1:1:80:1Stochastic perturbations in vortex-tube dynamics
L. Moriconi, F. A. S. Nobre, Phys. Rev. E, 2004

1:1:80:2Statistics of intense turbulent vorticity events
L. Moriconi, Phys. Rev. E, 2004

1:1:80:4Review of theoretical modelling approaches of Rayleigh-Taylor instabilities and turbulent mixing
S. I. Abarzhi, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010

1:1:80:5Instantons and intermittency
G. Falkovich, I. Kolokolov, V. Lebedev, A. Migdal, Phys. Rev. E, 1996

1:1:80:7Vortex Burst as a Source of Turbulence
Yannis Cuypers, Agnès Maurel, Philippe Petitjeans, Phys. Rev. Lett., 2003

1:1:80:9Instanton for the Kraichnan passive scalar problem
E. Balkovsky, V. Lebedev, Phys. Rev. E, 1998

1:1:80:11Instanton for random advection
Michael Chertkov, Phys. Rev. E, 1997

1:1:80:14Quantized Turbulence Physics
Demosthenes Kivotides, Anthony Leonard, Phys. Rev. Lett., 2003

1:1:80:15 Vortex-ring model of the superfluid λ transition
Gary A. Williams, Phys. Rev. Lett., 1987

1:1:81:1Dual multifractal spectra
Stéphane Roux, Mogens H. Jensen, Phys. Rev. E, 2004

1:1:81:3Inverse structure functions
Bruce R. Pearson, Willem van de Water, Phys. Rev. E, 2005

1:1:81:4Inversion formula of multifractal energy dissipation in three-dimensional fully developed turbulence
Jian-Liang Xu, Wei-Xing Zhou, Hai-Feng Liu, Xin Gong, Fu-Cheng Wang, Zun-Hong Yu, Phys. Rev. E, 2006

1:1:81:5Multiscaling and Structure Functions in Turbulence: An Alternative Approach
Mogens H. Jensen, Phys. Rev. Lett., 1999

1:1:81:7Exit time of turbulent signals: A way to detect the intermediate dissipative range
L. Biferale, M. Cencini, D. Vergni, A. Vulpiani, Phys. Rev. E, 1999

1:1:81:10Inverse Statistics of Smooth Signals: The Case of Two Dimensional Turbulence
L. Biferale, M. Cencini, A. Lanotte, D. Vergni, A. Vulpiani, Phys. Rev. Lett., 2001

1:1:81:12Universal Shape of Scaling Functions in Turbulence
Janine Herweijer, Willem van de Water, Phys. Rev. Lett., 1995

1:1:81:16Exact Multifractal Spectra for Arbitrary Laplacian Random Walks
M. B. Hastings, Phys. Rev. Lett., 2002

1:1:83:8Finite-time singularities in the axisymmetric three-dimension Euler equations
Alain Pumir, Eric D. Siggia, Phys. Rev. Lett., 1992

1:1:83:11Incipient singularities in the Navier-Stokes equations
Eric D. Siggia, Alain Pumir, Phys. Rev. Lett., 1985

1:1:84:1Heat-flux scaling in turbulent Rayleigh-Bénard convection with an imposed longitudinal wind
Andrea Scagliarini, Ármann Gylfason, Federico Toschi, Phys. Rev. E, 2014

1:1:84:4Intermittency and Structure Functions in Channel Flow Turbulence
F. Toschi, G. Amati, S. Succi, R. Benzi, R. Piva, Phys. Rev. Lett., 1999

1:1:84:5Statistical symmetries of the Lundgren-Monin-Novikov hierarchy
Marta Wacławczyk, Nicola Staffolani, Martin Oberlack, Andreas Rosteck, Michael Wilczek, Rudolf Friedrich, Phys. Rev. E, 2014

1:1:84:8Shear Effects in Nonhomogeneous Turbulence
F. Toschi, E. Lévêque, G. Ruiz-Chavarria, Phys. Rev. Lett., 2000

1:1:85:1Nonperturbative renormalization group study of the stochastic Navier-Stokes equation
Carlos Mejía-Monasterio, Paolo Muratore-Ginanneschi, Phys. Rev. E, 2012

1:1:85:2Response function of turbulence computed via fluctuation-response relation of a Langevin system with vanishing noise
Takeshi Matsumoto, Michio Otsuki, Ooshida Takeshi, Susumu Goto, Akio Nakahara, Phys. Rev. E, 2014

1:1:85:3Turbulence and Multiscaling in the Randomly Forced Navier-Stokes Equation
Anirban Sain, Manu, Rahul Pandit, Phys. Rev. Lett., 1998

1:1:85:5Effects of Forcing in Three-Dimensional Turbulent Flows
Luca Biferale, Alessandra S. Lanotte, Federico Toschi, Phys. Rev. Lett., 2004

1:1:85:7Scaling Properties of the Two-Dimensional Randomly Stirred Navier-Stokes Equation
Andrea Mazzino, Paolo Muratore-Ginanneschi, Stefano Musacchio, Phys. Rev. Lett., 2007

1:1:85:8Asymptotic behavior of the solution of the two-dimensional stochastic vorticity equation
Juha Honkonen, Phys. Rev. E, 1998

1:1:85:10Dynamic Multiscaling in Two-Dimensional Fluid Turbulence
Samriddhi Sankar Ray, Dhrubaditya Mitra, Prasad Perlekar, Rahul Pandit, Phys. Rev. Lett., 2011

1:1:85:11Analogies between scaling in turbulence, field theory, and critical phenomena
Gregory Eyink, Nigel Goldenfeld, Phys. Rev. E, 1994

1:1:85:14Fluctuation-response relation in turbulent systems
L. Biferale, I. Daumont, G. Lacorata, A. Vulpiani, Phys. Rev. E, 2001

1:1:85:17Universality, marginal operators, and limit cycles
Stanisław D. Głazek, Kenneth G. Wilson, Phys. Rev. B, 2004

1:1:86:5Fluctuations and transport in a stirred fluid with a mean gradient
J. P. Gollub, J. Clarke, M. Gharib, B. Lane, O. N. Mesquita, Phys. Rev. Lett., 1991

1:1:87:1Relations between Lagrangian models and synthetic random velocity fields
Piero Olla, Paolo Paradisi, Phys. Rev. E, 2004

1:1:88:2Deformation field in indentation of a granular ensemble
Tejas G. Murthy, Ebenezer Gnanamanickam, Srinivasan Chandrasekar, Phys. Rev. E, 2012

1:1:90:1Statistical description of turbulent dispersion
J. J. H. Brouwers, Phys. Rev. E, 2012

1:1:91:1Finite-size scaling of two-point statistics and the turbulent energy cascade generators
Jochen Cleve, Thomas Dziekan, Jürgen Schmiegel, Ole E. Barndorff-Nielsen, Bruce R. Pearson, Katepalli R. Sreenivasan, Martin Greiner, Phys. Rev. E, 2005

1:1:91:2Two correlation patterns as indicators for underlying dynamics of complex systems
Yuanfang Wu, Lianshou Liu, Yingdan Wang, Yuting Bai, Hongbo Liao, Phys. Rev. E, 2005

1:1:91:3Analytic Multivariate Generating Function for Random Multiplicative Cascade Processes
Martin Greiner, Hans C. Eggers, Peter Lipa, Phys. Rev. Lett., 1998

1:1:91:4Spatial correlations in multifractals
M. E. Cates, J. M. Deutsch, Phys. Rev. A, 1987

1:1:91:6Ultrametric Structure of Multiscale Energy Correlations in Turbulent Models
R. Benzi, L. Biferale, E. Trovatore, Phys. Rev. Lett., 1997

1:1:91:7Scale-invariant multiplier distributions in turbulence
Ashvin B. Chhabra, K. R. Sreenivasan, Phys. Rev. Lett., 1992

1:1:91:8 Wavelet correlations in the p model
Martin Greiner, Peter Lipa, Peter Carruthers, Phys. Rev. E, 1995

1:1:91:9Self-similarity and probability distributions of turbulent intermittency
Gianni Pedrizzetti, Evgeny A. Novikov, Alexander A. Praskovsky, Phys. Rev. E, 1996

1:1:91:11Spatial correlations of singularity strengths in multifractal branching processes
Martin Greiner, Jürgen Schmiegel, Felix Eickemeyer, Peter Lipa, Hans C. Eggers, Phys. Rev. E, 1998

1:1:91:17Multiplier phenomenology in random multiplicative cascade processes
Bruno Jouault, Peter Lipa, Martin Greiner, Phys. Rev. E, 1999

1:1:91:19Negative dimensions of the turbulent dissipation field
Jaap Molenaar, Janine Herweijer, Willem van de Water, Phys. Rev. E, 1995

1:1:91:20Limitations of random multipliers in describing turbulent energy dissipation
Mark Nelkin, Gustavo Stolovitzky, Phys. Rev. E, 1996

1:1:91:22 Charged-Particle Multiplicity near Midrapidity in Central A u + A u Collisions at s NN = 56 and 130 GeV
B. B. Back, M. D. Baker, D. S. Barton, S. Basilev, B. D. Bates, R. Baum, R. R. Betts, A. Białas, R. Bindel, W. Bogucki, A. Budzanowski, W. Busza, A. Carroll, M. Ceglia, Y.-H. Chang, A. E. Chen, T. Coghen, C. Conner, W. Czyż, B. Da̧browski, M. P. Decowski, M. Despet, P. Fita, J. Fitch, M. Friedl, K. Gałuszka, R. Ganz, E. Garcia, N. George, J. Godlewski, C. Gomes, E. Griesmayer, K. Gulbrandsen, S. Gushue, J. Halik, C. Halliwell, P. Haridas, A. Hayes, G. A. Heintzelman, C. Henderson, R. Hollis, R. Hołyński, B. Holzman, E. Johnson, J. Kane, J. Katzy, W. Kita, J. Kotuła, H. Kraner, W. Kucewicz, P. Kulinich, C. Law, M. Lemler, J. Ligocki, W. T. Lin, S. Manly, D. McLeod, J. Michałowski, A. Mignerey, J. Mülmenstädt, M. Neal, R. Nouicer, A. Olszewski, R. Pak, I. C. Park, M. Patel, H. Pernegger, M. Plesko, C. Reed, L. P. Remsberg, M. Reuter, C. Roland, G. Roland, D. Ross, L. Rosenberg, J. Ryan, A. Sanzgiri, P. Sarin, P. Sawicki, J. Scaduto, J. Shea, J. Sinacore, W. Skulski, S. G. Steadman, G. S. F. Stephans, P. Steinberg, A. Stra̧czek, M. Stodulski, M. Strȩk, Z. Stopa, A. Sukhanov, K. Surowiecka, J.-L. Tang, R. Teng, A. Trzupek, C. Vale, G. J. van Nieuwenhuizen, R. Verdier, B. Wadsworth, F. L. H. Wolfs, B. Wosiek, K. Woźniak, A. H. Wuosmaa, B. Wysłouch, K. Zalewski, P. Żychowski, Phys. Rev. Lett., 2000

1:1:91:23Clocking Hadronization in Relativistic Heavy-Ion Collisions with Balance Functions
Steffen A. Bass, Pawel Danielewicz, Scott Pratt, Phys. Rev. Lett., 2000

1:1:91:25Mutual information and forward-backward correlations in multihadron production
P. Carruthers, C. C. Shih, Phys. Rev. Lett., 1989

1:1:91:30Analysis of scaled-factorial-moment data
David Seibert, Phys. Rev. D, 1990

1:1:99:3Inverse energy cascade in a turbulent round jet
M. Yu. Hrebtov, B. B. Ilyushin, D. V. Krasinsky, Phys. Rev. E, 2010

1:1:100:17Nonlocal transport of passive scalars in turbulent penetrative convection
Mark S. Miesch, Axel Brandenburg, Ellen G. Zweibel, Phys. Rev. E, 2000

1:1:104:10Possible universal transitional scenario in a flat plate boundary layer: Measurement and visualization
C. B. Lee, Phys. Rev. E, 2000

1:1:105:1Reynolds stress model involving the mean spin tensor
Yu-Ning Huang, Hui-Yang Ma, Phys. Rev. E, 2004

1:1:105:16Four-Dimensional Formulations of Newtonian Mechanics and Their Relation to the Special and the General Theory of Relativity
PETER HAVAS, Rev. Mod. Phys., 1964

1:1:109:1:1Molecular tagging velocimetry in turbulence using biacetyl
M. Mirzaei, N. J. Dam, W. van de Water, Phys. Rev. E, 2012

1:1:109:2:1Writing in turbulent air
Jeroen Bominaar, Mira Pashtrapanska, Thijs Elenbaas, Nico Dam, Hans ter Meulen, Willem van de Water, Phys. Rev. E, 2008

1:1:113:4Volumetric method for calculating the flow around moving objects in lattice-Boltzmann schemes
M. Rohde, J. J. Derksen, H. E. A. Van den Akker, Phys. Rev. E, 2002

1:1:116:1Direct numerical simulation of a near-field particle-laden plane turbulent jet
Jianren Fan, Kun Luo, Man Yeong Ha, Kefa Cen, Phys. Rev. E, 2004

1:1:118:6Rotational Intermittency and Turbulence Induced Lift Experienced by Large Particles in a Turbulent Flow
Robert Zimmermann, Yoann Gasteuil, Mickael Bourgoin, Romain Volk, Alain Pumir, Jean-François Pinton, Phys. Rev. Lett., 2011

1:1:119:2Interaction and coalescence of large bubbles rising in a thin gap
Sander G. Huisman, Patricia Ern, Véronique Roig, Phys. Rev. E, 2012

1:1:124:1Least-squares dynamic approximation method for evolution of uncertainty in initial conditions of dynamical systems
Carlos Pantano, Babak Shotorban, Phys. Rev. E, 2007

1:1:124:7Interpolating distributed approximating functionals
D. K. Hoffman, G. W. Wei, D. S. Zhang, D. J. Kouri, Phys. Rev. E, 1998

1:1:131:1Simulation of stochastic systems via polynomial chaos expansions and convex optimization
Lorenzo Fagiano, Mustafa Khammash, Phys. Rev. E, 2012

1:1:132:1Heisenberg approximation in passive scalar turbulence
Kishore Dutta, Malay K. Nandy, Phys. Rev. E, 2011

1:1:132:3 Heisenberg’s eddy-viscosity approximation, the distant-interaction algorithm, and the ε expansion in turbulence
Malay K. Nandy, Phys. Rev. E, 2000

1:1:132:6Renormalization group analysis for thermal turbulent transport
Bin-Shei Lin, Chien C. Chang, Chi-Tzung Wang, Phys. Rev. E, 2000

1:1:134:4Properties of Velocity Circulation in Three-Dimensional Turbulence
Nianzheng Cao, Shiyi Chen, Katepalli R. Sreenivasan, Phys. Rev. Lett., 1996

1:1:137:2Nelkin scaling for the Burgers equation and the role of high-precision calculations
Sagar Chakraborty, Uriel Frisch, Walter Pauls, Samriddhi Sankar Ray, Phys. Rev. E, 2012

1:1:137:4Extended Self-Similarity in Turbulent Systems: An Analytically Soluble Example
Daniel Segel, Victor L'vov, Itamar Procaccia, Phys. Rev. Lett., 1996

1:1:137:9Extended self-similarity and dissipation range dynamics of three-dimensional turbulence
Anirban Sain, J. K. Bhattacharjee, Phys. Rev. E, 1999

1:1:139:1Intermittency exponent of the turbulent energy cascade
Jochen Cleve, Martin Greiner, Bruce R. Pearson, Katepalli R. Sreenivasan, Phys. Rev. E, 2004

1:1:139:3Reply to “Comment on ‘Intermittency exponent of the turbulent energy cascade’ ”
K. R. Sreenivasan, Phys. Rev. E, 2006

1:1:139:4Effect of large-scale intermittency and mean shear on scaling-range exponents in a turbulent jet
J. Mi, R. A. Antonia, Phys. Rev. E, 2001

1:1:139:6Transitions and probes in turbulent helium
Virginie Emsellem, Leo P. Kadanoff, Detlef Lohse, Patrick Tabeling, Z. Jane Wang, Phys. Rev. E, 1997

1:1:144:12Influence of particle inertia and Basset force on tracer dynamics: Analytic results in the small-inertia limit
A. N. Yannacopoulos, G. Rowlands, G. P. King, Phys. Rev. E, 1997

1:1:147:11Three-Dimensional Temporal Spectrum of Stretched Vortices
Maurice Rossi, Stéphane Le Dizès, Phys. Rev. Lett., 1997

1:1:148:9Structure of vortices in a Karman street behind a heated cylinder
A. B. Ezersky, J. C. Lecordier, P. Paranthoën, P. L. Soustov, Phys. Rev. E, 2000

1:1:154:1Optimal interpolation schemes for particle tracking in turbulence
M. A. T. van Hinsberg, J. H. M. ten Thije Boonkkamp, F. Toschi, H. J. H. Clercx, Phys. Rev. E, 2013

1:1:157:1Chaotic motion of light particles in an unsteady three-dimensional vortex: Experiments and simulation
József Vanyó, Miklós Vincze, Imre M. Jánosi, Tamás Tél, Phys. Rev. E, 2014

1:1:157:10Chiral Selection by Interfacial Shearing of Self-Assembled Achiral Molecules
Núria Petit-Garrido, Jordi Ignés-Mullol, Josep Claret, Francesc Sagués, Phys. Rev. Lett., 2009

1:1:159:1Renormalization-Group Analysis of Turbulence
Victor Yakhot, Steven A. Orszag, Phys. Rev. Lett., 1986

1:1:159:4Self-similar decay of three-dimensional homogeneous turbulence with hyperviscosity
Vadim Borue, Steven A. Orszag, Phys. Rev. E, 1995

1:1:162:1Effects of external intermittency and mean shear on the spectral inertial-range exponent in a turbulent square jet
J. Zhang, M. Xu, A. Pollard, J. Mi, Phys. Rev. E, 2013

1:1:163:1Numerical study of particle-vortex interaction and turbulence modulation in swirling jets
Nan Gui, Jianren Fan, Song Chen, Phys. Rev. E, 2010

1:1:163:2Modulation on coherent vortex structures by dispersed solid particles in a three-dimensional mixing layer
Jianren Fan, Kun Luo, Youqu Zheng, Hanhui Jin, Kefa Cen, Phys. Rev. E, 2003

1:1:163:6 Erratum: Modulation on coherent vortex structures by dispersed solid particles in a three-dimensional mixing layer [Phys. Rev. E 68 , 036309 (2003)]
Jianren Fan, Kun Luo, Youqu Zheng, Hanhui Jin, Kefa Cen, Phys. Rev. E, 2004

1:1:164:1Thermophoretically modified aerosol Brownian coagulation
Manuel Arias-Zugasti, Daniel E. Rosner, Phys. Rev. E, 2011

1:1:164:9Thermophoretically Dominated Aerosol Coagulation
Daniel E. Rosner, Manuel Arias-Zugasti, Phys. Rev. Lett., 2011

1:1:165:1Molecular to fluid dynamics: The consequences of stochastic molecular motion
Stefan Heinz, Phys. Rev. E, 2004

1:1:169:1Sedimentation of particles in a vigorously convecting fluid
G. Lavorel, M. Le Bars, Phys. Rev. E, 2009

1:1:176:1Multifractal structure of fully developed turbulence
K. P. Zybin, V. A. Sirota, Phys. Rev. E, 2013

1:1:179:1Instability of the perfect subgrid model in implicit-filtering large eddy simulation of geostrophic turbulence
B. T. Nadiga, D. Livescu, Phys. Rev. E, 2007

1:1:181:1Dynamics of tidal synchronization and orbit circularization of celestial bodies
Bruno Escribano, Jozsef Vanyo, Idan Tuval, Julyan H. E. Cartwright, Diego L. González, Oreste Piro, Tamás Tél, Phys. Rev. E, 2008

1:1:182:2Dynamical systems model of entrainment due to coherent structures
Srevatsan Muralidharan, K. R. Sreenivas, Rama Govindarajan, Phys. Rev. E, 2005

1:1:182:4Universal Behavior of Entrainment due to Coherent Structures in Turbulent Shear Flow
Rama Govindarajan, Phys. Rev. Lett., 2002

1:1:184:6Droplet vaporization at critical conditions: Long-time convective-diffusive profiles along the critical isobar
Manuel Arias-Zugasti, Pedro L. García-Ybarra, Jose L. Castillo, Phys. Rev. E, 1999

1:1:184:7Supercritical vaporization: Distinguishable fluid regions
Manuel Arias-Zugasti, Jose L. Castillo, Pedro L. García-Ybarra, Phys. Rev. E, 2003

1:1:186:1Rapidly decorrelating velocity-field model as a tool for solving one-point Fokker-Planck equations for probability density functions of turbulent reactive scalars
Vladimir Sabel’nikov, Olivier Soulard, Phys. Rev. E, 2005

1:1:188:1Scalar gradient fields by geometric measure theory
Jörg Schumacher, Phys. Rev. E, 2004

1:1:188:2Fractal geometry of isoscalar surfaces in turbulence: Theory and experiments
Petre Constantin, Itamar Procaccia, K. R. Sreenivasan, Phys. Rev. Lett., 1991

1:1:188:3Scaling in fluid turbulence: A geometric theory
Peter Constantin, Itamar Procaccia, Phys. Rev. E, 1993

1:1:188:4Structure function of passive scalars in two-dimensional turbulence
Bruno Eckhardt, Jörg Schumacher, Phys. Rev. E, 1999

1:1:189:4Turbulence Effect on Cloud Radiation
K. Matsuda, R. Onishi, R. Kurose, S. Komori, Phys. Rev. Lett., 2012

1:1:190:1Passive scalar spectrum in high-Schmidt-number stationary and nonstationary turbulence
P. Hunana, G. P. Zank, Phys. Rev. E, 2008

1:1:192:2Turbulence models and probability distributions of dissipation and relevant quantities in isotropic turbulence
Iwao Hosokawa, Phys. Rev. Lett., 1991

1:2:1:131Self-similarity in the inertial region of wall turbulence
J. Klewicki, J. Philip, I. Marusic, K. Chauhan, C. Morrill-Winter, Phys. Rev. E, 2014

1:2:1:191Stagnation point von Kármán coefficient
V. Dallas, J. C. Vassilicos, G. F. Hewitt, Phys. Rev. E, 2009

1:2:1:229Turbulent Pipe Flow at Extreme Reynolds Numbers
M. Hultmark, M. Vallikivi, S. C. C. Bailey, A. J. Smits, Phys. Rev. Lett., 2012

1:2:1:269Reynolds Number Invariance of the Structure Inclination Angle in Wall Turbulence
Ivan Marusic, Weston D. C. Heuer, Phys. Rev. Lett., 2007

1:2:1:301Minimalist turbulent boundary layer model
L. Moriconi, Phys. Rev. E, 2009

1:2:1:324Reynolds Number Dependence of Streamwise Velocity Spectra in Turbulent Pipe Flow
J. F. Morrison, W. Jiang, B. J. McKeon, A. J. Smits, Phys. Rev. Lett., 2002

1:2:1:341 Origin of the “ 1 ” Spectral Law in Wall-Bounded Turbulence
Vladimir Nikora, Phys. Rev. Lett., 1999

1:2:1:409Skin friction in zero-pressure-gradient boundary layers
Victor Yakhot, Phys. Rev. E, 2010

1:2:1:433Wave-Coherent Fields in Air Flow over Ocean Waves: Identification of Cooperative Behavior Buried in Turbulence
Tihomir Hristov, Carl Friehe, Scott Miller, Phys. Rev. Lett., 1998

1:2:1:501Constrained Euler system for Navier-Stokes turbulence
Zhen-Su She, Eric Jackson, Phys. Rev. Lett., 1993

1:2:1:598Theory of Flux Creep in Hard Superconductors
P. W. Anderson, Phys. Rev. Lett., 1962

1:2:1:602On the Problem of the Molecular Theory of Superconductivity
F. London, Phys. Rev., 1948

1:2:2:9Subcritical transition to turbulence: What we can learn from the physics of glasses
Olivier Dauchot, Eric Bertin, Phys. Rev. E, 2012

1:2:2:19Three-Dimensional Coherent States in Plane Shear Flows
Fabian Waleffe, Phys. Rev. Lett., 1998

1:2:2:28Statistical analysis of coherent structures in transitional pipe flow
Tobias M. Schneider, Bruno Eckhardt, Jürgen Vollmer, Phys. Rev. E, 2007

1:2:2:39Spatiotemporal perspective on the decay of turbulence in wall-bounded flows
Paul Manneville, Phys. Rev. E, 2009

1:2:2:42Laminar-turbulent boundary in plane Couette flow
Tobias M. Schneider, John F. Gibson, Maher Lagha, Filippo De Lillo, Bruno Eckhardt, Phys. Rev. E, 2008

1:2:2:44Numerical study of laminar-turbulent transition in particle-laden channel flow
Joy Klinkenberg, Gaetano Sardina, H. C. de Lange, Luca Brandt, Phys. Rev. E, 2013

1:2:2:52Lifetime statistics in transitional pipe flow
Tobias M. Schneider, Bruno Eckhardt, Phys. Rev. E, 2008

1:2:2:54Long-wavelength instability of coherent structures in plane Couette flow
Konstantin Melnikov, Tobias Kreilos, Bruno Eckhardt, Phys. Rev. E, 2014

1:2:2:56Simplifying the complexity of pipe flow
Dwight Barkley, Phys. Rev. E, 2011

1:2:2:70Towards minimal perturbations in transitional plane Couette flow
Yohann Duguet, Luca Brandt, B. Robin J. Larsson, Phys. Rev. E, 2010

1:2:2:74Lower Branch Coherent States in Shear Flows: Transition and Control
Jue Wang, John Gibson, Fabian Waleffe, Phys. Rev. Lett., 2007

1:2:2:78Rapid path to transition via nonlinear localized optimal perturbations in a boundary-layer flow
S. Cherubini, P. De Palma, J.-Ch. Robinet, A. Bottaro, Phys. Rev. E, 2010

1:2:2:79Transient turbulence in Taylor-Couette flow
Daniel Borrero-Echeverry, Michael F. Schatz, Randall Tagg, Phys. Rev. E, 2010

1:2:2:81Stochastic and deterministic motion of a laminar-turbulent front in a spanwisely extended Couette flow
Yohann Duguet, Olivier Le Maître, Philipp Schlatter, Phys. Rev. E, 2011

1:2:2:82Direct velocity measurement of a turbulent shear flow in a planar Couette cell
Michael J. Niebling, Ken Tore Tallakstad, Renaud Toussaint, Knut Jørgen Måløy, Phys. Rev. E, 2014

1:2:2:86Families of subcritical spirals in highly counter-rotating Taylor-Couette flow
Alvaro Meseguer, Fernando Mellibovsky, Marc Avila, Francisco Marques, Phys. Rev. E, 2009

1:2:2:88Scaling of the Turbulence Transition Threshold in a Pipe
B. Hof, A. Juel, T. Mullin, Phys. Rev. Lett., 2003

1:2:2:92Three-dimensional traveling waves in a square duct
Håkan Wedin, Alessandro Bottaro, Masato Nagata, Phys. Rev. E, 2009

1:2:2:93Nature of laminar-turbulence intermittency in shear flows
M. Avila, B. Hof, Phys. Rev. E, 2013

1:2:2:94Computational Study of Turbulent Laminar Patterns in Couette Flow
Dwight Barkley, Laurette S. Tuckerman, Phys. Rev. Lett., 2005

1:2:2:99Transient turbulence in plane Couette flow
Tobias M. Schneider, Filippo De Lillo, Juergen Buehrle, Bruno Eckhardt, Tim Dörnemann, Kay Dörnemann, Bernd Freisleben, Phys. Rev. E, 2010

1:2:2:104From temporal to spatiotemporal dynamics in transitional plane Couette flow
Jimmy Philip, Paul Manneville, Phys. Rev. E, 2011

1:2:2:107Extreme fluctuations and the finite lifetime of the turbulent state
Nigel Goldenfeld, Nicholas Guttenberg, Gustavo Gioia, Phys. Rev. E, 2010

1:2:2:111Experimental scaling law for the subcritical transition to turbulence in plane Poiseuille flow
Grégoire Lemoult, Jean-Luc Aider, José Eduardo Wesfreid, Phys. Rev. E, 2012

1:2:2:117 Fold-pitchfork bifurcation for maps with Z 2 symmetry in pipe flow
F. Marques, F. Mellibovsky, A. Meseguer, Phys. Rev. E, 2013

1:2:2:121Three-dimensional traveling-wave solutions in plane Couette flow
M. Nagata, Phys. Rev. E, 1997

1:2:2:124Directed percolation describes lifetime and growth of turbulent puffs and slugs
Maksim Sipos, Nigel Goldenfeld, Phys. Rev. E, 2011

1:2:2:128Dynamical systems and the transition to turbulence in linearly stable shear flows
B. Eckhardt, H. Faisst, A. Schmiegel, T. M Schneider, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008

1:2:2:132Transient dynamics and nonlinear stability of spatially extended systems
Andreas Handel, Roman O. Grigoriev, Phys. Rev. E, 2006

1:2:2:133Characterizing the edge of chaos for a shear flow model
Lina Kim, Jeff Moehlis, Phys. Rev. E, 2008

1:2:2:139Coherent structures in dissipative particle dynamics simulations of the transition to turbulence in compressible shear flows
Jan-Willem van de Meent, Alexander Morozov, Ellák Somfai, Eric Sultan, Wim van Saarloos, Phys. Rev. E, 2008

1:2:2:142Traveling hairpin-shaped fluid vortices in plane Couette flow
K. Deguchi, M. Nagata, Phys. Rev. E, 2010

1:2:2:147Fractal Stability Border in Plane Couette Flow
Armin Schmiegel, Bruno Eckhardt, Phys. Rev. Lett., 1997

1:2:2:149Damping filter method for obtaining spatially localized solutions
Toshiki Teramura, Sadayoshi Toh, Phys. Rev. E, 2014

1:2:2:153Evolution of turbulent spots in a parallel shear flow
Jörg Schumacher, Bruno Eckhardt, Phys. Rev. E, 2001

1:2:2:157Transition in Localized Pipe Flow Turbulence
Fernando Mellibovsky, Alvaro Meseguer, Tobias M. Schneider, Bruno Eckhardt, Phys. Rev. Lett., 2009

1:2:2:163Reply to “Comment on ‘Transition to turbulence in a shear flow’ ”
Bruno Eckhardt, Phys. Rev. E, 2005

1:2:2:164Using Nonlinear Transient Growth to Construct the Minimal Seed for Shear Flow Turbulence
Chris C. T. Pringle, Rich R. Kerswell, Phys. Rev. Lett., 2010

1:2:2:168Coherent Structures in Localized and Global Pipe Turbulence
Ashley P. Willis, Rich R. Kerswell, Phys. Rev. Lett., 2008

1:2:2:172Transition from the Couette-Taylor system to the plane Couette system
Holger Faisst, Bruno Eckhardt, Phys. Rev. E, 2000

1:2:2:173Hairpin Vortex Solution in Planar Couette Flow: A Tapestry of Knotted Vortices
Tomoaki Itano, Sotos C. Generalis, Phys. Rev. Lett., 2009

1:2:2:175Repeller or Attractor? Selecting the Dynamical Model for the Onset of Turbulence in Pipe Flow
Björn Hof, Alberto de Lozar, Dirk Jan Kuik, Jerry Westerweel, Phys. Rev. Lett., 2008

1:2:2:177Nonequilibrium Thermodynamics and the Optimal Path to Turbulence in Shear Flows
Antonios Monokrousos, Alessandro Bottaro, Luca Brandt, Andrea Di Vita, Dan S. Henningson, Phys. Rev. Lett., 2011

1:2:2:199Transition to turbulence in a shear flow
Bruno Eckhardt, Alois Mersmann, Phys. Rev. E, 1999

1:2:2:203Characterization of the hairpin vortex solution in plane Couette flow
Sotos C. Generalis, Tomoaki Itano, Phys. Rev. E, 2010

1:2:2:208Streamwise-Localized Solutions at the Onset of Turbulence in Pipe Flow
M. Avila, F. Mellibovsky, N. Roland, B. Hof, Phys. Rev. Lett., 2013

1:2:2:209Self-Sustained Localized Structures in a Boundary-Layer Flow
Yohann Duguet, Philipp Schlatter, Dan S. Henningson, Bruno Eckhardt, Phys. Rev. Lett., 2012

1:2:2:222Turbulent spots in plane Couette flow
John J. Hegseth, Phys. Rev. E, 1996

1:2:2:223Intermittency in a Locally Forced Plane Couette Flow
S. Bottin, O. Dauchot, F. Daviaud, Phys. Rev. Lett., 1997

1:2:2:226Edge State in Pipe Flow Experiments
A. de Lozar, F. Mellibovsky, M. Avila, B. Hof, Phys. Rev. Lett., 2012

1:2:2:227Homoclinic Tangle on the Edge of Shear Turbulence
Lennaert van Veen, Genta Kawahara, Phys. Rev. Lett., 2011

1:2:2:245Scaling Law for a Subcritical Transition in Plane Poiseuille Flow
Jimmy Philip, Alexander Svizher, Jacob Cohen, Phys. Rev. Lett., 2007

1:2:2:247Oblique Laminar-Turbulent Interfaces in Plane Shear Flows
Yohann Duguet, Philipp Schlatter, Phys. Rev. Lett., 2013

1:2:2:269Symmetry Breaking Via Global Bifurcations of Modulated Rotating Waves in Hydrodynamics
Jan Abshagen, Juan M. Lopez, Francisco Marques, Gerd Pfister, Phys. Rev. Lett., 2005

1:2:2:291Self-Sustaining Process through Streak Generation in a Flat-Plate Boundary Layer
Thomas Duriez, Jean-Luc Aider, José Eduardo Wesfreid, Phys. Rev. Lett., 2009

1:2:2:294 Erratum: Spatiotemporal perspective on the decay of turbulence in wall-bounded flows [Phys. Rev. E 79 , 025301 (2009)]
Paul Manneville, Phys. Rev. E, 2009

1:2:2:310Folded Edge of Turbulence in a Pipe
Y. Tasaka, T. M. Schneider, T. Mullin, Phys. Rev. Lett., 2010

1:2:2:331Scaling of the Turbulence Transition Threshold in a Pipe
B. Hof, A. Juel, T. Mullin, Phys. Rev. Lett., 2003

1:2:2:339Stirring Unmagnetized Plasma
C. Collins, N. Katz, J. Wallace, J. Jara-Almonte, I. Reese, E. Zweibel, C. B. Forest, Phys. Rev. Lett., 2012

1:2:2:352Stability Ordering of Cycle Expansions
C. P. Dettmann, G. P. Morriss, Phys. Rev. Lett., 1997

1:2:2:363Genesis of Streamwise-Localized Solutions from Globally Periodic Traveling Waves in Pipe Flow
M. Chantry, A. P. Willis, R. R. Kerswell, Phys. Rev. Lett., 2014

1:2:3:1:8Strong polymer-turbulence interactions in viscoelastic turbulent channel flow
V. Dallas, J. C. Vassilicos, G. F. Hewitt, Phys. Rev. E, 2010

1:2:3:1:18Spatiotemporal evolution of hairpin eddies, Reynolds stress, and polymer torque in polymer drag-reduced turbulent channel flows
Kyoungyoun Kim, Radhakrishna Sureshkumar, Phys. Rev. E, 2013

1:2:3:1:33Drag reduction in the turbulent Kolmogorov flow
Guido Boffetta, Antonio Celani, Andrea Mazzino, Phys. Rev. E, 2005

1:2:3:1:41 Colloquium : Theory of drag reduction by polymers in wall-bounded turbulence
Itamar Procaccia, Victor S. L’vov, Roberto Benzi, Rev. Mod. Phys., 2008

1:2:3:1:48Dynamics of Hairpin Vortices and Polymer-Induced Turbulent Drag Reduction
Kyoungyoun Kim, Ronald J. Adrian, S. Balachandar, R. Sureshkumar, Phys. Rev. Lett., 2008

1:2:3:1:49Toward a Structural Understanding of Turbulent Drag Reduction: Nonlinear Coherent States in Viscoelastic Shear Flows
Philip A. Stone, Fabian Waleffe, Michael D. Graham, Phys. Rev. Lett., 2002

1:2:3:1:52Drag reduction by polymers in turbulent channel flows: Energy redistribution between invariant empirical modes
Elisabetta De Angelis, Carlo M. Casciola, Victor S. L’vov, Renzo Piva, Itamar Procaccia, Phys. Rev. E, 2003

1:2:3:1:57Active and Hibernating Turbulence in Minimal Channel Flow of Newtonian and Polymeric Fluids
Li Xi, Michael D. Graham, Phys. Rev. Lett., 2010

1:2:3:1:61Nonlinear Elastic Instability in Channel Flows at Low Reynolds Numbers
L. Pan, A. Morozov, C. Wagner, P. E. Arratia, Phys. Rev. Lett., 2013

1:2:3:1:63Mechanism of Polymer Drag Reduction Using a Low-Dimensional Model
Anshuman Roy, Alexander Morozov, Wim van Saarloos, Ronald G. Larson, Phys. Rev. Lett., 2006

1:2:3:1:66Dynamics on the Laminar-Turbulent Boundary and the Origin of the Maximum Drag Reduction Asymptote
Li Xi, Michael D. Graham, Phys. Rev. Lett., 2012

1:2:3:2:8Direct numerical simulations of statistically steady, homogeneous, isotropic fluid turbulence with polymer additives
Prasad Perlekar, Dhrubaditya Mitra, Rahul Pandit, Phys. Rev. E, 2010

1:2:3:2:12Drag reduction by polymer additives in decaying turbulence
Chirag Kalelkar, Rama Govindarajan, Rahul Pandit, Phys. Rev. E, 2005

1:2:3:2:13Polymer stress tensor in turbulent shear flows
Victor S. L’vov, Anna Pomyalov, Itamar Procaccia, Vasil Tiberkevich, Phys. Rev. E, 2005

1:2:3:2:18Turbulence of polymer solutions
E. Balkovsky, A. Fouxon, V. Lebedev, Phys. Rev. E, 2001

1:2:3:2:19Manifestations of Drag Reduction by Polymer Additives in Decaying, Homogeneous, Isotropic Turbulence
Prasad Perlekar, Dhrubaditya Mitra, Rahul Pandit, Phys. Rev. Lett., 2006

1:2:3:2:21Shell model for drag reduction with polymer additives in homogeneous turbulence
Roberto Benzi, Elisabetta De Angelis, Rama Govindarajan, Itamar Procaccia, Phys. Rev. E, 2003

1:2:3:2:31Elastic Energy Flux by Flexible Polymers in Fluid Turbulence
Heng-Dong Xi, Eberhard Bodenschatz, Haitao Xu, Phys. Rev. Lett., 2013

1:2:3:2:36Measured effects of polymer additives on turbulent-velocity fluctuations at various length scales
P. Tong, W. I. Goldburg, J. S. Huang, Phys. Rev. A, 1992

1:2:3:2:46 Erratum: Drag reduction by polymer additives in decaying turbulence [Phys. Rev. E 72 , 017301 (2005)]
Chirag Kalelkar, Rama Govindarajan, Rahul Pandit, Phys. Rev. E, 2011

1:2:3:3:3Coil-stretch transition in an ensemble of polymers in isotropic turbulence
Takeshi Watanabe, Toshiyuki Gotoh, Phys. Rev. E, 2010

1:2:3:3:6Statistics of polymer extensions in turbulent channel flow
Faranggis Bagheri, Dhrubaditya Mitra, Prasad Perlekar, Luca Brandt, Phys. Rev. E, 2012

1:2:3:3:11Turbulent Dynamics of Polymer Solutions
E. Balkovsky, A. Fouxon, V. Lebedev, Phys. Rev. Lett., 2000

1:2:3:3:14Polymer Stretching by Turbulence
Michael Chertkov, Phys. Rev. Lett., 2000

1:2:3:3:15Two-Dimensional Turbulence of Dilute Polymer Solutions
Guido Boffetta, Antonio Celani, Stefano Musacchio, Phys. Rev. Lett., 2003

1:2:3:3:20Power and Pressure Fluctuations in Elastic Turbulence over a Wide Range of Polymer Concentrations
Yonggun Jun, Victor Steinberg, Phys. Rev. Lett., 2009

1:2:3:3:25Dynamics and configurational fluctuations of single DNA molecules in linear mixed flows
Joe S. Hur, Eric S. G. Shaqfeh, Hazen P. Babcock, Steven Chu, Phys. Rev. E, 2002

1:2:3:3:34Comment on “Convective Nonlinearity in Non-Newtonian Fluids”
Antony N. Beris, Michael D. Graham, Iliya Karlin, Hans Christian Öttinger, Phys. Rev. Lett., 2001

1:2:3:3:35 Temmen et al. Reply:
H. Temmen, H. Pleiner, M. Liu, H. R. Brand, Phys. Rev. Lett., 2001

1:2:3:4:8Polymer flexibility and turbulent drag reduction
J. J. J. Gillissen, Phys. Rev. E, 2008

1:2:3:4:9Maximum drag reduction simulation using rodlike polymers
J. J. J. Gillissen, Phys. Rev. E, 2012

1:2:3:4:20Turbulent drag reduction by polymers: A quantitative theory
Gregory Ryskin, Phys. Rev. Lett., 1987

1:2:3:5:16Dynamical model of wall-bounded turbulence
L. Sirovich, X. Zhou, Phys. Rev. Lett., 1994

1:2:3:7:2Drag Reduction by Polymers in Wall Bounded Turbulence
Victor S. L’vov, Anna Pomyalov, Itamar Procaccia, Vasil Tiberkevich, Phys. Rev. Lett., 2004

1:2:3:7:4Additive equivalence in turbulent drag reduction by flexible and rodlike polymers
Roberto Benzi, Emily S. C. Ching, T. S. Lo, Victor S. L’vov, Itamar Procaccia, Phys. Rev. E, 2005

1:2:3:7:6Drag reduction by a linear viscosity profile
Elisabetta De Angelis, Carlo M. Casciola, Victor S. L’vov, Anna Pomyalov, Itamar Procaccia, Vasil Tiberkevich, Phys. Rev. E, 2004

1:2:3:7:7Phenomenology of wall-bounded Newtonian turbulence
Victor S. L’vov, Anna Pomyalov, Itamar Procaccia, Sergej S. Zilitinkevich, Phys. Rev. E, 2006

1:2:3:7:8Drag reduction in homogeneous turbulence by scale-dependent effective viscosity
Roberto Benzi, Emily S. C. Ching, Itamar Procaccia, Phys. Rev. E, 2004

1:2:3:7:9Turbulent drag reduction by flexible and rodlike polymers: Crossover effects at small concentrations
Emily S. C. Ching, T. S. Lo, Itamar Procaccia, Phys. Rev. E, 2006

1:2:3:7:10Scaling of the Mean Velocity Profile for Turbulent Pipe Flow
M. V. Zagarola, A. J. Smits, Phys. Rev. Lett., 1997

1:2:3:7:11Comparison of theory and direct numerical simulations of drag reduction by rodlike polymers in turbulent channel flows
Roberto Benzi, Emily S. C. Ching, Elisabetta De Angelis, Itamar Procaccia, Phys. Rev. E, 2008

1:2:3:7:12Theory of Concentration Dependence in Drag Reduction by Polymers and of the Maximum Drag Reduction Asymptote
Roberto Benzi, Emily S. C. Ching, Nizan Horesh, Itamar Procaccia, Phys. Rev. Lett., 2004

1:2:3:7:16Identification and Calculation of the Universal Asymptote for Drag Reduction by Polymers in Wall Bounded Turbulence
Roberto Benzi, Elisabetta De Angelis, Victor S. L’vov, Itamar Procaccia, Phys. Rev. Lett., 2005

1:2:3:7:21Simple model for drag reduction
Roberto Benzi, Itamar Procaccia, Phys. Rev. E, 2003

1:2:3:8:13Polymer-induced drag reduction in turbulent flows
D. Thirumalai, J. K. Bhattacharjee, Phys. Rev. E, 1996

1:2:3:11:5Turbulent Drag Reduction and Degradation of DNA
H. J. Choi, S. T. Lim, Pik-Yin Lai, C. K. Chan, Phys. Rev. Lett., 2002

1:2:3:12:5Stretching of Polymers in Isotropic Turbulence: A Statistical Closure
Dario Vincenzi, Shi Jin, Eberhard Bodenschatz, Lance R. Collins, Phys. Rev. Lett., 2007

1:2:4:88Turbulent spot evolution in spatially invariant boundary layers
Jens H. M. Fransson, Phys. Rev. E, 2010

1:2:4:110Consecutive turbulence transition delay with reinforced passive control
Sohrab S. Sattarzadeh, Jens H. M. Fransson, Alessandro Talamelli, Bengt E. G. Fallenius, Phys. Rev. E, 2014

1:2:4:141Revival of Classical Vortex Generators Now for Transition Delay
Shahab Shahinfar, Sohrab S. Sattarzadeh, Jens H. M. Fransson, Alessandro Talamelli, Phys. Rev. Lett., 2012

1:2:6:1:8Experiment on a confined electrically driven vortex pair
R. Klein, A. Pothérat, A. Alferenok, Phys. Rev. E, 2009

1:2:6:1:23Appearance of Three Dimensionality in Wall-Bounded MHD Flows
R. Klein, A. Pothérat, Phys. Rev. Lett., 2010

1:2:6:2:18Transition from Laminar to Turbulent Flow in Magneto-Fluid Mechanic Channels
Paul S. Lykoudis, Rev. Mod. Phys., 1960

1:2:6:4:4Small-scale anisotropic intermittency in magnetohydrodynamic turbulence at low magnetic Reynolds numbers
Naoya Okamoto, Katsunori Yoshimatsu, Kai Schneider, Marie Farge, Phys. Rev. E, 2014

1:2:6:5:6Transition to two-dimensionality in magnetohydrodynamic turbulent Taylor-Couette flow
Yurong Zhao, Jianjun Tao, Oleg Zikanov, Phys. Rev. E, 2014

1:2:6:5:10Large-Scale Intermittency of Liquid-Metal Channel Flow in a Magnetic Field
Thomas Boeck, Dmitry Krasnov, André Thess, Oleg Zikanov, Phys. Rev. Lett., 2008

1:2:6:5:14Patterned Turbulence in Liquid Metal Flow: Computational Reconstruction of the Hartmann Experiment
Dmitry Krasnov, André Thess, Thomas Boeck, Yurong Zhao, Oleg Zikanov, Phys. Rev. Lett., 2013

1:2:6:6:5Vorticity generation in creeping flow past a magnetic obstacle
S. Cuevas, S. Smolentsev, M. Abdou, Phys. Rev. E, 2006

1:2:6:6:7Bifurcation analysis in a vortex flow generated by an oscillatory magnetic obstacle
Alberto Beltrán, Eduardo Ramos, Sergio Cuevas, Morten Brøns, Phys. Rev. E, 2010

1:2:6:6:9Structure of the Wake of a Magnetic Obstacle
E. V. Votyakov, Yu. Kolesnikov, O. Andreev, E. Zienicke, A. Thess, Phys. Rev. Lett., 2007

1:2:6:6:10Lorentz Force Velocimetry
A. Thess, E. V. Votyakov, Y. Kolesnikov, Phys. Rev. Lett., 2006

1:2:6:6:12Some Studies of Free-Surface Mercury Magnetohydrodynamics
R. A. Alpher, H. Hurwitz, R. H. Johnson, D. R. White, Rev. Mod. Phys., 1960

1:2:6:7:5Instabilities and Transition in Magnetohydrodynamic Flows in Ducts with Electrically Conducting Walls
Maxime Kinet, Bernard Knaepen, Sergei Molokov, Phys. Rev. Lett., 2009

1:2:6:10:8Sequence of Instabilities in Electromagnetically Driven Flows between Conducting Cylinders
P. Tabeling, Phys. Rev. Lett., 1982

1:2:7:37Phase relationship in laminar channel flow controlled by traveling-wave-like blowing or suction
Hiroya Mamori, Koji Fukagata, Jerôme Hoepffner, Phys. Rev. E, 2010

1:2:7:75Contribution of Reynolds stress distribution to the skin friction in compressible turbulent channel flows
T. Gomez, V. Flutet, P. Sagaut, Phys. Rev. E, 2009

1:2:7:76Control of flow around a circular cylinder for minimizing energy dissipation
Hiroshi Naito, Koji Fukagata, Phys. Rev. E, 2014

1:2:8:5Optimally amplified large-scale streaks and drag reduction in turbulent pipe flow
Ashley P. Willis, Yongyun Hwang, Carlo Cossu, Phys. Rev. E, 2010

1:2:8:25Variational framework for flow optimization using seminorm constraints
D. P. G. Foures, C. P. Caulfield, P. J. Schmid, Phys. Rev. E, 2012

1:2:8:35Linear stability, transient energy growth, and the role of viscosity stratification in compressible plane Couette flow
M. Malik, J. Dey, Meheboob Alam, Phys. Rev. E, 2008

1:2:8:42Nonmodal stability in Hagen-Poiseuille flow of a shear thinning fluid
Rong Liu, Qiu Sheng Liu, Phys. Rev. E, 2012

1:2:8:44Angular redistribution of nonlinear perturbations: A universal feature of nonuniform flows
W. Horton, J.-H. Kim, G. D. Chagelishvili, J. C. Bowman, J. G. Lominadze, Phys. Rev. E, 2010

1:2:8:46Flow non-normality-induced transient growth in superposed Newtonian and non-Newtonian fluid layers
C. Camporeale, F. Gatti, L. Ridolfi, Phys. Rev. E, 2009

1:2:8:51Preventing Transition to Turbulence: A Viscosity Stratification Does Not Always Help
Vijayakumar Chikkadi, A. Sameen, Rama Govindarajan, Phys. Rev. Lett., 2005

1:2:8:54The Stability of Plane Poiseuille Flow
L. H. Thomas, Phys. Rev., 1953

1:2:9:3Chaotic flow and efficient mixing in a microchannel with a polymer solution
Teodor Burghelea, Enrico Segre, Israel Bar-Joseph, Alex Groisman, Victor Steinberg, Phys. Rev. E, 2004

1:2:9:7Flow pattern transition accompanied with sudden growth of flow resistance in two-dimensional curvilinear viscoelastic flows
Hiroki Yatou, Phys. Rev. E, 2010

1:2:9:15Two-dimensional elastic turbulence
S. Berti, A. Bistagnino, G. Boffetta, A. Celani, S. Musacchio, Phys. Rev. E, 2008

1:2:9:16Transition to turbulence in a flow of a shear-thinning viscoelastic solution in a Taylor-Couette cell
Noureddine Latrache, Olivier Crumeyrolle, Innocent Mutabazi, Phys. Rev. E, 2012

1:2:9:26Elastic turbulence in a curvilinear channel flow
Yonggun Jun, Victor Steinberg, Phys. Rev. E, 2011

1:2:9:27Large velocity fluctuations in small-Reynolds-number pipe flow of polymer solutions
D. Bonn, F. Ingremeau, Y. Amarouchene, H. Kellay, Phys. Rev. E, 2011

1:2:9:29Elastic Instability and Curved Streamlines
Peyman Pakdel, Gareth H. McKinley, Phys. Rev. Lett., 1996

1:2:9:30Elastic waves and transition to elastic turbulence in a two-dimensional viscoelastic Kolmogorov flow
S. Berti, G. Boffetta, Phys. Rev. E, 2010

1:2:9:31Minimal model for zero-inertia instabilities in shear-dominated non-Newtonian flows
S. Boi, A. Mazzino, J. O. Pralits, Phys. Rev. E, 2013

1:2:9:32Mixing by Polymers: Experimental Test of Decay Regime of Mixing
T. Burghelea, E. Segre, V. Steinberg, Phys. Rev. Lett., 2004

1:2:9:38Subcritical Finite-Amplitude Solutions for Plane Couette Flow of Viscoelastic Fluids
Alexander N. Morozov, Wim van Saarloos, Phys. Rev. Lett., 2005

1:2:9:40Stretching of Polymers in a Random Three-Dimensional Flow
Alexander Groisman, Victor Steinberg, Phys. Rev. Lett., 2001

1:2:9:41Role of Elastic Stress in Statistical and Scaling Properties of Elastic Turbulence
Teodor Burghelea, Enrico Segre, Victor Steinberg, Phys. Rev. Lett., 2006

1:2:9:42Pattern Formation in Taylor-Couette Flow of Dilute Polymer Solutions: Dynamical Simulations and Mechanism
D. G. Thomas, R. Sureshkumar, B. Khomami, Phys. Rev. Lett., 2006

1:2:9:46Couette-Taylor Flow in a Dilute Polymer Solution
Alexander Groisman, Victor Steinberg, Phys. Rev. Lett., 1996

1:2:9:61Solitary Vortex Pairs in Viscoelastic Couette Flow
Alexander Groisman, Victor Steinberg, Phys. Rev. Lett., 1997

1:2:9:63Viscous Heating and the Stability of Newtonian and Viscoelastic Taylor-Couette Flows
James M. White, Susan J. Muller, Phys. Rev. Lett., 2000

1:2:9:69Transition to Mixing and Oscillations in a Stokesian Viscoelastic Flow
Becca Thomases, Michael Shelley, Phys. Rev. Lett., 2009

1:2:9:72Turbulent decay of a passive scalar in the Batchelor limit: Exact results from a quantum-mechanical approach
D. T. Son, Phys. Rev. E, 1999

1:2:9:73Batchelor Scaling in Fast-Flowing Soap Films
Y. Amarouchene, H. Kellay, Phys. Rev. Lett., 2004

1:2:9:87Experimental Evidence for an Intrinsic Route to Polymer Melt Fracture Phenomena: A Nonlinear Instability of Viscoelastic Poiseuille Flow
Volfango Bertola, Bernard Meulenbroek, Christian Wagner, Cornelis Storm, Alexander Morozov, Wim van Saarloos, Daniel Bonn, Phys. Rev. Lett., 2003

1:2:9:98Solitary Coherent Structures in Viscoelastic Shear Flow: Computation and Mechanism
K. Arun Kumar, Michael D. Graham, Phys. Rev. Lett., 2000

1:2:9:108Drag Enhancement with Polymers
N. François, D. Lasne, Y. Amarouchene, B. Lounis, H. Kellay, Phys. Rev. Lett., 2008

1:2:11:4Nonlinear dynamics and anisotropic structure of rotating sheared turbulence
A. Salhi, F. G. Jacobitz, K. Schneider, C. Cambon, Phys. Rev. E, 2014

1:2:11:18Zero absolute vorticity: Insight from experiments in rotating laminar plane Couette flow
Alexandre Suryadi, Antonio Segalini, P. Henrik Alfredsson, Phys. Rev. E, 2014

1:2:11:66General second-rank correlation tensors for homogeneous magnetohydrodynamic turbulence
S. Oughton, K.-H. Rädler, W. Matthaeus, Phys. Rev. E, 1997

1:2:13:48Probability distribution functions and coherent structures in a turbulent channel
E. Lamballais, M. Lesieur, O. Métais, Phys. Rev. E, 1997

1:2:14:56Mach-Number-Invariant Mean-Velocity Profile of Compressible Turbulent Boundary Layers
You-Sheng Zhang, Wei-Tao Bi, Fazle Hussain, Xin-Liang Li, Zhen-Su She, Phys. Rev. Lett., 2012

1:2:14:76Statistical analysis of compressible turbulent shear flows with special emphasis on turbulence modeling
Akira Yoshizawa, Phys. Rev. A, 1992

1:2:18:45Pattern of Breakdown of Laminar Flow into Turbulent Spots
N. Vinod, Rama Govindarajan, Phys. Rev. Lett., 2004

1:2:21:27Surface roughness and effective stick-slip motion
I. V. Ponomarev, A. E. Meyerovich, Phys. Rev. E, 2003

1:2:21:60Critical Instability and Friction Scaling of Fluid Flows through Pipes with Rough Inner Surfaces
Jianjun Tao, Phys. Rev. Lett., 2009

1:2:24:2Computation of turbulent flow and secondary motions in a square duct using a forced generalized lattice Boltzmann equation
Martin J. Pattison, Kannan N. Premnath, Sanjoy Banerjee, Phys. Rev. E, 2009

1:2:26:1Stagnation point flow of wormlike micellar solutions in a microfluidic cross-slot device: Effects of surfactant concentration and ionic environment
Simon J. Haward, Gareth H. McKinley, Phys. Rev. E, 2012

1:2:26:5Elastic secondary flows of semidilute DNA solutions in abrupt 90° microbends
Shelly Gulati, Dorian Liepmann, Susan J. Muller, Phys. Rev. E, 2008

1:2:26:6Elastic Instabilities of Polymer Solutions in Cross-Channel Flow
P. E. Arratia, C. C. Thomas, J. Diorio, J. P. Gollub, Phys. Rev. Lett., 2006

1:2:26:9A Microfluidic Rectifier: Anisotropic Flow Resistance at Low Reynolds Numbers
Alex Groisman, Stephen R. Quake, Phys. Rev. Lett., 2004

1:2:26:12Purely Elastic Flow Asymmetries
R. J. Poole, M. A. Alves, P. J. Oliveira, Phys. Rev. Lett., 2007

1:2:26:69Optimized Cross-Slot Flow Geometry for Microfluidic Extensional Rheometry
Simon J. Haward, Mónica S. N. Oliveira, Manuel A. Alves, Gareth H. McKinley, Phys. Rev. Lett., 2012

1:2:28:3Instability of streaks in pipe flow of shear-thinning fluids
S. N. López Carranza, M. Jenny, C. Nouar, Phys. Rev. E, 2013

1:2:28:7Transitional flow of a yield-stress fluid in a pipe: Evidence of a robust coherent structure
A. Esmael, C. Nouar, Phys. Rev. E, 2008

1:2:28:17Critical Reynolds Number for a Natural Transition to Turbulence in Pipe Flows
Guy Ben-Dov, Jacob Cohen, Phys. Rev. Lett., 2007

1:2:29:52Nonlocal model of dissociative electron attachment and vibrational excitation of NO
C. S. Trevisan, K. Houfek, Z. Zhang, A. E. Orel, C. W. McCurdy, T. N. Rescigno, Phys. Rev. A, 2005

1:2:33:1Extension of the momentum transfer model to time-dependent pipe turbulence
Esteban Calzetta, Phys. Rev. E, 2012

1:2:33:2Drag reduction by polymer additives from turbulent spectra
Esteban Calzetta, Phys. Rev. E, 2010

1:2:33:4Intermittency and rough-pipe turbulence
Mohammad Mehrafarin, Nima Pourtolami, Phys. Rev. E, 2008

1:2:33:5Friction factor of two-dimensional rough-boundary turbulent soap film flows
Nicholas Guttenberg, Nigel Goldenfeld, Phys. Rev. E, 2009

1:2:33:6Friction factor for turbulent flow in rough pipes from Heisenberg’s closure hypothesis
Esteban Calzetta, Phys. Rev. E, 2009

1:2:33:7Turbulent Friction in Rough Pipes and the Energy Spectrum of the Phenomenological Theory
G. Gioia, Pinaki Chakraborty, Phys. Rev. Lett., 2006

1:2:33:12Roughness-Induced Critical Phenomena in a Turbulent Flow
Nigel Goldenfeld, Phys. Rev. Lett., 2006

1:2:33:13Reduced-order models for closed-loop wake control
G. Tadmor, O. Lehmann, B. R. Noack, L. Cordier, J. Delville, J.-P. Bonnet, M. Morzynski, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011

1:2:33:14Scaling and Similarity in Rough Channel Flows
G. Gioia, F. A. Bombardelli, Phys. Rev. Lett., 2001

1:2:33:15Universal Model of Finite Reynolds Number Turbulent Flow in Channels and Pipes
Victor S. L’vov, Itamar Procaccia, Oleksii Rudenko, Phys. Rev. Lett., 2008

1:2:33:16Transport Processes as Foundations of the Heisenberg and Obukhoff Theories of Turbulence
Chan-Mou Tchen, Phys. Rev., 1954

1:2:33:24Reheating and turbulence
Mariana Graña, Esteban Calzetta, Phys. Rev. D, 2002

1:2:33:25Extension of Heisenberg's Model of Turbulence to Critical Reynolds Numbers
Eugene N. Parker, Phys. Rev., 1953

1:2:33:27Asymptotic dissipation rate in turbulence
Siegfried Grossmann, Phys. Rev. E, 1995

1:2:52:1Nonlinear transverse cascade and two-dimensional magnetohydrodynamic subcritical turbulence in plane shear flows
G. R. Mamatsashvili, D. Z. Gogichaishvili, G. D. Chagelishvili, W. Horton, Phys. Rev. E, 2014

1:2:52:2Periodic magnetorotational dynamo action as a prototype of nonlinear magnetic-field generation in shear flows
J. Herault, F. Rincon, C. Cossu, G. Lesur, G. I. Ogilvie, P.-Y. Longaretti, Phys. Rev. E, 2011

1:2:52:8Supertransient Magnetohydrodynamic Turbulence in Keplerian Shear Flows
Erico L. Rempel, Geoffroy Lesur, Michael R. E. Proctor, Phys. Rev. Lett., 2010

1:2:55:1Precursor of transition to turbulence: Spatiotemporal wave front
S. Bhaumik, T. K. Sengupta, Phys. Rev. E, 2014

1:2:55:3Direct numerical simulation of two-dimensional wall-bounded turbulent flows from receptivity stage
T. K. Sengupta, S. Bhaumik, Y. G. Bhumkar, Phys. Rev. E, 2012

1:2:55:8Spatiotemporal Growing Wave Fronts in Spatially Stable Boundary Layers
T. K. Sengupta, A. Kameswara Rao, K. Venkatasubbaiah, Phys. Rev. Lett., 2006

1:2:55:11Onset of Turbulence from the Receptivity Stage of Fluid Flows
T. K. Sengupta, S. Bhaumik, Phys. Rev. Lett., 2011

1:2:56:7Effects of uniform injection at the wall on the stability of Couette-like flows
F. Nicoud, J. Angilella, Phys. Rev. E, 1997

1:2:65:10Shear-thinning-induced chaos in Taylor-Couette flow
Nariman Ashrafi, Roger E. Khayat, Phys. Rev. E, 2000

1:2:71:4 Non-Newtonian Viscosity of Escherichia coli Suspensions
Jérémie Gachelin, Gastón Miño, Hélène Berthet, Anke Lindner, Annie Rousselet, Éric Clément, Phys. Rev. Lett., 2013

1:2:71:13Relating the Microscopic and Macroscopic Response of a Polymeric Fluid in a Shearing Flow
Hazen P. Babcock, Douglas E. Smith, Joe S. Hur, Eric S. G. Shaqfeh, Steven Chu, Phys. Rev. Lett., 2000

1:2:72:1Numerical study of turbulent flow over complex aeolian dune fields: The White Sands National Monument
William Anderson, Marcelo Chamecki, Phys. Rev. E, 2014

1:2:79:2Model for propagation speed in turbulent channel flows
J. Pei, J. Chen, Z.-S. She, F. Hussain, Phys. Rev. E, 2012

1:2:82:1Emergence of acoustic waves from vorticity fluctuations: Impact of non-normality
Joseph George, R. I. Sujith, Phys. Rev. E, 2009

1:2:82:2Superadiabatic evolution of acoustic and vorticity perturbations in Couette flow
Gael Favraud, Vincent Pagneux, Phys. Rev. E, 2014

1:2:82:4Effect of coupling and linear transformation of waves in shear flows
G. D. Chagelishvili, A. D. Rogava, D. G. Tsiklauri, Phys. Rev. E, 1996

1:2:82:5Mechanism of energy transformations in shear magnetohydrodynamic flows
G. D. Chagelishvili, T. S. Hristov, R. G. Chanishvili, J. G. Lominadze, Phys. Rev. E, 1993

1:2:82:8Coupling of sound and internal waves in shear flows
Andria D. Rogava, Swadesh M. Mahajan, Phys. Rev. E, 1997

1:2:82:12Adiabatic transition histories of population transfer in the Λ system
M. Elk, Phys. Rev. A, 1995

1:2:82:19Problems in flow acoustics
Willi Möhring, Ernst-August Müller, Frank Obermeier, Rev. Mod. Phys., 1983

1:2:83:2Bilateral shear layer between two parallel Couette flows
Vagesh D. Narasimhamurthy, Simen Å. Ellingsen, Helge I. Andersson, Phys. Rev. E, 2012

1:2:84:3Large-scale lognormality in turbulence modeled by the Ornstein-Uhlenbeck process
Takeshi Matsumoto, Masanori Takaoka, Phys. Rev. E, 2013

1:2:100:2Variance maintained by stochastic forcing of non-normal dynamical systems associated with linearly stable shear flows
Brian F. Farrell, Petros J. Ioannou, Phys. Rev. Lett., 1994

1:2:102:1:1Computational method for the quantum Hamilton-Jacobi equation: One-dimensional scattering problems
Chia-Chun Chou, Robert E. Wyatt, Phys. Rev. E, 2006

1:2:102:1:2Tunneling through a one-dimensional potential barrier
Zafar Ahmed, Phys. Rev. A, 1993

1:2:102:1:6Exactness of the supersymmetric WKB approximation scheme
R. S. Bhalla, A. K. Kapoor, P. K. Panigrahi, Phys. Rev. A, 1996

1:2:102:1:11Arbitrary initial conditions of nonlocal hidden variables
Edward R. Floyd, Phys. Rev. D, 1984

1:2:102:1:12Modified potential and Bohm's quantum-mechanical potential
Edward R. Floyd, Phys. Rev. D, 1982

1:2:102:1:14Closed-form solutions for the modified potential
Edward R. Floyd, Phys. Rev. D, 1986

1:2:102:1:17Hamilton-Jacobi Theory and the Quantum Action Variable
Robert A. Leacock, Michael J. Padgett, Phys. Rev. Lett., 1983

1:2:102:1:18Hamilton-Jacobi/action-angle quantum mechanics
Robert A. Leacock, Michael J. Padgett, Phys. Rev. D, 1983

1:2:104:8Velocity matching and Poiseuille pipe flow of superfluid helium
David C. Samuels, Phys. Rev. B, 1992

1:2:109:1Unstable recurrent patterns in Kuramoto-Sivashinsky dynamics
Yueheng Lan, Predrag Cvitanović, Phys. Rev. E, 2008

1:2:114:1Extensional instability in electro-osmotic microflows of polymer solutions
R. M. Bryce, M. R. Freeman, Phys. Rev. E, 2010

1:2:117:1Amplification of compressional magnetohydrodynamic waves in systems with forced entropy oscillations
Bidzina M. Shergelashvili, Christian Maes, Stefaan Poedts, Teimuraz V. Zaqarashvili, Phys. Rev. E, 2007

1:2:117:2Parametric Amplification of the Dynamic Radiation Force of Acoustic Waves in Fluids
Glauber T. Silva, Shigao Chen, Leonardo P. Viana, Phys. Rev. Lett., 2006

1:2:117:6Gravity, parametric resonance, and chaotic inflation
Richard Easther, Matthew Parry, Phys. Rev. D, 2000

1:2:117:7Cosmic microwave background and parametric resonance in reheating
A. B. Henriques, R. G. Moorhouse, Phys. Rev. D, 2002

1:2:117:10Parametric Instabilities in Inhomogeneous Media
Marshall N. Rosenbluth, Phys. Rev. Lett., 1972

1:2:117:12Parametric excitation of Alfvén waves by gravitational radiation
M. Servin, G. Brodin, M. Bradley, M. Marklund, Phys. Rev. E, 2000

1:2:117:13Parametric interaction processes in acoustical noise
B. Shapiro, Phys. Rev. B, 1975

1:2:117:17Parametric Coupling Between Electron-Plasma and Ion-Acoustic Oscillations
R. A. Stern, N. Tzoar, Phys. Rev. Lett., 1966

1:2:117:19Parametric interaction of two acoustic waves in a crystal of molecular magnets in the presence of a strong ac magnetic field
I. D. Tokman, G. A. Vugalter, A. I. Grebeneva, Phys. Rev. B, 2005

1:2:117:21Swing wave-wave interaction: Coupling between fast magnetosonic and Alfvén waves
T. V. Zaqarashvili, B. Roberts, Phys. Rev. E, 2002

1:2:123:1Shear turbulence on a sparse spectral grid
F. De Lillo, Bruno Eckhardt, Phys. Rev. E, 2007

1:2:123:3Fourier-Weierstrass mode analysis for thermally driven turbulence
Siegfried Grossmann, Detlef Lohse, Phys. Rev. Lett., 1991

1:2:123:4Developed Turbulence: From Full Simulations to Full Mode Reductions
Siegfried Grossmann, Detlef Lohse, Achim Reeh, Phys. Rev. Lett., 1996

1:2:123:8Universality in fully developed turbulence
Siegfried Grossmann, Detlef Lohse, Phys. Rev. E, 1994

1:2:125:11Flow in curved channels with a low negative rotation speed
Liqiu Wang, K. C. Cheng, Phys. Rev. E, 1995

1:2:131:1Transient growth of Ekman-Couette flow
Liang Shi, Björn Hof, Andreas Tilgner, Phys. Rev. E, 2014

1:2:131:3Scale Invariance at the Onset of Turbulence in Couette Flow
Liang Shi, Marc Avila, Björn Hof, Phys. Rev. Lett., 2013

1:2:136:1:1Superconducting pipes and levitating magnets
Yan Levin, Felipe B. Rizzato, Phys. Rev. E, 2006

1:2:136:1:2Magnetization of High-Field Superconductors
CHARLES P. BEAN, Rev. Mod. Phys., 1964

1:2:139:1Role of long waves in the stability of the plane wake
Stefania Scarsoglio, Daniela Tordella, William O. Criminale, Phys. Rev. E, 2010

1:2:143:6Magnetic Field Effects on Bow Shock Stand-Off Distance
Richard W. Ziemer, William B. Bush, Phys. Rev. Lett., 1958

1:2:145:2Self-Sustained Process at Large Scales in Turbulent Channel Flow
Yongyun Hwang, Carlo Cossu, Phys. Rev. Lett., 2010

1:2:146:1Elastic instability in stratified core annular flow
Oriane Bonhomme, Alexander Morozov, Jacques Leng, Annie Colin, Phys. Rev. E, 2011

1:2:156:1Critical slowing down in polymer dynamics near the coil-stretch transition in elongation flow
Sergiy Gerashchenko, Victor Steinberg, Phys. Rev. E, 2008

1:2:156:2Dynamical Slowdown of Polymers in Laminar and Random Flows
A. Celani, A. Puliafito, D. Vincenzi, Phys. Rev. Lett., 2006

1:3:2:40Vibrations of cylindrical objects obstructing a Poiseuille-type flow
Renjie Jiang, Jianzhong Lin, Zhongli Chen, Phys. Rev. E, 2013

1:3:2:41Effect of nonharmonic forcing on bluff-body vortex dynamics
E. Konstantinidis, D. Bouris, Phys. Rev. E, 2009

1:3:2:91Resonant Vibrations of Bluff Bodies Cause Multivortex Shedding and High Frequency Forces
J. M. Dahl, F. S. Hover, M. S. Triantafyllou, S. Dong, G. E. Karniadakis, Phys. Rev. Lett., 2007

1:3:2:119Pattern Competition Leads to Chaos
S. Ciliberto, J. P. Gollub, Phys. Rev. Lett., 1984

1:3:2:149Strouhal-Reynolds Number Relationship for Vortex Streets
Fernando L. Ponta, Hassan Aref, Phys. Rev. Lett., 2004

1:3:2:159Nonlinear dynamics of the wake of an oscillating cylinder
D. J. Olinger, K. R. Sreenivasan, Phys. Rev. Lett., 1988

1:3:2:189Noisy Inflows Cause a Shedding-Mode Switching in Flow Past an Oscillating Cylinder
Didier Lucor, George Em Karniadakis, Phys. Rev. Lett., 2004

1:3:2:204Wake-body Resonance of Long Flexible Structures is Dominated by Counterclockwise Orbits
Rémi Bourguet, Yahya Modarres-Sadeghi, George E. Karniadakis, Michael S. Triantafyllou, Phys. Rev. Lett., 2011

1:3:3:52Three-dimensional modes in a periodically driven elongated cavity
Jonathan J. F. Leung, Amir H. Hirsa, Hugh M. Blackburn, Francisco Marques, Juan M. Lopez, Phys. Rev. E, 2005

1:3:3:59Mode competition in cylindrical flows driven by sidewall oscillations
C. Panades, F. Marques, A. Meseguer, Phys. Rev. E, 2013

1:3:3:61Bifurcation theory for three-dimensional flow in the wake of a circular cylinder
Dwight Barkley, Laurette S. Tuckerman, Martin Golubitsky, Phys. Rev. E, 2000

1:3:3:74Suppression of Period Doubling in Symmetric Systems
James W. Swift, Kurt Wiesenfeld, Phys. Rev. Lett., 1984

1:3:3:75Confined three-dimensional stability analysis of the cylinder wake
Dwight Barkley, Phys. Rev. E, 2005

1:3:4:13Computational study of subcritical response in flow past a circular cylinder
C. D. Cantwell, D. Barkley, Phys. Rev. E, 2010

1:3:4:30Bifurcations to Local and Global Modes in Spatially Developing Flows
J. M. Chomaz, P. Huerre, L. G. Redekopp, Phys. Rev. Lett., 1988

1:3:4:48Strongly Nonlinear Effect in Unstable Wakes
B. J. A. Zielinska, S. Goujon-Durand, J. Dus̆ek, J. E. Wesfreid, Phys. Rev. Lett., 1997

1:3:4:52Mechanism of sustained oscillations in a fluid flowing past a circular cylinder obstacle
Yukio Takemoto, Jiro Mizushima, Phys. Rev. E, 2010

1:3:4:83Absolute instabilities and self-sustained oscillations in the wake of circular cylinders
G. S. Triantafyllou, K. Kupfer, A. Bers, Phys. Rev. Lett., 1987

1:3:4:86Visualization of the space-time impulse response of the subcritical wake of a cylinder
P. Le Gal, V. Croquette, Phys. Rev. E, 2000

1:3:5:11Three-dimensional simulation of square jets in cross-flow
Amalendu Sau, Tony W. H. Sheu, Robert R. Hwang, W. C. Yang, Phys. Rev. E, 2004

1:3:5:121 Publisher's Note: Three-dimensional simulation of square jets in cross-flow [Phys. Rev. E 69 , 066302 (2004)]
Amalendu Sau, Tony W. H. Sheu, Robert R. Hwang, W. C. Yang, Phys. Rev. E, 2004

1:3:5:132Vortex renormalization in three space dimensions
Alexandre J. Chorin, Ole H. Hald, Phys. Rev. B, 1995

1:3:6:25Transition to Turbulence in the Wake of a Sphere
Delphine Ormières, Michel Provansal, Phys. Rev. Lett., 1999

1:3:6:39Instabilities in the wake of a circular disk
T. Bobinski, S. Goujon-Durand, J. E. Wesfreid, Phys. Rev. E, 2014

1:3:6:69Transition to a time-dependent state of fluid flow in the wake of a sphere
K. Gumowski, J. Miedzik, S. Goujon-Durand, P. Jenffer, J. E. Wesfreid, Phys. Rev. E, 2008

1:3:7:24Building a reduced model for nonlinear dynamics in Rayleigh-Bénard convection with counter-rotating disks
M. C. Navarro, L. Martin Witkowski, L. S. Tuckerman, P. Le Quéré, Phys. Rev. E, 2010

1:3:7:27Low-dimensional model of a supersonic rectangular jet
D. Moreno, A. Krothapalli, M. B. Alkislar, L. M. Lourenco, Phys. Rev. E, 2004

1:3:8:72Small scale intermittency and bursting in a turbulent channel flow
Miguel Onorato, Roberto Camussi, Gaetano Iuso, Phys. Rev. E, 2000

1:3:9:5Two interacting cylinders in cross flow
Md. Mahbub Alam, J. P. Meyer, Phys. Rev. E, 2011

1:3:9:6Secondary vortex street in the wake of two tandem circular cylinders at low Reynolds number
Si-ying Wang, Fang-bao Tian, Lai-bing Jia, Xi-yun Lu, Xie-zhen Yin, Phys. Rev. E, 2010

1:3:9:10Lattice-Boltzmann simulation of two-dimensional flow over two vibrating side-by-side circular cylinders
Yousheng Xu, Yang Liu, Yong Xia, Fengmin Wu, Phys. Rev. E, 2008

1:3:9:34Drag reduction of wake flow by shear-driven rotation
Jianjun Tao, Yan Bao, Phys. Rev. E, 2013

1:3:9:36Near-wake structure behind two circular cylinders in a side-by-side configuration with heat release
S. Kumar, G. Laughlin, C. Cantu, Phys. Rev. E, 2009

1:3:9:40Coupled Wakes of Cylinders
I. Peschard, P. Le Gal, Phys. Rev. Lett., 1996

1:3:9:61Coupled wakes behind two circular cylinders
P. Le Gal, M. P. Chauve, R. Lima, J. Rezende, Phys. Rev. A, 1990

1:3:9:147Structure-Based Interpretation of the Strouhal-Reynolds Number Relationship
Pedram Roushan, X. L. Wu, Phys. Rev. Lett., 2005

1:3:10:55Determining the spectral signature of spatial coherent structures in an open cavity flow
L. R. Pastur, F. Lusseyran, Y. Fraigneau, B. Podvin, Phys. Rev. E, 2005

1:3:10:122Symbolic sequence statistical analysis for free liquid jets
J. Godelle, C. Letellier, Phys. Rev. E, 2000

1:3:11:19Global Measures of Local Convective Instabilities
C. Cossu, J. M. Chomaz, Phys. Rev. Lett., 1997

1:3:14:21Propagating Pattern Selection
G. Dee, J. S. Langer, Phys. Rev. Lett., 1983

1:3:14:33Absolute and convective instabilities in nonlinear systems
J. M. Chomaz, Phys. Rev. Lett., 1992

1:3:14:38Pattern Selection in the Presence of a Cross Flow
A. Couairon, J. M. Chomaz, Phys. Rev. Lett., 1997

1:3:14:48Global Instability in Fully Nonlinear Systems
A. Couairon, J. M. Chomaz, Phys. Rev. Lett., 1996

1:3:16:10Spatiotemporal spectral analysis of a forced cylinder wake
Juan D'Adamo, Ramiro Godoy-Diana, José Eduardo Wesfreid, Phys. Rev. E, 2011

1:3:16:30Downstream evolution of the Bénard–von Kármán instability
S. Goujon-Durand, P. Jenffer, J. E. Wesfreid, Phys. Rev. E, 1994

1:3:16:48Strong resonance in forced oscillatory convection
A. Chiffaudel, S. Fauve, Phys. Rev. A, 1987

1:3:21:49Wave-number selection and phase solitons in spatially forced temporal mixing layers
O. Pouliquen, J. M. Chomaz, P. Huerre, P. Tabeling, Phys. Rev. Lett., 1992

1:3:28:44Long Lasting Modifications to Vortex Shedding Using a Short Plasma Excitation
Timothy N. Jukes, Kwing-So Choi, Phys. Rev. Lett., 2009

1:3:29:5Generation of streamwise vortices in square sudden-expansion flows
Amalendu Sau, Phys. Rev. E, 2004

1:3:29:15Spanwise bifurcation in plane-symmetric sudden-expansion flows
T. P. Chiang, Tony W. H. Sheu, Robert R. Hwang, A. Sau, Phys. Rev. E, 2001

1:3:31:11Experiments relating to the flow induced by a vibrating quartz tuning fork and similar structures in a classical fluid
D. Schmoranzer, M. Král’ová, V. Pilcová, W. F. Vinen, L. Skrbek, Phys. Rev. E, 2010

1:3:31:32Dynamical control for capturing vortices near bluff bodies
Áron Péntek, James B. Kadtke, Gianni Pedrizzetti, Phys. Rev. E, 1998

1:3:31:54 Generation of turbulence by vibrating forks and other structures in superfluid H 4 e
M. Blažková, D. Schmoranzer, L. Skrbek, W. F. Vinen, Phys. Rev. B, 2009

1:3:34:32Instabilities, Bifurcations, and Multiple Solutions in Expanding Channel Flows
Vakhtang Putkaradze, Peter Vorobieff, Phys. Rev. Lett., 2006

1:3:35:8Interaction of trailing vortices in the wake of a wall-mounted rectangular cylinder
Amalendu Sau, Robert R. Hwang, Tony W. H. Sheu, W. C. Yang, Phys. Rev. E, 2003

1:3:36:15Advection modes by optimal mass transfer
Angelo Iollo, Damiano Lombardi, Phys. Rev. E, 2014

1:3:36:17Spectral signature of the pitchfork bifurcation: Liouville equation approach
P. Gaspard, G. Nicolis, A. Provata, S. Tasaki, Phys. Rev. E, 1995

1:3:36:45Transition to Turbulence and Mixing in a Viscoelastic Fluid Flowing Inside a Channel with a Periodic Array of Cylindrical Obstacles
Muzio Grilli, Adolfo Vázquez-Quesada, Marco Ellero, Phys. Rev. Lett., 2013

1:3:41:3Flow past an impulsively started circular cylinder using a higher-order semicompact scheme
Y. V. S. S. Sanyasiraju, V. Manjula, Phys. Rev. E, 2005

1:3:43:8Kelvin-Helmholtz instability for relativistic fluids
G. Bodo, A. Mignone, R. Rosner, Phys. Rev. E, 2004

1:3:48:6Generation of Streamwise Vortical Structures in Bluff Body Wakes
R. Mittal, S. Balachandar, Phys. Rev. Lett., 1995

1:3:60:4Reflectional symmetry breaking of the separated flow over three-dimensional bluff bodies
Mathieu Grandemange, Olivier Cadot, Marc Gohlke, Phys. Rev. E, 2012

1:3:63:2Alternative drag coefficient in the wake of an isolated bluff body
Md. Mahbub Alam, Y. Zhou, Phys. Rev. E, 2008

1:3:64:9Resonance Assisted Synchronization of Coupled Oscillators: Frequency Locking without Phase Locking
J. Thévenin, M. Romanelli, M. Vallet, M. Brunel, T. Erneux, Phys. Rev. Lett., 2011

1:3:76:3Turbulence Decay Rate as a Measure of Flow Dimensionality
M. Shats, D. Byrne, H. Xia, Phys. Rev. Lett., 2010

1:3:80:5Oblique collision of two vortex rings and its acoustic emission
T. Kambe, T. Minota, M. Takaoka, Phys. Rev. E, 1993

1:3:85:2Compact computations based on a stream-function–velocity formulation of two-dimensional steady laminar natural convection in a square cavity
Pei Xiang Yu, Zhen F. Tian, Phys. Rev. E, 2012

1:3:85:22Fully compact higher-order computation of steady-state natural convection in a square cavity
Jiten C. Kalita, D. C. Dalal, Anoop K. Dass, Phys. Rev. E, 2001

1:3:87:9Cell Formation in Cylinder Wakes at Low Reynolds Numbers
T. Leweke, M. Provansal, G. D. Miller, C. H. K. Williamson, Phys. Rev. Lett., 1997

1:3:87:12Evidence of Holes in the Arnold Tongues of Flow Past Two Oscillating Cylinders
Georgios V. Papaioannou, Dick K. P. Yue, Michael S. Triantafyllou, George Em Karniadakis, Phys. Rev. Lett., 2006

1:3:91:1Testing for time-localized coherence in bivariate data
L. W. Sheppard, A. Stefanovska, P. V. E. McClintock, Phys. Rev. E, 2012

1:3:91:2Significance testing for wavelet bicoherence and its application in analyzing nonlinearity in turbulent shear flows
Zhongfu Ge, Phys. Rev. E, 2010

1:3:91:3Nonlinear Phenomena and Intermittency in Plasma Turbulence
B. Ph. van Milligen, C. Hidalgo, E. Sánchez, Phys. Rev. Lett., 1995

1:3:92:16Equilibrium temperature of a convex body in a free molecular shearing flow
Lars H. Söderholm, Phys. Rev. E, 2002

1:3:94:6Localized Turbulent Flows on Scouring Granular Beds
G. Gioia, Fabián A. Bombardelli, Phys. Rev. Lett., 2005

1:3:106:12Simple viscous flows: From boundary layers to the renormalization group
John Veysey, Nigel Goldenfeld, Rev. Mod. Phys., 2007

1:3:111:3Experimental study of self-sustained oscillations in a confined jet
A. Maurel, P. Ern, B. J. A. Zielinska, J. E. Wesfreid, Phys. Rev. E, 1996

1:3:142:2Active control of vortex shedding: An explanation of the gain window
Simon J. Illingworth, Hiroshi Naito, Koji Fukagata, Phys. Rev. E, 2014

1:3:160:1Asymmetry and bifurcations in three-dimensional sudden-contraction channel flows
T. P. Chiang, Amalendu Sau, Robert R. Hwang, Phys. Rev. E, 2011

1:3:196:1Nonstationary Gaussian processes in wavelet domain: Synthesis, estimation, and significance testing
D. Maraun, J. Kurths, M. Holschneider, Phys. Rev. E, 2007

1:3:196:2Wavelet transforms and atmopsheric turbulence
Lonnie Hudgins, Carl A. Friehe, Meinhard E. Mayer, Phys. Rev. Lett., 1993

1:3:202:3Interferometric Studies of Faster than Sound Phenomena. Part II. Analysis of Supersonic Air Jets
R. Ladenburg, C. C. Van Voorhis, J. Winckler, Phys. Rev., 1949

1:3:203:1Flow stabilization with active hydrodynamic cloaks
Yaroslav A. Urzhumov, David R. Smith, Phys. Rev. E, 2012

1:3:203:5Fluid Flow Control with Transformation Media
Yaroslav A. Urzhumov, David R. Smith, Phys. Rev. Lett., 2011

1:3:206:1Lattice models for large-scale simulations of coherent wave scattering
Shumin Wang, Fernando L. Teixeira, Phys. Rev. E, 2004

1:3:206:6Unconditionally stable algorithms to solve the time-dependent Maxwell equations
J. S. Kole, M. T. Figge, H. De Raedt, Phys. Rev. E, 2001

1:3:206:7Higher-order unconditionally stable algorithms to solve the time-dependent Maxwell equations
J. S. Kole, M. T. Figge, H. De Raedt, Phys. Rev. E, 2002

1:3:206:8Physics-motivated numerical solvers for partial differential equations
L. San Martin, Y. Oono, Phys. Rev. E, 1998

1:4:1:1:25Modified shallow water equations for inviscid gravity currents
An-Cheng Ruo, Falin Chen, Phys. Rev. E, 2007

1:4:1:13:6Numerical renormalization-group calculations for similarity solutions and traveling waves
Lin-Yuan Chen, Nigel Goldenfeld, Phys. Rev. E, 1995

1:4:2:1:24Turbulence During the Generation of Internal Tide on a Critical Slope
Bishakhdatta Gayen, Sutanu Sarkar, Phys. Rev. Lett., 2010

1:4:2:1:25Resonant Generation of Internal Waves on a Model Continental Slope
H. P. Zhang, B. King, Harry L. Swinney, Phys. Rev. Lett., 2008

1:4:2:2:26Selection Rules for the Nonlinear Interaction of Internal Gravity Waves
Chung-Hsiang Jiang, Philip S. Marcus, Phys. Rev. Lett., 2009

1:4:2:3:26Internal Wave Interferometry
Manikandan Mathur, Thomas Peacock, Phys. Rev. Lett., 2010

1:4:3:5Large-scale anisotropy in stably stratified rotating flows
R. Marino, P. D. Mininni, D. L. Rosenberg, A. Pouquet, Phys. Rev. E, 2014

1:4:3:9Emergence of helicity in rotating stratified turbulence
Raffaele Marino, Pablo D. Mininni, Duane Rosenberg, Annick Pouquet, Phys. Rev. E, 2013

1:4:3:11Helicity dynamics in stratified turbulence in the absence of forcing
C. Rorai, D. Rosenberg, A. Pouquet, P. D. Mininni, Phys. Rev. E, 2013

1:4:3:24Spectral calculations in stably stratified turbulence
Kishore Dutta, Malay K. Nandy, Phys. Rev. E, 2014

1:4:3:51Forced stratified turbulence: Successive transitions with Reynolds number
J.-P. Laval, J. C. McWilliams, B. Dubrulle, Phys. Rev. E, 2003

1:4:3:99Determining the Cascade of Passive Scalar Variance in the Lower Stratosphere
Erik Lindborg, John Y. N. Cho, Phys. Rev. Lett., 2000

1:4:4:1:25Strongly nonlinear long gravity waves in uniform shear flows
Wooyoung Choi, Phys. Rev. E, 2003

1:4:4:1:27Long Internal Waves of Finite Amplitude
Wooyoung Choi, Roberto Camassa, Phys. Rev. Lett., 1996

1:4:4:9:3Perturbation theory for kinks and its application for multisoliton interactions in hydrodynamics
K. A. Gorshkov, L. A. Ostrovsky, I. A. Soustova, V. G. Irisov, Phys. Rev. E, 2004

1:4:9:76Completing the Mechanical Energy Pathways in Turbulent Rayleigh-Bénard Convection
Bishakhdatta Gayen, Graham O. Hughes, Ross W. Griffiths, Phys. Rev. Lett., 2013

1:4:10:21Instability and Equilibration of Centrifugally Stable Stratified Taylor-Couette Flow
M. Jeroen Molemaker, James C. McWilliams, Irad Yavneh, Phys. Rev. Lett., 2001

1:4:12:7Excitation of inertial modes in an experimental spherical Couette flow
Michel Rieutord, Santiago Andrés Triana, Daniel S. Zimmerman, Daniel P. Lathrop, Phys. Rev. E, 2012

1:4:12:27A new integral property of inertial waves in rotating fluid spheres
X. Liao, K. Zhang, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009

1:4:12:55Nonlinear Fate of Internal Wave Attractors
Hélène Scolan, Eugeny Ermanyuk, Thierry Dauxois, Phys. Rev. Lett., 2013

1:4:13:18Experimental Analysis of the Stratorotational Instability in a Cylindrical Couette Flow
M. Le Bars, P. Le Gal, Phys. Rev. Lett., 2007

1:4:13:37Decay widths for metastable states. Improved WKB approximation
Harvey K. Shepard, Phys. Rev. D, 1983

1:4:17:3Interaction between a pair of particles settling in a stratified fluid
A. Doostmohammadi, A. M. Ardekani, Phys. Rev. E, 2013

1:4:17:4Reorientation of elongated particles at density interfaces
A. Doostmohammadi, A. M. Ardekani, Phys. Rev. E, 2014

1:4:17:17Stratlets: Low Reynolds Number Point-Force Solutions in a Stratified Fluid
A. M. Ardekani, R. Stocker, Phys. Rev. Lett., 2010

1:4:17:25Physical model of intermittency in turbulence: Inertial-range non-Gaussian statistics
Zhen-Su She, Steven A. Orszag, Phys. Rev. Lett., 1991

1:4:17:45Simulation of Mixing within Drops due to Surface Tension Variations
François Blanchette, Phys. Rev. Lett., 2010

1:4:25:23Simple model for mixing at accelerated fluid interfaces with shear and compression
John D. Ramshaw, Phys. Rev. E, 2000

1:4:25:61Binary tree models of high-Reynolds-number turbulence
Erik Aurell, Emmanuel Dormy, Peter Frick, Phys. Rev. E, 1997

1:4:26:1:5Origin of Stratification in Creaming Emulsions
Daniel M. Mueth, John C. Crocker, Sergei E. Esipov, David G. Grier, Phys. Rev. Lett., 1996

1:4:26:3:10Linear and weakly nonlinear analysis of doubly diffusive vertical slot convection
Y. Young, R. Rosner, Phys. Rev. E, 1998

1:4:27:7Evolution of a barotropic shear layer into elliptical vortices
Anirban Guha, Mona Rahmani, Gregory A. Lawrence, Phys. Rev. E, 2013

1:4:30:10Spectra of Decaying Turbulence in a Soap Film
B. K. Martin, X. L. Wu, W. I. Goldburg, M. A. Rutgers, Phys. Rev. Lett., 1998

1:4:30:12Experiments on free decay of quasi-two-dimensional turbulent flows
S. Danilov, F. V. Dolzhanskii, V. A. Dovzhenko, V. A. Krymov, Phys. Rev. E, 2002

1:4:33:1:4Baroclinic waves in an air-filled thermally driven rotating annulus
A. A. Castrejón-Pita, P. L. Read, Phys. Rev. E, 2007

1:4:33:1:10Dimension Measurements for Geostrophic Turbulence
John Guckenheimer, George Buzyna, Phys. Rev. Lett., 1983

1:4:33:2:1Dynamics of passive tracers in the atmosphere: Laboratory experiments and numerical tests with reanalysis wind fields
Imre M. Jánosi, Péter Kiss, Viktória Homonnai, Margit Pattantyús-Ábrahám, Balázs Gyüre, Tamás Tél, Phys. Rev. E, 2010

1:4:33:3:1Nonlinear statistics of daily temperature fluctuations reproduced in a laboratory experiment
Balázs Gyüre, Imre Bartos, Imre M. Jánosi, Phys. Rev. E, 2007

1:4:40:2Wave-vortex mode coupling in neutrally stable baroclinic flows
Abdelaziz Salhi, Alexandre B. Pieri, Phys. Rev. E, 2014

1:4:40:6Linear Mechanism of Wave Emergence from Vortices in Smooth Shear Flows
G. D. Chagelishvili, A. G. Tevzadze, G. Bodo, S. S. Moiseev, Phys. Rev. Lett., 1997

1:4:40:10Hamilton's Principle and the Conservation Theorems of Mathematical Physics
E. L. Hill, Rev. Mod. Phys., 1951

1:4:43:15Some properties of an eight-mode Lorenz model for convection in binary fluids
Guenter Ahlers, M. Lücke, Phys. Rev. A, 1987

1:4:44:14Energy Spectra of the Ocean’s Internal Wave Field: Theory and Observations
Yuri V. Lvov, Kurt L. Polzin, Esteban G. Tabak, Phys. Rev. Lett., 2004

1:4:47:12Heat Transport in Low-Rossby-Number Rayleigh-Bénard Convection
Keith Julien, Edgar Knobloch, Antonio M. Rubio, Geoffrey M. Vasil, Phys. Rev. Lett., 2012

1:4:49:3Do small swimmers mix the ocean?
A. M. Leshansky, L. M. Pismen, Phys. Rev. E, 2010

1:4:49:4Convective stability of turbulent Boussinesq flow in the dissipative range and flow around small particles
Itzhak Fouxon, Alexander Leshansky, Phys. Rev. E, 2014

1:4:68:123/9 dimensional anisotropic scaling of passive admixtures using lidar data of aerosols
Marc Lilley, Shaun Lovejoy, Kevin Strawbridge, Daniel Schertzer, Phys. Rev. E, 2004

1:4:68:2Fractal aircraft trajectories and nonclassical turbulent exponents
S. Lovejoy, D. Schertzer, A. F. Tuck, Phys. Rev. E, 2004

1:4:68:9Inverse cascade and wave condensate in mesoscale atmospheric turbulence
G. Falkovich, Phys. Rev. Lett., 1992

1:4:72:4Effective velocity created by a point vortex in two-dimensional hydrodynamics
Pierre-Henri Chavanis, Phys. Rev. E, 2002

1:4:73:5Nonlinear wave evolution equation for critical layers
P. Caillol, R. Grimshaw, Phys. Rev. E, 2012

1:4:81:1Turbulence comes in bursts in stably stratified flows
C. Rorai, P. D. Mininni, A. Pouquet, Phys. Rev. E, 2014

1:4:81:2Geophysical Turbulence and the Duality of the Energy Flow Across Scales
A. Pouquet, R. Marino, Phys. Rev. Lett., 2013

1:4:86:2Modified reduced Ostrovsky equation: Integrability and breaking
E. R. Johnson, R. H. J. Grimshaw, Phys. Rev. E, 2013

1:4:90:8Layer-Mean Quantities, Local Conservation Laws, and Vorticity
Roberto Camassa, C. David Levermore, Phys. Rev. Lett., 1997

1:4:92:2Possible Explanation of the Atmospheric Kinetic and Potential Energy Spectra
Andreas Vallgren, Enrico Deusebio, Erik Lindborg, Phys. Rev. Lett., 2011

1:4:95:1Magnetized stratified rotating shear waves
A. Salhi, T. Lehner, F. Godeferd, C. Cambon, Phys. Rev. E, 2012

1:4:95:3Weakly Nonlinear Analysis of the Magnetorotational Instability in a Model Channel Flow
O. M. Umurhan, K. Menou, O. Regev, Phys. Rev. Lett., 2007

1:4:110:10Long Waves in Streamwise Varying Shear Flows: New Mechanisms for a Weakly Nonlinear Instability
Daniel Hodyss, Terrence R. Nathan, Phys. Rev. Lett., 2004

1:4:112:1Simple model of the Rayleigh-Taylor instability, collapse, and structural elements
V. P. Goncharov, V. I. Pavlov, Phys. Rev. E, 2013

1:4:112:5Shallow Water Analogue of the Standing Accretion Shock Instability: Experimental Demonstration and a Two-Dimensional Model
Thierry Foglizzo, Frédéric Masset, Jérôme Guilet, Gilles Durand, Phys. Rev. Lett., 2012

1:4:114:1Rotating solitary wave at the wall of a cylindrical container
Mustapha Amaouche, Hamid Ait Abderrahmane, Georgios H. Vatistas, Phys. Rev. E, 2013

1:4:114:2Azimuthal solitary surface wave in cylindrical tank
Hamid Ait Abderrahmane, Mustapha Amaouche, Mohamed Fayed, Hoi Dick Ng, Georgios H. Vatistas, Kamran Siddiqui, Phys. Rev. E, 2011

1:4:114:3Observation of Depression Solitary Surface Waves on a Thin Fluid Layer
Éric Falcon, Claude Laroche, Stéphan Fauve, Phys. Rev. Lett., 2002

1:4:119:3Instability of a thin film flowing on a rotating horizontal or inclined plane
L. A. Dávalos-Orozco, F. H. Busse, Phys. Rev. E, 2002

1:4:122:1Laminar-turbulent cycles in inclined lock-exchange flows
Yukie Tanino, Frédéric Moisy, Jean-Pierre Hulin, Phys. Rev. E, 2012

1:4:133:1Stability of stratified flow with inhomogeneous shear
Vladimir S. Mikhailenko, Earl E. Scime, Vladimir V. Mikhailenko, Phys. Rev. E, 2005

1:4:133:8Temporal evolution of drift Alfvén waves and instabilities in an inhomogeneous plasma with homogeneous shear flow
Vladimir S. Mikhailenko, Vladimir V. Mikhailenko, Martin F. Heyn, Swadesh M. Mahajan, Phys. Rev. E, 2002

1:4:134:2Richardson Number Criterion for the Nonlinear Stability of Three-Dimensional Stratified Flow
Henry D. I. Abarbanel, Darryl D. Holm, Jerrold E. Marsden, Tudor Ratiu, Phys. Rev. Lett., 1984

1:4:141:1Turbulent viscosity variability in self-preserving far wake with zero net momentum
Katya Dubrovin, Ephim Golbraikh, Michael Gedalin, Alex Soloviev, Phys. Rev. E, 2011

1:4:144:1Model of compactons on jet streams and their collapse
V. Goncharov, V. Pavlov, Phys. Rev. E, 2007

1:5:1:1Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection
Guenter Ahlers, Siegfried Grossmann, Detlef Lohse, Rev. Mod. Phys., 2009

1:5:1:8Three-dimensional flow structures and dynamics of turbulent thermal convection in a cylindrical cell
Chao Sun, Ke-Qing Xia, P. Tong, Phys. Rev. E, 2005

1:5:1:11Azimuthal motion of the mean wind in turbulent thermal convection
Heng-Dong Xi, Quan Zhou, Ke-Qing Xia, Phys. Rev. E, 2006

1:5:1:15Thermal Convection for Large Prandtl Numbers
Siegfried Grossmann, Detlef Lohse, Phys. Rev. Lett., 2001

1:5:1:23Transition phenomena in unstably stratified turbulent flows
M. Bukai, A. Eidelman, T. Elperin, N. Kleeorin, I. Rogachevskii, I. Sapir-Katiraie, Phys. Rev. E, 2011

1:5:1:26Azimuthal motion, reorientation, cessation, and reversal of the large-scale circulation in turbulent thermal convection: A comparative study in aspect ratio one and one-half geometries
Heng-Dong Xi, Ke-Qing Xia, Phys. Rev. E, 2008

1:5:1:32Non-Oberbeck-Boussinesq effects in turbulent thermal convection in ethane close to the critical point
Guenter Ahlers, Enrico Calzavarini, Francisco Fontenele Araujo, Denis Funfschilling, Siegfried Grossmann, Detlef Lohse, Kazuyasu Sugiyama, Phys. Rev. E, 2008

1:5:1:35Effect of large-scale coherent structures on turbulent convection
M. Bukai, A. Eidelman, T. Elperin, N. Kleeorin, I. Rogachevskii, I. Sapir-Katiraie, Phys. Rev. E, 2009

1:5:1:36Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection
Siegfried Grossmann, Detlef Lohse, Phys. Rev. E, 2002

1:5:1:38Comparative experimental study of local mixing of active and passive scalars in turbulent thermal convection
Quan Zhou, Ke-Qing Xia, Phys. Rev. E, 2008

1:5:1:40Large-scale velocity structures in turbulent thermal convection
X.-L. Qiu, P. Tong, Phys. Rev. E, 2001

1:5:1:48Heat transport in high-Rayleigh-number convection
Boris I. Shraiman, Eric D. Siggia, Phys. Rev. A, 1990

1:5:1:50Scaling of heat flux and energy spectrum for very large Prandtl number convection
Ambrish Pandey, Mahendra K. Verma, Pankaj K. Mishra, Phys. Rev. E, 2014

1:5:1:57Measurements of the local convective heat flux in turbulent Rayleigh-Bénard convection
X.-D. Shang, X.-L. Qiu, P. Tong, K.-Q. Xia, Phys. Rev. E, 2004

1:5:1:65Connecting flow structures and heat flux in turbulent Rayleigh-Bénard convection
Erwin P. van der Poel, Richard J. A. M. Stevens, Detlef Lohse, Phys. Rev. E, 2011

1:5:1:69Measurements of the thermal dissipation field in turbulent Rayleigh-Bénard convection
Xiaozhou He, Penger Tong, Phys. Rev. E, 2009

1:5:1:72Heat-Flux Measurement in High-Prandtl-Number Turbulent Rayleigh-Bénard Convection
Ke-Qing Xia, Siu Lam, Sheng-Qi Zhou, Phys. Rev. Lett., 2002

1:5:1:75Scaling of the Reynolds number in turbulent thermal convection
Chao Sun, Ke-Qing Xia, Phys. Rev. E, 2005

1:5:1:76Spatial distribution of heat flux and fluctuations in turbulent Rayleigh-Bénard convection
Rajaram Lakkaraju, Richard J. A. M. Stevens, Roberto Verzicco, Siegfried Grossmann, Andrea Prosperetti, Chao Sun, Detlef Lohse, Phys. Rev. E, 2012

1:5:1:78Reorientation of the Large-Scale Circulation in Turbulent Rayleigh-Bénard Convection
Eric Brown, Alexei Nikolaenko, Guenter Ahlers, Phys. Rev. Lett., 2005

1:5:1:79Wind and boundary layers in Rayleigh-Bénard convection. I. Analysis and modeling
Maarten van Reeuwijk, Harm J. J. Jonker, Kemo Hanjalić, Phys. Rev. E, 2008

1:5:1:82Cessations and reversals of the large-scale circulation in turbulent thermal convection
Heng-Dong Xi, Ke-Qing Xia, Phys. Rev. E, 2007

1:5:1:86Thermal boundary layer profiles in turbulent Rayleigh-Bénard convection in a cylindrical sample
Richard J. A. M. Stevens, Quan Zhou, Siegfried Grossmann, Roberto Verzicco, Ke-Qing Xia, Detlef Lohse, Phys. Rev. E, 2012

1:5:1:90Measured oscillations of the velocity and temperature fields in turbulent Rayleigh-Bénard convection in a rectangular cell
Sheng-Qi Zhou, Chao Sun, Ke-Qing Xia, Phys. Rev. E, 2007

1:5:1:91Plume Motion and Large-Scale Circulation in a Cylindrical Rayleigh-Bénard Cell
Denis Funfschilling, Guenter Ahlers, Phys. Rev. Lett., 2004

1:5:1:93Instantaneous measurement of velocity fields in developed thermal turbulence in mercury
Takashi Mashiko, Yoshiyuki Tsuji, Takatoshi Mizuno, Masaki Sano, Phys. Rev. E, 2004

1:5:1:95Particle image velocimetry measurement of the velocity field in turbulent thermal convection
Ke-Qing Xia, Chao Sun, Sheng-Qi Zhou, Phys. Rev. E, 2003

1:5:1:96Enhanced and reduced heat transport in turbulent thermal convection with polymer additives
Ping Wei, Rui Ni, Ke-Qing Xia, Phys. Rev. E, 2012

1:5:1:97Chaotic gas turbine subject to augmented Lorenz equations
Kenichiro Cho, Takaya Miyano, Toshiyuki Toriyama, Phys. Rev. E, 2012

1:5:1:103Turbulence in helium-gas free convection
Masaki Sano, Xiao Zhong Wu, Albert Libchaber, Phys. Rev. A, 1989

1:5:1:104Mean wind and its reversal in thermal convection
K. R. Sreenivasan, A. Bershadskii, J. J. Niemela, Phys. Rev. E, 2002

1:5:1:105Effect of inertia in Rayleigh-Bénard convection
M. Breuer, S. Wessling, J. Schmalzl, U. Hansen, Phys. Rev. E, 2004

1:5:1:107Structure of viscous boundary layers in turbulent Rayleigh-Bénard convection
Ronald du Puits, Christian Resagk, André Thess, Phys. Rev. E, 2009

1:5:1:108Effect of velocity boundary conditions on the heat transfer and flow topology in two-dimensional Rayleigh-Bénard convection
Erwin P. van der Poel, Rodolfo Ostilla-Mónico, Roberto Verzicco, Detlef Lohse, Phys. Rev. E, 2014

1:5:1:119Observation of the Ultimate Regime in Rayleigh-Bénard Convection
X. Chavanne, F. Chillà, B. Castaing, B. Hébral, B. Chabaud, J. Chaussy, Phys. Rev. Lett., 1997

1:5:1:120Azimuthal Symmetry, Flow Dynamics, and Heat Transport in Turbulent Thermal Convection in a Cylinder with an Aspect Ratio of 0.5
Chao Sun, Heng-Dong Xi, Ke-Qing Xia, Phys. Rev. Lett., 2005

1:5:1:123Prandtl-Number Dependence of Heat Transport in Turbulent Rayleigh-Bénard Convection
Guenter Ahlers, Xiaochao Xu, Phys. Rev. Lett., 2001

1:5:1:125Spatial structure of the thermal boundary layer in turbulent convection
Siu-Lung Lui, Ke-Qing Xia, Phys. Rev. E, 1998

1:5:1:131Transitions to turbulence in helium gas
F. Heslot, B. Castaing, A. Libchaber, Phys. Rev. A, 1987

1:5:1:134Scalings of field correlations and heat transport in turbulent convection
Mahendra K. Verma, Pankaj K. Mishra, Ambrish Pandey, Supriyo Paul, Phys. Rev. E, 2012

1:5:1:135Ultimate State of Thermal Convection
Detlef Lohse, Federico Toschi, Phys. Rev. Lett., 2003

1:5:1:136Prandtl number dependence of the viscous boundary layer and the Reynolds numbers in Rayleigh-Bénard convection
Siu Lam, Xiao-Dong Shang, Sheng-Qi Zhou, Ke-Qing Xia, Phys. Rev. E, 2002

1:5:1:137Measured Local Heat Transport in Turbulent Rayleigh-Bénard Convection
X.-D. Shang, X.-L. Qiu, P. Tong, K.-Q. Xia, Phys. Rev. Lett., 2003

1:5:1:138Transition to the Ultimate State of Turbulent Rayleigh-Bénard Convection
Xiaozhou He, Denis Funfschilling, Holger Nobach, Eberhard Bodenschatz, Guenter Ahlers, Phys. Rev. Lett., 2012

1:5:1:139Boundary layer analysis in turbulent Rayleigh-Bénard convection in air: Experiment versus simulation
Ling Li, Nan Shi, Ronald du Puits, Christian Resagk, Jörg Schumacher, André Thess, Phys. Rev. E, 2012

1:5:1:141Lagrangian tracer dynamics in a closed cylindrical turbulent convection cell
Mohammad S. Emran, Jörg Schumacher, Phys. Rev. E, 2010

1:5:1:142Scaling relations in thermal turbulence: The aspect-ratio dependence
Xiao-Zhong Wu, Albert Libchaber, Phys. Rev. A, 1992

1:5:1:143High Rayleigh Number Turbulent Convection in a Gas near the Gas-Liquid Critical Point
Shay Ashkenazi, Victor Steinberg, Phys. Rev. Lett., 1999

1:5:1:144Scaling in magnetohydrodynamic convection at high Rayleigh number
S. N. Bhattacharyya, Phys. Rev. E, 2006

1:5:1:147Exponentially growing solutions in homogeneous Rayleigh-Bénard convection
E. Calzavarini, C. R. Doering, J. D. Gibbon, D. Lohse, A. Tanabe, F. Toschi, Phys. Rev. E, 2006

1:5:1:148Wind and boundary layers in Rayleigh-Bénard convection. II. Boundary layer character and scaling
Maarten van Reeuwijk, Harm J. J. Jonker, Kemo Hanjalić, Phys. Rev. E, 2008

1:5:1:149Spectral analysis of boundary layers in Rayleigh-Bénard convection
Jos Verdoold, Maarten van Reeuwijk, Mark J. Tummers, Harm J. J. Jonker, Kemo Hanjalić, Phys. Rev. E, 2008

1:5:1:151Memory-Induced Low Frequency Oscillations in Closed Convection Boxes
Emmanuel Villermaux, Phys. Rev. Lett., 1995

1:5:1:153Onset of Coherent Oscillations in Turbulent Rayleigh-Bénard Convection
X.-L. Qiu, P. Tong, Phys. Rev. Lett., 2001

1:5:1:154Temperature oscillations in turbulent Rayleigh-Bénard convection
X.-L. Qiu, P. Tong, Phys. Rev. E, 2002

1:5:1:155Large-Scale Circulation Model for Turbulent Rayleigh-Bénard Convection
Eric Brown, Guenter Ahlers, Phys. Rev. Lett., 2007

1:5:1:157Prime modes of fluid circulation in large-aspect-ratio turbulent Rayleigh-Bénard convection
Jos Verdoold, Mark J. Tummers, Kemo Hanjalić, Phys. Rev. E, 2009

1:5:1:158Statistical analysis of global wind dynamics in vigorous Rayleigh-Bénard convection
K. Petschel, M. Wilczek, M. Breuer, R. Friedrich, U. Hansen, Phys. Rev. E, 2011

1:5:1:159Dynamics and symmetries of flow reversals in turbulent convection
Mani Chandra, Mahendra K. Verma, Phys. Rev. E, 2011

1:5:1:162 Observation of the 1 2 power law in Rayleigh-Bénard convection
P.-E. Roche, B. Castaing, B. Chabaud, B. Hébral, Phys. Rev. E, 2001

1:5:1:163Breakdown of wind in turbulent thermal convection
Ronald du Puits, Christian Resagk, André Thess, Phys. Rev. E, 2007

1:5:1:164Oscillating large-scale circulation in turbulent Rayleigh-Bénard convection
Jos Verdoold, Mark J. Tummers, Kemo Hanjalić, Phys. Rev. E, 2006

1:5:1:166Temperature and velocity boundary layers in turbulent convection
Andrew Belmonte, Andreas Tilgner, Albert Libchaber, Phys. Rev. E, 1994

1:5:1:167Heat Transport in Turbulent Rayleigh-Bénard Convection
Xiaochao Xu, Kapil M. S. Bajaj, Guenter Ahlers, Phys. Rev. Lett., 2000

1:5:1:171Comparison of Turbulent Thermal Convection between Conditions of Constant Temperature and Constant Flux
Hans Johnston, Charles R. Doering, Phys. Rev. Lett., 2009

1:5:1:172Measured Instantaneous Viscous Boundary Layer in Turbulent Rayleigh-Bénard Convection
Quan Zhou, Ke-Qing Xia, Phys. Rev. Lett., 2010

1:5:1:173Structure of the thermal boundary layer for turbulent Rayleigh-Bénard convection of air in a long rectangular enclosure
Anna Maystrenko, Christian Resagk, André Thess, Phys. Rev. E, 2007

1:5:1:175Scaling of the velocity power spectra in turbulent thermal convection
Xiao-Dong Shang, Ke-Qing Xia, Phys. Rev. E, 2001

1:5:1:176Thermal Turbulence in Mercury
Tohru Takeshita, Takehiko Segawa, James A. Glazier, Masaki Sano, Phys. Rev. Lett., 1996

1:5:1:177Viscous boundary layers at the sidewall of a convection cell
Xin-Liang Qiu, Ke-Qing Xia, Phys. Rev. E, 1998

1:5:1:181Does Turbulent Convection Feel the Shape of the Container?
Z. A. Daya, R. E. Ecke, Phys. Rev. Lett., 2001

1:5:1:182Fluctuations of temperature gradients in turbulent thermal convection
K. R. Sreenivasan, A. Bershadskii, J. J. Niemela, Phys. Rev. E, 2005

1:5:1:184Origin of the Temperature Oscillation in Turbulent Thermal Convection
Heng-Dong Xi, Sheng-Qi Zhou, Quan Zhou, Tak-Shing Chan, Ke-Qing Xia, Phys. Rev. Lett., 2009

1:5:1:185Plume Statistics in Thermal Turbulence: Mixing of an Active Scalar
Sheng-Qi Zhou, Ke-Qing Xia, Phys. Rev. Lett., 2002

1:5:1:187Search for the “Ultimate State” in Turbulent Rayleigh-Bénard Convection
Denis Funfschilling, Eberhard Bodenschatz, Guenter Ahlers, Phys. Rev. Lett., 2009

1:5:1:188Flow Reversals in Thermally Driven Turbulence
Kazuyasu Sugiyama, Rui Ni, Richard J. A. M. Stevens, Tak Shing Chan, Sheng-Qi Zhou, Heng-Dong Xi, Chao Sun, Siegfried Grossmann, Ke-Qing Xia, Detlef Lohse, Phys. Rev. Lett., 2010

1:5:1:190Influence of the angle between the wind and the isothermal surfaces on the boundary layer structures in turbulent thermal convection
Olga Shishkina, Sebastian Wagner, Susanne Horn, Phys. Rev. E, 2014

1:5:1:191Scaling in laminar natural convection in laterally heated cavities: Is turbulence essential in the classical scaling of heat transfer?
Huidan Yu, Ning Li, Robert E. Ecke, Phys. Rev. E, 2007

1:5:1:192Coherent structures in boundary layers of Rayleigh-Bénard convection
T. Haramina, A. Tilgner, Phys. Rev. E, 2004

1:5:1:193Morphological Evolution of Thermal Plumes in Turbulent Rayleigh-Bénard Convection
Quan Zhou, Chao Sun, Ke-Qing Xia, Phys. Rev. Lett., 2007

1:5:1:196Wind Reversals in Turbulent Rayleigh-Bénard Convection
Francisco Fontenele Araujo, Siegfried Grossmann, Detlef Lohse, Phys. Rev. Lett., 2005

1:5:1:197Spatial correlation of temperature in turbulent Rayleigh-Bénard convection
T. Haramina, A. Tilgner, Phys. Rev. E, 2006

1:5:1:198Mean Wind in Convective Turbulence of Mercury
Yoshiyuki Tsuji, Takatoshi Mizuno, Takashi Mashiko, Masaki Sano, Phys. Rev. Lett., 2005

1:5:1:200Thickness of the diffusive sublayer in turbulent convection
Ronald du Puits, Christian Resagk, André Thess, Phys. Rev. E, 2010

1:5:1:203Measured Velocity Boundary Layers in Turbulent Convection
Y.-B. Xin, K.-Q. Xia, P. Tong, Phys. Rev. Lett., 1996

1:5:1:204Non-Oberbeck-Boussinesq Effects in Gaseous Rayleigh-Bénard Convection
Guenter Ahlers, Francisco Fontenele Araujo, Denis Funfschilling, Siegfried Grossmann, Detlef Lohse, Phys. Rev. Lett., 2007

1:5:1:208Boundary layer length scales in convective turbulence
Y.-B. Xin, K.-Q. Xia, Phys. Rev. E, 1997

1:5:1:212Convection in an ideal gas at high Rayleigh numbers
A. Tilgner, Phys. Rev. E, 2011

1:5:1:213“Clusterization” and intermittency of temperature fluctuations in turbulent convection
A. Bershadskii, J. J. Niemela, A. Praskovsky, K. R. Sreenivasan, Phys. Rev. E, 2004

1:5:1:214Spatial structure of the viscous boundary layer in turbulent convection
Xin-Liang Qiu, Ke-Qing Xia, Phys. Rev. E, 1998

1:5:1:218Non-Boussinesq effects in free thermal convection
Xiao-Zhong Wu, Albert Libchaber, Phys. Rev. A, 1991

1:5:1:219Influence of container shape on scaling of turbulent fluctuations in convection
N. Foroozani, J. J. Niemela, V. Armenio, K. R. Sreenivasan, Phys. Rev. E, 2014

1:5:1:220Logarithmic Temperature Profiles in Turbulent Rayleigh-Bénard Convection
Guenter Ahlers, Eberhard Bodenschatz, Denis Funfschilling, Siegfried Grossmann, Xiaozhou He, Detlef Lohse, Richard J. A. M. Stevens, Roberto Verzicco, Phys. Rev. Lett., 2012

1:5:1:222Large Scale Structures in Rayleigh-Bénard Convection at High Rayleigh Numbers
T. Hartlep, A. Tilgner, F. H. Busse, Phys. Rev. Lett., 2003

1:5:1:226Scaling of the Local Convective Heat Flux in Turbulent Rayleigh-Bénard Convection
Xiao-Dong Shang, Penger Tong, Ke-Qing Xia, Phys. Rev. Lett., 2008

1:5:1:230Lagrangian Temperature, Velocity, and Local Heat Flux Measurement in Rayleigh-Bénard Convection
Y. Gasteuil, W. L. Shew, M. Gibert, F. Chillá, B. Castaing, J.-F. Pinton, Phys. Rev. Lett., 2007

1:5:1:231Boundary layer length scales in thermal turbulence
Andrew Belmonte, Andreas Tilgner, Albert Libchaber, Phys. Rev. Lett., 1993

1:5:1:232Turbulent Convection over Rough Surfaces
Y. Shen, P. Tong, K.-Q. Xia, Phys. Rev. Lett., 1996

1:5:1:235Clustering of Plumes in Turbulent Convection
Antonio Parodi, Jost von Hardenberg, Giuseppe Passoni, Antonello Provenzale, Edward A Spiegel, Phys. Rev. Lett., 2004

1:5:1:237Temperature fluctuations in a convection cell with rough upper and lower surfaces
Y.-B. Du, P. Tong, Phys. Rev. E, 2001

1:5:1:238Numerical insight into flow structure in ultraturbulent thermal convection
S. Kenjereš, K. Hanjalić, Phys. Rev. E, 2002

1:5:1:241Energy Budget in Rayleigh-Bénard Convection
R. M. Kerr, Phys. Rev. Lett., 2001

1:5:1:242Nusselt Number Measurements for Turbulent Rayleigh-Bénard Convection
Alexei Nikolaenko, Guenter Ahlers, Phys. Rev. Lett., 2003

1:5:1:244Extraction of Plumes in Turbulent Thermal Convection
Emily S. C. Ching, H. Guo, Xiao-Dong Shang, P. Tong, and Ke-Qing Xia, Phys. Rev. Lett., 2004

1:5:1:245Mean Velocity Profile in Confined Turbulent Convection
Ronald du Puits, Christian Resagk, André Thess, Phys. Rev. Lett., 2007

1:5:1:246Structure of hard-turbulent convection in two dimensions: Numerical evidence
J. Werne, Phys. Rev. E, 1993

1:5:1:248Effect of Boundary Layers Asymmetry on Heat Transfer Efficiency in Turbulent Rayleigh-Bénard Convection at Very High Rayleigh Numbers
P. Urban, P. Hanzelka, T. Kralik, V. Musilova, A. Srnka, L. Skrbek, Phys. Rev. Lett., 2012

1:5:1:250Prandtl-number dependence of interior temperature and velocity fluctuations in turbulent convection
Z. A. Daya, R. E. Ecke, Phys. Rev. E, 2002

1:5:1:252Efficiency of Heat Transfer in Turbulent Rayleigh-Bénard Convection
P. Urban, V. Musilová, L. Skrbek, Phys. Rev. Lett., 2011

1:5:1:253Random Roughness of Boundary Increases the Turbulent Convection Scaling Exponent
S. Ciliberto, C. Laroche, Phys. Rev. Lett., 1999

1:5:1:255Local Energy Dissipation Rate Balances Local Heat Flux in the Center of Turbulent Thermal Convection
Rui Ni, Shi-Di Huang, Ke-Qing Xia, Phys. Rev. Lett., 2011

1:5:1:257Turbulent Thermal Convection with an Obstructed Sidewall
Ke-Qing Xia, Siu-Lung Lui, Phys. Rev. Lett., 1997

1:5:1:258Enhanced Heat Transport in Turbulent Convection over a Rough Surface
Y.-B. Du, P. Tong, Phys. Rev. Lett., 1998

1:5:1:262Thermal signature of plumes in turbulent convection: The skewness of the derivative
Andrew Belmonte, Albert Libchaber, Phys. Rev. E, 1996

1:5:1:264Universality of Local Dissipation Scales in Buoyancy-Driven Turbulence
Quan Zhou, Ke-Qing Xia, Phys. Rev. Lett., 2010

1:5:1:269Measured Thermal Dissipation Field in Turbulent Rayleigh-Bénard Convection
Xiaozhou He, Penger Tong, Ke-Qing Xia, Phys. Rev. Lett., 2007

1:5:1:271Heat flux and shear rate in turbulent convection
Emily S. C. Ching, Phys. Rev. E, 1997

1:5:1:272Thermal boundary layers and heat flux in turbulent convection: The role of recirculating flows
T. H. Solomon, J. P. Gollub, Phys. Rev. A, 1991

1:5:1:277Dissipation Layers in Rayleigh-Bénard Convection: A Unifying View
K. Petschel, S. Stellmach, M. Wilczek, J. Lülff, U. Hansen, Phys. Rev. Lett., 2013

1:5:1:280Development of hard-turbulent convection in two dimensions: Numerical evidence
J. Werne, E. E. DeLuca, R. Rosner, F. Cattaneo, Phys. Rev. Lett., 1991

1:5:1:285Numerical simulations of soft and hard turbulence: Preliminary results for two-dimensional convection
E. E. DeLuca, J. Werne, R. Rosner, F. Cattaneo, Phys. Rev. Lett., 1990

1:5:1:298Large-scale coherent rotation and oscillation in turbulent thermal convection
X.-L. Qiu, S. H. Yao, P. Tong, Phys. Rev. E, 2000

1:5:1:300Transfer at Rough Sheared Interfaces
Emmanuel Villermaux, Phys. Rev. Lett., 1998

1:5:1:304Active and passive fields in turbulent transport: The role of statistically preserved structures
Emily S. C. Ching, Yoram Cohen, Thomas Gilbert, Itamar Procaccia, Phys. Rev. E, 2003

1:5:1:305Confinement-Induced Heat-Transport Enhancement in Turbulent Thermal Convection
Shi-Di Huang, Matthias Kaczorowski, Rui Ni, Ke-Qing Xia, Phys. Rev. Lett., 2013

1:5:1:316Flow Reversals in Turbulent Convection via Vortex Reconnections
Mani Chandra, Mahendra K. Verma, Phys. Rev. Lett., 2013

1:5:1:317Comment on “Effect of Boundary Layers Asymmetry on Heat Transfer Efficiency in Turbulent Rayleigh-Bénard Convection at Very High Rayleigh Numbers”
Xiaozhou He, Denis Funfschilling, Holger Nobach, Eberhard Bodenschatz, Guenter Ahlers, Phys. Rev. Lett., 2013

1:5:1:322Turbulence and internal waves in side-heated convection
Andrew Belmonte, Andreas Tilgner, Albert Libchaber, Phys. Rev. E, 1995

1:5:1:326High-Rayleigh-number convection in spherical shells
A. Tilgner, Phys. Rev. E, 1996

1:5:1:327Temporal surrogates of spatial turbulent statistics: The Taylor hypothesis revisited
Victor S. L’vov, Anna Pomyalov, Itamar Procaccia, Phys. Rev. E, 1999

1:5:1:328Turbulent Rayleigh-Bénard convection in a conducting fluid in a strong magnetic field
Jayanta K. Bhattacharjee, Amita Das, Kalyan Banerjee, Phys. Rev. A, 1991

1:5:1:340Theory for the experimental observation of chaos in a rotating waterwheel
Miroslav Kolář, Godfrey Gumbs, Phys. Rev. A, 1992

1:5:1:342Simple passive scalar advection-diffusion model
Scott Wunsch, Phys. Rev. E, 1998

1:5:1:358Rare Fluctuations and Large-Scale Circulation Cessations in Turbulent Convection
Michael Assaf, Luiza Angheluta, Nigel Goldenfeld, Phys. Rev. Lett., 2011

1:5:1:359Coherent Oscillations of Turbulent Rayleigh-Bénard Convection in a Thin Vertical Disk
Hao Song, E. Villermaux, Penger Tong, Phys. Rev. Lett., 2011

1:5:1:364 Logarithmic Spatial Variations and Universal f 1 Power Spectra of Temperature Fluctuations in Turbulent Rayleigh-Bénard Convection
Xiaozhou He, Dennis P. M. van Gils, Eberhard Bodenschatz, Guenter Ahlers, (International Collaboration for Turbulence Research) Phys. Rev. Lett., 2014

1:5:1:377Self-scaling properties of velocity circulation in shear flows
R. Benzi, L. Biferale, M. V. Struglia, R. Tripiccione, Phys. Rev. E, 1997

1:5:2:24Large-Scale Finite-Wavelength Modulation within Turbulent Shear Flows
Arnaud Prigent, Guillaume Grégoire, Hugues Chaté, Olivier Dauchot, Wim van Saarloos, Phys. Rev. Lett., 2002

1:5:2:26Instability mechanisms and transition scenarios of spiral turbulence in Taylor-Couette flow
Alvaro Meseguer, Fernando Mellibovsky, Marc Avila, Francisco Marques, Phys. Rev. E, 2009

1:5:2:27Transition to shear-driven turbulence in Couette-Taylor flow
Daniel P. Lathrop, Jay Fineberg, Harry L. Swinney, Phys. Rev. A, 1992

1:5:2:29Evidence for internal structures of spiral turbulence
S. Dong, Phys. Rev. E, 2009

1:5:2:30Nonlinear stability of laboratory quasi-Keplerian flows
E. M. Edlund, H. Ji, Phys. Rev. E, 2014

1:5:2:31Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette-Taylor flow
Gregory S. Lewis, Harry L. Swinney, Phys. Rev. E, 1999

1:5:2:32Statistics of turbulent fluctuations in counter-rotating Taylor-Couette flows
Sander G. Huisman, Detlef Lohse, Chao Sun, Phys. Rev. E, 2013

1:5:2:34Intermittent boundary layers and torque maxima in Taylor-Couette flow
Hannes J. Brauckmann, Bruno Eckhardt, Phys. Rev. E, 2013

1:5:2:36Angular Momentum Transport in Turbulent Flow between Independently Rotating Cylinders
M. S. Paoletti, D. P. Lathrop, Phys. Rev. Lett., 2011

1:5:2:38Torque measurements and numerical determination in differentially rotating wide gap Taylor-Couette flow
S. Merbold, H. J. Brauckmann, C. Egbers, Phys. Rev. E, 2013

1:5:2:40Herringbone streaks in Taylor-Couette turbulence
S. Dong, Phys. Rev. E, 2008

1:5:2:41Localized intermittent short-wavelength bursts in the high-radius ratio limit of the Taylor-Couette system
C. S. Carey, A. B. Schlender, C. D. Andereck, Phys. Rev. E, 2007

1:5:2:42Torque Scaling in Turbulent Taylor-Couette Flow with Co- and Counterrotating Cylinders
Dennis P. M. van Gils, Sander G. Huisman, Gert-Wim Bruggert, Chao Sun, Detlef Lohse, Phys. Rev. Lett., 2011

1:5:2:43Turbulent bursting and spatiotemporal intermittencyin the counterrotating Taylor-Couette system
Peter W. Colovas, C. David Andereck, Phys. Rev. E, 1997

1:5:2:45Turbulent flow between concentric rotating cylinders at large Reynolds number
Daniel P. Lathrop, Jay Fineberg, Harry L. Swinney, Phys. Rev. Lett., 1992

1:5:2:47Turbulent Bursts in Couette-Taylor Flow
K. Coughlin, P. S. Marcus, Phys. Rev. Lett., 1996

1:5:2:48Spiral Turbulence and Phase Dynamics
John J. Hegseth, C. David Andereck, F. Hayot, Y. Pomeau, Phys. Rev. Lett., 1989

1:5:2:50Ultimate Turbulent Taylor-Couette Flow
Sander G. Huisman, Dennis P. M. van Gils, Siegfried Grossmann, Chao Sun, Detlef Lohse, Phys. Rev. Lett., 2012

1:5:2:55Explicit analytic formulas for Newtonian Taylor-Couette primary instabilities
C. S. Dutcher, S. J. Muller, Phys. Rev. E, 2007

1:5:2:60Smooth and rough boundaries in turbulent Taylor-Couette flow
Thomas H. van den Berg, Charles R. Doering, Detlef Lohse, Daniel P. Lathrop, Phys. Rev. E, 2003

1:5:2:69Logarithmic Boundary Layers in Strong Taylor-Couette Turbulence
Sander G. Huisman, Sven Scharnowski, Christian Cierpka, Christian J. Kähler, Detlef Lohse, Chao Sun, Phys. Rev. Lett., 2013

1:5:2:77Anisotropy in turbulent drag reduction
P. Tong, W. I. Goldburg, J. S. Huang, T. A. Witten, Phys. Rev. Lett., 1990

1:5:2:82Elimination of Vortex Streets in Bluff-Body Flows
S. Dong, G. S. Triantafyllou, G. E. Karniadakis, Phys. Rev. Lett., 2008

1:5:2:96Turbulent domain stabilization in annular flows
F. Hayot, Y. Pomeau, Phys. Rev. E, 1994

1:5:2:107Unusual Time-Dependent Phenomena in Taylor-Couette Flow at Moderately Low Reynolds Numbers
T. Mullin, K. A. Cliffe, G. Pfister, Phys. Rev. Lett., 1987

1:5:2:123Plume model for the boundary-layer dynamics in hard turbulence
J. Werne, Phys. Rev. E, 1994

1:5:3:7Computation of azimuthal waves and their stability in thermal convection in rotating spherical shells with application to the study of a double-Hopf bifurcation
J. Sánchez, F. Garcia, M. Net, Phys. Rev. E, 2013

1:5:3:26Multistability in rotating spherical shell convection
F. Feudel, N. Seehafer, L. S. Tuckerman, M. Gellert, Phys. Rev. E, 2013

1:5:3:31Multiple zonal jets and drifting: Thermal convection in a rapidly rotating spherical shell compared to a quasigeostrophic model
Jon Rotvig, Phys. Rev. E, 2007

1:5:3:89Antisymmetric Polar Modes of Thermal Convection in Rotating Spherical Fluid Shells at High Taylor Numbers
Ferran Garcia, Juan Sánchez, Marta Net, Phys. Rev. Lett., 2008

1:5:3:105Thermal and inertial modes of convection in a rapidly rotating annulus
David Pino, Isabel Mercader, Marta Net, Phys. Rev. E, 2000

1:5:3:114Hemispherical dynamos generated by convection in rotating spherical shells
E. Grote, F. H. Busse, Phys. Rev. E, 2000

1:5:3:154Doubly Periodic Circular Couette Flow: Experiments Compared with Predictions from Dynamics and Symmetry
M. Gorman, Harry L. Swinney, David A. Rand, Phys. Rev. Lett., 1981

1:5:4:4Effect of aspect ratio on vortex distribution and heat transfer in rotating Rayleigh-Bénard convection
Richard J. A. M. Stevens, Jim Overkamp, Detlef Lohse, Herman J. H. Clercx, Phys. Rev. E, 2011

1:5:4:5Heat transport measurements in turbulent rotating Rayleigh-Bénard convection
Yuanming Liu, Robert E. Ecke, Phys. Rev. E, 2009

1:5:4:9 Breakdown of the large-scale circulation in Γ = 1 / 2 rotating Rayleigh-Bénard flow
Richard J. A. M. Stevens, Herman J. H. Clercx, Detlef Lohse, Phys. Rev. E, 2012

1:5:4:13Local temperature measurements in turbulent rotating Rayleigh-Bénard convection
Yuanming Liu, Robert E. Ecke, Phys. Rev. E, 2011

1:5:4:16Thermal evidence for Taylor columns in turbulent rotating Rayleigh-Bénard convection
Eric M. King, Jonathan M. Aurnou, Phys. Rev. E, 2012

1:5:4:17Heat flux intensification by vortical flow localization in rotating convection
R. P. J. Kunnen, H. J. H. Clercx, B. J. Geurts, Phys. Rev. E, 2006

1:5:4:18Vortex statistics in turbulent rotating convection
R. P. J. Kunnen, H. J. H. Clercx, B. J. Geurts, Phys. Rev. E, 2010

1:5:4:19Turbulence in rotating Rayleigh-Bénard convection in low-Prandtl-number fluids
Hirdesh K. Pharasi, Rahul Kannan, Krishna Kumar, Jayanta K. Bhattacharjee, Phys. Rev. E, 2011

1:5:4:21Heat transport in rotating convection without Ekman layers
S. Schmitz, A. Tilgner, Phys. Rev. E, 2009

1:5:4:24Prandtl-, Rayleigh-, and Rossby-Number Dependence of Heat Transport in Turbulent Rotating Rayleigh-Bénard Convection
Jin-Qiang Zhong, Richard J. A. M. Stevens, Herman J. H. Clercx, Roberto Verzicco, Detlef Lohse, Guenter Ahlers, Phys. Rev. Lett., 2009

1:5:4:27Heat Transport Scaling in Turbulent Rayleigh-Bénard Convection: Effects of Rotation and Prandtl Number
Yuanming Liu, Robert E. Ecke, Phys. Rev. Lett., 1997

1:5:4:29Transitions between Turbulent States in Rotating Rayleigh-Bénard Convection
Richard J. A. M. Stevens, Jin-Qiang Zhong, Herman J. H. Clercx, Guenter Ahlers, Detlef Lohse, Phys. Rev. Lett., 2009

1:5:4:39Finite-Size Effects Lead to Supercritical Bifurcations in Turbulent Rotating Rayleigh-Bénard Convection
Stephan Weiss, Richard J. A. M. Stevens, Jin-Qiang Zhong, Herman J. H. Clercx, Detlef Lohse, Guenter Ahlers, Phys. Rev. Lett., 2010

1:5:4:49Enhanced Vertical Inhomogeneity in Turbulent Rotating Convection
R. P. J. Kunnen, H. J. H. Clercx, B. J. Geurts, Phys. Rev. Lett., 2008

1:5:4:53Sheared boundary layers in turbulent Rayleigh-Bénard convection
T. H. Solomon, J. P. Gollub, Phys. Rev. Lett., 1990

1:5:4:57Model of Convective Taylor Columns in Rotating Rayleigh-Bénard Convection
Ian Grooms, Keith Julien, Jeffrey B. Weiss, Edgar Knobloch, Phys. Rev. Lett., 2010

1:5:4:67Two Scaling Regimes for Rotating Rayleigh-Bénard Convection
V. M. Canuto, M. S. Dubovikov, Phys. Rev. Lett., 1998

1:5:4:76Comment on “Two Scaling Regimes for Rotating Rayleigh-Bénard Convection”
Robert E. Ecke, Phys. Rev. Lett., 1999

1:5:5:7Pattern dynamics near inverse homoclinic bifurcation in fluids
Pinaki Pal, Krishna Kumar, Priyanka Maity, Syamal Kumar Dana, Phys. Rev. E, 2013

1:5:5:9Effect of the centrifugal force on domain chaos in Rayleigh-Bénard convection
Nathan Becker, J. D. Scheel, M. C. Cross, Guenter Ahlers, Phys. Rev. E, 2006

1:5:5:10Square patterns in rotating Rayleigh-Bénard convection
J. J. Sánchez-Álvarez, E. Serre, E. Crespo del Arco, F. H. Busse, Phys. Rev. E, 2005

1:5:5:11Domain chaos puzzle and the calculation of the structure factor and its half-width
Nathan Becker, Guenter Ahlers, Phys. Rev. E, 2006

1:5:5:15Scaling laws for rotating Rayleigh-Bénard convection
J. D. Scheel, M. C. Cross, Phys. Rev. E, 2005

1:5:5:18Confined rotating convection with large Prandtl number: Centrifugal effects on wall modes
Jezabel Curbelo, Juan M. Lopez, Ana M. Mancho, Francisco Marques, Phys. Rev. E, 2014

1:5:5:23Traveling waves in rotating Rayleigh-Bénard convection
Wooyoung Choi, Dilip Prasad, Roberto Camassa, Robert E. Ecke, Phys. Rev. E, 2004

1:5:5:27Convection under rotation for Prandtl numbers near 1: Linear stability, wave-number selection, and pattern dynamics
Yuchou Hu, Robert E. Ecke, Guenter Ahlers, Phys. Rev. E, 1997

1:5:5:28Convection under rotation for Prandtl numbers near 1: Küppers-Lortz instability
Yuchou Hu, Werner Pesch, Guenter Ahlers, Robert E. Ecke, Phys. Rev. E, 1998

1:5:5:30Chaotic domain structure in rotating convection
Yuhai Tu, M. C. Cross, Phys. Rev. Lett., 1992

1:5:5:31Square Patterns in Rayleigh-Bénard Convection with Rotation about a Vertical Axis
Kapil M. S. Bajaj, Jun Liu, Brian Naberhuis, Guenter Ahlers, Phys. Rev. Lett., 1998

1:5:5:38Rayleigh-Bénard convection with rotation at small Prandtl numbers
Kapil M. S. Bajaj, Guenter Ahlers, Werner Pesch, Phys. Rev. E, 2002

1:5:5:39Rotating Rayleigh-Bénard convection: Aspect-ratio dependence of the initial bifurcations
Li Ning, Robert E. Ecke, Phys. Rev. E, 1993

1:5:5:40Thermal-Noise Effect on the Transition to Rayleigh-Bénard Convection
Jaechul Oh, Guenter Ahlers, Phys. Rev. Lett., 2003

1:5:5:41Global Bifurcation to Traveling Waves in Axisymmetric Convection
Laurette S. Tuckerman, Dwight Barkley, Phys. Rev. Lett., 1988

1:5:5:43Time and Length Scales in Rotating Rayleigh-Bénard Convection
Yuchou Hu, Robert E. Ecke, Guenter Ahlers, Phys. Rev. Lett., 1995

1:5:5:48Pattern selection in rotating convection with experimental boundary conditions
Thomas Clune, Edgar Knobloch, Phys. Rev. E, 1993

1:5:5:52Traveling waves in rotating Rayleigh-Bénard convection: Analysis of modes and mean flow
J. D. Scheel, M. R. Paul, M. C. Cross, P. F. Fischer, Phys. Rev. E, 2003

1:5:5:53Direct Transition to Turbulence in Rotating Bénard Convection
Joseph J. Niemela, Russell J. Donnelly, Phys. Rev. Lett., 1986

1:5:5:55Pattern dynamics in rotating convection at finite Prandtl number
Y. Ponty, T. Passot, P. L. Sulem, Phys. Rev. E, 1997

1:5:5:56Finite size scaling of domain chaos
M. C. Cross, M. Louie, D. Meiron, Phys. Rev. E, 2001

1:5:5:64Convective instability with time-varying rotation
Joseph J. Niemela, Michael R. Smith, Russell J. Donnelly, Phys. Rev. A, 1991

1:5:5:65Effect of a random noise on scaling laws of finite Prandtl number rotating convection near threshold
D. Laveder, T. Passot, Y. Ponty, P. L. Sulem, Phys. Rev. E, 1999

1:5:5:74Defect Motion in Rotating Fluids
Juan Millán-Rodríguez, Michael Bestehorn, Carlos Pérez-García, Rudolf Friedrich, Marc Neufeld, Phys. Rev. Lett., 1995

1:5:5:75Dynamics of defects in Rayleigh-Bénard convection
Eric D. Siggia, Annette Zippelius, Phys. Rev. A, 1981

1:5:5:76Chaos and Structures in Rotating Convection at Finite Prandtl Number
Y. Ponty, T. Passot, P. L. Sulem, Phys. Rev. Lett., 1997

1:5:5:77Pattern formation in convection of rotating fluids with broken vertical symmetry
Juan Millán Rodríguez, Carlos Pérez-García, Michael Bestehorn, Marc Fantz, Rudolf Friedrich, Phys. Rev. A, 1992

1:5:5:83Convective instability in a rotating fluid layer under modulation of the rotating rate
Jayanta K. Bhattacharjee, Phys. Rev. A, 1990

1:5:5:84Dislocation motion in cellular structures
Y. Pomeau, S. Zaleski, P. Manneville, Phys. Rev. A, 1983

1:5:5:87Planform selection in rotating convection: Hexagonal symmetry
H. F. Goldstein, E. Knobloch, M. Silber, Phys. Rev. A, 1992

1:5:5:89Gluing bifurcations in optothermal nonlinear devices
R. Herrero, J. Farjas, R. Pons, F. Pi, G. Orriols, Phys. Rev. E, 1998

1:5:5:104Local oscillations, traveling waves, and chaos in Rayleigh-Bénard convection
S. Ciliberto, M. A. Rubio, Phys. Rev. Lett., 1987

1:5:5:106Critical Dynamics near the Oscillatory Instability in Rayleigh-Bénard Convection
R. E. Ecke, Y. Maeno, H. Haucke, J. C. Wheatley, Phys. Rev. Lett., 1984

1:5:5:107Behavior of focus patterns in low Prandtl number convection
Yuchou Hu, Robert E. Ecke, Guenter Ahlers, Phys. Rev. Lett., 1994

1:5:5:109 Transition to Oscillatory Convection in a He 3 —Superfluid- He 4 Mixture
Yoshiteru Maeno, Hans Haucke, John C. Wheatley, Phys. Rev. Lett., 1985

1:5:5:110Wavy stripes and squares in zero-Prandtl-number convection
Pinaki Pal, Krishna Kumar, Phys. Rev. E, 2002

1:5:5:112Quasiperiodic waves at the onset of zero-Prandtl-number convection with rotation
Krishna Kumar, Sanjay Chaudhuri, Alaka Das, Phys. Rev. E, 2002

1:5:5:117Bifurcations at the Eckhaus points in two-dimensional Rayleigh-Bénard convection
M. Nagata, Phys. Rev. E, 1995

1:5:6:2Helical magnetorotational instability in a Taylor-Couette flow with strongly reduced Ekman pumping
Frank Stefani, Gunter Gerbeth, Thomas Gundrum, Rainer Hollerbach, Jānis Priede, Günther Rüdiger, Jacek Szklarski, Phys. Rev. E, 2009

1:5:6:3Magnetized Ekman layer and Stewartson layer in a magnetized Taylor-Couette flow
Wei Liu, Phys. Rev. E, 2008

1:5:6:6Paradoxes of magnetorotational instability and their geometrical resolution
Oleg N. Kirillov, Frank Stefani, Phys. Rev. E, 2011

1:5:6:7Instability, turbulence, and enhanced transport in accretion disks
Steven A. Balbus, John F. Hawley, Rev. Mod. Phys., 1998

1:5:6:8Ekman-Hartmann layer in a magnetohydrodynamic Taylor-Couette flow
Jacek Szklarski, Günther Rüdiger, Phys. Rev. E, 2007

1:5:6:9Helical magnetorotational instability in magnetized Taylor-Couette flow
Wei Liu, Jeremy Goodman, Isom Herron, Hantao Ji, Phys. Rev. E, 2006

1:5:6:10Experimental Evidence for Magnetorotational Instability in a Taylor-Couette Flow under the Influence of a Helical Magnetic Field
Frank Stefani, Thomas Gundrum, Gunter Gerbeth, Günther Rüdiger, Manfred Schultz, Jacek Szklarski, Rainer Hollerbach, Phys. Rev. Lett., 2006

1:5:6:11Non-axisymmetric instabilities in magnetic spherical Couette flow
R. Hollerbach, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009

1:5:6:12Pseudo–magnetorotational instability in a Taylor-Dean flow between electrically connected cylinders
Jānis Priede, Phys. Rev. E, 2009

1:5:6:13Analog of astrophysical magnetorotational instability in a Couette-Taylor flow of polymer fluids
Stanislav Boldyrev, Don Huynh, Vladimir Pariev, Phys. Rev. E, 2009

1:5:6:14Paradoxical transitions to instabilities in hydromagnetic Couette-Taylor flows
Oleg N. Kirillov, Dmitry E. Pelinovsky, Guido Schneider, Phys. Rev. E, 2011

1:5:6:15Absolute versus convective helical magnetorotational instability in a Taylor-Couette flow
Jānis Priede, Gunter Gerbeth, Phys. Rev. E, 2009

1:5:6:16Inviscid helical magnetorotational instability in cylindrical Taylor-Couette flow
Jānis Priede, Phys. Rev. E, 2011

1:5:6:18Nonlinear saturation of the magnetorotational instability near threshold in a thin-gap Taylor-Couette setup
O. M. Umurhan, O. Regev, K. Menou, Phys. Rev. E, 2007

1:5:6:20New Type of Magnetorotational Instability in Cylindrical Taylor-Couette Flow
Rainer Hollerbach, Günther Rüdiger, Phys. Rev. Lett., 2005

1:5:6:22Inductionless magnetorotational instability in a Taylor-Couette flow with a helical magnetic field
Jānis Priede, Ilmārs Grants, Gunter Gerbeth, Phys. Rev. E, 2007

1:5:6:25Comment on “Helical magnetorotational instability in magnetized Taylor-Couette flow”
G. Rüdiger, R. Hollerbach, Phys. Rev. E, 2007

1:5:6:26Traveling waves in a magnetized Taylor-Couette flow
Wei Liu, Jeremy Goodman, Hantao Ji, Phys. Rev. E, 2007

1:5:6:28Pinch instabilities in Taylor-Couette flow
Dima Shalybkov, Phys. Rev. E, 2006

1:5:6:29Linear instability of magnetic Taylor-Couette flow with Hall effect
Günther Rüdiger, Dima Shalybkov, Phys. Rev. E, 2004

1:5:6:30Theory of current-driven instability experiments in magnetic Taylor-Couette flows
Günther Rüdiger, Manfred Schultz, Dima Shalybkov, Rainer Hollerbach, Phys. Rev. E, 2007

1:5:6:33Dissipative Taylor-Couette flows under the influence of helical magnetic fields
G. Rüdiger, M. Gellert, M. Schultz, R. Hollerbach, Phys. Rev. E, 2010

1:5:6:41Linear magnetohydrodynamic Taylor-Couette instability for liquid sodium
Günther Rüdiger, Manfred Schultz, Dima Shalybkov, Phys. Rev. E, 2003

1:5:6:44Observation of Magnetocoriolis Waves in a Liquid Metal Taylor-Couette Experiment
M. D. Nornberg, H. Ji, E. Schartman, A. Roach, J. Goodman, Phys. Rev. Lett., 2010

1:5:6:47Stability of axisymmetric Taylor-Couette flow in hydromagnetics
Günther Rüdiger, Dima Shalybkov, Phys. Rev. E, 2002

1:5:6:48Nonaxisymmetric Magnetorotational Instabilities in Cylindrical Taylor-Couette Flow
Rainer Hollerbach, Vijaya Teeluck, Günther Rüdiger, Phys. Rev. Lett., 2010

1:5:6:51Dissipation-induced instabilities in finite dimensions
R. Krechetnikov, J. E. Marsden, Rev. Mod. Phys., 2007

1:5:6:71Stability of Taylor-Dean flow in an annulus with arbitrary gap spacing
Falin Chen, Phys. Rev. E, 1993

1:5:6:106Local Model for Angular-Momentum Transport in Accretion Disks Driven by the Magnetorotational Instability
Martin E. Pessah, Chi-kwan Chan, Dimitrios Psaltis, Phys. Rev. Lett., 2006

1:5:6:123Magnetorotational-type Instability in Couette-Taylor Flow of a Viscoelastic Polymer Liquid
Gordon I. Ogilvie, Adrian T. Potter, Phys. Rev. Lett., 2008

1:5:6:129General solution for the Couette flow profile
Michael C. Wendl, Phys. Rev. E, 1999

1:5:6:130Angular Momentum Transport in Thin Accretion Disks and Intermittent Accretion
B. Coppi, P. S. Coppi, Phys. Rev. Lett., 2001

1:5:6:143Extending the Range of the Inductionless Magnetorotational Instability
Oleg N. Kirillov, Frank Stefani, Phys. Rev. Lett., 2013

1:5:6:148Three-Dimensional Vortices Generated by Self-Replication in Stably Stratified Rotating Shear Flows
Philip S. Marcus, Suyang Pei, Chung-Hsiang Jiang, Pedram Hassanzadeh, Phys. Rev. Lett., 2013

1:5:6:150Experimental Evidence for Nonaxisymmetric Magnetorotational Instability in a Rotating Liquid Metal Exposed to an Azimuthal Magnetic Field
Martin Seilmayer, Vladimir Galindo, Gunter Gerbeth, Thomas Gundrum, Frank Stefani, Marcus Gellert, Günther Rüdiger, Manfred Schultz, Rainer Hollerbach, Phys. Rev. Lett., 2014

1:5:6:152Nonmodal Growth of the Magnetorotational Instability
J. Squire, A. Bhattacharjee, Phys. Rev. Lett., 2014

1:5:7:3Numerical and experimental investigation of structure-function scaling in turbulent Rayleigh-Bénard convection
R. P. J. Kunnen, H. J. H. Clercx, B. J. Geurts, L. J. A. van Bokhoven, R. A. D. Akkermans, R. Verzicco, Phys. Rev. E, 2008

1:5:7:4Energy spectra and fluxes for Rayleigh-Bénard convection
Pankaj Kumar Mishra, Mahendra K. Verma, Phys. Rev. E, 2010

1:5:7:5Probing the energy cascade of convective turbulence
R. P. J. Kunnen, H. J. H. Clercx, Phys. Rev. E, 2014

1:5:7:6Entropy and energy spectra in low-Prandtl-number convection with rotation
Hirdesh K. Pharasi, Krishna Kumar, Jayanta K. Bhattacharjee, Phys. Rev. E, 2014

1:5:7:7Refined similarity hypotheses in shell models of homogeneous turbulence and turbulent convection
Emily S. C. Ching, H. Guo, T. S. Lo, Phys. Rev. E, 2008

1:5:7:9Scaling behavior in turbulent Rayleigh-Bénard convection revealed by conditional structure functions
Emily S. C. Ching, Yue-Kin Tsang, T. N. Fok, Xiaozhou He, Penger Tong, Phys. Rev. E, 2013

1:5:7:10Scaling laws in the central region of confined turbulent thermal convection
Emily S. C. Ching, Phys. Rev. E, 2007

1:5:7:11Polymer-induced change in scaling behavior in two-dimensional homogeneous turbulent thermal convection
Roberto Benzi, Emily S. C. Ching, C. K. Wong, Phys. Rev. E, 2014

1:5:7:12Energy spectrum of buoyancy-driven turbulence
Abhishek Kumar, Anando G. Chatterjee, Mahendra K. Verma, Phys. Rev. E, 2014

1:5:7:15Cascades of Velocity and Temperature Fluctuations in Buoyancy-Driven Thermal Turbulence
Chao Sun, Quan Zhou, Ke-Qing Xia, Phys. Rev. Lett., 2006

1:5:7:16Small-scale turbulent fluctuations beyond Taylor’s frozen-flow hypothesis
Xiaozhou He, Guowei He, Penger Tong, Phys. Rev. E, 2010

1:5:7:17Kraichnan’s random sweeping hypothesis in homogeneous turbulent convection
Xiaozhou He, Penger Tong, Phys. Rev. E, 2011

1:5:7:18Ultimate-state scaling in a shell model for homogeneous turbulent convection
Emily S. C. Ching, T. C. Ko, Phys. Rev. E, 2008

1:5:7:19Anomalous scaling and refined similarity of an active scalar in a shell model of homogeneous turbulent convection
Emily S. C. Ching, W. C. Cheng, Phys. Rev. E, 2008

1:5:7:20Frequency power spectrum of temperature fluctuations in free convection
Xiao-Zhong Wu, Leo Kadanoff, Albert Libchaber, Masaki Sano, Phys. Rev. Lett., 1990

1:5:7:21Evidences of Bolgiano-Obhukhov scaling in three-dimensional Rayleigh-Bénard convection
Enrico Calzavarini, Federico Toschi, Raffaele Tripiccione, Phys. Rev. E, 2002

1:5:7:22Spectra and Statistics of Velocity and Temperature Fluctuations in Turbulent Convection
Shay Ashkenazi, Victor Steinberg, Phys. Rev. Lett., 1999

1:5:7:23Scaling Properties of the Temperature Field in Convective Turbulence
Sheng-Qi Zhou, Ke-Qing Xia, Phys. Rev. Lett., 2001

1:5:7:24Spectra of velocity and temperature fluctuations with constant entropy flux of fully developed free-convective turbulence
V. S. L’vov, Phys. Rev. Lett., 1991

1:5:7:28Scaling and Universality in Turbulent Convection
Antonio Celani, Takeshi Matsumoto, Andrea Mazzino, Massimo Vergassola, Phys. Rev. Lett., 2002

1:5:7:314/5 Kolmogorov law for statistically stationary turbulence: Application to high-Rayleigh-number Bénard convection
Victor Yakhot, Phys. Rev. Lett., 1992

1:5:7:33Frequency spectra of turbulent thermal convection with uniform rotation
Hirdesh K. Pharasi, Krishna Kumar, Jayanta K. Bhattacharjee, Phys. Rev. E, 2014

1:5:7:36Scaling exponents in nonisotropic convective turbulence
Itamar Procaccia, Reuven Zeitak, Phys. Rev. Lett., 1989

1:5:7:39Energy spectra in a model for convective turbulence
Axel Brandenburg, Phys. Rev. Lett., 1992

1:5:7:40Crossover of spectral scaling in thermal turbulence
Siegfried Grossmann, Victor S. L’vov, Phys. Rev. E, 1993

1:5:7:41Thermal Convection and Emergence of Isolated Vortices in Soap Bubbles
F. Seychelles, Y. Amarouchene, M. Bessafi, H. Kellay, Phys. Rev. Lett., 2008

1:5:7:42Probabilities for temperature differences in Rayleigh-Bénard convection
Emily S. C. Ching, Phys. Rev. A, 1991

1:5:7:43Scaling in hard turbulent Rayleigh-Bénard flow
Siegfried Grossmann, Detlef Lohse, Phys. Rev. A, 1992

1:5:7:45From Intermittent to Nonintermittent Behavior in Two Dimensional Thermal Convection in a Soap Bubble
F. Seychelles, F. Ingremeau, C. Pradere, H. Kellay, Phys. Rev. Lett., 2010

1:5:7:46Intermittency of temperature field in turbulent convection
Emily S. C. Ching, Phys. Rev. E, 2000

1:5:7:49Entropy Cascade and Energy Inverse Transfer in Two-Dimensional Convective Turbulence
Sadayoshi Toh, Eri Suzuki, Phys. Rev. Lett., 1994

1:5:7:52Scaling exponents in thermally driven turbulence
Itamar Procaccia, Reuven Zeitak, Phys. Rev. A, 1990

1:5:7:53Relative velocity fluctuations in turbulent Rayleigh-Bénard convection
P. Tong, Y. Shen, Phys. Rev. Lett., 1992

1:5:7:57Scaling laws in two-dimensional turbulent convection
D. Biskamp, K. Hallatschek, E. Schwarz, Phys. Rev. E, 2001

1:5:7:58Entropy cascade and temporal intermittency in a shell model for convective turbulence
Eri Suzuki, Sadayoshi Toh, Phys. Rev. E, 1995

1:5:7:60Statistics of local temperature dissipation in high Rayleigh number convection
Emily S. C. Ching, C. Y. Kwok, Phys. Rev. E, 2000

1:5:7:62Transitions in convective turbulence: The role of thermal plumes
Itamar Procaccia, Emily S. C. Ching, Peter Constantin, Leo P. Kadanoff, Albert Libchaber, Xiao-Zhong Wu, Phys. Rev. A, 1991

1:5:7:63Temperature structure functions in the Bolgiano regime of thermal convection
L. Skrbek, J. J. Niemela, K. R. Sreenivasan, R. J. Donnelly, Phys. Rev. E, 2002

1:5:7:71Scaling of turbulent spectra
B. Castaing, Phys. Rev. Lett., 1990

1:5:7:73Scaling behavior of velocity and temperature in a shell model for thermal convective turbulence
Jiang Mingshun, Liu Shida, Phys. Rev. E, 1997

1:5:8:15Variational bounds on energy dissipation in incompressible flows. III. Convection
Charles R. Doering, Peter Constantin, Phys. Rev. E, 1996

1:5:8:16Energy dissipation in shear driven turbulence
Charles R. Doering, Peter Constantin, Phys. Rev. Lett., 1992

1:5:8:19Bound of dissipation on a plane Couette dynamo
Thierry Alboussière, Phys. Rev. E, 2009

1:5:8:20Variational bounds on energy dissipation in incompressible flows: Shear flow
Charles R. Doering, Peter Constantin, Phys. Rev. E, 1994

1:5:8:29Bounds on heat transport in Bénard-Marangoni convection
George Hagstrom, Charles R. Doering, Phys. Rev. E, 2010

1:5:8:36Ultimate State of Two-Dimensional Rayleigh-Bénard Convection between Free-Slip Fixed-Temperature Boundaries
Jared P. Whitehead, Charles R. Doering, Phys. Rev. Lett., 2011

1:5:8:39Variational bounds on energy dissipation in incompressible flows. II. Channel flow
Peter Constantin, Charles R. Doering, Phys. Rev. E, 1995

1:5:8:46Variational bound on energy dissipation in plane Couette flow
Rolf Nicodemus, Siegfried Grossmann, Martin Holthaus, Phys. Rev. E, 1997

1:5:8:61Rigorous bound on the plane-shear-flow dissipation rate
Thomas Gebhardt, Siegfried Grossmann, Martin Holthaus, Michel Löhden, Phys. Rev. E, 1995

1:5:8:74Upper bound on the heat transport in a layer of fluid of infinite Prandtl number, rigid lower boundary, and stress-free upper boundary
Nikolay K. Vitanov, Phys. Rev. E, 2000

1:5:8:78Power-law scaling in Bénard-Marangoni convection at large Prandtl numbers
Thomas Boeck, André Thess, Phys. Rev. E, 2001

1:5:8:96Energy stability bounds on convective heat transport:mNumerical study
Charles R. Doering, James M. Hyman, Phys. Rev. E, 1997

1:5:8:98Variational principle for the Navier-Stokes equations
R. R. Kerswell, Phys. Rev. E, 1999

1:5:8:101Rigorous upper bound for turbulent electromotive force in reversed-field pinches
Chang-Bae Kim, John A. Krommes, Phys. Rev. A, 1990

1:5:8:102Variational calculation for maximal heat transport due to the ion-temperature gradient
Chang-Bae Kim, Phys. Rev. E, 1997

1:5:8:105Variational Bound on Energy Dissipation in Turbulent Shear Flow
Rolf Nicodemus, Siegfried Grossmann, Martin Holthaus, Phys. Rev. Lett., 1997

1:5:8:107Upper bounds on convective heat transport in a rotating fluid layer of infinite Prandtl number: Case of intermediate Taylor numbers
Nikolay K. Vitanov, Phys. Rev. E, 2000

1:5:8:108Convective heat transport in a rotating fluid layer of infinite Prandtl number: Optimum fields and upper bounds on Nusselt number
Nikolay K. Vitanov, Phys. Rev. E, 2003

1:5:9:13Islands of instability for growth of spiral vortices in the Taylor-Couette system with and without axial through flow
S. Altmeyer, Ch. Hoffmann, M. Lücke, Phys. Rev. E, 2011

1:5:9:19Taylor vortex formation in axial through-flow: Linear and weakly nonlinear analysis
A. Recktenwald, M. Lücke, H. W. Müller, Phys. Rev. E, 1993

1:5:9:23Noise-sustained structure in Taylor-Couette flow with through flow
Kenneth L. Babcock, Guenter Ahlers, David S. Cannell, Phys. Rev. Lett., 1991

1:5:9:28Competing states in a Couette-Taylor system with an axial flow
Avraham Tsameret, Victor Steinberg, Phys. Rev. E, 1994

1:5:9:32Noise amplification in open Taylor-Couette flow
Kenneth L. Babcock, Guenter Ahlers, David S. Cannell, Phys. Rev. E, 1994

1:5:9:36Noise-Modulated Propagating Pattern in a Convectively Unstable System
Avraham Tsameret, Victor Steinberg, Phys. Rev. Lett., 1991

1:5:9:42Absolute and convective instabilities and noise-sustained structures in the Couette-Taylor system with an axial flow
Avraham Tsameret, Victor Steinberg, Phys. Rev. E, 1994

1:5:9:74Experimental evaluation of the intrinsic noise in the Couette-Taylor system with an axial flow
Avraham Tsameret, Galia Goldner, Victor Steinberg, Phys. Rev. E, 1994

1:5:10:1Imperfect Hopf bifurcation in spiral Poiseuille flow
J. Abshagen, M. Heise, J. Langenberg, G. Pfister, Phys. Rev. E, 2007

1:5:10:2Onset of wavy vortices in Taylor-Couette flow with imperfect reflection symmetry
J. Abshagen, G. Pfister, Phys. Rev. E, 2008

1:5:10:3Localized modulation of rotating waves in Taylor-Couette flow
J. Abshagen, J. von Stamm, M. Heise, Ch. Will, G. Pfister, Phys. Rev. E, 2012

1:5:10:4Chaos from Hopf bifurcation in a fluid flow experiment
J. Langenberg, G. Pfister, J. Abshagen, Phys. Rev. E, 2004

1:5:10:5Spiral vortices traveling between two rotating defects in the Taylor-Couette system
Ch. Hoffmann, M. Lücke, A. Pinter, Phys. Rev. E, 2005

1:5:10:6Spiral vortices and Taylor vortices in the annulus between rotating cylinders and the effect of an axial flow
Ch. Hoffmann, M. Lücke, A. Pinter, Phys. Rev. E, 2004

1:5:10:8End wall effects on the transitions between Taylor vortices and spiral vortices
S. Altmeyer, Ch. Hoffmann, M. Heise, J. Abshagen, A. Pinter, M. Lücke, G. Pfister, Phys. Rev. E, 2010

1:5:10:9Localized spirals in Taylor-Couette flow
M. Heise, J. Abshagen, D. Küter, K. Hochstrate, G. Pfister, Ch. Hoffmann, Phys. Rev. E, 2008

1:5:10:13Measurement of coefficients of the Ginzburg-Landau equation for patterns of Taylor spirals
Afshin Goharzadeh, Innocent Mutabazi, Phys. Rev. E, 2010

1:5:10:15Nonlinear defects separating spiral waves in Taylor-Couette flow
Ch. Hoffmann, M. Heise, S. Altmeyer, J. Abshagen, A. Pinter, G. Pfister, M. Lücke, Phys. Rev. E, 2009

1:5:10:17Spirals vortices in Taylor-Couette flow with rotating endwalls
M. Heise, K. Hochstrate, J. Abshagen, G. Pfister, Phys. Rev. E, 2009

1:5:10:20Spiral and Taylor vortex fronts and pulses in axial through flow
A. Pinter, M. Lücke, Ch. Hoffmann, Phys. Rev. E, 2003

1:5:10:22Gluing Bifurcations in a Dynamically Complicated Extended Flow
J. Abshagen, G. Pfister, T. Mullin, Phys. Rev. Lett., 2001

1:5:10:23Standing waves in flow between finite counterrotating cylinders
J. Langenberg, G. Pfister, J. Abshagen, Phys. Rev. E, 2003

1:5:10:24Controlling the stability transfer between oppositely traveling waves and standing waves by inversion-symmetry-breaking perturbations
A. Pinter, M. Lücke, Ch. Hoffmann, Phys. Rev. E, 2007

1:5:10:25Wave-number dependence of the transitions between traveling and standing vortex waves and their mixed states in the Taylor-Couette system
A. Pinter, M. Lücke, Ch. Hoffmann, Phys. Rev. E, 2008

1:5:10:26Bifurcation of standing waves into a pair of oppositely traveling waves with oscillating amplitudes caused by a three-mode interaction
A. Pinter, M. Lücke, Ch. Hoffmann, Phys. Rev. E, 2008

1:5:10:27Pattern selection in the absolutely unstable regime as a nonlinear eigenvalue problem: Taylor vortices in axial flow
P. Büchel, M. Lücke, D. Roth, R. Schmitz, Phys. Rev. E, 1996

1:5:10:29Oscillatory bifurcation with broken translation symmetry
A. S. Landsberg, E. Knobloch, Phys. Rev. E, 1996

1:5:10:31Nonlinear standing waves in Couette-Taylor flow
Randall Tagg, W. Stuart Edwards, Harry L. Swinney, Philip S. Marcus, Phys. Rev. A, 1989

1:5:10:32Competition between Traveling Fluid Waves of Left and Right Spiral Vortices and Their Different Amplitude Combinations
A. Pinter, M. Lücke, Ch. Hoffmann, Phys. Rev. Lett., 2006

1:5:10:43Axisymmetric time-dependent flow in the Taylor-Couette system
U. Gerdts, J. von Stamm, Th. Buzug, G. Pfister, Phys. Rev. E, 1994

1:5:10:45Stabilization of Domain Walls between Traveling Waves by Nonlinear Mode Coupling in Taylor-Couette Flow
M. Heise, Ch. Hoffmann, J. Abshagen, A. Pinter, G. Pfister, M. Lücke, Phys. Rev. Lett., 2008

1:5:10:51Onset of time dependence in Taylor-Couette flow
Tom Mullin, Phys. Rev. A, 1985

1:5:10:54Noise sensitivity of sub- and supercritically bifurcating patterns with group velocities close to the convective-absolute instability
A. Szprynger, M. Lücke, Phys. Rev. E, 2003

1:5:10:66Multiple States of Nonlinear Drift-Tearing Islands
M. Ottaviani, F. Porcelli, D. Grasso, Phys. Rev. Lett., 2004

1:5:10:68Secondary structures in a one-dimensional complex Ginzburg-Landau equation with homogeneous boundary conditions
L. Nana, A. B. Ezersky, I. Mutabazi, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009

1:5:10:70Thermally sustained structure in convectively unstable systems
Robert J. Deissler, Phys. Rev. E, 1994

1:5:10:71 Erratum: Spiral vortices and Taylor vortices in the annulus between rotating cylinders and the effect of an axial flow [Phys. Rev. E 69 , 056309 (2004)]
Ch. Hoffmann, M. Lücke, A. Pinter, Phys. Rev. E, 2006

1:5:10:72Unusual transition sequence in Taylor wavy vortex flow
Kwangjai Park, Phys. Rev. A, 1984

1:5:10:76Phase dynamics for spiraling Taylor vortices
Helmut R. Brand, Phys. Rev. A, 1985

1:5:10:77Local amplitude equation of Taylor vortices and its boundary condition
R. Graham, J. A. Domaradzki, Phys. Rev. A, 1982

1:5:10:78Primary and Secondary Hopf Bifurcations in Stratified Taylor-Couette Flow
F. Caton, B. Janiaud, E. J. Hopfinger, Phys. Rev. Lett., 1999

1:5:10:81Optical Heterodyne Study of the Taylor Instability in a Rotating Fluid
J. P. Gollub, Michael H. Freilich, Phys. Rev. Lett., 1974

1:5:10:82Visual Observation of the Second Characteristic Mode in a Quasiperiodic Flow
M. Gorman, Harry L. Swinney, Phys. Rev. Lett., 1979

1:5:10:85Behavior of sink and source defects in a one-dimensional traveling finger pattern
Piotr Habdas, Matthew J. Case, John R. de Bruyn, Phys. Rev. E, 2001

1:5:11:2Onset of Rayleigh-Bénard convection in cylindrical containers
François Hébert, Ryan Hufschmid, Janet Scheel, Guenter Ahlers, Phys. Rev. E, 2010

1:5:11:3Extreme multiplicity in cylindrical Rayleigh-Bénard convection. I. Time dependence and oscillations
Katarzyna Borońska, Laurette S. Tuckerman, Phys. Rev. E, 2010

1:5:11:5Multiplicity of steady states in cylindrical Rayleigh-Bénard convection
Dong-Jun Ma, De-Jun Sun, Xie-Yuan Yin, Phys. Rev. E, 2006

1:5:11:7Pattern formation of Rayleigh-Bénard convection of cold water near its density maximum in a vertical cylindrical container
You-Rong Li, Yu-Qing Ouyang, Yu-Peng Hu, Phys. Rev. E, 2012

1:5:11:9Extreme multiplicity in cylindrical Rayleigh-Bénard convection. II. Bifurcation diagram and symmetry classification
Katarzyna Borońska, Laurette S. Tuckerman, Phys. Rev. E, 2010

1:5:11:10Rayleigh-Bénard convection in a vertical annular container near the convection threshold
Bo-Fu Wang, Zhen-Hua Wan, Dong-Jun Ma, De-Jun Sun, Phys. Rev. E, 2014

1:5:11:20Pattern formation in Rayleigh-Bénard convection in a cylindrical container
Sten Rüdiger, Fred Feudel, Phys. Rev. E, 2000

1:5:11:32Time Dependence of Flow Patterns near the Convective Threshold in a Cylindrical Container
Guenter Ahlers, David S. Cannell, Victor Steinberg, Phys. Rev. Lett., 1985

1:5:11:35Stability and decay rates of nonisotropic attractive Bose-Einstein condensates
C. Huepe, L. S. Tuckerman, S. Métens, M. E. Brachet, Phys. Rev. A, 2003

1:5:11:47Convection Patterns: Time Evolution of the Wave-Vector Field
M. S. Heutmaker, P. N. Fraenkel, J. P. Gollub, Phys. Rev. Lett., 1985

1:5:11:69Nonlinear Torsional Oscillations in Rotating Systems
X. Liao, K. Zhang, Y. Chang, Phys. Rev. Lett., 2007

1:5:11:71Pattern formation near onset of a convecting fluid in an annulus
Berk Sensoy, Henry Greenside, Phys. Rev. E, 2001

1:5:12:1Zonal shear and super-rotation in a magnetized spherical Couette-flow experiment
D. Brito, T. Alboussière, P. Cardin, N. Gagnière, D. Jault, P. La Rizza, J.-P. Masson, H.-C. Nataf, D. Schmitt, Phys. Rev. E, 2011

1:5:12:3Selection of inertial modes in spherical Couette flow
Douglas H. Kelley, Santiago Andrés Triana, Daniel S. Zimmerman, Daniel P. Lathrop, Phys. Rev. E, 2010

1:5:12:4Instabilities in magnetized spherical Couette flow
Christophe Gissinger, Hantao Ji, Jeremy Goodman, Phys. Rev. E, 2011

1:5:12:8Instabilities of Shercliffe and Stewartson layers in spherical Couette flow
X. Wei, R. Hollerbach, Phys. Rev. E, 2008

1:5:12:9Saturation of nonaxisymmetric instabilities of magnetized spherical Couette flow
E. J. Kaplan, Phys. Rev. E, 2014

1:5:12:27Induction Effects in Terrestrial Magnetism Part I. Theory
Walter M. Elsasser, Phys. Rev., 1946

1:5:12:52Observation of a Free-Shercliff-Layer Instability in Cylindrical Geometry
Austin H. Roach, Erik J. Spence, Christophe Gissinger, Eric M. Edlund, Peter Sloboda, Jeremy Goodman, Hantao Ji, Phys. Rev. Lett., 2012

1:5:13:1Symmetry-breaking Hopf bifurcations to 1-, 2-, and 3-tori in small-aspect-ratio counterrotating Taylor-Couette flow
S. Altmeyer, Y. Do, F. Marques, J. M. Lopez, Phys. Rev. E, 2012

1:5:13:13Reversing and nonreversing modulated Taylor-Couette flow at finite aspect ratio
Anthony J. Youd, Carlo F. Barenghi, Phys. Rev. E, 2005

1:5:13:16Small aspect ratio Taylor-Couette flow: Onset of a very-low-frequency three-torus state
Juan M. Lopez, Francisco Marques, Phys. Rev. E, 2003

1:5:13:24Flow pattern exchange in the Taylor-Couette system with a very small aspect ratio
Hiroyuki Furukawa, Takashi Watanabe, Yorinobu Toya, Ikuo Nakamura, Phys. Rev. E, 2002

1:5:13:29Forced Symmetry Breaking as a Mechanism for Bursting
J. Moehlis, E. Knobloch, Phys. Rev. Lett., 1998

1:5:14:14Transversal convection patterns in horizontal shear flow
H. W. Müller, M. Lücke, M. Kamps, Phys. Rev. A, 1992

1:5:14:29Prediction of pattern selection due to an interaction between longitudinal rolls and transverse modes in a flow through a rectangular channel heated from below
Yuki Kato, Kaoru Fujimura, Phys. Rev. E, 2000

1:5:14:35Noise sustained pattern growth: Bulk versus boundary effects
M. Lücke, A. Szprynger, Phys. Rev. E, 1997

1:5:14:43Influence of inlet and bulk noise on Rayleigh-Bénard convection with lateral flow
D. Jung, M. Lücke, A. Szprynger, Phys. Rev. E, 2001

1:5:15:5Fully nonlinear mode competitions of nearly bicritical spiral or Taylor vortices in Taylor-Couette flow
K. Deguchi, S. Altmeyer, Phys. Rev. E, 2013

1:5:15:9Onset of Turbulence in a Rotating Fluid
J. P. Gollub, Harry L. Swinney, Phys. Rev. Lett., 1975

1:5:15:16Distinct quasiperiodic modes with like symmetry in a rotating fluid
K. T. Coughlin, P. S. Marcus, R. P. Tagg, Harry L. Swinney, Phys. Rev. Lett., 1991

1:5:15:18Vortex-Front Propagation in Rotating Couette-Taylor Flow
Guenter Ahlers, David S. Cannell, Phys. Rev. Lett., 1983

1:5:15:22Anomalous modes and finite-length effects in Taylor-Couette flow
Arne Lorenzen, T. Mullin, Phys. Rev. A, 1985

1:5:15:24Strange attractors in weakly turbulent Couette-Taylor flow
A. Brandstater, Harry L. Swinney, Phys. Rev. A, 1987

1:5:15:25Determination of Transition in Couette Flow in Finite Geometries
Kwangjai Park, Gerald L. Crawford, Russell J. Donnelly, Phys. Rev. Lett., 1981

1:5:15:29Nonpropagating oscillatory modes in Couette-Taylor flow
Li-Hua Zhang, Harry L. Swinney, Phys. Rev. A, 1985

1:5:15:31Bifurcations from Taylor vortices between corotating concentric cylinders
J. J. Hegseth, G. W. Baxter, C. D. Andereck, Phys. Rev. E, 1996

1:5:15:32Possible mechanism for transitions in wavy Taylor-vortex flow
Guenter Ahlers, David S. Cannell, M. A. Dominguez Lerma, Phys. Rev. A, 1983

1:5:15:33Front propagation and pattern formation of Taylor vortices growing into unstable circular Couette flow
M. Lücke, M. Mihelcic, K. Wingerath, Phys. Rev. A, 1985

1:5:15:36Limits of stability and irregular flow patterns in wavy vortex flow
Gregory P. King, Harry L. Swinney, Phys. Rev. A, 1983

1:5:15:38Characteristic Lengths in the Wavy Vortex State of Taylor-Couette Flow
Kwangjai Park, Gerald L. Crawford, Russell J. Donnelly, Phys. Rev. Lett., 1983

1:5:15:39Formation of Dynamical Domains in a Circular Couette System
G. William Baxter, C. David Andereck, Phys. Rev. Lett., 1986

1:5:15:40Reemergent Order of Chaotic Circular Couette Flow
R. W. Walden, R. J. Donnelly, Phys. Rev. Lett., 1979

1:5:15:44Bifurcation phenomena in nonaxisymmetric Taylor-Couette flow
Philip W. Hammer, Richard J. Wiener, Russell J. Donnelly, Phys. Rev. A, 1992

1:5:15:46Velocity of a propagating Taylor-vortex front
M. Niklas, M. Lücke, H. Müller-Krumbhaar, Phys. Rev. A, 1989

1:5:15:49Early Nonperiodic Transitions in Couette Flow
R. J. Donnelly, K. Park, R. Shaw, R. W. Walden, Phys. Rev. Lett., 1980

1:5:15:50Deterministic Transitions in Taylor Wavy-Vortex Flow
Kwangjai Park, Gerald L. Crawford, Phys. Rev. Lett., 1983

1:5:15:51Experimental observation of the quasiperiodic modes in a rotating Couette system
Y. Takeda, W. E. Fischer, J. Sakakibara, K. Ohmura, Phys. Rev. E, 1993

1:5:16:2Asymmetric modes and the transition to vortex structures in rotating Rayleigh-Bénard convection
Fang Zhong, Robert Ecke, Victor Steinberg, Phys. Rev. Lett., 1991

1:5:16:3Linear and nonlinear instabilities in rotating cylindrical Rayleigh-Bénard convection
Ligang Li, Xinhao Liao, Kit H. Chan, Keke Zhang, Phys. Rev. E, 2008

1:5:16:5Countertraveling waves in rotating Rayleigh-Bénard convection
Ligang Li, Xinhao Liao, Keke Zhang, Phys. Rev. E, 2008

1:5:16:8Geometry effects on Rayleigh-Bénard convection in rotating annular layers
J. J. Sánchez-Álvarez, E. Serre, E. Crespo del Arco, F. H. Busse, Phys. Rev. E, 2014

1:5:16:9Nonlinear convection in rotating systems: Slip-stick three-dimensional traveling waves
Keke Zhang, Xinhao Liao, Xiaoya Zhan, Rixiang Zhu, Phys. Rev. E, 2007

1:5:16:13Nonlinear traveling waves in rotating Rayleigh-Bénard convection: Stability boundaries and phase diffusion
Yuanming Liu, Robert E. Ecke, Phys. Rev. E, 1999

1:5:16:14Eckhaus-Benjamin-Feir Instability in Rotating Convection
Yuanming Liu, Robert E. Ecke, Phys. Rev. Lett., 1997

1:5:16:15Nonlinear dynamics of traveling waves in rotating Rayleigh-Bénard convection: Effects of the boundary conditions and of the topology
Emmanuel Plaut, Phys. Rev. E, 2003

1:5:17:5Three-dimensional continuation study of convection in a tilted rectangular enclosure
J. F. Torres, D. Henry, A. Komiya, S. Maruyama, H. Ben Hadid, Phys. Rev. E, 2013

1:5:17:6 Bifurcation analysis of multiple steady flow patterns for Rayleigh-Bénard convection in a cubical cavity at Pr = 130
D. Puigjaner, J. Herrero, Francesc Giralt, C. Simó, Phys. Rev. E, 2006

1:5:18:6Taylor column instability in the problem of a vibrational hydrodynamic top
V. G. Kozlov, N. V. Kozlov, S. V. Subbotin, Phys. Rev. E, 2014

1:5:19:1Convection patterns in a liquid metal under an imposed horizontal magnetic field
Takatoshi Yanagisawa, Yozo Hamano, Takehiro Miyagoshi, Yasuko Yamagishi, Yuji Tasaka, Yasushi Takeda, Phys. Rev. E, 2013

1:5:19:2Detailed investigation of thermal convection in a liquid metal under a horizontal magnetic field: Suppression of oscillatory flow observed by velocity profiles
Takatoshi Yanagisawa, Yasuko Yamagishi, Yozo Hamano, Yuji Tasaka, Kanako Yano, Jumpei Takahashi, Yasushi Takeda, Phys. Rev. E, 2010

1:5:19:3Structure of large-scale flows and their oscillation in the thermal convection of liquid gallium
Takatoshi Yanagisawa, Yasuko Yamagishi, Yozo Hamano, Yuji Tasaka, Masataka Yoshida, Kanako Yano, Yasushi Takeda, Phys. Rev. E, 2010

1:5:19:4Rayleigh-Bénard convection with uniform vertical magnetic field
Arnab Basak, Rohit Raveendran, Krishna Kumar, Phys. Rev. E, 2014

1:5:19:6Spontaneous flow reversals in Rayleigh-Bénard convection of a liquid metal
Takatoshi Yanagisawa, Yasuko Yamagishi, Yozo Hamano, Yuji Tasaka, Yasushi Takeda, Phys. Rev. E, 2011

1:5:19:13Matched boundary layers in turbulent Rayleigh-Bénard convection of mercury
Takehiko Segawa, Antoine Naert, Masaki Sano, Phys. Rev. E, 1998

1:5:19:17Chaotic Phases and Magnetic Order in a Convective Fluid
S. Fauve, C. Laroche, A. Libchaber, B. Perrin, Phys. Rev. Lett., 1984

1:5:19:22Traveling-wave convection in the presence of a horizontal magnetic field
F. H. Busse, R. M. Clever, Phys. Rev. A, 1989

1:5:19:23Spatiotemporal dynamics of oscillatory convection at low Prandtl number: Waves and defects
Arnaud Chiffaudel, Bernard Perrin, Stéphan Fauve, Phys. Rev. A, 1989

1:5:19:29Phase turbulence in Rayleigh-Bénard convection
Hao-wen Xi, Xiao-jun Li, J. D. Gunton, Phys. Rev. E, 2000

1:5:21:2Modeling the dynamics of a free boundary on turbulent thermal convection
Jin-Qiang Zhong, Jun Zhang, Phys. Rev. E, 2007

1:5:21:4Dynamical states of a mobile heat blanket on a thermally convecting fluid
Jin-Qiang Zhong, Jun Zhang, Phys. Rev. E, 2007

1:5:21:7Periodic Boundary Motion in Thermal Turbulence
Jun Zhang, Albert Libchaber, Phys. Rev. Lett., 2000

1:5:21:19Self-Induced Cyclic Reorganization of Free Bodies through Thermal Convection
Bin Liu, Jun Zhang, Phys. Rev. Lett., 2008

1:5:21:26Delayed stochastic differential model for quiet standing
W. Yao, P. Yu, C. Essex, Phys. Rev. E, 2001

1:5:22:2Cross-correlation-aided transport in stochastically driven accretion flows
Sujit Kumar Nath, Amit K. Chattopadhyay, Phys. Rev. E, 2014

1:5:22:3Magnetohydrodynamic stability of stochastically driven accretion flows
Sujit Kumar Nath, Banibrata Mukhopadhyay, Amit K. Chattopadhyay, Phys. Rev. E, 2013

1:5:22:5Stability and Angular-Momentum Transport of Fluid Flows between Corotating Cylinders
M. Avila, Phys. Rev. Lett., 2012

1:5:22:16Coupled nonequilibrium growth equations: Self-consistent mode coupling using vertex renormalization
Amit Kr. Chattopadhyay, Abhik Basu, Jayanta K. Bhattacharjee, Phys. Rev. E, 2000

1:5:22:17Wall-bounded turbulent shear flow: Analytic result for a universal amplitude
Amit Kr. Chattopadhyay, Jayanta K. Bhattacharjee, Phys. Rev. E, 2000

1:5:24:7Convective transitions induced by a varying aspect ratio
E. Knobloch, J. Guckenheimer, Phys. Rev. A, 1983

1:5:24:10Resonant mode interactions in Rayleigh-Bénard convection
Joana Prat, Isabel Mercader, Edgar Knobloch, Phys. Rev. E, 1998

1:5:24:19Improved low-order model for shear flow driven by Rayleigh-Bénard convection
K. B. Hermiz, P. N. Guzdar, J. M. Finn, Phys. Rev. E, 1995

1:5:24:29 Bifurcations and transport barriers in the resistive- g paradigm
M. Berning, K. H. Spatschek, Phys. Rev. E, 2000

1:5:24:41Bifurcations in two-dimensional Rayleigh-Bénard convection
E. Zienicke, N. Seehafer, F. Feudel, Phys. Rev. E, 1998

1:5:25:1Rayleigh-Bénard convection with phase changes in a Galerkin model
Thomas Weidauer, Olivier Pauluis, Jörg Schumacher, Phys. Rev. E, 2011

1:5:25:3Effects of particle settling on Rayleigh-Bénard convection
Paolo Oresta, Andrea Prosperetti, Phys. Rev. E, 2013

1:5:25:7Enhanced Heat Transport by Turbulent Two-Phase Rayleigh-Bénard Convection
Jin-Qiang Zhong, Denis Funfschilling, Guenter Ahlers, Phys. Rev. Lett., 2009

1:5:25:21Energy-conserving low-order models for three-dimensional Rayleigh-Bénard convection
Christopher Tong, Alexander Gluhovsky, Phys. Rev. E, 2002

1:5:26:3Convection patterns in a spherical fluid shell
F. Feudel, K. Bergemann, L. S. Tuckerman, C. Egbers, B. Futterer, M. Gellert, R. Hollerbach, Phys. Rev. E, 2011

1:5:26:5Symmetry defects and broken symmetry. Configurations Hidden Symmetry
Louis Michel, Rev. Mod. Phys., 1980

1:5:26:10Validity of Taylor’s Dissipation-Viscosity Independence Postulate in Variable-Viscosity Turbulent Fluid Mixtures
Kurnchul Lee, Sharath S. Girimaji, Johannes Kerimo, Phys. Rev. Lett., 2008

1:5:28:1Bifurcations and dynamics in convection with temperature-dependent viscosity in the presence of the O(2) symmetry
J. Curbelo, A. M. Mancho, Phys. Rev. E, 2013

1:5:28:6Primary instabilities in convective cells due to nonuniform heating
A. Mancho, H. Herrero, J. Burguete, Phys. Rev. E, 1997

1:5:28:16Bénard-Marangoni convection in square containers
D. Krmpotić, G. B. Mindlin, C. Pérez-García, Phys. Rev. E, 1996

1:5:29:3Rayleigh-Bénard convection near the gas-liquid critical point
Michel Assenheimer, Victor Steinberg, Phys. Rev. Lett., 1993

1:5:29:9 Rayleigh Linewidth in S F 6 Near the Critical Point
Tong Kun Lim, Harry L. Swinney, Kenneth H. Langley, Thomas A. Kachnowski, Phys. Rev. Lett., 1971

1:5:29:14 Sound propagation in S F 6 near the critical point
David S. Cannell, Dror Sarid, Phys. Rev. A, 1974

1:5:31:1Domino model for geomagnetic field reversals
N. Mori, D. Schmitt, J. Wicht, A. Ferriz-Mas, H. Mouri, A. Nakamichi, M. Morikawa, Phys. Rev. E, 2013

1:5:31:2Statistical dynamo theory: Mode excitation
P. Hoyng, Phys. Rev. E, 2009

1:5:31:3Generation mechanism of a dipole field by a magnetohydrodynamic dynamo
Akira Kageyama, Tetsuya Sato, Phys. Rev. E, 1997

1:5:31:13Induction Effects in Terrestrial Magnetism Part II. The Secular Variation
Walter M. Elsasser, Phys. Rev., 1946

1:5:32:1:1Self-collimated axial jet seeds from thin accretion disks
Giulio Tirabassi, Giovanni Montani, Nakia Carlevaro, Phys. Rev. E, 2013

1:5:32:1:2Crystalline structure of accretion disks: Features of a global model
Giovanni Montani, Riccardo Benini, Phys. Rev. E, 2011

1:5:32:1:3Nonstationary magnetic microstructures in stellar thin accretion disks
Giovanni Montani, Jacopo Petitta, Phys. Rev. E, 2013

1:5:32:1:4Emergence of high peaks in the axial velocity for an ideal magnetohydrodynamic disk configuration
Giovanni Montani, Nakia Carlevaro, Phys. Rev. E, 2010

1:5:32:1:22Topology of Ballooning Modes
Bruno Coppi, Phys. Rev. Lett., 1977

1:5:32:1:23Theory of Ballooning Modes in Tokamaks with Finite Shear
D. Dobrott, D. B. Nelson, J. M. Greene, A. H. Glasser, M. S. Chance, E. A. Frieman, Phys. Rev. Lett., 1977

1:5:32:2:1Counterexample of the magnetorotational instability in two-dimensional axial symmetry
Giovanni Montani, Daniela Pugliese, Phys. Rev. E, 2013

1:5:32:2:2Inconsistency in the standard model for stellar thin accretion disks
Giovanni Montani, Nakia Carlevaro, Phys. Rev. D, 2012

1:5:32:2:9Accretion disks around binary black holes: A simple GR-hybrid evolution model
Stuart L. Shapiro, Phys. Rev. D, 2013

1:5:33:3Persistent skewness of a strongly active scalar
Jie Zhang, X. L. Wu, Phys. Rev. E, 2009

1:5:33:4Density Fluctuations in Strongly Stratified Two-Dimensional Turbulence
Jie Zhang, X. L. Wu, Ke-Qing Xia, Phys. Rev. Lett., 2005

1:5:33:5Velocity Intermittency in a Buoyancy Subrange in a Two-Dimensional Soap Film Convection Experiment
Jie Zhang, X. L. Wu, Phys. Rev. Lett., 2005

1:5:33:7Double-Diffusive Convection in Freely Suspended Soap Films
B. Martin, X. L. Wu, Phys. Rev. Lett., 1998

1:5:33:9Simulations of two-dimensional turbulent convection in a density-stratified fluid
Tamara M. Rogers, Gary A. Glatzmaier, S. E. Woosley, Phys. Rev. E, 2003

1:5:33:10The Scattering of Electromagnetic Waves by Turbulent Atmospheric Fluctuations
F. Villars, V. F. Weisskopf, Phys. Rev., 1954

1:5:34:17Supercritical Eckhaus Instability for Surface-Tension-Driven Hydrothermal Waves
Nathalie Mukolobwiez, Arnaud Chiffaudel, François Daviaud, Phys. Rev. Lett., 1998

1:5:37:4High-Rayleigh-Number Convection in a Vertical Channel
M. Gibert, H. Pabiou, F. Chillà, B. Castaing, Phys. Rev. Lett., 2006

1:5:38:1Charge transport scaling in turbulent electroconvection
Peichun Tsai, Zahir A. Daya, Stephen W. Morris, Phys. Rev. E, 2005

1:5:38:2Direct numerical simulation of supercritical annular electroconvection
Peichun Tsai, Zahir A. Daya, Vatche B. Deyirmenjian, Stephen W. Morris, Phys. Rev. E, 2007

1:5:38:3Codimension-two points in annular electroconvection as a function of aspect ratio
V. B. Deyirmenjian, Zahir A. Daya, Stephen W. Morris, Phys. Rev. E, 2005

1:5:38:4Electroconvection in a suspended fluid film: A linear stability analysis
Zahir A. Daya, Stephen W. Morris, John R. de Bruyn, Phys. Rev. E, 1997

1:5:38:5Aspect-Ratio Dependence of Charge Transport in Turbulent Electroconvection
Peichun Tsai, Zahir A. Daya, Stephen W. Morris, Phys. Rev. Lett., 2004

1:5:38:6Annular Electroconvection with Shear
Zahir A. Daya, V. B. Deyirmenjian, Stephen W. Morris, John R. de Bruyn, Phys. Rev. Lett., 1998

1:5:38:8Sequential bifurcations in sheared annular electroconvection
Zahir A. Daya, V. B. Deyirmenjian, Stephen W. Morris, Phys. Rev. E, 2002

1:5:38:10Weakly nonlinear analysis of electroconvection in a suspended fluid film
V. B. Deyirmenjian, Zahir A. Daya, Stephen W. Morris, Phys. Rev. E, 1997

1:5:40:1High-growth-rate magnetohydrodynamic instability in differentially rotating compressible flow
Mradul Sharma, Phys. Rev. E, 2010

1:5:40:2Hydromagnetic instability in differentially rotating flows
A. Bonanno, V. Urpin, Phys. Rev. E, 2006

1:5:40:3Hydromagnetic instability in plane Couette flow
Alfio Bonanno, Vadim Urpin, Phys. Rev. E, 2007

1:5:41:3Pattern formation in weakly forced Taylor-Couette flow
Zhenyu Li, Roger E. Khayat, Phys. Rev. E, 2004

1:5:41:5Wave-number selection and traveling vortex waves in spatially ramped Taylor-Couette flow
Li Ning, Guenter Ahlers, David S. Cannell, Phys. Rev. Lett., 1990

1:5:41:7Spatially forced corotating Taylor-Couette flow
Eliko Ikeda, Tony Maxworthy, Phys. Rev. E, 1994

1:5:41:9Induced pretransitional Rayleigh-Bénard convection
J. Wesfried, P. Bergé, M. Dubois, Phys. Rev. A, 1979

1:5:41:11Period-doubling cascade to chaotic phase dynamics in Taylor vortex flow with hourglass geometry
Richard J. Wiener, Geoffrey L. Snyder, Micah P. Prange, Daniel Frediani, Paul R. Diaz, Phys. Rev. E, 1997

1:5:41:23Imperfect wave-number selection by ramps in a model for Taylor vortex flow
Hermann Riecke, Phys. Rev. A, 1988

1:5:42:3Diffusive transport in a Rayleigh-Bénard convection cell
Boris I. Shraiman, Phys. Rev. A, 1987

1:5:42:17Diffusive transport in spatially periodic hydrodynamic flows
F. Sagues, W. Horsthemke, Phys. Rev. A, 1986

1:5:45:1Determining role of Krein signature for three-dimensional Arnold tongues of oscillatory dynamos
Oleg N. Kirillov, Uwe Günther, Frank Stefani, Phys. Rev. E, 2009

1:5:45:4Stochastic Resonance in Geomagnetic Polarity Reversals
Giuseppe Consolini, Paola De Michelis, Phys. Rev. Lett., 2003

1:5:46:9Magneto-Hydrodynamic Waves in Liquid Sodium
Bo Lehnert, Phys. Rev., 1954

1:5:46:10Experimental Investigations of Magneto-Hydrodynamic Waves
S. Lundquist, Phys. Rev., 1949

1:5:46:15Laboratory Observation of a Nonlinear Interaction between Shear Alfvén Waves
T. A. Carter, B. Brugman, P. Pribyl, W. Lybarger, Phys. Rev. Lett., 2006

1:5:48:3Dielectrophoretic Rayleigh-Bénard convection under microgravity conditions
H. N. Yoshikawa, M. Tadie Fogaing, O. Crumeyrolle, I. Mutabazi, Phys. Rev. E, 2013

1:5:51:6Effect of a time-periodic axial shear flow upon the onset of Taylor vortices
H.-C. Hu, R. E. Kelly, Phys. Rev. E, 1995

1:5:54:8Convection-driven quadrupolar dynamos in rotating spherical shells
E. Grote, F. H. Busse, A. Tilgner, Phys. Rev. E, 1999

1:5:55:1Multiplicity of nonlinear thermal convection in a spherical shell
Ligang Li, Pu Zhang, Xinhao Liao, Keke Zhang, Phys. Rev. E, 2005

1:5:55:4Pattern formation on a sphere
P. C. Matthews, Phys. Rev. E, 2003

1:5:55:12Patterns in spherical Rayleigh-Bénard convection: A giant spiral roll and its dislocations
Pu Zhang, Xinhao Liao, Keke Zhang, Phys. Rev. E, 2002

1:5:56:1Variational data assimilation for the initial-value dynamo problem
Kuan Li, Andrew Jackson, Philip W. Livermore, Phys. Rev. E, 2011

1:5:57:5Taylor Vortices in Wide Spherical Shells
M. Liu, C. Blohm, C. Egbers, P. Wulf, H. J. Rath, Phys. Rev. Lett., 1996

1:5:57:6Time-Dependent Taylor Vortices in Wide-Gap Spherical Couette Flow
Rainer Hollerbach, Phys. Rev. Lett., 1998

1:5:60:1Flow shear stabilization of rotating plasmas due to the Coriolis effect
J. W. Haverkort, H. J. de Blank, Phys. Rev. E, 2012

1:5:60:10Internal Kink Modes in Toroidal Plasmas with Circular Cross Sections
M. N. Bussac, R. Pellat, D. Edery, J. L. Soule, Phys. Rev. Lett., 1975

1:5:60:28Role of Flow Shear in the Ballooning Stability of Tokamak Transport Barriers
A. J. Webster, H. R. Wilson, Phys. Rev. Lett., 2004

1:5:63:2Experimental Evidence for a Transient Tayler Instability in a Cylindrical Liquid-Metal Column
Martin Seilmayer, Frank Stefani, Thomas Gundrum, Tom Weier, Gunter Gerbeth, Marcus Gellert, Günther Rüdiger, Phys. Rev. Lett., 2012

1:5:64:6Thermal convection in the presence of a first-order phase change
Guenter Ahlers, Lars Inge Berge, David S. Cannell, Phys. Rev. Lett., 1993

1:5:65:1Wave-number selection by target patterns and sidewalls in Rayleigh-Bénard convection
John R. Royer, Patrick O’Neill, Nathan Becker, Guenter Ahlers, Phys. Rev. E, 2004

1:5:65:3Wave Number Selection and Large-Scale-Flow Effects due to a Radial Ramp of the Spacing in Rayleigh-Bénard Convection
Kapil M. S. Bajaj, Nathalie Mukolobwiez, Nathan Currier, Guenter Ahlers, Phys. Rev. Lett., 1999

1:5:65:5Rayleigh-Bénard convection in elliptic and stadium-shaped containers
Worawat Meevasana, Guenter Ahlers, Phys. Rev. E, 2002

1:5:65:6Effect of Distant Sidewalls on Wave-Number Selection in Rayleigh-Bénard Convection
M. C. Cross, P. G. Daniels, P. C. Hohenberg, E. D. Siggia, Phys. Rev. Lett., 1980

1:5:65:9Phase dynamics of convective rolls
M. C. Cross, Phys. Rev. A, 1983

1:5:66:3Eckhaus boundary and wave-number selection in rotating Couette-Taylor flow
M. A. Dominguez-Lerma, David S. Cannell, Guenter Ahlers, Phys. Rev. A, 1986

1:5:66:4Stability and wave-vector restriction of axisymmetric Taylor vortex flow
Hermann Riecke, Hans-Georg Paap, Phys. Rev. A, 1986

1:5:68:2Eddy diffusivity from hydromagnetic Taylor-Couette flow experiments
Marcus Gellert, Günther Rüdiger, Phys. Rev. E, 2009

1:5:69:11Undulating rolls and their instabilities in a Rayleigh-Bénard layer
M. A. Zaks, M. Auer, F. H. Busse, Phys. Rev. E, 1996

1:5:70:1Stability of rolls in rotating magnetoconvection in a layer with no-slip electrically insulating horizontal boundaries
Olga Podvigina, Phys. Rev. E, 2010

1:5:71:2Competition of spiral-defect chaos and rolls in Rayleigh-Bénard convection under shear flow
Y. Shiwa, Phys. Rev. E, 2003

1:5:71:3Turbulent Bénard-Marangoni Convection: Results of Two-Dimensional Simulations
Thomas Boeck, André Thess, Phys. Rev. Lett., 1998

1:5:71:5Pattern selection at the onset of Rayleigh-Bénard convection in a horizontal shear flow
Morten Tveitereid, Hanns Walter Müller, Phys. Rev. E, 1994

1:5:71:7Cellular flow patterns and their evolutionary scenarios in three-dimensional Rayleigh-Bénard convection
A. V. Getling, O. Brausch, Phys. Rev. E, 2003

1:5:73:3Comparison of steady-state and strongly chaotic thermal convection at high Rayleigh number
U. Hansen, D. A. Yuen, A. V. Malevsky, Phys. Rev. A, 1992

1:5:75:2 Thermal conductivity of the nematic liquid crystal 4- n -pentyl-4’-cyanobiphenyl
Guenter Ahlers, David S. Cannell, Lars Inge Berge, Shinichi Sakurai, Phys. Rev. E, 1994

1:5:75:3Effect of a Polymer Additive on Heat Transport in Turbulent Rayleigh-Bénard Convection
Guenter Ahlers, Alexei Nikolaenko, Phys. Rev. Lett., 2010

1:5:75:4Effect of Polymer Additives on Heat Transport in Turbulent Thermal Convection
Roberto Benzi, Emily S. C. Ching, Elisabetta De Angelis, Phys. Rev. Lett., 2010

1:5:75:5Effect of sidewall conductance on heat-transport measurements for turbulent Rayleigh-Bénard convection
Guenter Ahlers, Phys. Rev. E, 2000

1:5:75:6Plume Fragmentation by Bulk Interactions in Turbulent Rayleigh-Bénard Convection
Johannes Bosbach, Stephan Weiss, Guenter Ahlers, Phys. Rev. Lett., 2012

1:5:75:7Theory of Rayleigh-Bénard convection in planar nematic liquid crystals
Quanyuan Feng, Werner Pesch, Lorenz Kramer, Phys. Rev. A, 1992

1:5:76:8Exact sine series solution for oscillatory convection in a binary fluid
N. D. Stein, Phys. Rev. A, 1991

1:5:78:1Thermal nonlinear oscillator in mixed convection
L. Martínez-Suástegui, C. Treviño, J. C. Cajas, Phys. Rev. E, 2011

1:5:78:2Dynamics of Three-Tori in a Periodically Forced Navier-Stokes Flow
J. M. Lopez, F. Marques, Phys. Rev. Lett., 2000

1:5:78:4Gluing bifurcations in critical flows: The route to chaos in parametrically excited surface waves
Ehud Meron, Itamar Procaccia, Phys. Rev. A, 1987

1:5:82:1Critical fluctuation of wind reversals in convective turbulence
Rudolph C. Hwa, C. B. Yang, S. Bershadskii, J. J. Niemela, K. R. Sreenivasan, Phys. Rev. E, 2005

1:5:82:3Chaotic Flow Regimes in a Convection Loop
M. Gorman, P. J. Widmann, K. A. Robbins, Phys. Rev. Lett., 1984

1:5:82:7Fluctuation of gaps in hadronization at the phase transition
Rudolph C. Hwa, Qing-hui Zhang, Phys. Rev. C, 2002

1:5:84:1Natural convection in a fluid layer periodically heated from above
M. Z. Hossain, J. M. Floryan, Phys. Rev. E, 2014

1:5:88:1Growth rate degeneracies in kinematic dynamos
B. Favier, M. R. E. Proctor, Phys. Rev. E, 2013

1:5:90:2Dynamics of Particles Advected by Fast Rotating Turbulent Fluid Flow: Fluctuations and Large-Scale Structures
Tov Elperin, Nathan Kleeorin, Igor Rogachevskii, Phys. Rev. Lett., 1998

1:5:95:1Enstrophy bounds and the range of space-time scales in the hydrostatic primitive equations
J. D. Gibbon, D. D. Holm, Phys. Rev. E, 2013

1:5:97:1Long-term persistence of the spatial organization of temperature fluctuation lifetime in turbulent air avalanches
C. Crouzeix, J.-L. Le Mouël, F. Perrier, M. G. Shnirman, E. Blanter, Phys. Rev. E, 2006

1:5:97:2Kolmogorov's ⅘th Law and Intermittency in Turbulence
Samuel I. Vainshtein, K. R. Sreenivasan, Phys. Rev. Lett., 1994

1:5:97:3Dynamics of Air Avalanches in the Access Pit of an Underground Quarry
F. Perrier, P. Morat, J.-L. Le Mouël, Phys. Rev. Lett., 2002

1:5:99:1Intermittency of principal stress directions within Arctic sea ice
Jérôme Weiss, Phys. Rev. E, 2008

1:5:99:2Empirical determination of universal multifractal exponents in turbulent velocity fields
F. Schmitt, D. La Vallée, D. Schertzer, S. Lovejoy, Phys. Rev. Lett., 1992

1:5:99:4Scale Dependence and Localization of the Deformation of Arctic Sea Ice
David Marsan, Harry Stern, Ron Lindsay, Jérôme Weiss, Phys. Rev. Lett., 2004

1:5:100:1Rotational stabilization of pinch instabilities in Taylor-Couette flow
Dima Shalybkov, Phys. Rev. E, 2007

1:5:100:2Compensation of instabilities in magnetic Taylor-Couette flow
Dima Shalybkov, Phys. Rev. E, 2007

1:5:102:2 Erratum: Multifractal dynamics of turbulent flows in swimming bacterial suspensions [Phys. Rev. E 86 , 011924 (2012)]
Kuo-An Liu, Lin I, Phys. Rev. E, 2012

1:6:1:7Anisotropy and nonuniversality in scaling laws of the large-scale energy spectrum in rotating turbulence
Amrik Sen, Pablo D. Mininni, Duane Rosenberg, Annick Pouquet, Phys. Rev. E, 2012

1:6:1:17Large-scale behavior and statistical equilibria in rotating flows
P. D. Mininni, P. Dmitruk, W. H. Matthaeus, A. Pouquet, Phys. Rev. E, 2011

1:6:1:18Helicity cascades in rotating turbulence
P. D. Mininni, A. Pouquet, Phys. Rev. E, 2009

1:6:1:27Sign cancellation and scaling in the vertical component of velocity and vorticity in rotating turbulence
E. Horne, P. D. Mininni, Phys. Rev. E, 2013

1:6:1:28Theory for helical turbulence under fast rotation
Sébastien Galtier, Phys. Rev. E, 2014

1:6:1:29Decay of Batchelor and Saffman rotating turbulence
Tomas Teitelbaum, Pablo D. Mininni, Phys. Rev. E, 2012

1:6:1:31Dimensional transition in rotating turbulence
E. Deusebio, G. Boffetta, E. Lindborg, S. Musacchio, Phys. Rev. E, 2014

1:6:1:33Anomalous scaling of passive scalars in rotating flows
P. Rodriguez Imazio, P. D. Mininni, Phys. Rev. E, 2011

1:6:1:34Discreteness and resolution effects in rapidly rotating turbulence
Lydia Bourouiba, Phys. Rev. E, 2008

1:6:1:39Weak inertial-wave turbulence theory
Sébastien Galtier, Phys. Rev. E, 2003

1:6:1:46Exact vectorial law for homogeneous rotating turbulence
Sébastien Galtier, Phys. Rev. E, 2009

1:6:1:47Lagrangian velocity autocorrelations in statistically steady rotating turbulence
Lorenzo Del Castello, Herman J. H. Clercx, Phys. Rev. E, 2011

1:6:1:59Crossover from Two- to Three-Dimensional Turbulence
Leslie M. Smith, Jeffrey R. Chasnov, Fabian Waleffe, Phys. Rev. Lett., 1996

1:6:1:65Third-order structure function for rotating three-dimensional homogeneous turbulent flow
Sagar Chakraborty, J. K. Bhattacharjee, Phys. Rev. E, 2007

1:6:1:67Shell model for rotating turbulence
Y. Hattori, R. Rubinstein, A. Ishizawa, Phys. Rev. E, 2004

1:6:1:68Anomalous Self-Similarity in a Turbulent Rapidly Rotating Fluid
Charles N. Baroud, Brendan B. Plapp, Zhen-Su She, Harry L. Swinney, Phys. Rev. Lett., 2002

1:6:1:77Direct Measurements of Anisotropic Energy Transfers in a Rotating Turbulence Experiment
Cyril Lamriben, Pierre-Philippe Cortet, Frédéric Moisy, Phys. Rev. Lett., 2011

1:6:1:78Turbulence and columnar vortex formation through inertial-wave focusing
Matias Duran-Matute, Jan-Bert Flór, Fabien S. Godeferd, Clément Jause-Labert, Phys. Rev. E, 2013

1:6:1:88Effect of Helicity and Rotation on the Free Decay of Turbulent Flows
T. Teitelbaum, P. D. Mininni, Phys. Rev. Lett., 2009

1:6:1:110Physical Regimes and Dimensional Structure of Rotating Turbulence
V. M. Canuto, M. S. Dubovikov, Phys. Rev. Lett., 1997

1:6:1:111Energy Transfer by Inertial Waves during the Buildup of Turbulence in a Rotating System
Itamar Kolvin, Kobi Cohen, Yuval Vardi, Eran Sharon, Phys. Rev. Lett., 2009

1:6:1:125Conformal Invariance in Three-Dimensional Rotating Turbulence
S. Thalabard, D. Rosenberg, A. Pouquet, P. D. Mininni, Phys. Rev. Lett., 2011

1:6:1:136Energy spectra of strongly stratified and rotating turbulence
Alex Mahalov, Basil Nicolaenko, Ye Zhou, Phys. Rev. E, 1998

1:6:1:142Testing a random phase approximation for bounded turbulent flow
Mark Ulitsky, Tim Clark, Leaf Turner, Phys. Rev. E, 1999

1:6:2:5Locality and stability of the cascades of two-dimensional turbulence
Eleftherios Gkioulekas, Phys. Rev. E, 2008

1:6:2:6Dissipation scales and anomalous sinks in steady two-dimensional turbulence
Eleftherios Gkioulekas, Phys. Rev. E, 2010

1:6:2:10Intermittency in two-dimensional turbulence with drag
Yue-Kin Tsang, Edward Ott, Thomas M. Antonsen, Parvez N. Guzdar, Phys. Rev. E, 2005

1:6:2:12Transition of the scaling law in inverse energy cascade range caused by a nonlocal excitation of coherent structures observed in two-dimensional turbulent fields
Atsushi Mizuta, Takeshi Matsumoto, Sadayoshi Toh, Phys. Rev. E, 2013

1:6:2:14Evidence for the double cascade scenario in two-dimensional turbulence
G. Boffetta, S. Musacchio, Phys. Rev. E, 2010

1:6:2:18Infrared decimation renormalization-group calculations for two-dimensional test-field turbulence
Malay K. Nandy, Phys. Rev. E, 2005

1:6:2:19Robustness of the inverse cascade in two-dimensional turbulence
Chuong V. Tran, John C. Bowman, Phys. Rev. E, 2004

1:6:2:24Nonrobustness of the two-dimensional turbulent inverse cascade
R. K. Scott, Phys. Rev. E, 2007

1:6:2:25Experimental Observation of the Two-Dimensional Inverse Energy Cascade
Jérôme Paret, Patrick Tabeling, Phys. Rev. Lett., 1997

1:6:2:26Physical Mechanism of the Two-Dimensional Enstrophy Cascade
Shiyi Chen, Robert E. Ecke, Gregory L. Eyink, Xin Wang, Zuoli Xiao, Phys. Rev. Lett., 2003

1:6:2:28Physical Mechanism of the Two-Dimensional Inverse Energy Cascade
Shiyi Chen, Robert E. Ecke, Gregory L. Eyink, Michael Rivera, Minping Wan, Zuoli Xiao, Phys. Rev. Lett., 2006

1:6:2:34Generalized vortex model for the inverse cascade of two-dimensional turbulence
J. Friedrich, R. Friedrich, Phys. Rev. E, 2013

1:6:2:36Field theory of the inverse cascade in two-dimensional turbulence
Jackson R. Mayo, Phys. Rev. E, 2005

1:6:2:38Experiments and direct numerical simulations of two-dimensional turbulence
C. H. Bruneau, H. Kellay, Phys. Rev. E, 2005

1:6:2:42Effects of forcing geometry on two-dimensional weak turbulence
Yang Liao, Douglas H. Kelley, Nicholas T. Ouellette, Phys. Rev. E, 2012

1:6:2:43Lattice Boltzmann simulation for forced two-dimensional turbulence
YuXian Xia, YueHong Qian, Phys. Rev. E, 2014

1:6:2:44Forced-dissipative two-dimensional turbulence: A scaling regime controlled by drag
Yue-Kin Tsang, William R. Young, Phys. Rev. E, 2009

1:6:2:46Forced 2D Turbulence: Experimental Evidence of Simultaneous Inverse Energy and Forward Enstrophy Cascades
Maarten A. Rutgers, Phys. Rev. Lett., 1998

1:6:2:48Effects of friction on forced two-dimensional Navier-Stokes turbulence
Luke A. K. Blackbourn, Chuong V. Tran, Phys. Rev. E, 2011

1:6:2:50Inverse energy cascade in stationary two-dimensional homogeneous turbulence
Vadim Borue, Phys. Rev. Lett., 1994

1:6:2:51Bose condensation and small-scale structure generation in a random force driven 2D turbulence
Leslie M. Smith, Victor Yakhot, Phys. Rev. Lett., 1993

1:6:2:53Inverse energy cascade in two-dimensional turbulence: Deviations from Gaussian behavior
G. Boffetta, A. Celani, M. Vergassola, Phys. Rev. E, 2000

1:6:2:57Enstrophy dissipation in two-dimensional turbulence
Marco Baiesi, Christian Maes, Phys. Rev. E, 2005

1:6:2:58 Craig’s X Y distribution and the statistics of Lagrangian power in two-dimensional turbulence
Mahesh M. Bandi, Colm Connaughton, Phys. Rev. E, 2008

1:6:2:59Universal velocity profile for coherent vortices in two-dimensional turbulence
M. Chertkov, I. Kolokolov, V. Lebedev, Phys. Rev. E, 2010

1:6:2:61Lagrangian coherent structures separate dynamically distinct regions in fluid flows
Douglas H. Kelley, Michael R. Allshouse, Nicholas T. Ouellette, Phys. Rev. E, 2013

1:6:2:64Dynamics of saturated energy condensation in two-dimensional turbulence
Chi-kwan Chan, Dhrubaditya Mitra, Axel Brandenburg, Phys. Rev. E, 2012

1:6:2:69Stationary spectrum of vorticity cascade in two-dimensional turbulence
Claudia Pasquero, Gregory Falkovich, Phys. Rev. E, 2002

1:6:2:70Vorticity statistics in the direct cascade of two-dimensional turbulence
Gregory Falkovich, Vladimir Lebedev, Phys. Rev. E, 2011

1:6:2:72Quantification of topological changes of vorticity contours in two-dimensional Navier-Stokes flow
Koji Ohkitani, Fayeza Al Sulti, Phys. Rev. E, 2010

1:6:2:78Gaussian vortex approximation to the instanton equations of two-dimensional turbulence
K. Kleineberg, R. Friedrich, Phys. Rev. E, 2013

1:6:2:79Intermittency in two-dimensional Ekman-Navier-Stokes turbulence
G. Boffetta, A. Celani, S. Musacchio, M. Vergassola, Phys. Rev. E, 2002

1:6:2:80Spectral exponents of enstrophy cascade in stationary two-dimensional homogeneous turbulence
Vadim Borue, Phys. Rev. Lett., 1993

1:6:2:82Energy and Enstrophy Transfer in Decaying Two-Dimensional Turbulence
M. K. Rivera, W. B. Daniel, S. Y. Chen, R. E. Ecke, Phys. Rev. Lett., 2003

1:6:2:83Vorticity Statistics in the Two-Dimensional Enstrophy Cascade
Jérôme Paret, Marie-Caroline Jullien, Patrick Tabeling, Phys. Rev. Lett., 1999

1:6:2:84Forced two-dimensional turbulence in spectral and physical space
Sergey Danilov, David Gurarie, Phys. Rev. E, 2001

1:6:2:88Nonuniversal features of forced two-dimensional turbulence in the energy range
S. Danilov, D. Gurarie, Phys. Rev. E, 2001

1:6:2:90Dynamics of Energy Condensation in Two-Dimensional Turbulence
M. Chertkov, C. Connaughton, I. Kolokolov, V. Lebedev, Phys. Rev. Lett., 2007

1:6:2:92Transport of Finite-Sized Particles in Chaotic Flow
Nicholas T. Ouellette, P. J. J. O’Malley, J. P. Gollub, Phys. Rev. Lett., 2008

1:6:2:94Lagrangian Chaos and the Effect of Drag on the Enstrophy Cascade in Two-Dimensional Turbulence
Keeyeol Nam, Edward Ott, Thomas M. Antonsen, Parvez N. Guzdar, Phys. Rev. Lett., 2000

1:6:2:95External Dissipation in Driven Two-Dimensional Turbulence
Michael Rivera, X. L. Wu, Phys. Rev. Lett., 2000

1:6:2:98Turbulence-Condensate Interaction in Two Dimensions
H. Xia, H. Punzmann, G. Falkovich, M. G. Shats, Phys. Rev. Lett., 2008

1:6:2:100Three-point velocity correlation functions in two-dimensional forced turbulence
Denis Bernard, Phys. Rev. E, 1999

1:6:2:102Exact Results on Scaling Exponents in the 2D Enstrophy Cascade
Gregory L. Eyink, Phys. Rev. Lett., 1995

1:6:2:103Energy spectrum in the inertial and dissipation ranges of two-dimensional steady turbulence
Toshiyuki Gotoh, Phys. Rev. E, 1998

1:6:2:104Temporal multiscaling in hydrodynamic turbulence
Victor S. L'vov, Evgenii Podivilov, Itamar Procaccia, Phys. Rev. E, 1997

1:6:2:105Multiscale Velocity Correlations in Turbulence
R. Benzi, L. Biferale, F. Toschi, Phys. Rev. Lett., 1998

1:6:2:106Universal direct cascade in two-dimensional turbulence
Gregory Falkovich, Vladimir Lebedev, Phys. Rev. E, 1994

1:6:2:108Two-dimensional turbulence in the inverse cascade range
Victor Yakhot, Phys. Rev. E, 1999

1:6:2:110Suppression of Turbulence by Self-Generated and Imposed Mean Flows
M. G. Shats, H. Xia, H. Punzmann, G. Falkovich, Phys. Rev. Lett., 2007

1:6:2:124Intermittency and coherent structures in the two-dimensional inverse energy cascade: Comparing numerical and laboratory experiments
T. Dubos, A. Babiano, J. Paret, P. Tabeling, Phys. Rev. E, 2001

1:6:2:126Multiscale correlations and conditional averages in numerical turbulence
Siegfried Grossmann, Detlef Lohse, Achim Reeh, Phys. Rev. E, 2000

1:6:2:133Statistical mechanics of shell models for two-dimensional turbulence
E. Aurell, G. Boffetta, A. Crisanti, P. Frick, G. Paladin, A. Vulpiani, Phys. Rev. E, 1994

1:6:2:139Exact resummations in the theory of hydrodynamic turbulence. I. The ball of locality and normal scaling
Victor L’vov, Itamar Procaccia, Phys. Rev. E, 1995

1:6:2:140Exact resummations in the theory of hydrodynamic turbulence. III. Scenarios for anomalous scaling and intermittency
Victor L’vov, Itamar Procaccia, Phys. Rev. E, 1996

1:6:2:141Viscous Lengths in Hydrodynamic Turbulence are Anomalous Scaling Functions
Victor S. L'vov, Itamar Procaccia, Phys. Rev. Lett., 1996

1:6:2:144Scale-Dependent Statistical Geometry in Two-Dimensional Flow
Sophia T. Merrifield, Douglas H. Kelley, Nicholas T. Ouellette, Phys. Rev. Lett., 2010

1:6:2:146Some properties of two-dimensional inverse energy cascade dynamics
Armando Babiano, Béreng`ere Dubrulle, Peter Frick, Phys. Rev. E, 1997

1:6:2:148Conditional statistics in scalar turbulence: Theory versus experiment
Emily S. C. Ching, Victor S. L'vov, Evgeni Podivilov, Itamar Procaccia, Phys. Rev. E, 1996

1:6:2:149Multiscale correlation functions in strong turbulence
Jahanshah Davoudi, M. Reza Rahimi Tabar, Phys. Rev. E, 2000

1:6:2:151Fusion Rules in Navier-Stokes Turbulence: First Experimental Tests
Adrienne L. Fairhall, Brindesh Dhruva, Victor S. L'vov, Itamar Procaccia, Katepalli R. Sreenivasan, Phys. Rev. Lett., 1997

1:6:2:152Exact resummations in the theory of hydrodynamic turbulence. II. A ladder to anomalous scaling
Victor L’vov, Itamar Procaccia, Phys. Rev. E, 1995

1:6:2:156Large Scale Dissipation and Filament Instability in Two-Dimensional Turbulence
Dalila Elhmaidi, Jost von Hardenberg, Antonello Provenzale, Phys. Rev. Lett., 2005

1:6:2:164Renormalization group and operator product expansion in turbulence: Shell models
Gregory L. Eyink, Phys. Rev. E, 1993

1:6:2:166Perturbative evaluation of Kolmogorov constant in a self-consistent model of fluid turbulence
Malay K. Nandy, Phys. Rev. E, 2002

1:6:2:168Renormalization-group analysis of two-dimensional incompressible turbulence
Piero Olla, Phys. Rev. Lett., 1991

1:6:2:173Exact relations in the theory of developed hydrodynamic turbulence
Victor S. L’vov, Vladimir V. Lebedev, Phys. Rev. E, 1993

1:6:2:185Universality of probability distributions among two-dimensional turbulent flows
Norbert Schorghofer, Phys. Rev. E, 2000

1:6:2:192Is 2D turbulence a conformal turbulence?
Gregory Falkovich, Amihay Hanany, Phys. Rev. Lett., 1993

1:6:2:202Symmetries, invariants, and cascades in a shell model of turbulence
P. D. Ditlevsen, Phys. Rev. E, 2000

1:6:2:205Testing a Missing Spectral Link in Turbulence
Hamid Kellay, Tuan Tran, Walter Goldburg, Nigel Goldenfeld, Gustavo Gioia, Pinaki Chakraborty, Phys. Rev. Lett., 2012

1:6:3:1Structures in magnetohydrodynamic turbulence: Detection and scaling
V. M. Uritsky, A. Pouquet, D. Rosenberg, P. D. Mininni, E. F. Donovan, Phys. Rev. E, 2010

1:6:3:2Lack of universality in decaying magnetohydrodynamic turbulence
E. Lee, M. E. Brachet, A. Pouquet, P. D. Mininni, D. Rosenberg, Phys. Rev. E, 2010

1:6:3:5Long-time properties of magnetohydrodynamic turbulence and the role of symmetries
Julia E. Stawarz, Annick Pouquet, Marc-Etienne Brachet, Phys. Rev. E, 2012

1:6:3:7Development of anisotropy in incompressible magnetohydrodynamic turbulence
Barbara Bigot, Sébastien Galtier, Hélène Politano, Phys. Rev. E, 2008

1:6:3:8Anisotropic magnetohydrodynamic spectral transfer in the diffusion approximation
W. H. Matthaeus, S. Oughton, Y. Zhou, Phys. Rev. E, 2009

1:6:3:9Two-dimensional state in driven magnetohydrodynamic turbulence
Barbara Bigot, Sébastien Galtier, Phys. Rev. E, 2011

1:6:3:10High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model
J. Pietarila Graham, P. D. Mininni, A. Pouquet, Phys. Rev. E, 2011

1:6:3:11Weak Alfvén-wave turbulence revisited
Alexander A. Schekochihin, Sergey V. Nazarenko, Tarek A. Yousef, Phys. Rev. E, 2012

1:6:3:14Finite dissipation and intermittency in magnetohydrodynamics
P. D. Mininni, A. Pouquet, Phys. Rev. E, 2009

1:6:3:15Anisotropic fluxes and nonlocal interactions in magnetohydrodynamic turbulence
A. Alexakis, B. Bigot, H. Politano, S. Galtier, Phys. Rev. E, 2007

1:6:3:16Numerical measurements of the spectrum in magnetohydrodynamic turbulence
Joanne Mason, Fausto Cattaneo, Stanislav Boldyrev, Phys. Rev. E, 2008

1:6:3:17Weak turbulence in two-dimensional magnetohydrodynamics
N. Tronko, S. V. Nazarenko, S. Galtier, Phys. Rev. E, 2013

1:6:3:19Statistics of the inverse-cascade regime in two-dimensional magnetohydrodynamic turbulence
Debarghya Banerjee, Rahul Pandit, Phys. Rev. E, 2014

1:6:3:20Spectral modeling of magnetohydrodynamic turbulent flows
J. Baerenzung, H. Politano, Y. Ponty, A. Pouquet, Phys. Rev. E, 2008

1:6:3:21von Kármán–Howarth equations for Hall magnetohydrodynamic flows
Sébastien Galtier, Phys. Rev. E, 2008

1:6:3:22Two-dimensional behavior of three-dimensional magnetohydrodynamic flow with a strong guiding field
Alexandros Alexakis, Phys. Rev. E, 2011

1:6:3:23Forced magnetohydrodynamic turbulence in three dimensions using Taylor-Green symmetries
G. Krstulovic, M. E. Brachet, A. Pouquet, Phys. Rev. E, 2014

1:6:3:24Examination of the four-fifths law for longitudinal third-order moments in incompressible magnetohydrodynamic turbulence in a periodic box
Katsunori Yoshimatsu, Phys. Rev. E, 2012

1:6:3:25 Origins of the k 2 spectrum in decaying Taylor-Green magnetohydrodynamic turbulent flows
V. Dallas, A. Alexakis, Phys. Rev. E, 2013

1:6:3:26Symmetry breaking of decaying magnetohydrodynamic Taylor-Green flows and consequences for universality
V. Dallas, A. Alexakis, Phys. Rev. E, 2013

1:6:3:27Scaling and anisotropy in magnetohydrodynamic turbulence in a strong mean magnetic field
Roland Grappin, Wolf-Christian Müller, Phys. Rev. E, 2010

1:6:3:28Spectral Energy Dynamics in Magnetohydrodynamic Turbulence
Wolf-Christian Müller, Roland Grappin, Phys. Rev. Lett., 2005

1:6:3:31Magnetohydrodynamic turbulent cascade of coronal loop magnetic fields
A. F. Rappazzo, M. Velli, Phys. Rev. E, 2011

1:6:3:33Energy Spectra Stemming from Interactions of Alfvén Waves and Turbulent Eddies
P. D. Mininni, A. Pouquet, Phys. Rev. Lett., 2007

1:6:3:35Inverse cascade of magnetic helicity in magnetohydrodynamic turbulence
Wolf-Christian Müller, Shiva Kumar Malapaka, Angela Busse, Phys. Rev. E, 2012

1:6:3:39Spectrum of Magnetohydrodynamic Turbulence
Stanislav Boldyrev, Phys. Rev. Lett., 2006

1:6:3:40Rapid Alignment of Velocity and Magnetic Field in Magnetohydrodynamic Turbulence
W. H. Matthaeus, A. Pouquet, P. D. Mininni, P. Dmitruk, B. Breech, Phys. Rev. Lett., 2008

1:6:3:41Colloquium: Magnetohydrodynamic turbulence and time scales in astrophysical and space plasmas
Ye Zhou, W. Matthaeus, P. Dmitruk, Rev. Mod. Phys., 2004

1:6:3:46von Kármán–Howarth equation for magnetohydrodynamics and its consequences on third-order longitudinal structure and correlation functions
H. Politano, A. Pouquet, Phys. Rev. E, 1998

1:6:3:49Depression of Nonlinearity in Decaying Isotropic MHD Turbulence
S. Servidio, W. H. Matthaeus, P. Dmitruk, Phys. Rev. Lett., 2008

1:6:3:53Statistical anisotropy of magnetohydrodynamic turbulence
Wolf-Christian Müller, Dieter Biskamp, Roland Grappin, Phys. Rev. E, 2003

1:6:3:56Small-Scale Structures in Three-Dimensional Magnetohydrodynamic Turbulence
P. D. Mininni, A. G. Pouquet, D. C. Montgomery, Phys. Rev. Lett., 2006

1:6:3:59Scaling Properties of Three-Dimensional Magnetohydrodynamic Turbulence
Wolf-Christian Müller, Dieter Biskamp, Phys. Rev. Lett., 2000

1:6:3:64Energy Decay Laws in Strongly Anisotropic Magnetohydrodynamic Turbulence
Barbara Bigot, Sébastien Galtier, Hélène Politano, Phys. Rev. Lett., 2008

1:6:3:73Observation of Inertial Energy Cascade in Interplanetary Space Plasma
L. Sorriso-Valvo, R. Marino, V. Carbone, A. Noullez, F. Lepreti, P. Veltri, R. Bruno, B. Bavassano, E. Pietropaolo, Phys. Rev. Lett., 2007

1:6:3:75Spectral Slope and Kolmogorov Constant of MHD Turbulence
A. Beresnyak, Phys. Rev. Lett., 2011

1:6:3:76Scale Locality of Magnetohydrodynamic Turbulence
Hussein Aluie, Gregory L. Eyink, Phys. Rev. Lett., 2010

1:6:3:80Measurement of the Electric Fluctuation Spectrum of Magnetohydrodynamic Turbulence
S. D. Bale, P. J. Kellogg, F. S. Mozer, T. S. Horbury, H. Reme, Phys. Rev. Lett., 2005

1:6:3:81von Kármán–Howarth relationship for helical magnetohydrodynamic flows
H. Politano, T. Gomez, A. Pouquet, Phys. Rev. E, 2003

1:6:3:84Magnetic Reconnection in Two-Dimensional Magnetohydrodynamic Turbulence
S. Servidio, W. H. Matthaeus, M. A. Shay, P. A. Cassak, P. Dmitruk, Phys. Rev. Lett., 2009

1:6:3:90Turbulent cascades in anisotropic magnetohydrodynamics
R. M. Kinney, J. C. McWilliams, Phys. Rev. E, 1998

1:6:3:95Spectrum of Weak Magnetohydrodynamic Turbulence
Stanislav Boldyrev, Jean Carlos Perez, Phys. Rev. Lett., 2009

1:6:3:108Self-Similar Energy Decay in Magnetohydrodynamic Turbulence
S. Galtier, H. Politano, A. Pouquet, Phys. Rev. Lett., 1997

1:6:3:114Weak Compressible Magnetohydrodynamic Turbulence in the Solar Corona
Benjamin D. G. Chandran, Phys. Rev. Lett., 2005

1:6:3:119Anisotropic Scaling of Magnetohydrodynamic Turbulence
Timothy S. Horbury, Miriam Forman, Sean Oughton, Phys. Rev. Lett., 2008

1:6:3:122Role of Cross-Helicity in Magnetohydrodynamic Turbulence
Jean Carlos Perez, Stanislav Boldyrev, Phys. Rev. Lett., 2009

1:6:3:127Dynamic Alignment in Driven Magnetohydrodynamic Turbulence
Joanne Mason, Fausto Cattaneo, Stanislav Boldyrev, Phys. Rev. Lett., 2006

1:6:3:140Quantum turbulence cascades in the Gross-Pitaevskii model
Davide Proment, Sergey Nazarenko, Miguel Onorato, Phys. Rev. A, 2009

1:6:3:143Real-Space Manifestations of Bottlenecks in Turbulence Spectra
Uriel Frisch, Samriddhi Sankar Ray, Ganapati Sahoo, Debarghya Banerjee, Rahul Pandit, Phys. Rev. Lett., 2013

1:6:3:147Scaling of Anisotropy in Hydromagnetic Turbulence
W. Matthaeus, Sean Oughton, Sanjoy Ghosh, Murshed Hossain, Phys. Rev. Lett., 1998

1:6:3:157 Weakly Turbulent Magnetohydrodynamic Waves in Compressible Low- β Plasmas
Benjamin D. G. Chandran, Phys. Rev. Lett., 2008

1:6:3:178Uritsky, Davila, and Jones Reply:
Vadim M. Uritsky, Joseph M. Davila, Shaela I. Jones, Phys. Rev. Lett., 2009

1:6:3:192Anisotropic Third-Moment Estimates of the Energy Cascade in Solar Wind Turbulence Using Multispacecraft Data
K. T. Osman, M. Wan, W. H. Matthaeus, J. M. Weygand, S. Dasso, Phys. Rev. Lett., 2011

1:6:3:195Nonlinear Instability Mechanism in 3D Collisional Drift-Wave Turbulence
D. Biskamp, A. Zeiler, Phys. Rev. Lett., 1995

1:6:3:212Large-Scale Magnetic Fields in Magnetohydrodynamic Turbulence
Alexandros Alexakis, Phys. Rev. Lett., 2013

1:6:3:224Anisotropy of Solar Wind Turbulence between Ion and Electron Scales
C. H. K. Chen, T. S. Horbury, A. A. Schekochihin, R. T. Wicks, O. Alexandrova, J. Mitchell, Phys. Rev. Lett., 2010

1:6:3:226Evidence of a Cascade and Dissipation of Solar-Wind Turbulence at the Electron Gyroscale
F. Sahraoui, M. L. Goldstein, P. Robert, Yu. V. Khotyaintsev, Phys. Rev. Lett., 2009

1:6:4:2Effect of the Lorentz force on on-off dynamo intermittency
Alexandros Alexakis, Yannick Ponty, Phys. Rev. E, 2008

1:6:4:3Generation of a Magnetic Field by Dynamo Action in a Turbulent Flow of Liquid Sodium
R. Monchaux, M. Berhanu, M. Bourgoin, M. Moulin, Ph. Odier, J.-F. Pinton, R. Volk, S. Fauve, N. Mordant, F. Pétrélis, A. Chiffaudel, F. Daviaud, B. Dubrulle, C. Gasquet, L. Marié, F. Ravelet, Phys. Rev. Lett., 2007

1:6:4:6Impact of time-dependent nonaxisymmetric velocity perturbations on dynamo action of von Kármán-like flows
André Giesecke, Frank Stefani, Javier Burguete, Phys. Rev. E, 2012

1:6:4:8Numerical simulations of current generation and dynamo excitation in a mechanically forced turbulent flow
R. A. Bayliss, C. B. Forest, M. D. Nornberg, E. J. Spence, P. W. Terry, Phys. Rev. E, 2007

1:6:4:10Dynamo threshold detection in the von Kármán sodium experiment
Sophie Miralles, Nicolas Bonnefoy, Mickael Bourgoin, Philippe Odier, Jean-François Pinton, Nicolas Plihon, Gautier Verhille, Jean Boisson, François Daviaud, Bérengère Dubrulle, Phys. Rev. E, 2013

1:6:4:11Dynamo efficiency controlled by hydrodynamic bistability
Sophie Miralles, Johann Herault, Stephan Fauve, Christophe Gissinger, François Pétrélis, François Daviaud, Bérengère Dubrulle, Jean Boisson, Mickaël Bourgoin, Gautier Verhille, Philippe Odier, Jean-François Pinton, Nicolas Plihon, Phys. Rev. E, 2014

1:6:4:12Axial dipolar dynamo action in the Taylor-Green vortex
Giorgio Krstulovic, Gentien Thorner, Julien-Piera Vest, Stephan Fauve, Marc Brachet, Phys. Rev. E, 2011

1:6:4:13Bistability and chaos in the Taylor-Green dynamo
Rakesh K. Yadav, Mahendra K. Verma, Pankaj Wahi, Phys. Rev. E, 2012

1:6:4:17Magnetic Field Saturation in the Riga Dynamo Experiment
Agris Gailitis, Olgerts Lielausis, Ernests Platacis, Sergej Dement'ev, Arnis Cifersons, Gunter Gerbeth, Thomas Gundrum, Frank Stefani, Michael Christen, Gotthard Will, Phys. Rev. Lett., 2001

1:6:4:18Self-consistent simulations of a von Kármán type dynamo in a spherical domain with metallic walls
Céline Guervilly, Nicholas H. Brummell, Phys. Rev. E, 2012

1:6:4:20Effect of soft-iron impellers on the von Kármán–sodium dynamo
Mingtian Xu, Phys. Rev. E, 2014

1:6:4:23Detection of a Flow Induced Magnetic Field Eigenmode in the Riga Dynamo Facility
Agris Gailitis, Olgerts Lielausis, Sergej Dement'ev, Ernests Platacis, Arnis Cifersons, Gunter Gerbeth, Thomas Gundrum, Frank Stefani, Michael Christen, Heiko Hänel, Gotthard Will, Phys. Rev. Lett., 2000

1:6:4:24Wave-driven dynamo action in spherical magnetohydrodynamic systems
K. Reuter, F. Jenko, A. Tilgner, C. B. Forest, Phys. Rev. E, 2009

1:6:4:27Effect of metallic walls on dynamos generated by laminar boundary-driven flow in a spherical domain
Céline Guervilly, Toby S. Wood, Nicholas H. Brummell, Phys. Rev. E, 2013

1:6:4:28Role of large-scale velocity fluctuations in a two-vortex kinematic dynamo
E. J. Kaplan, B. P. Brown, K. Rahbarnia, C. B. Forest, Phys. Rev. E, 2012

1:6:4:31Magnetic induction and diffusion mechanisms in a liquid sodium spherical Couette experiment
Simon Cabanes, Nathanaël Schaeffer, Henri-Claude Nataf, Phys. Rev. E, 2014

1:6:4:32Induction, helicity, and alpha effect in a toroidal screw flow of liquid gallium
R. Stepanov, R. Volk, S. Denisov, P. Frick, V. Noskov, J.-F. Pinton, Phys. Rev. E, 2006

1:6:4:33Multistability and Memory Effect in a Highly Turbulent Flow: Experimental Evidence for a Global Bifurcation
Florent Ravelet, Louis Marié, Arnaud Chiffaudel, François Daviaud, Phys. Rev. Lett., 2004

1:6:4:34Planar bifurcation subject to multiplicative noise: Role of symmetry
Alexandros Alexakis, François Pétrélis, Phys. Rev. E, 2009

1:6:4:37Dipole-quadrupole dynamics during magnetic field reversals
Christophe Gissinger, Phys. Rev. E, 2010

1:6:4:38Toward a self-generating magnetic dynamo: The role of turbulence
Nicholas L. Peffley, A. B. Cawthorne, Daniel P. Lathrop, Phys. Rev. E, 2000

1:6:4:39Geodynamo theory and simulations
Paul H. Roberts, Gary A. Glatzmaier, Rev. Mod. Phys., 2000

1:6:4:40Facilitating dynamo action via control of large-scale turbulence
A. Limone, D. R. Hatch, C. B. Forest, F. Jenko, Phys. Rev. E, 2012

1:6:4:41Turbulent viscosity and turbulent magnetic diffusivity in a decaying spin-down flow of liquid sodium
Vitaliy Noskov, Sergey Denisov, Rodion Stepanov, Peter Frick, Phys. Rev. E, 2012

1:6:4:44Chaotic Dynamos Generated by a Turbulent Flow of Liquid Sodium
F. Ravelet, M. Berhanu, R. Monchaux, S. Aumaître, A. Chiffaudel, F. Daviaud, B. Dubrulle, M. Bourgoin, Ph. Odier, N. Plihon, J.-F. Pinton, R. Volk, S. Fauve, N. Mordant, F. Pétrélis, Phys. Rev. Lett., 2008

1:6:4:46From reversing to hemispherical dynamos
Basile Gallet, François Pétrélis, Phys. Rev. E, 2009

1:6:4:49Intermittency in spherical Couette dynamos
Raphaël Raynaud, Emmanuel Dormy, Phys. Rev. E, 2013

1:6:4:54Nonlinear Magnetic Induction by Helical Motion in a Liquid Sodium Turbulent Flow
F. Pétrélis, M. Bourgoin, L. Marié, J. Burguete, A. Chiffaudel, F. Daviaud, S. Fauve, P. Odier, J.-F. Pinton, Phys. Rev. Lett., 2003

1:6:4:56Slow Dynamics in a Turbulent von Kármán Swirling Flow
A. de la Torre, J. Burguete, Phys. Rev. Lett., 2007

1:6:4:57Advection of a magnetic field by a turbulent swirling flow
P. Odier, J.-F. Pinton, S. Fauve, Phys. Rev. E, 1998

1:6:4:59Observation of a Turbulence-Induced Large Scale Magnetic Field
E. J. Spence, M. D. Nornberg, C. M. Jacobson, R. D. Kendrick, C. B. Forest, Phys. Rev. Lett., 2006

1:6:4:61Decay rates of magnetic modes below the threshold of a turbulent dynamo
J. Herault, F. Pétrélis, S. Fauve, Phys. Rev. E, 2014

1:6:4:62Optimum reduction of the dynamo threshold by a ferromagnetic layer located in the flow
J. Herault, F. Pétrélis, Phys. Rev. E, 2014

1:6:4:64Subcritical Dynamo Bifurcation in the Taylor-Green Flow
Y. Ponty, J.-P. Laval, B. Dubrulle, F. Daviaud, J.-F. Pinton, Phys. Rev. Lett., 2007

1:6:4:65Influence of Turbulence on the Dynamo Threshold
J-P. Laval, P. Blaineau, N. Leprovost, B. Dubrulle, F. Daviaud, Phys. Rev. Lett., 2006

1:6:4:66Asymmetric Polarity Reversals, Bimodal Field Distribution, and Coherence Resonance in a Spherically Symmetric Mean-Field Dynamo Model
Frank Stefani, Gunter Gerbeth, Phys. Rev. Lett., 2005

1:6:4:67Self-Sustaining Nonlinear Dynamo Process in Keplerian Shear Flows
F. Rincon, G. I. Ogilvie, M. R. E. Proctor, Phys. Rev. Lett., 2007

1:6:4:68Simple Mechanism for Reversals of Earth’s Magnetic Field
François Pétrélis, Stéphan Fauve, Emmanuel Dormy, Jean-Pierre Valet, Phys. Rev. Lett., 2009

1:6:4:70Influence of electromagnetic boundary conditions onto the onset of dynamo action in laboratory experiments
Raul Avalos-Zuniga, Franck Plunian, Agris Gailitis, Phys. Rev. E, 2003

1:6:4:77Intermittent Magnetic Field Excitation by a Turbulent Flow of Liquid Sodium
M. D. Nornberg, E. J. Spence, R. D. Kendrick, C. M. Jacobson, C. B. Forest, Phys. Rev. Lett., 2006

1:6:4:81Role of Soft-Iron Impellers on the Mode Selection in the von Kármán–Sodium Dynamo Experiment
André Giesecke, Frank Stefani, Gunter Gerbeth, Phys. Rev. Lett., 2010

1:6:4:82Impact of Impellers on the Axisymmetric Magnetic Mode in the VKS2 Dynamo Experiment
R. Laguerre, C. Nore, A. Ribeiro, J. Léorat, J.-L. Guermond, F. Plunian, Phys. Rev. Lett., 2008

1:6:4:83Direct Measurement of Effective Magnetic Diffusivity in Turbulent Flow of Liquid Sodium
Peter Frick, Vitaliy Noskov, Sergey Denisov, Rodion Stepanov, Phys. Rev. Lett., 2010

1:6:4:88Blowout bifurcations and the onset of magnetic activity in turbulent dynamos
David Sweet, Edward Ott, John M. Finn, Thomas M. Antonsen, Daniel P. Lathrop, Phys. Rev. E, 2001

1:6:4:89Dynamo action in Möbius flow
Anvar Shukurov, Rodion Stepanov, Dmitry Sokoloff, Phys. Rev. E, 2008

1:6:4:90Bypassing Cowling’s Theorem in Axisymmetric Fluid Dynamos
Christophe Gissinger, Emmanuel Dormy, Stephan Fauve, Phys. Rev. Lett., 2008

1:6:4:92Dynamo Action with Wave Motion
A. Tilgner, Phys. Rev. Lett., 2008

1:6:4:95Reducing Global Turbulent Resistivity by Eliminating Large Eddies in a Spherical Liquid-Sodium Experiment
E. J. Kaplan, M. M. Clark, M. D. Nornberg, K. Rahbarnia, A. M. Rasmus, N. Z. Taylor, C. B. Forest, E. J. Spence, Phys. Rev. Lett., 2011

1:6:4:98Kinematic dynamos surrounded by a stationary conductor
R. Kaiser, A. Tilgner, Phys. Rev. E, 1999

1:6:4:114Turbulent Conductivity Measurements in a Spherical Liquid Sodium Flow
A. B. Reighard, M. R. Brown, Phys. Rev. Lett., 2001

1:6:4:123 High Magnetic Shear Gain in a Liquid Sodium Stable Couette Flow Experiment: A Prelude to an α Ω Dynamo
Stirling A. Colgate, Howard Beckley, Jiahe Si, Joe Martinic, David Westpfahl, James Slutz, Cebastian Westrom, Brianna Klein, Paul Schendel, Cletus Scharle, Travis McKinney, Rocky Ginanni, Ian Bentley, Timothy Mickey, Regnar Ferrel, Hui Li, Vladimir Pariev, John Finn, Phys. Rev. Lett., 2011

1:6:4:132Turbulent Diamagnetism in Flowing Liquid Sodium
E. J. Spence, M. D. Nornberg, C. M. Jacobson, C. A. Parada, N. Z. Taylor, R. D. Kendrick, C. B. Forest, Phys. Rev. Lett., 2007

1:6:4:139 Kinematic α Tensors and Dynamo Mechanisms in a von Kármán Swirling Flow
F. Ravelet, B. Dubrulle, F. Daviaud, P.-A. Ratié, Phys. Rev. Lett., 2012

1:6:4:175 Erratum: Bistability and chaos in the Taylor-Green dynamo [Phys. Rev. E 85 , 036301 (2012)]
Rakesh K. Yadav, Mahendra K. Verma, Pankaj Wahi, Phys. Rev. E, 2012

1:6:4:189 Publisher's Note: Dynamo efficiency controlled by hydrodynamic bistability [Phys. Rev. E 89 , 063023 (2014)]
Sophie Miralles, Johann Herault, Stephan Fauve, Christophe Gissinger, François Pétrélis, François Daviaud, Bérengère Dubrulle, Jean Boisson, Mickaël Bourgoin, Gautier Verhille, Philippe Odier, Jean-François Pinton, Nicolas Plihon, Phys. Rev. E, 2014

1:6:4:192Anomalous Exponents at the Onset of an Instability
F. Pétrélis, A. Alexakis, Phys. Rev. Lett., 2012

1:6:4:193Onset of dynamo action in an axisymmetric flow
A. Tilgner, Phys. Rev. E, 2002

1:6:4:196Dynamo theory of the earth's varying magnetic field
David Rittenhouse Inglis, Rev. Mod. Phys., 1981

1:6:4:199 Erratum: Impact of Impellers on the Axisymmetric Magnetic Mode in the VKS2 Dynamo Experiment [Phys. Rev. Lett. 101 , 104501 (2008)]
R. Laguerre, C. Nore, A. Ribeiro, J. Léorat, J.-L. Guermond, F. Plunian, Phys. Rev. Lett., 2008

1:6:4:205Identification of Y-Shaped and O-Shaped Diffusion Regions During Magnetic Reconnection in a Laboratory Plasma
Masaaki Yamada, Hantao Ji, Scott Hsu, Troy Carter, Russell Kulsrud, Yasushi Ono, Francis Perkins, Phys. Rev. Lett., 1997

1:6:4:209Screw dynamo and the generation of nonaxisymmetric magnetic fields
Abhik Basu, Phys. Rev. E, 1997

1:6:4:213Competing instabilities in a rotating layer of mercury heated from below
S. Fauve, C. Laroche, B. Perrin, Phys. Rev. Lett., 1985

1:6:4:215Transport of Magnetic Field by a Turbulent Flow of Liquid Sodium
R. Volk, F. Ravelet, R. Monchaux, M. Berhanu, A. Chiffaudel, F. Daviaud, Ph. Odier, J.-F. Pinton, S. Fauve, N. Mordant, F. Pétrélis, Phys. Rev. Lett., 2006

1:6:4:221Characterization of Coherent Structures in Tokamak Edge Turbulence
S. Benkadda, T. Dudok de Wit, A. Verga, A. Sen, ASDEX team, X. Garbet, Phys. Rev. Lett., 1994

1:6:4:222Proper orthogonal decomposition and Galerkin projection for a three-dimensional plasma dynamical system
P. Beyer, S. Benkadda, X. Garbet, Phys. Rev. E, 2000

1:6:4:224Origin of Magnetic Stochasticity and Transport in Plasma Microturbulence
D. R. Hatch, M. J. Pueschel, F. Jenko, W. M. Nevins, P. W. Terry, H. Doerk, Phys. Rev. Lett., 2012

1:6:4:225Saturation of Gyrokinetic Turbulence through Damped Eigenmodes
D. R. Hatch, P. W. Terry, F. Jenko, F. Merz, W. M. Nevins, Phys. Rev. Lett., 2011

1:6:5:1Magnetic fluctuations and formation of large-scale inhomogeneous magnetic structures in a turbulent convection
Igor Rogachevskii, Nathan Kleeorin, Phys. Rev. E, 2007

1:6:5:4Mean-field dynamo in a turbulence with shear and kinetic helicity fluctuations
Nathan Kleeorin, Igor Rogachevskii, Phys. Rev. E, 2008

1:6:5:6Mixing at the external boundary of a submerged turbulent jet
A. Eidelman, T. Elperin, N. Kleeorin, G. Hazak, I. Rogachevskii, O. Sadot, I. Sapir-Katiraie, Phys. Rev. E, 2009

1:6:5:7Pumping velocity in homogeneous helical turbulence with shear
Igor Rogachevskii, Nathan Kleeorin, Petri J. Käpylä, Axel Brandenburg, Phys. Rev. E, 2011

1:6:5:8Nonlinear theory of a “shear-current” effect and mean-field magnetic dynamos
Igor Rogachevskii, Nathan Kleeorin, Phys. Rev. E, 2004

1:6:5:9Excitation of large-scale inertial waves in a rotating inhomogeneous turbulence
Tov Elperin, Ilia Golubev, Nathan Kleeorin, Igor Rogachevskii, Phys. Rev. E, 2005

1:6:5:11Large-scale instability in a sheared nonhelical turbulence: Formation of vortical structures
Tov Elperin, Ilia Golubev, Nathan Kleeorin, Igor Rogachevskii, Phys. Rev. E, 2007

1:6:5:12Shear-current effect in a turbulent convection with a large-scale shear
Igor Rogachevskii, Nathan Kleeorin, Phys. Rev. E, 2007

1:6:5:13Kinetic helicity needed to drive large-scale dynamos
Simon Candelaresi, Axel Brandenburg, Phys. Rev. E, 2013

1:6:5:14Calibrating passive scalar transport in shear-flow turbulence
Enikő J. M. Madarassy, Axel Brandenburg, Phys. Rev. E, 2010

1:6:5:15Nonlinear turbulent magnetic diffusion and effective drift velocity of a large-scale magnetic field in two-dimensional magnetohydrodynamic turbulence
Nathan Kleeorin, Igor Rogachevskii, Phys. Rev. E, 2007

1:6:5:16Mean-field dynamos in random Arnold-Beltrami-Childress and Roberts flows
Nathan Kleeorin, Igor Rogachevskii, Dmitry Sokoloff, Dmitry Tomin, Phys. Rev. E, 2009

1:6:5:17Mean electromotive force due to turbulence of a conducting fluid in the presence of mean flow
Karl-Heinz Rädler, Rodion Stepanov, Phys. Rev. E, 2006

1:6:5:18Mean-field dynamo action in renovating shearing flows
Sanved Kolekar, Kandaswamy Subramanian, S. Sridhar, Phys. Rev. E, 2012

1:6:5:19Numerical study of large-scale vorticity generation in shear-flow turbulence
Petri J. Käpylä, Dhrubaditya Mitra, Axel Brandenburg, Phys. Rev. E, 2009

1:6:5:21 α -effect dynamos with zero kinetic helicity
Karl-Heinz Rädler, Axel Brandenburg, Phys. Rev. E, 2008

1:6:5:22Electromotive force and large-scale magnetic dynamo in a turbulent flow with a mean shear
Igor Rogachevskii, Nathan Kleeorin, Phys. Rev. E, 2003

1:6:5:24 α effect in a turbulent liquid-metal plane Couette flow
G. Rüdiger, A. Brandenburg, Phys. Rev. E, 2014

1:6:5:25Shear dynamo problem: Quasilinear kinematic theory
S. Sridhar, Kandaswamy Subramanian, Phys. Rev. E, 2009

1:6:5:26Nonperturbative quasilinear approach to the shear dynamo problem
S. Sridhar, Kandaswamy Subramanian, Phys. Rev. E, 2009

1:6:5:27Transport coefficients for the shear dynamo problem at small Reynolds numbers
Nishant K. Singh, S. Sridhar, Phys. Rev. E, 2011

1:6:5:30The solar dynamo
M. S. Miesch, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012

1:6:5:34Large-Scale Dynamo Action Driven by Velocity Shear and Rotating Convection
David W. Hughes, Michael R. E. Proctor, Phys. Rev. Lett., 2009

1:6:5:35Generation of Magnetic Field by Combined Action of Turbulence and Shear
T. A. Yousef, T. Heinemann, A. A. Schekochihin, N. Kleeorin, I. Rogachevskii, A. B. Iskakov, S. C. Cowley, J. C. McWilliams, Phys. Rev. Lett., 2008

1:6:5:40Generation of large-scale vorticity in a homogeneous turbulence with a mean velocity shear
Tov Elperin, Nathan Kleeorin, Igor Rogachevskii, Phys. Rev. E, 2003

1:6:5:45New Dynamical Mean-Field Dynamo Theory and Closure Approach
Eric G. Blackman, George B. Field, Phys. Rev. Lett., 2002

1:6:5:54Formation of large-scale semiorganized structures in turbulent convection
Tov Elperin, Nathan Kleeorin, Igor Rogachevskii, Sergej Zilitinkevich, Phys. Rev. E, 2002

1:6:5:58Magnetic helicity tensor for an anisotropic turbulence
N. Kleeorin, I. Rogachevskii, Phys. Rev. E, 1999

1:6:5:65Effective Ampère force in developed magnetohydrodynamic turbulence
Nathan Kleeorin, Igor Rogachevskii, Phys. Rev. E, 1994

1:6:5:76Large-Scale Magnetic Field Generation by Randomly Forced Shearing Waves
T. Heinemann, J. C. McWilliams, A. A. Schekochihin, Phys. Rev. Lett., 2011

1:6:5:78 Effect of rotation on a developed turbulent stratified convection: The hydrodynamic helicity, the α effect, and the effective drift velocity
Nathan Kleeorin, Igor Rogachevskii, Phys. Rev. E, 2003

1:6:5:80Nonlinear turbulent magnetic diffusion and mean-field dynamo
Igor Rogachevskii, Nathan Kleeorin, Phys. Rev. E, 2001

1:6:5:81Electromotive force for an anisotropic turbulence: Intermediate nonlinearity
Igor Rogachevskii, Nathan Kleeorin, Phys. Rev. E, 2000

1:6:5:82Spectrum of Turbulent Fluctuations Produced by Convective Mixing of Gradients
Albert D. Wheelon, Phys. Rev., 1957

1:6:5:105Limited Role of Spectra in Dynamo Theory: Coherent versus Random Dynamos
Steven M. Tobias, Fausto Cattaneo, Phys. Rev. Lett., 2008

1:6:5:112Anisotropy in homogeneous rotating turbulence
José Gaite, Phys. Rev. E, 2003

1:6:5:122Contributions to the theory of a two-scale homogeneous dynamo experiment
Karl-Heinz Rädler, Axel Brandenburg, Phys. Rev. E, 2003

1:6:5:137Nature of the α effect in magnetohydrodynamics
N. Seehafer, Phys. Rev. E, 1996

1:6:5:147Gravitational Collapse and Causality
W. Israel, Phys. Rev., 1967

1:6:6:2Joint-constraint model for large-eddy simulation of helical turbulence
Changping Yu, Zuoli Xiao, Yipeng Shi, Shiyi Chen, Phys. Rev. E, 2014

1:6:6:5Alignment of velocity and vorticity and the intermittent distribution of helicity in isotropic turbulence
Yeontaek Choi, Byung-Gu Kim, Changhoon Lee, Phys. Rev. E, 2009

1:6:6:7Spectral modeling of turbulent flows and the role of helicity
J. Baerenzung, H. Politano, Y. Ponty, A. Pouquet, Phys. Rev. E, 2008

1:6:6:9Refined subgrid-scale model for large-eddy simulation of helical turbulence
Changping Yu, Zuoli Xiao, Phys. Rev. E, 2013

1:6:6:10Intermittency in the isotropic component of helical and nonhelical turbulent flows
L. N. Martin, P. D. Mininni, Phys. Rev. E, 2010

1:6:6:11Restricted partition functions and inverse energy cascades in parity symmetry breaking flows
Corentin Herbert, Phys. Rev. E, 2014

1:6:6:12Subgrid-scale modeling of helicity and energy dissipation in helical turbulence
Yi Li, Charles Meneveau, Shiyi Chen, Gregory L. Eyink, Phys. Rev. E, 2006

1:6:6:14Cascade time scales for energy and helicity in homogeneous isotropic turbulence
Susan Kurien, Mark A. Taylor, Takeshi Matsumoto, Phys. Rev. E, 2004

1:6:6:15Influence of initial mean helicity on homogeneous turbulent shear flow
Frank G. Jacobitz, Kai Schneider, Wouter J. T. Bos, Marie Farge, Phys. Rev. E, 2011

1:6:6:19Intermittency in the Joint Cascade of Energy and Helicity
Qiaoning Chen, Shiyi Chen, Gregory L. Eyink, Darryl D. Holm, Phys. Rev. Lett., 2003

1:6:6:20Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows
G. Krstulovic, P. D. Mininni, M. E. Brachet, A. Pouquet, Phys. Rev. E, 2009

1:6:6:23Intermittency and scale-dependent statistics in fully developed turbulence
Katsunori Yoshimatsu, Naoya Okamoto, Kai Schneider, Yukio Kaneda, Marie Farge, Phys. Rev. E, 2009

1:6:6:26Spectra in helical three-dimensional homogeneous isotropic turbulence
Vadim Borue, Steven A. Orszag, Phys. Rev. E, 1997

1:6:6:28Inverse Energy Cascade in Three-Dimensional Isotropic Turbulence
Luca Biferale, Stefano Musacchio, Federico Toschi, Phys. Rev. Lett., 2012

1:6:6:33Recovering isotropic statistics in turbulence simulations: The Kolmogorov 4/5th law
Mark A. Taylor, Susan Kurien, Gregory L. Eyink, Phys. Rev. E, 2003

1:6:6:35Histograms of helicity and strain in numerical turbulence
Robert M. Kerr, Phys. Rev. Lett., 1987

1:6:6:36Velocity-Vorticity Patterns in Turbulent Flow
Richard B. Pelz, Victor Yakhot, Steven A. Orszag, Leonid Shtilman, Evgeny Levich, Phys. Rev. Lett., 1985

1:6:6:37Turbulence in More than Two and Less than Three Dimensions
Antonio Celani, Stefano Musacchio, Dario Vincenzi, Phys. Rev. Lett., 2010

1:6:6:41Asymmetry of Velocity Increments in Fully Developed Turbulence and the Scaling of Low-Order Moments
K. R. Sreenivasan, S. I. Vainshtein, R. Bhiladvala, I. San Gil, S. Chen, N. Cao, Phys. Rev. Lett., 1996

1:6:6:51Exact relationship for third-order structure functions in helical flows
T. Gomez, H. Politano, A. Pouquet, Phys. Rev. E, 2000

1:6:6:54Helicity transfer in turbulent models
L. Biferale, D. Pierotti, F. Toschi, Phys. Rev. E, 1998

1:6:6:55Helical shell models for three-dimensional turbulence
R. Benzi, L. Biferale, R. M. Kerr, E. Trovatore, Phys. Rev. E, 1996

1:6:6:62Helicity production in the transition to chaotic flow simulated by Navier-Stokes equation
Tsutomu Sanada, Phys. Rev. Lett., 1993

1:6:6:79High-Resolution Lattice-Gas Simulation of Two-Dimensional Turbulence
S. Succi, P. Santangelo, R. Benzi, Phys. Rev. Lett., 1988

1:6:6:81Bridging between eddy-viscosity-type and second-order turbulence models through a two-scale turbulence theory
Akira Yoshizawa, Phys. Rev. E, 1993

1:6:6:84Nonlinear Superposition of Direct and Inverse Cascades in Two-Dimensional Turbulence Forced at Large and Small Scales
Massimo Cencini, Paolo Muratore-Ginanneschi, Angelo Vulpiani, Phys. Rev. Lett., 2011

1:6:6:90Dynamics of vortex lines in turbulent flows
Barak Galanti, Itamar Procaccia, Daniel Segel, Phys. Rev. E, 1996

1:6:6:93Cascade of Kinetic Energy in Three-Dimensional Compressible Turbulence
Jianchun Wang, Yantao Yang, Yipeng Shi, Zuoli Xiao, X. T. He, Shiyi Chen, Phys. Rev. Lett., 2013

1:6:7:1Ideal evolution of magnetohydrodynamic turbulence when imposing Taylor-Green symmetries
M. E. Brachet, M. D. Bustamante, G. Krstulovic, P. D. Mininni, A. Pouquet, D. Rosenberg, Phys. Rev. E, 2013

1:6:7:3Paradigmatic flow for small-scale magnetohydrodynamics: Properties of the ideal case and the collision of current sheets
E. Lee, M. E. Brachet, A. Pouquet, P. D. Mininni, D. Rosenberg, Phys. Rev. E, 2008

1:6:7:18Interplay between the Beale-Kato-Majda theorem and the analyticity-strip method to investigate numerically the incompressible Euler singularity problem
Miguel D. Bustamante, Marc Brachet, Phys. Rev. E, 2012

1:6:7:23Numerical Simulation of Three-Dimensional Homogeneous Isotropic Turbulence
Steven A. Orszag, G. S. Patterson, Phys. Rev. Lett., 1972

1:6:7:33Transient Vortex Events in the Initial Value Problem for Turbulence
D. D. Holm, Robert Kerr, Phys. Rev. Lett., 2002

1:6:7:44Adaptive Mesh Refinement for Singular Solutions of the Incompressible Euler Equations
Rainer Grauer, Christiane Marliani, Kai Germaschewski, Phys. Rev. Lett., 1998

1:6:7:46Spontaneous Singularity in Three-Dimensional Inviscid, Incompressible Flow
Rudolf H. Morf, Steven A. Orszag, Uriel Frisch, Phys. Rev. Lett., 1980

1:6:7:51Current-Sheet Formation in 3D Ideal Incompressible Magnetohydrodynamics
Rainer Grauer, Christiane Marliani, Phys. Rev. Lett., 2000

1:6:7:52Dissipation of Quantum Turbulence in the Zero Temperature Limit
P. M. Walmsley, A. I. Golov, H. E. Hall, A. A. Levchenko, W. F. Vinen, Phys. Rev. Lett., 2007

1:6:7:53Creation and dynamics of vortex tubes in three-dimensional turbulence
Peter Constantin, Itamar Procaccia, Daniel Segel, Phys. Rev. E, 1995

1:6:7:56Vortex Stretching as a Mechanism for Quantum Kinetic Energy Decay
Robert M. Kerr, Phys. Rev. Lett., 2011

1:6:7:59Reconnection of Colliding Vortex Rings
Philippe Chatelain, Demosthenes Kivotides, Anthony Leonard, Phys. Rev. Lett., 2003

1:6:7:61Emergence of coherent patterns of vortex stretching during reconnection: A scattering paradigm
N. J. Zabusky, O. N. Boratav, R. B. Pelz, M. Gao, D. Silver, S. P. Cooper, Phys. Rev. Lett., 1991

1:6:7:66Numerical simulation of interacting vortex tubes
Alain Pumir, Robert M. Kerr, Phys. Rev. Lett., 1987

1:6:7:67Numerical study of vortex reconnection
Wm. T. Ashurst, D. I. Meiron, Phys. Rev. Lett., 1987

1:6:7:73Role of inviscid invariants in shell models of turbulence
L. Biferale, R. M. Kerr, Phys. Rev. E, 1995

1:6:7:81Locally self-similar, finite-time collapse in a high-symmetry vortex filament model
R. B. Pelz, Phys. Rev. E, 1997

1:6:8:42Universal Spectrum of Two-Dimensional Turbulence on a Rotating Sphere and Some Basic Features of Atmospheric Circulation on Giant Planets
Semion Sukoriansky, Boris Galperin, Nadejda Dikovskaya, Phys. Rev. Lett., 2002

1:6:8:73Rhines scale and spectra of the β-plane turbulence with bottom drag
Sergey Danilov, David Gurarie, Phys. Rev. E, 2002

1:6:9:1Free turbulent shear layer in a point vortex gas as a problem in nonequilibrium statistical mechanics
Saikishan Suryanarayanan, Roddam Narasimha, N. D. Hari Dass, Phys. Rev. E, 2014

1:6:9:2Statistical mechanics of Beltrami flows in axisymmetric geometry: Theory reexamined
Aurore Naso, Romain Monchaux, Pierre-Henri Chavanis, Bérengère Dubrulle, Phys. Rev. E, 2010

1:6:9:4Relaxation towards localized vorticity states in drift plasma and geostrophic flows
Olivier Agullo, Alberto Verga, Phys. Rev. E, 2004

1:6:9:6Dynamics and thermodynamics of axisymmetric flows: Theory
N. Leprovost, B. Dubrulle, P.-H. Chavanis, Phys. Rev. E, 2006

1:6:9:10Thermodynamics of magnetohydrodynamic flows with axial symmetry
N. Leprovost, B. Dubrulle, P-H. Chavanis, Phys. Rev. E, 2005

1:6:9:11Kinetic theory of point vortex systems from the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy
Mitsusada M. Sano, Phys. Rev. E, 2007

1:6:9:12Statistical mechanics of Euler equations in two dimensions
Jonathan Miller, Phys. Rev. Lett., 1990

1:6:9:14Statistical mechanics of a neutral point-vortex gas at low energy
J. G. Esler, T. L. Ashbee, N. R. Mcdonald, Phys. Rev. E, 2013

1:6:9:16Onsager and the theory of hydrodynamic turbulence
Gregory L. Eyink, Katepalli R. Sreenivasan, Rev. Mod. Phys., 2006

1:6:9:17Relaxation towards a statistical equilibrium state in two-dimensional perfect fluid dynamics
Raoul Robert, Joël Sommeria, Phys. Rev. Lett., 1992

1:6:9:35Selective decay and coherent vortices in two-dimensional incompressible turbulence
William H. Matthaeus, W. Troy Stribling, Daniel Martinez, Sean Oughton, David Montgomery, Phys. Rev. Lett., 1991

1:6:9:39Statistical mechanics of the shallow water system
P. H. Chavanis, J. Sommeria, Phys. Rev. E, 2002

1:6:9:40Regional Maximum Entropy Theory of Vortex Crystal Formation
D. Z. Jin, Daniel H. E. Dubin, Phys. Rev. Lett., 1998

1:6:9:42Hydrodynamic Relaxation of an Electron Plasma to a Near-Maximum Entropy State
D. J. Rodgers, S. Servidio, W. H. Matthaeus, D. C. Montgomery, T. B. Mitchell, T. Aziz, Phys. Rev. Lett., 2009

1:6:9:44Statistical-mechanical predictions and Navier-Stokes dynamics of two-dimensional flows on a bounded domain
H. Brands, S. R. Maassen, H. J. H. Clercx, Phys. Rev. E, 1999

1:6:9:54Interacting Vortices and Spin-Up in Two-Dimensional Turbulence
J. B. Taylor, Matthias Borchardt, Per Helander, Phys. Rev. Lett., 2009

1:6:9:57Phase-transition behavior in a negative-temperature guiding-center plasma
Ralph A. Smith, Phys. Rev. Lett., 1989

1:6:9:59Steady-State Distributions of Interacting Discrete Vortices
D. L. Book, Shalom Fisher, B. E. McDonald, Phys. Rev. Lett., 1975

1:6:9:60Maximization of vortex entropy as an organizing principle in intermittent, decaying, two-dimensional turbulence
Ralph A. Smith, Phys. Rev. A, 1991

1:6:9:72Formation of a vortex crystal cell assisted by a background vorticity distribution
A. Sanpei, Y. Kiwamoto, K. Ito, Y. Soga, Phys. Rev. E, 2003

1:6:9:87Spectral Reduction: A Statistical Description of Turbulence
John C. Bowman, B. A. Shadwick, P. J. Morrison, Phys. Rev. Lett., 1999

1:6:10:3Thermalization and free decay in surface quasigeostrophic flows
Tomas Teitelbaum, Pablo D. Mininni, Phys. Rev. E, 2012

1:6:10:4Vortex merger and topological changes in two-dimensional turbulence
Fayeza Al Sulti, Koji Ohkitani, Phys. Rev. E, 2012

1:6:10:5Effective degrees of nonlinearity in a family of generalized models of two-dimensional turbulence
Chuong V. Tran, David G. Dritschel, Richard K. Scott, Phys. Rev. E, 2010

1:6:10:7Interacting scales and triad enstrophy transfers in generalized two-dimensional turbulence
Takeshi Watanabe, Takahiro Iwayama, Phys. Rev. E, 2007

1:6:10:17Green’s function for a generalized two-dimensional fluid
Takahiro Iwayama, Takeshi Watanabe, Phys. Rev. E, 2010

1:6:10:21Growth rate analysis of scalar gradients in generalized surface quasigeostrophic equations of ideal fluids
Koji Ohkitani, Phys. Rev. E, 2011

1:6:10:28Energy spectra of steady two-dimensional turbulent flows
Norbert Schorghofer, Phys. Rev. E, 2000

1:6:10:35Scaling law for coherent vortices in decaying drift Rossby wave turbulence
Takeshi Watanabe, Takahiro Iwayama, Hirokazu Fujisaka, Phys. Rev. E, 1998

1:6:10:47Dynamical scaling law in the development of drift wave turbulence
Takeshi Watanabe, Hirokazu Fujisaka, Takahiro Iwayama, Phys. Rev. E, 1997

1:6:10:51Quasicrystallization of Vortices in Drift-Wave Turbulence
Nikolai Kukharkin, Steven A. Orszag, Victor Yakhot, Phys. Rev. Lett., 1995

1:6:10:53Energy Spectrum of Quasigeostrophic Turbulence
Peter Constantin, Phys. Rev. Lett., 2002

1:6:10:54Energy budgets in Charney-Hasegawa-Mima and surface quasigeostrophic turbulence
Chuong V. Tran, John C. Bowman, Phys. Rev. E, 2003

1:6:10:55Nonlocality of Interaction of Scales in the Dynamics of 2D Incompressible Fluids
Jean-Philippe Laval, Bérengère Dubrulle, Sergey Nazarenko, Phys. Rev. Lett., 1999

1:6:10:65Two-Dimensional Convective Turbulence
A. V. Gruzinov, Nikolai Kukharkin, R. N. Sudan, Phys. Rev. Lett., 1996

1:6:10:68Weak- and strong-turbulence regimes of the forced Hasegawa-Mima equation
Maurizio Ottaviani, John A. Krommes, Phys. Rev. Lett., 1992

1:6:11:2Lagrangian-averaged model for magnetohydrodynamic turbulence and the absence of bottlenecks
Jonathan Pietarila Graham, Pablo D. Mininni, Annick Pouquet, Phys. Rev. E, 2009

1:6:11:3 Highly turbulent solutions of the Lagrangian-averaged Navier-Stokes α model and their large-eddy-simulation potential
Jonathan Pietarila Graham, Darryl D. Holm, Pablo D. Mininni, Annick Pouquet, Phys. Rev. E, 2007

1:6:11:6 Numerical solutions of the three-dimensional magnetohydrodynamic α model
Pablo D. Mininni, David C. Montgomery, Annick Pouquet, Phys. Rev. E, 2005

1:6:11:7Cancellation exponent and multifractal structure in two-dimensional magnetohydrodynamics: Direct numerical simulations and Lagrangian averaged modeling
Jonathan Pietarila Graham, Pablo D. Mininni, Annick Pouquet, Phys. Rev. E, 2005

1:6:11:8 Influence of the dispersive and dissipative scales α and β on the energy spectrum of the Navier-Stokes α β equations
Xuemei Chen, Eliot Fried, Phys. Rev. E, 2008

1:6:11:12 Impact of the inherent separation of scales in the Navier–Stokes- α β equations
Tae-Yeon Kim, Massimo Cassiani, John D. Albertson, John E. Dolbow, Eliot Fried, Morton E. Gurtin, Phys. Rev. E, 2009

1:6:11:15 Turbulent kinetic energy and a possible hierarchy of length scales in a generalization of the Navier-Stokes α theory
Eliot Fried, Morton E. Gurtin, Phys. Rev. E, 2007

1:6:11:17Camassa-Holm Equations as a Closure Model for Turbulent Channel and Pipe Flow
Shiyi Chen, Ciprian Foias, Darryl D. Holm, Eric Olson, Edriss S. Titi, Shannon Wynne, Phys. Rev. Lett., 1998

1:6:11:19Euler-Poincaré Models of Ideal Fluids with Nonlinear Dispersion
Darryl D. Holm, Jerrold E. Marsden, Tudor S. Ratiu, Phys. Rev. Lett., 1998

1:6:11:41Growth of correlations in magnetohydrodynamic turbulence
A. Pouquet, M. Meneguzzi, U. Frisch, Phys. Rev. A, 1986

1:6:11:46Subgrid scale and backscatter model for magnetohydrodynamic turbulence based on closure theory: Theoretical formulation
Ye Zhou, Oleg Schilling, Sanjoy Ghosh, Phys. Rev. E, 2002

1:6:11:47Model of intermittency in magnetohydrodynamic turbulence
H. Politano, A. Pouquet, Phys. Rev. E, 1995

1:6:11:66 Erratum: Turbulent kinetic-energy and a possible hierarchy of length scales in a generalization of the Navier-Stokes- α theory [Phys. Rev. E 75 , 056306 (2007)]
Eliot Fried, Morton E. Gurtin, Phys. Rev. E, 2010

1:6:12:1Large-scale flow effects, energy transfer, and self-similarity on turbulence
P. D. Mininni, A. Alexakis, A. Pouquet, Phys. Rev. E, 2006

1:6:12:2Nonlocal interactions in hydrodynamic turbulence at high Reynolds numbers: The slow emergence of scaling laws
P. D. Mininni, A. Alexakis, A. Pouquet, Phys. Rev. E, 2008

1:6:12:3Shell-to-shell energy transfer in magnetohydrodynamics. I. Steady state turbulence
Alexandros Alexakis, Pablo D. Mininni, Annick Pouquet, Phys. Rev. E, 2005

1:6:12:5Nonlocal modulation of the energy cascade in broadband-forced turbulence
Arkadiusz K. Kuczaj, Bernard J. Geurts, W. David McComb, Phys. Rev. E, 2006

1:6:12:9Energy transfer in anisotropic magnetohydrodynamic turbulence
B. Teaca, M. K. Verma, B. Knaepen, D. Carati, Phys. Rev. E, 2009

1:6:12:21Imprint of Large-Scale Flows on Turbulence
A. Alexakis, P. D. Mininni, A. Pouquet, Phys. Rev. Lett., 2005

1:6:12:24Scale disparity and spectral transfer in anisotropic numerical turbulence
Ye Zhou, P. K. Yeung, James G. Brasseur, Phys. Rev. E, 1996

1:6:12:27Analysis of subgrid-scale eddy viscosity with use of results from direct numerical simulations
J. Andrzej Domaradzki, Ralph W. Metcalfe, Robert S. Rogallo, James J. Riley, Phys. Rev. Lett., 1987

1:6:12:34Scaling laws of the dissipation rate of turbulent subgrid-scale kinetic energy
Charles Meneveau, John O’Neil, Phys. Rev. E, 1994

1:6:12:35Local or Nonlocal? Orthonormal Divergence-Free Wavelet Analysis of Nonlinear Interactions in Turbulence
Keiji Kishida, Keisuke Araki, Seigo Kishiba, Katsuhiro Suzuki, Phys. Rev. Lett., 1999

1:6:12:38Nonlocal Bottleneck Effect in Two-Dimensional Turbulence
D. Biskamp, E. Schwarz, A. Celani, Phys. Rev. Lett., 1998

1:6:12:42Counterbalanced interaction locality of developed hydrodynamic turbulence
Victor L’vov, Gregory Falkovich, Phys. Rev. A, 1992

1:6:12:45Field theoretic calculation of renormalized viscosity, renormalized resistivity, and energy fluxes of magnetohydrodynamic turbulence
Mahendra K. Verma, Phys. Rev. E, 2001

1:6:12:53Oscillating Singularities in Locally Self-Similar Functions
A. Arneodo, E. Bacry, J. F. Muzy, Phys. Rev. Lett., 1995

1:6:13:3Effective merging dynamics of two and three fluid vortices: Application to two-dimensional decaying turbulence
Clément Sire, Pierre-Henri Chavanis, Julien Sopik, Phys. Rev. E, 2011

1:6:13:11Evolution of vortex statistics in two-dimensional turbulence
G. F. Carnevale, J. C. McWilliams, Y. Pomeau, J. B. Weiss, W. R. Young, Phys. Rev. Lett., 1991

1:6:13:20Effect of the deformation radius on the evolution of vortex properties in geostrophic turbulence
Jürgen Theiss, Phys. Rev. E, 2005

1:6:13:22Two-dimensional turbulence and dispersion in a freely decaying system
A. E. Hansen, D. Marteau, P. Tabeling, Phys. Rev. E, 1998

1:6:13:24Unifying Scaling Theory for Vortex Dynamics in Two-Dimensional Turbulence
D. G. Dritschel, R. K. Scott, C. Macaskill, G. A. Gottwald, C. V. Tran, Phys. Rev. Lett., 2008

1:6:13:31Numerical renormalization group of vortex aggregation in two-dimensional decaying turbulence: The role of three-body interactions
Clément Sire, Pierre-Henri Chavanis, Phys. Rev. E, 2000

1:6:13:32Vortex Statistics for Turbulence in a Container with Rigid Boundaries
H. J. H. Clercx, A. H. Nielsen, Phys. Rev. Lett., 2000

1:6:13:34Scaling laws and vortex profiles in two-dimensional decaying turbulence
Jean-Philippe Laval, Pierre-Henri Chavanis, Bérengère Dubrulle, Clément Sire, Phys. Rev. E, 2001

1:6:13:43Mixing and Thermal Equilibrium in the Dynamical Relaxation of a Vortex Ring
Peilong Chen, M. C. Cross, Phys. Rev. Lett., 1996

1:6:14:1Phase transitions and marginal ensemble equivalence for freely evolving flows on a rotating sphere
C. Herbert, B. Dubrulle, P. H. Chavanis, D. Paillard, Phys. Rev. E, 2012

1:6:14:2Nonlinear energy transfers and phase diagrams for geostrophically balanced rotating-stratified flows
Corentin Herbert, Phys. Rev. E, 2014

1:6:14:5Phase transition to super-rotating atmospheres in a simple planetary model for a nonrotating massive planet: Exact solution
Chjan C. Lim, Phys. Rev. E, 2012

1:6:14:24Random Changes of Flow Topology in Two-Dimensional and Geophysical Turbulence
Freddy Bouchet, Eric Simonnet, Phys. Rev. Lett., 2009

1:6:14:57Maximum entropy theory and the rapid relaxation of three-dimensional quasi-geostrophic turbulence
David A. Schecter, Phys. Rev. E, 2003

1:6:15:1Dynamo onset as a first-order transition: Lessons from a shell model for magnetohydrodynamics
Ganapati Sahoo, Dhrubaditya Mitra, Rahul Pandit, Phys. Rev. E, 2010

1:6:15:2 Inverse cascades and α effect at a low magnetic Prandtl number
P. D. Mininni, Phys. Rev. E, 2007

1:6:15:3Shell-to-shell energy transfer in magnetohydrodynamics. II. Kinematic dynamo
Pablo Mininni, Alexandros Alexakis, Annick Pouquet, Phys. Rev. E, 2005

1:6:15:4 Large- and small-scale interactions and quenching in an α 2 -dynamo
Peter Frick, Rodion Stepanov, Dmitry Sokoloff, Phys. Rev. E, 2006

1:6:15:6Searching for the fastest dynamo: Laminar ABC flows
Alexandros Alexakis, Phys. Rev. E, 2011

1:6:15:8Dynamo transition in low-dimensional models
Mahendra K. Verma, Thomas Lessinnes, Daniele Carati, Ioannis Sarris, Krishna Kumar, Meenakshi Singh, Phys. Rev. E, 2008

1:6:15:9Low magnetic Prandtl number dynamos with helical forcing
Pablo D. Mininni, David C. Montgomery, Phys. Rev. E, 2005

1:6:15:11Critical Magnetic Prandtl Number for Small-Scale Dynamo
Alexander A. Schekochihin, Steven C. Cowley, Jason L. Maron, James C. McWilliams, Phys. Rev. Lett., 2004

1:6:15:12Simulations of the kinematic dynamo onset of spherical Couette flows with smooth and rough boundaries
K. Finke, A. Tilgner, Phys. Rev. E, 2012

1:6:15:13Helical and Nonhelical Turbulent Dynamos
M. Meneguzzi, U. Frisch, A. Pouquet, Phys. Rev. Lett., 1981

1:6:15:16Magnetic-Field Generation in Kolmogorov Turbulence
Stanislav Boldyrev, Fausto Cattaneo, Phys. Rev. Lett., 2004

1:6:15:29Dynamo effect in a driven helical flow
F. Feudel, M. Gellert, S. Rüdiger, A. Witt, N. Seehafer, Phys. Rev. E, 2003

1:6:15:30Mean electromotive force in turbulent shear flow
V. Urpin, Phys. Rev. E, 2002

1:6:15:35Scaling properties of a class of shell models
P. Frick, B. Dubrulle, A. Babiano, Phys. Rev. E, 1995

1:6:15:40Nonlinear Current Helicity Fluxes in Turbulent Dynamos and Alpha Quenching
Kandaswamy Subramanian, Axel Brandenburg, Phys. Rev. Lett., 2004

1:6:15:44Inequivalence of dynamical ensembles in a generalized driven diffusive lattice gas
Muktish Acharyya, Abhik Basu, Rahul Pandit, Sriram Ramaswamy, Phys. Rev. E, 2000

1:6:16:1Cartesian convection driven dynamos at low Ekman number
Stephan Stellmach, Ulrich Hansen, Phys. Rev. E, 2004

1:6:16:2Kinematic dynamo action in square and hexagonal patterns
B. Favier, M. R. E. Proctor, Phys. Rev. E, 2013

1:6:16:10Magnetic energy dissipation and mean magnetic field generation in planar convection-driven dynamos
A. Tilgner, Phys. Rev. E, 2014

1:6:16:13Convection-Driven Hydromagnetic Dynamo
S. Childress, A. M. Soward, Phys. Rev. Lett., 1972

1:6:16:18Rotating convection-driven dynamos at low Ekman number
Jon Rotvig, Chris A. Jones, Phys. Rev. E, 2002

1:6:16:39Transition from Large-Scale to Small-Scale Dynamo
Y. Ponty, F. Plunian, Phys. Rev. Lett., 2011

1:6:16:45Turbulent Magnetic Diffusivity Tensor for Time-Dependent Mean Fields
David W. Hughes, Michael R. E. Proctor, Phys. Rev. Lett., 2010

1:6:16:58Transitions in Rapidly Rotating Convection Driven Dynamos
A. Tilgner, Phys. Rev. Lett., 2012

1:6:17:10Probing turbulence intermittency via autoregressive moving-average models
Davide Faranda, Bérengère Dubrulle, François Daviaud, Flavio Maria Emanuele Pons, Phys. Rev. E, 2014

1:6:17:12Energy injection in closed turbulent flows: Stirring through boundary layers versus inertial stirring
O. Cadot, Y. Couder, A. Daerr, S. Douady, A. Tsinober, Phys. Rev. E, 1997

1:6:17:13Probability density functions, skewness, and flatness in large Reynolds number turbulence
P. Tabeling, G. Zocchi, F. Belin, J. Maurer, H. Willaime, Phys. Rev. E, 1996

1:6:17:14Experimental evidence of accelerated energy transfer in turbulence
R. Labbé, C. Baudet, G. Bustamante, Phys. Rev. E, 2007

1:6:17:16Properties of Steady States in Turbulent Axisymmetric Flows
R. Monchaux, F. Ravelet, B. Dubrulle, A. Chiffaudel, F. Daviaud, Phys. Rev. Lett., 2006

1:6:17:18Experimental Evidence of a Phase Transition in a Closed Turbulent Flow
P.-P. Cortet, A. Chiffaudel, F. Daviaud, B. Dubrulle, Phys. Rev. Lett., 2010

1:6:17:20Measurement of the scaling of the dissipation at high Reynolds numbers
G. Zocchi, P. Tabeling, J. Maurer, H. Willaime, Phys. Rev. E, 1994

1:6:17:21Power fluctuations in a closed turbulent shear flow
Jean-François Pinton, Peter C. W. Holdsworth, Raúl Labbé, Phys. Rev. E, 1999

1:6:17:22Fluctuation-Dissipation Relations and Statistical Temperatures in a Turbulent von Kármán Flow
Romain Monchaux, Pierre-Philippe Cortet, Pierre-Henri Chavanis, Arnaud Chiffaudel, François Daviaud, Pantxo Diribarne, Bérengère Dubrulle, Phys. Rev. Lett., 2008

1:6:17:25Finite-Mode Spectral Model of Homogeneous and Isotropic Navier-Stokes Turbulence: A Rapidly Depleted Energy Cascade
E. Lévêque, C. R. Koudella, Phys. Rev. Lett., 2001

1:6:17:29Evidence for Forcing-Dependent Steady States in a Turbulent Swirling Flow
B. Saint-Michel, B. Dubrulle, L. Marié, F. Ravelet, F. Daviaud, Phys. Rev. Lett., 2013

1:6:18:2Feasibility of large free-standing liquid films in space
Rui Zheng, Thomas A. Witten, Phys. Rev. E, 2006

1:6:18:3Inverse cascade behavior in freely decaying two-dimensional fluid turbulence
P. D. Mininni, A. Pouquet, Phys. Rev. E, 2013

1:6:18:8Experiments with Turbulent Soap Films
H. Kellay, X-l. Wu, W. I. Goldburg, Phys. Rev. Lett., 1995

1:6:18:9Tunneling of micron-sized droplets through soap films
Ildoo Kim, X. L. Wu, Phys. Rev. E, 2010

1:6:18:10Velocity and energy profiles in two- versus three-dimensional channels: Effects of an inverse- versus a direct-energy cascade
Victor S. L’vov, Itamar Procaccia, Oleksii Rudenko, Phys. Rev. E, 2009

1:6:18:14Turbulence in Flowing Soap Films: Velocity, Vorticity, and Thickness Fields
Michael Rivera, Peter Vorobieff, Robert E. Ecke, Phys. Rev. Lett., 1998

1:6:18:16Cylinder wakes in flowing soap films
Peter Vorobieff, Robert E. Ecke, Phys. Rev. E, 1999

1:6:18:17Thickness Fluctuations in Turbulent Soap Films
O. Greffier, Y. Amarouchene, H. Kellay, Phys. Rev. Lett., 2002

1:6:18:29Numerical study of grid turbulence in two dimensions and comparison with experiments on turbulent soap films
C. H. Bruneau, O. Greffier, H. Kellay, Phys. Rev. E, 1999

1:6:18:32Hydrodynamic Convection in a Two-Dimensional Couette Cell
X-l. Wu, B. Martin, H. Kellay, W. I. Goldburg, Phys. Rev. Lett., 1995

1:6:18:44Hysteresis at low Reynolds number: Onset of two-dimensional vortex shedding
V. K. Horváth, J. R. Cressman, W. I. Goldburg, X. L. Wu, Phys. Rev. E, 2000

1:6:19:1Structure-function hierarchies and von Kármán–Howarth relations for turbulence in magnetohydrodynamical equations
Abhik Basu, Ali Naji, Rahul Pandit, Phys. Rev. E, 2014

1:6:19:2Statistics of active and passive scalars in one-dimensional compressible turbulence
Qionglin Ni, Shiyi Chen, Phys. Rev. E, 2012

1:6:19:3Fluctuating hydrodynamics and turbulence in a rotating fluid: Universal properties
Abhik Basu, Jayanta K. Bhattacharjee, Phys. Rev. E, 2012

1:6:19:4Subensemble decomposition and Markov process analysis of Burgers turbulence
Zhi-Xiong Zhang, Zhen-Su She, Phys. Rev. E, 2011

1:6:19:5Instanton theory of Burgers shocks and intermittency
L. Moriconi, Phys. Rev. E, 2009

1:6:19:6Decay of magnetohydrodynamic turbulence from power-law initial conditions
Chirag Kalelkar, Rahul Pandit, Phys. Rev. E, 2004

1:6:19:8Turbulence without pressure
A. M. Polyakov, Phys. Rev. E, 1995

1:6:19:9Is Multiscaling an Artifact in the Stochastically Forced Burgers Equation?
Dhrubaditya Mitra, Jérémie Bec, Rahul Pandit, Uriel Frisch, Phys. Rev. Lett., 2005

1:6:19:10Instantons in the Burgers equation
Victor Gurarie, Alexander Migdal, Phys. Rev. E, 1996

1:6:19:11Cascade and dynamo action in a shell model of magnetohydrodynamic turbulence
Peter Frick, Dmitriy Sokoloff, Phys. Rev. E, 1998

1:6:19:12Multiscaling in Models of Magnetohydrodynamic Turbulence
Abhik Basu, Anirban Sain, Sujan K. Dhar, Rahul Pandit, Phys. Rev. Lett., 1998

1:6:19:13Intermittency of Burgers' Turbulence
E. Balkovsky, G. Falkovich, I. Kolokolov, V. Lebedev, Phys. Rev. Lett., 1997

1:6:19:15Probability density and scaling exponents of the moments of longitudinal velocity difference in strong turbulence
Victor Yakhot, Phys. Rev. E, 1998

1:6:19:17Kolmogorov turbulence in a random-force-driven Burgers equation: Anomalous scaling and probability density functions
Alexei Chekhlov, Victor Yakhot, Phys. Rev. E, 1995

1:6:19:18Large-scale magnetic fields from hydromagnetic turbulence in the very early universe
Axel Brandenburg, Kari Enqvist, Poul Olesen, Phys. Rev. D, 1996

1:6:19:19Algebraic Tails of Probability Density Functions in the Random-Force-Driven Burgers Turbulence
Victor Yakhot, Alexei Chekhlov, Phys. Rev. Lett., 1996

1:6:19:21Velocity-difference probability density functions for Burgers turbulence
S. A. Boldyrev, Phys. Rev. E, 1997

1:6:19:22Velocity and Velocity-Difference Distributions in Burgers Turbulence
Stanislav Boldyrev, Timur Linde, Alexandre Polyakov, Phys. Rev. Lett., 2004

1:6:19:24Universality of Velocity Gradients in Forced Burgers Turbulence
Jérémie Bec, Phys. Rev. Lett., 2001

1:6:19:26Spontaneous Chiral Symmetry Breaking of Hall Magnetohydrodynamic Turbulence
Romain Meyrand, Sébastien Galtier, Phys. Rev. Lett., 2012

1:6:19:27Strong universality in forced and decaying turbulence in a shell model
Victor S. L’vov, Rubén A. Pasmanter, Anna Pomyalov, Itamar Procaccia, Phys. Rev. E, 2003

1:6:19:37Inverse cascade and intermittency of passive scalar in one-dimensional smooth flow
M. Chertkov, I. Kolokolov, M. Vergassola, Phys. Rev. E, 1997

1:6:19:42Compressible Alfven turbulence in one dimension
J. Fleischer, P. H. Diamond, Phys. Rev. E, 1998

1:6:19:453D Simulations of Fluctuation Spectra in the Hall-MHD Plasma
Dastgeer Shaikh, P. K. Shukla, Phys. Rev. Lett., 2009

1:6:20:3Structure-function scaling of bounded two-dimensional turbulence
W. Kramer, G. H. Keetels, H. J. H. Clercx, G. J. F. van Heijst, Phys. Rev. E, 2011

1:6:20:6Spontaneous angular momentum generation of two-dimensional fluid flow in an elliptic geometry
G. H. Keetels, H. J. H. Clercx, G. J. F. van Heijst, Phys. Rev. E, 2008

1:6:20:9Energy Spectra for Decaying 2D Turbulence in a Bounded Domain
H. J. H. Clercx, G. J. F. van Heijst, Phys. Rev. Lett., 2000

1:6:20:10Spontaneous Spin-Up during the Decay of 2D Turbulence in a Square Container with Rigid Boundaries
H. J. H. Clercx, S. R. Maassen, G. J. F. van Heijst, Phys. Rev. Lett., 1998

1:6:20:15Scaling properties of numerical two-dimensional turbulence
A. Babiano, B. Dubrulle, P. Frick, Phys. Rev. E, 1995

1:6:20:17Decaying Two-Dimensional Turbulence in a Circular Container
Kai Schneider, Marie Farge, Phys. Rev. Lett., 2005

1:6:20:24Power spectra in two-dimensional turbulence
R. Benzi, G. Paladin, A. Vulpiani, Phys. Rev. A, 1990

1:6:20:26Rapid Generation of Angular Momentum in Bounded Magnetized Plasma
Wouter J. T. Bos, Salah Neffaa, Kai Schneider, Phys. Rev. Lett., 2008

1:6:21:2Nonlinear dynamos at infinite magnetic Prandtl number
Alexandros Alexakis, Phys. Rev. E, 2011

1:6:21:12Suppression of Chaos in a Simplified Nonlinear Dynamo Model
Fausto Cattaneo, David W. Hughes, Eun-jin Kim, Phys. Rev. Lett., 1996

1:6:21:13 α Effect in a Family of Chaotic Flows
Alice Courvoisier, David W. Hughes, Steven M. Tobias, Phys. Rev. Lett., 2006

1:6:21:24Numerical Evidence of Fast Dynamo Action in a Spherical Shell
R. Hollerbach, D. J. Galloway, M. R. E. Proctor, Phys. Rev. Lett., 1995

1:6:21:27Chaotic flows and magnetic dynamos
John M. Finn, Edward Ott, Phys. Rev. Lett., 1988

1:6:21:31Saturated State of the Nonlinear Small-Scale Dynamo
A. A. Schekochihin, S. C. Cowley, S. F. Taylor, G. W. Hammett, J. L. Maron, J. C. McWilliams, Phys. Rev. Lett., 2004

1:6:21:37Nonlinear states of the screw dynamo
Wolfgang Dobler, Anvar Shukurov, Axel Brandenburg, Phys. Rev. E, 2002

1:6:21:52Fluctuations in Quasi-Two-Dimensional Fast Dynamos
Fausto Cattaneo, Eun-jin Kim, Michael Proctor, Louis Tao, Phys. Rev. Lett., 1995

1:6:22:40 Emergence of Large Scale Structure in Barotropic β -Plane Turbulence
Nikolaos A. Bakas, Petros J. Ioannou, Phys. Rev. Lett., 2013

1:6:23:1Simulations of nonhelical hydromagnetic turbulence
Nils Erland L. Haugen, Axel Brandenburg, Wolfgang Dobler, Phys. Rev. E, 2004

1:6:23:3Suppression of small scale dynamo action by an imposed magnetic field
Nils Erland L. Haugen, Axel Brandenburg, Phys. Rev. E, 2004

1:6:23:4Not much helicity is needed to drive large-scale dynamos
Jonathan Pietarila Graham, Eric G. Blackman, Pablo D. Mininni, Annick Pouquet, Phys. Rev. E, 2012

1:6:23:5Large-scale dynamo growth rates from numerical simulations and implications for mean-field theories
Kiwan Park, Eric G. Blackman, Kandaswamy Subramanian, Phys. Rev. E, 2013

1:6:23:6Systematic bias in the calculation of spectral density from a three-dimensional spatial grid
Rodion Stepanov, Franck Plunian, Mouloud Kessar, Guillaume Balarac, Phys. Rev. E, 2014

1:6:23:12Effect of Hyperdiffusivity on Turbulent Dynamos with Helicity
Axel Brandenburg, Graeme R. Sarson, Phys. Rev. Lett., 2002

1:6:23:19Unified Treatment of Small- and Large-Scale Dynamos in Helical Turbulence
Kandaswamy Subramanian, Phys. Rev. Lett., 1999

1:6:23:30Experimental Observation of Spatially Localized Dynamo Magnetic Fields
B. Gallet, S. Aumaître, J. Boisson, F. Daviaud, B. Dubrulle, N. Bonnefoy, M. Bourgoin, Ph. Odier, J.-F. Pinton, N. Plihon, G. Verhille, S. Fauve, F. Pétrélis, Phys. Rev. Lett., 2012

1:6:23:35Cosmic Radiation and Cosmic Magnetic Fields. II. Origin of Cosmic Magnetic Fields
Ludwig Biermann, Arnulf Schlüter, Phys. Rev., 1951

1:6:23:45Intermittency and the Passive Nature of the Magnitude of the Magnetic Field
A. Bershadskii, K. R. Sreenivasan, Phys. Rev. Lett., 2004

1:6:24:1Analytical theory of forced rotating sheared turbulence: The perpendicular case
Nicolas Leprovost, Eun-jin Kim, Phys. Rev. E, 2008

1:6:24:2 Kinematic α effect in the presence of a large-scale motion
Alice Courvoisier, Eun-jin Kim, Phys. Rev. E, 2009

1:6:24:3Analytical theory of forced rotating sheared turbulence: The parallel case
Nicolas Leprovost, Eun-jin Kim, Phys. Rev. E, 2008

1:6:24:4Turbulent transport and dynamo in sheared magnetohydrodynamics turbulence with a nonuniform magnetic field
Nicolas Leprovost, Eun-jin Kim, Phys. Rev. E, 2009

1:6:24:8Consistent Theory of Turbulent Transport in Two-Dimensional Magnetohydrodynamics
Eun-jin Kim, Phys. Rev. Lett., 2006

1:6:24:10Eddy viscosity of parity-invariant flow
Bérengère Dubrulle, Uriel Frisch, Phys. Rev. A, 1991

1:6:24:22Investigation into the Dual Role of Shear Flow in 2D MHD Turbulence
Andrew P. L. Newton, Eun-jin Kim, Phys. Rev. Lett., 2009

1:6:24:27Effect of Mean Flow Shear on Cross Phase and Transport Reconsidered
Eun-jin Kim, P. H. Diamond, Phys. Rev. Lett., 2003

1:6:24:33Dynamo Quenching Due to Shear Flow
Nicolas Leprovost, Eun-jin Kim, Phys. Rev. Lett., 2008

1:6:25:3Turbulent channel without boundaries: The periodic Kolmogorov flow
S. Musacchio, G. Boffetta, Phys. Rev. E, 2014

1:6:25:10Instability of the Kolmogorov flow in a soap film
John M. Burgess, C. Bizon, W. D. McCormick, J. B. Swift, Harry L. Swinney, Phys. Rev. E, 1999

1:6:25:15Hydrodynamic fluctuations in the Kolmogorov flow: Linear regime
I. Bena, M. Malek Mansour, F. Baras, Phys. Rev. E, 1999

1:6:25:21Dispersive Stabilization of the Inverse Cascade for the Kolmogorov Flow
B. Legras, B. Villone, U. Frisch, Phys. Rev. Lett., 1999

1:6:25:22Hydrodynamic fluctuations in the Kolmogorov flow: Nonlinear regime
I. Bena, F. Baras, M. Malek Mansour, Phys. Rev. E, 2000

1:6:26:1Quasilinear regime and rare-event tails of decaying Burgers turbulence
P. Valageas, Phys. Rev. E, 2009

1:6:26:2Statistics of shocks in a toy model with heavy tails
Thomas Gueudré, Pierre Le Doussal, Phys. Rev. E, 2014

1:6:26:3Evolution of anisotropic structures and turbulence in the multidimensional Burgers equation
Sergey N. Gurbatov, Alexander Yu. Moshkov, Alain Noullez, Phys. Rev. E, 2010

1:6:26:5Merging and fragmentation in the Burgers dynamics
Francis Bernardeau, Patrick Valageas, Phys. Rev. E, 2010

1:6:26:6Global picture of self-similar and non-self-similar decay in Burgers turbulence
Alain Noullez, Sergey N. Gurbatov, Erik Aurell, Sergey I. Simdyankin, Phys. Rev. E, 2005

1:6:26:24Universality classes for self-similarity of noiseless multidimensional Burgers turbulence and interface growth
S. N. Gurbatov, Phys. Rev. E, 2000

1:6:26:45 Turbulence without pressure in d dimensions
S. A. Boldyrev, Phys. Rev. E, 1999

1:6:26:46Interface growth and Burgers turbulence: The problem of random initial conditions
Sergei E. Esipov, T. J. Newman, Phys. Rev. E, 1993

1:6:26:47Energy decay in Burgers turbulence and interface growth: The problem of random initial conditions. II
Sergei E. Esipov, Phys. Rev. E, 1994

1:6:26:50Dynamical scaling in dissipative Burgers turbulence
T. J. Newman, Phys. Rev. E, 1997

1:6:27:1 Emergence of very long time fluctuations and 1 / f noise in ideal flows
P. Dmitruk, P. D. Mininni, A. Pouquet, S. Servidio, W. H. Matthaeus, Phys. Rev. E, 2011

1:6:27:2Magnetic field reversals and long-time memory in conducting flows
P. Dmitruk, P. D. Mininni, A. Pouquet, S. Servidio, W. H. Matthaeus, Phys. Rev. E, 2014

1:6:27:3Long-term memory in experiments and numerical simulations of hydrodynamic and magnetohydrodynamic turbulence
P. Mininni, P. Dmitruk, P. Odier, J.-F. Pinton, N. Plihon, G. Verhille, R. Volk, M. Bourgoin, Phys. Rev. E, 2014

1:6:27:5 Low-frequency 1 f fluctuations in hydrodynamic and magnetohydrodynamic turbulence
Pablo Dmitruk, W. H. Matthaeus, Phys. Rev. E, 2007

1:6:27:6Ergodicity of ideal Galerkin three-dimensional magnetohydrodynamics and Hall magnetohydrodynamics models
S. Servidio, W. H. Matthaeus, V. Carbone, Phys. Rev. E, 2008

1:6:27:8Simulation of Induction at Low Magnetic Prandtl Number
Yannick Ponty, Hélène Politano, Jean-François Pinton, Phys. Rev. Lett., 2004

1:6:27:11 Low-Frequency 1 f Noise in the Interplanetary Magnetic Field
W. H. Matthaeus, M. L. Goldstein, Phys. Rev. Lett., 1986

1:6:27:12Clustering of Polarity Reversals of the Geomagnetic Field
V. Carbone, L. Sorriso-Valvo, A. Vecchio, F. Lepreti, P. Veltri, P. Harabaglia, I. Guerra, Phys. Rev. Lett., 2006

1:6:27:15Nonlinear Dynamics of Inviscid Reduced MHD Plasmas: The Appearance of Quasi-Single-Helicity States
Sergio Servidio, Vincenzo Carbone, Phys. Rev. Lett., 2005

1:6:27:20Inverse Cascades Sustained by the Transfer Rate of Angular Momentum in a 3D Turbulent Flow
Miguel López-Caballero, Javier Burguete, Phys. Rev. Lett., 2013

1:6:28:1Cancellation properties in Hall magnetohydrodynamics with a strong guide magnetic field
L. N. Martin, G. De Vita, L. Sorriso-Valvo, P. Dmitruk, G. Nigro, L. Primavera, V. Carbone, Phys. Rev. E, 2013

1:6:28:2Hall-magnetohydrodynamic small-scale dynamos
Daniel O. Gómez, Pablo D. Mininni, Pablo Dmitruk, Phys. Rev. E, 2010

1:6:28:3Kelvin-Helmholtz versus Hall magnetoshear instability in astrophysical flows
Daniel O. Gómez, Cecilia Bejarano, Pablo D. Mininni, Phys. Rev. E, 2014

1:6:28:4Comment on “Linear instability of magnetic Taylor-Couette flow with Hall effect”
M. Rheinhardt, U. Geppert, Phys. Rev. E, 2005

1:6:28:20Evidence of Diffusion Regions at a Subsolar Magnetopause Crossing
F. S. Mozer, S. D. Bale, T. D. Phan, Phys. Rev. Lett., 2002

1:6:28:24Global Scale-Invariant Dissipation in Collisionless Plasma Turbulence
K. H. Kiyani, S. C. Chapman, Yu. V. Khotyaintsev, M. W. Dunlop, F. Sahraoui, Phys. Rev. Lett., 2009

1:6:28:30Hall-Drift Induced Magnetic Field Instability in Neutron Stars
M. Rheinhardt, U. Geppert, Phys. Rev. Lett., 2002

1:6:28:33Nonlinear theory of magnetic fluctuations in random flow: The Hall effect
N. Kleeorin, I. Rogachevskii, Phys. Rev. E, 1994

1:6:28:53Experimental Verification of the Hall Effect during Magnetic Reconnection in a Laboratory Plasma
Yang Ren, Masaaki Yamada, Stefan Gerhardt, Hantao Ji, Russell Kulsrud, Aleksey Kuritsyn, Phys. Rev. Lett., 2005

1:6:29:2Blowup as a driving mechanism of turbulence in shell models
Alexei A. Mailybaev, Phys. Rev. E, 2013

1:6:29:3Renormalization and universality of blowup in hydrodynamic flows
Alexei A. Mailybaev, Phys. Rev. E, 2012

1:6:29:4Shell model for quasi-two-dimensional turbulence
G. Boffetta, F. De Lillo, S. Musacchio, Phys. Rev. E, 2011

1:6:29:5Regularity of inviscid shell models of turbulence
Peter Constantin, Boris Levant, Edriss S. Titi, Phys. Rev. E, 2007

1:6:29:6Computation of anomalous scaling exponents of turbulence from self-similar instanton dynamics
Alexei A. Mailybaev, Phys. Rev. E, 2012

1:6:29:7Improved shell model of turbulence
Victor S. L’vov, Evgenii Podivilov, Anna Pomyalov, Itamar Procaccia, Damien Vandembroucq, Phys. Rev. E, 1998

1:6:29:10Outliers, extreme events, and multiscaling
Victor S. L’vov, Anna Pomyalov, Itamar Procaccia, Phys. Rev. E, 2001

1:6:29:11Cascades and statistical equilibrium in shell models of turbulence
P. D. Ditlevsen, I. A. Mogensen, Phys. Rev. E, 1996

1:6:29:12Inverse Cascade Regime in Shell Models of Two-Dimensional Turbulence
Thomas Gilbert, Victor S. L’vov, Anna Pomyalov, Itamar Procaccia, Phys. Rev. Lett., 2002

1:6:29:13Instanton calculus in shell models of turbulence
Isabelle Daumont, Thierry Dombre, Jean-Louis Gilson, Phys. Rev. E, 2000

1:6:29:15Towards a Two-Fluid Picture of Intermittency in Shell Models of Turbulence
Jean-Louis Gilson, Thierry Dombre, Phys. Rev. Lett., 1997

1:6:29:18Quasisolitons and asymptotic multiscaling in shell models of turbulence
Victor S. L’vov, Phys. Rev. E, 2002

1:6:29:20Model of intermittency in three-dimensional turbulence
Eric D. Siggia, Phys. Rev. A, 1978

1:6:29:27Shell model for turbulent advection of passive-scalar fields
M. H. Jensen, G. Paladin, A. Vulpiani, Phys. Rev. A, 1992

1:6:29:28Intermittency in turbulence: Computing the scaling exponents in shell models
Roberto Benzi, Luca Biferale, Mauro Sbragaglia, Federico Toschi, Phys. Rev. E, 2003

1:6:30:2Extraction of coherent structures in a rotating turbulent flow experiment
Jori E. Ruppert-Felsot, Olivier Praud, Eran Sharon, Harry L. Swinney, Phys. Rev. E, 2005

1:6:30:9Dispersion and Mixing in Quasigeostrophic Turbulence
Annalisa Bracco, Jost von Hardenberg, Antonello Provenzale, Jeffrey B. Weiss, Jim C. McWilliams, Phys. Rev. Lett., 2004

1:6:30:17Vortex Statistics from Eulerian and Lagrangian Time Series
Claudia Pasquero, Antonello Provenzale, Jeffrey B. Weiss, Phys. Rev. Lett., 2002

1:6:31:2Bounds for the number of degrees of freedom of incompressible magnetohydrodynamic turbulence in two and three dimensions
Chuong V. Tran, Xinwei Yu, Phys. Rev. E, 2012

1:6:31:4Inertial-range dynamics and scaling laws of two-dimensional magnetohydrodynamic turbulence in the weak-field regime
Luke A. K. Blackbourn, Chuong V. Tran, Phys. Rev. E, 2014

1:6:31:7Dynamics and Statistics of Inverse Cascade Processes in 2D Magnetohydrodynamic Turbulence
D. Biskamp, U. Bremer, Phys. Rev. Lett., 1994

1:6:31:19Effect of Current Sheets on the Solar Wind Magnetic Field Power Spectrum from the Ulysses Observation: From Kraichnan to Kolmogorov Scaling
G. Li, B. Miao, Q. Hu, G. Qin, Phys. Rev. Lett., 2011

1:6:32:1Magnetic-field decay of three interlocked flux rings with zero linking number
Fabio Del Sordo, Simon Candelaresi, Axel Brandenburg, Phys. Rev. E, 2010

1:6:32:2Decay of helical and nonhelical magnetic knots
Simon Candelaresi, Axel Brandenburg, Phys. Rev. E, 2011

1:6:32:3Magnetic helicity evolution in a periodic domain with imposed field
Axel Brandenburg, William H. Matthaeus, Phys. Rev. E, 2004

1:6:32:4Relaxation of Toroidal Plasma and Generation of Reverse Magnetic Fields
J. B. Taylor, Phys. Rev. Lett., 1974

1:6:32:5Evidence for a Singularity in Ideal Magnetohydrodynamics: Implications for Fast Reconnection
Robert M. Kerr, Axel Brandenburg, Phys. Rev. Lett., 1999

1:6:32:12Topological Constraints on Magnetic Relaxation
A. R. Yeates, G. Hornig, A. L. Wilmot-Smith, Phys. Rev. Lett., 2010

1:6:32:25Energy-crossing number relations for braided magnetic fields
M. A. Berger, Phys. Rev. Lett., 1993

1:6:32:26Cosmological magnetic fields from primordial helicity
George B. Field, Sean M. Carroll, Phys. Rev. D, 2000

1:6:33:3Dispersion in the enstrophy cascade of two-dimensional decaying grid turbulence
H. Kellay, Phys. Rev. E, 2004

1:6:34:1Scaling properties and intermittency of two-dimensional turbulence in pure electron plasmas
F. Lepreti, M. Romé, G. Maero, B. Paroli, R. Pozzoli, V. Carbone, Phys. Rev. E, 2013

1:6:34:2Wavelet analysis of turbulent structures in a magnetized pure electron plasma
Y. Kawai, Y. Kiwamoto, Phys. Rev. E, 2008

1:6:34:3Turbulent cascade in vortex dynamics of magnetized pure electron plasmas
Y. Kawai, Y. Kiwamoto, Y. Soga, J. Aoki, Phys. Rev. E, 2007

1:6:34:6Dynamics of Electron-Plasma Vortex in Background Vorticity Distribution
Y. Kiwamoto, K. Ito, A. Sanpei, A. Mohri, Phys. Rev. Lett., 2000

1:6:34:9Characteristics of Two-Dimensional Turbulence That Self-Organizes into Vortex Crystals
Dezhe Z. Jin, Daniel H. E. Dubin, Phys. Rev. Lett., 2000

1:6:34:19Measurements of Viscosity in Pure-Electron Plasmas
J. M. Kriesel, C. F. Driscoll, Phys. Rev. Lett., 2001

1:6:34:31Properties of Nonneutral Plasma
J. H. Malmberg, J. S. deGrassie, Phys. Rev. Lett., 1975

1:6:34:34Similarity Decay of Enstrophy in an Electron Fluid
D. J. Rodgers, W. H. Matthaeus, T. B. Mitchell, D. C. Montgomery, Phys. Rev. Lett., 2010

1:6:36:2Nearly incompressible fluids: Hydrodynamics and large scale inhomogeneity
P. Hunana, G. P. Zank, D. Shaikh, Phys. Rev. E, 2006

1:6:36:4Nonlinear flows in nearly incompressible hydrodynamic fluids
S. Dastgeer, G. P. Zank, Phys. Rev. E, 2004

1:6:36:10Nearly incompressible hydrodynamics and heat conduction
G. P. Zank, W. H. Matthaeus, Phys. Rev. Lett., 1990

1:6:38:7Quasiconservation laws for compressible three-dimensional Navier-Stokes flow
J. D. Gibbon, D. D. Holm, Phys. Rev. E, 2012

1:6:38:13Direct Construction of Conservation Laws from Field Equations
Stephen C. Anco, George Bluman, Phys. Rev. Lett., 1997

1:6:38:15Helically symmetric astrophysical jets
Oleg I. Bogoyavlenskij, Phys. Rev. E, 2000

1:6:39:2Number of degrees of freedom of two-dimensional turbulence
Chuong V. Tran, Luke Blackbourn, Phys. Rev. E, 2009

1:6:40:1Small-scale dynamo at low magnetic Prandtl numbers
Jennifer Schober, Dominik Schleicher, Stefano Bovino, Ralf S. Klessen, Phys. Rev. E, 2012

1:6:40:2Magnetic field amplification by small-scale dynamo action: Dependence on turbulence models and Reynolds and Prandtl numbers
Jennifer Schober, Dominik Schleicher, Christoph Federrath, Ralf Klessen, Robi Banerjee, Phys. Rev. E, 2012

1:6:40:4Control of star formation by supersonic turbulence
Mordecai-Mark Mac Low, Ralf S. Klessen, Rev. Mod. Phys., 2004

1:6:40:8Magnetic fluctuations with a zero mean field in a random fluid flow with a finite correlation time and a small magnetic diffusion
Nathan Kleeorin, Igor Rogachevskii, Dmitry Sokoloff, Phys. Rev. E, 2002

1:6:40:9Mach Number Dependence of Turbulent Magnetic Field Amplification: Solenoidal versus Compressive Flows
C. Federrath, G. Chabrier, J. Schober, R. Banerjee, R. S. Klessen, D. R. G. Schleicher, Phys. Rev. Lett., 2011

1:6:40:11Primordial magnetic fields from cosmological first order phase transitions
Günter Sigl, Angela V. Olinto, Karsten Jedamzik, Phys. Rev. D, 1997

1:6:40:12Inflation-produced, large-scale magnetic fields
Michael S. Turner, Lawrence M. Widrow, Phys. Rev. D, 1988

1:6:42:1Spectral condensation of turbulence in plasmas and fluids and its role in low-to-high phase transitions in toroidal plasma
M. G. Shats, H. Xia, H. Punzmann, Phys. Rev. E, 2005

1:6:42:2Inverse energy cascade and turbulent transport in a quasi-two-dimensional magnetized electrolyte system: An experimental study
L. Bardóczi, M. Berta, A. Bencze, Phys. Rev. E, 2012

1:6:42:6Universal Law of Enstrophy Decay in Two-Dimensional Large-Reynolds-Number Turbulence
Victor Yakhot, Phys. Rev. Lett., 2004

1:6:42:9 Slow L H Transitions in DIII-D Plasmas
R. J. Colchin, M. J. Schaffer, B. A. Carreras, G. R. McKee, R. Maingi, T. N. Carlstrom, D. L. Rudakov, C. M. Greenfield, T. L. Rhodes, E. J. Doyle, N. H. Brooks, M. E. Austin, Phys. Rev. Lett., 2002

1:6:42:12Spectral Distribution of Drift-Wave Fluctuations in Tokamaks
Wendell Horton, Phys. Rev. Lett., 1976

1:6:42:13Observation of Coherent Sheared Turbulence Flows in the DIII-D Tokamak
M. Jakubowski, R. J. Fonck, G. R. McKee, Phys. Rev. Lett., 2002

1:6:42:17Formation and Structure of Transport Barriers During Confinement Transitions in Toroidal Plasma
H. Punzmann, M. G. Shats, Phys. Rev. Lett., 2004

1:6:42:21Experimental Evidence of Self-Regulation of Fluctuations by Time-Varying Flows
M. Shats, W. Solomon, Phys. Rev. Lett., 2002

1:6:42:22Improved Particle Confinement Mode in the H-1 Heliac Plasma
M. G. Shats, D. L. Rudakov, B. D. Blackwell, G. G. Borg, R. L. Dewar, S. M. Hamberger, J. Howard, L. E. Sharp, Phys. Rev. Lett., 1996

1:6:43:4Reduction of velocity fluctuations in a turbulent flow of gallium by an external magnetic field
Michael Berhanu, Basile Gallet, Nicolas Mordant, Stéphan Fauve, Phys. Rev. E, 2008

1:6:43:11Screw dynamo in a time-dependent pipe flow
Wolfgang Dobler, Peter Frick, Rodion Stepanov, Phys. Rev. E, 2003

1:6:44:8Upscale Energy Transfer in Three-Dimensional Rapidly Rotating Turbulent Convection
Antonio M. Rubio, Keith Julien, Edgar Knobloch, Jeffrey B. Weiss, Phys. Rev. Lett., 2014

1:6:46:1Rotating shallow water dynamics: Extra invariant and the formation of zonal jets
Alexander M. Balk, Francois van Heerden, Peter B. Weichman, Phys. Rev. E, 2011

1:6:46:2Equilibrium theory of coherent vortex and zonal jet formation in a system of nonlinear Rossby waves
Peter B. Weichman, Phys. Rev. E, 2006

1:6:46:4Triple Cascade Behavior in Quasigeostrophic and Drift Turbulence and Generation of Zonal Jets
Sergey Nazarenko, Brenda Quinn, Phys. Rev. Lett., 2009

1:6:46:9Complete phase diagram for coherent vortex formation in a two-dimensional inviscid fluid in an annulus
Peilong Chen, M. C. Cross, Phys. Rev. E, 1997

1:6:46:11Statistical Equilibrium Solutions of the Shallow Water Equations
Peter B. Weichman, Dean M. Petrich, Phys. Rev. Lett., 2001

1:6:46:16Phase diagram for coherent vortex formation in the two-dimensional inviscid fluid in circular geometries
Peilong Chen, M. C. Cross, Phys. Rev. E, 1994

1:6:46:17Stationary Vortical Flows in Two-Dimensional Plasma and in Planetary Atmospheres
F. Spineanu, M. Vlad, Phys. Rev. Lett., 2005

1:6:46:21Nonlinear Waves in Zonostrophic Turbulence
Semion Sukoriansky, Nadejda Dikovskaya, Boris Galperin, Phys. Rev. Lett., 2008

1:6:47:1Aspect on vortex lines in Euler flow
Tao Xu, Phys. Rev. E, 2005

1:6:47:3Self-similar scaling in decaying numerical turbulence
Tarek A. Yousef, Nils Erland L. Haugen, Axel Brandenburg, Phys. Rev. E, 2004

1:6:47:4Decay Laws for Three-Dimensional Magnetohydrodynamic Turbulence
Dieter Biskamp, Wolf-Christian Müller, Phys. Rev. Lett., 1999

1:6:47:5Inverse cascade in decaying three-dimensional magnetohydrodynamic turbulence
Mattias Christensson, Mark Hindmarsh, Axel Brandenburg, Phys. Rev. E, 2001

1:6:47:6Defect-defect correlation in the dynamics of first-order phase transitions
Fong Liu, Gene F. Mazenko, Phys. Rev. B, 1992

1:6:47:7Kinetic Energy Decay Rates of Supersonic and Super-Alfvénic Turbulence in Star-Forming Clouds
Mordecai-Mark Mac Low, Ralf S. Klessen, Andreas Burkert, Michael D. Smith, Phys. Rev. Lett., 1998

1:6:47:17Many knots in Chern-Simons field theory
Yi-shi Duan, Xin Liu, Li-bin Fu, Phys. Rev. D, 2003

1:6:47:21Signatures of kinetic and magnetic helicity in the cosmic microwave background radiation
Levon Pogosian, Tanmay Vachaspati, Serge Winitzki, Phys. Rev. D, 2002

1:6:48:1:1Long-range correlations induced by the self-regulation of zonal flows and drift-wave turbulence
P. Manz, M. Ramisch, U. Stroth, Phys. Rev. E, 2010

1:6:48:1:2Identification of Zonal Flows in a Toroidal Plasma
A. Fujisawa, K. Itoh, H. Iguchi, K. Matsuoka, S. Okamura, A. Shimizu, T. Minami, Y. Yoshimura, K. Nagaoka, C. Takahashi, M. Kojima, H. Nakano, S. Ohsima, S. Nishimura, M. Isobe, C. Suzuki, T Akiyama, K. Ida, K. Toi, S.-I. Itoh, P. H. Diamond, Phys. Rev. Lett., 2004

1:6:48:1:5Detection of Zero-Mean-Frequency Zonal Flows in the Core of a High-Temperature Tokamak Plasma
D. K. Gupta, R. J. Fonck, G. R. McKee, D. J. Schlossberg, M. W. Shafer, Phys. Rev. Lett., 2006

1:6:48:1:10Characterizations of Low-Frequency Zonal Flow in the Edge Plasma of the HL-2A Tokamak
A. D. Liu, T. Lan, C. X. Yu, H. L. Zhao, L. W. Yan, W. Y. Hong, J. Q. Dong, K. J. Zhao, J. Qian, J. Cheng, X. R. Duan, Y. Liu, Phys. Rev. Lett., 2009

1:6:48:1:15Observation of Nonlinear Coupling between Small-Poloidal Wave-Number Potential Fluctuations and Turbulent Potential Fluctuations in Ohmically Heated Plasmas in the JFT-2M Tokamak
Y. Nagashima, K. Hoshino, A. Ejiri, K. Shinohara, Y. Takase, K. Tsuzuki, K. Uehara, H. Kawashima, H. Ogawa, T. Ido, Y. Kusama, Y. Miura, Phys. Rev. Lett., 2005

1:6:48:1:17Evidence of Long-Distance Correlation of Fluctuations during Edge Transitions to Improved-Confinement Regimes in the TJ-II Stellarator
M. A. Pedrosa, C. Silva, C. Hidalgo, B. A. Carreras, R. O. Orozco, D. Carralero, Phys. Rev. Lett., 2008

1:6:48:1:24 Direct Measurement of Poloidal Long-Wavelength E × B Flows in the HT-7 Tokamak
G. S. Xu, B. N. Wan, M. Song, J. Li, Phys. Rev. Lett., 2003

1:6:48:2:1Observation of turbulence suppression after electron-cyclotron-resonance-heating switch-off on the HL-2A tokamak
Y. Liu, Z. B. Shi, Y. B. Dong, H. J. Sun, A. P. Sun, Y. G. Li, Z. W. Xia, W. Li, X. T. Ding, W. W. Xiao, Y. Zhou, J. Zhou, J. Rao, Z. T. Liu, Q. W. Yang, X. R. Duan, Phys. Rev. E, 2011

1:6:48:2:2Inverse Energy Cascade Correlated with Turbulent-Structure Generation in Toroidal Plasma
H. Xia, M. G. Shats, Phys. Rev. Lett., 2003

1:6:48:2:4Toroidal Symmetry of the Geodesic Acoustic Mode Zonal Flow in a Tokamak Plasma
K. J. Zhao, T. Lan, J. Q. Dong, L. W. Yan, W. Y. Hong, C. X. Yu, A. D. Liu, J. Qian, J. Cheng, D. L. Yu, Q. W. Yang, X. T. Ding, Y. Liu, C. H. Pan, Phys. Rev. Lett., 2006

1:6:48:2:5Nonlocal Transient Transport and Thermal Barriers in Rijnhuizen Tokamak Project Plasmas
P. Mantica, P. Galli, G. Gorini, G. M. D. Hogeweij, J. de Kloe, N. J. Lopes Cardozo, RTP Team, Phys. Rev. Lett., 1999

1:6:48:2:9Impurity-Induced Suppression of Core Turbulence and Transport in the DIII-D Tokamak
G. McKee, K. Burrell, R. Fonck, G. Jackson, M. Murakami, G. Staebler, D. Thomas, P. West, Phys. Rev. Lett., 2000

1:6:49:1Pseudononstationarity in the scaling exponents of finite-interval time series
K. H. Kiyani, S. C. Chapman, N. W. Watkins, Phys. Rev. E, 2009

1:6:49:2Can high-order moments be meaningfully estimated from experimental turbulence measurements?
T. Dudok de Wit, Phys. Rev. E, 2004

1:6:49:3Extracting the scaling exponents of a self-affine, non-Gaussian process from a finite-length time series
K. Kiyani, S. C. Chapman, B. Hnat, Phys. Rev. E, 2006

1:6:50:5Magnetic Helicity Conservation and Inverse Energy Cascade in Electron Magnetohydrodynamic Wave Packets
Jungyeon Cho, Phys. Rev. Lett., 2011

1:6:50:11On the Energy Spectrum of Strong Magnetohydrodynamic Turbulence
Jean Carlos Perez, Joanne Mason, Stanislav Boldyrev, Fausto Cattaneo, Phys. Rev. X, 2012

1:6:51:1Cascade of circulations in fluid turbulence
Gregory L. Eyink, Phys. Rev. E, 2006

1:6:51:5Is the Kelvin Theorem Valid for High Reynolds Number Turbulence?
Shiyi Chen, Gregory L. Eyink, Minping Wan, Zuoli Xiao, Phys. Rev. Lett., 2006

1:6:51:6Considerations on the Flow of Superfluid Helium
P. W. ANDERSON, Rev. Mod. Phys., 1966

1:6:51:7Microscopic theory of vortex dynamics in homogeneous superconductors
P. Ao, X.-M. Zhu, Phys. Rev. B, 1999

1:6:51:9Energy-Dissipation Theorem and Detailed Josephson Equation for Ideal Incompressible Fluids
Elisha R. Huggins, Phys. Rev. A, 1970

1:6:51:14Multiply connected Bose-Einstein-condensed alkali-metal gases: Current-carrying states and their decay
Erich J. Mueller, Paul M. Goldbart, Yuli Lyanda-Geller, Phys. Rev. A, 1998

1:6:52:6Hamiltonian dynamics of vortex and magnetic lines in hydrodynamic type systems
E. A. Kuznetsov, V. P. Ruban, Phys. Rev. E, 2000

1:6:52:8Small-Scale Dynamics of High-Reynolds-Number Two-Dimensional Turbulence
M. E. Brachet, M. Meneguzzi, P. L. Sulem, Phys. Rev. Lett., 1986

1:6:53:1Inhomogeneous kinetic effects related to intermittent magnetic discontinuities
A. Greco, F. Valentini, S. Servidio, W. H. Matthaeus, Phys. Rev. E, 2012

1:6:53:2Waiting-time distributions of magnetic discontinuities: Clustering or Poisson process?
A. Greco, W. H. Matthaeus, S. Servidio, P. Dmitruk, Phys. Rev. E, 2009

1:6:53:13 Three Dimensional Anisotropic k Spectra of Turbulence at Subproton Scales in the Solar Wind
F. Sahraoui, M. L. Goldstein, G. Belmont, P. Canu, L. Rezeau, Phys. Rev. Lett., 2010

1:6:53:18Kinetic Signatures and Intermittent Turbulence in the Solar Wind Plasma
K. T. Osman, W. H. Matthaeus, B. Hnat, S. C. Chapman, Phys. Rev. Lett., 2012

1:6:53:19Intermittency and Local Heating in the Solar Wind
K. T. Osman, W. H. Matthaeus, M. Wan, A. F. Rappazzo, Phys. Rev. Lett., 2012

1:6:53:20Detection of Small-Scale Structures in the Dissipation Regime of Solar-Wind Turbulence
S. Perri, M. L. Goldstein, J. C. Dorelli, F. Sahraoui, Phys. Rev. Lett., 2012

1:6:53:21Local Kinetic Effects in Two-Dimensional Plasma Turbulence
S. Servidio, F. Valentini, F. Califano, P. Veltri, Phys. Rev. Lett., 2012

1:6:53:23Two-Dimensional Kinetic Turbulence in the Solar Wind
F. Valentini, F. Califano, P. Veltri, Phys. Rev. Lett., 2010

1:6:54:1Alfvén waves and ideal two-dimensional Galerkin truncated magnetohydrodynamics
Giorgio Krstulovic, Marc-Etienne Brachet, Annick Pouquet, Phys. Rev. E, 2011

1:6:54:2Resonance phenomenon for the Galerkin-truncated Burgers and Euler equations
Samriddhi Sankar Ray, Uriel Frisch, Sergei Nazarenko, Takeshi Matsumoto, Phys. Rev. E, 2011

1:6:54:3Effective Dissipation and Turbulence in Spectrally Truncated Euler Flows
Cyril Cichowlas, Pauline Bonaïti, Fabrice Debbasch, Marc Brachet, Phys. Rev. Lett., 2005

1:6:55:1Intermittent nature of solar wind turbulence near the Earth’s bow shock: Phase coherence and non-Gaussianity
D. Koga, A. C.-L. Chian, R. A. Miranda, E. L. Rempel, Phys. Rev. E, 2007

1:6:55:2Diagnosis of magnetic structures and intermittency in space-plasma turbulence using the technique of surrogate data
F. Sahraoui, Phys. Rev. E, 2008

1:6:55:9Anisotropic Turbulent Spectra in the Terrestrial Magnetosheath as Seen by the Cluster Spacecraft
F. Sahraoui, G. Belmont, L. Rezeau, N. Cornilleau-Wehrlin, J. L. Pinçon, A. Balogh, Phys. Rev. Lett., 2006

1:6:55:11 Erratum: Intermittency, scaling, and the Fokker-Planck approach to fluctuations of the solar wind bulk plasma parameters as seen by the WIND spacecraft [Phys. Rev. E 67 , 056404 (2003)]
Bogdan Hnat, Sandra C. Chapman, George Rowlands, Phys. Rev. E, 2005

1:6:55:16Slow Magnetosonic Solitons Detected by the Cluster Spacecraft
K. Stasiewicz, P. K. Shukla, G. Gustafsson, S. Buchert, B. Lavraud, B. Thidé, Z. Klos, Phys. Rev. Lett., 2003

1:6:55:19Wave-Number Spectra and Intermittency in the Terrestrial Foreshock Region
Y. Narita, K.-H. Glassmeier, R. A. Treumann, Phys. Rev. Lett., 2006

1:6:57:2Two- and three-dimensional magnetic reconnection observed in the Eulerian-Lagrangian analysis of magnetohydrodynamics equations
K. Ohkitani, P. Constantin, Phys. Rev. E, 2008

1:6:58:1Model for intermittency of energy dissipation in turbulent flows
Fabio Lepreti, Vincenzo Carbone, Pierluigi Veltri, Phys. Rev. E, 2006

1:6:58:3Dynamical scaling and intermittency in shell models of turbulence
Roberto Benzi, Luca Biferale, Mauro Sbragaglia, Phys. Rev. E, 2005

1:6:58:6Intermittency in a cascade model for three-dimensional turbulence
M. H. Jensen, G. Paladin, A. Vulpiani, Phys. Rev. A, 1991

1:6:59:1Acceleration of particles in imbalanced magnetohydrodynamic turbulence
Bogdan Teaca, Martin S. Weidl, Frank Jenko, Reinhard Schlickeiser, Phys. Rev. E, 2014

1:6:59:2Particle energization through time-periodic helical magnetic fields
Dhrubaditya Mitra, Axel Brandenburg, Brahmananda Dasgupta, Eyvind Niklasson, Abhay Ram, Phys. Rev. E, 2014

1:6:59:3Stochastic Acceleration in Turbulent Electric Fields Generated by 3D Reconnection
Marco Onofri, Heinz Isliker, Loukas Vlahos, Phys. Rev. Lett., 2006

1:6:59:5Universality of Solar-Wind Turbulent Spectrum from MHD to Electron Scales
O. Alexandrova, J. Saur, C. Lacombe, A. Mangeney, J. Mitchell, S. J. Schwartz, P. Robert, Phys. Rev. Lett., 2009

1:6:59:6Fully Developed Anisotropic Hydromagnetic Turbulence in Interplanetary Space
M. Dobrowolny, A. Mangeney, P. Veltri, Phys. Rev. Lett., 1980

1:6:59:23Gyrokinetic Simulations of Solar Wind Turbulence from Ion to Electron Scales
G. G. Howes, J. M. TenBarge, W. Dorland, E. Quataert, A. A. Schekochihin, R. Numata, T. Tatsuno, Phys. Rev. Lett., 2011

1:6:60:8Nonlinear magnetohydrodynamics by Galerkin-method computation
Xiaowen Shan, David Montgomery, Hudong Chen, Phys. Rev. A, 1991

1:6:60:10Magnetohydrodynamic Stabilization through Rotation
Xiaowen Shan, David Montgomery, Phys. Rev. Lett., 1994

1:6:61:2Canonical description of ideal magnetohydrodynamic flows and integrals of motion
A. V. Kats, Phys. Rev. E, 2004

1:6:61:13Variational description of multifluid hydrodynamics: Uncharged fluids
Reinhard Prix, Phys. Rev. D, 2004

1:6:61:14Conservation of circulation in magnetohydrodynamics
Jacob D. Bekenstein, Asaf Oron, Phys. Rev. E, 2000

1:6:61:21Variational description of multifluid hydrodynamics: Coupling to gauge fields
Reinhard Prix, Phys. Rev. D, 2005

1:6:62:2Real-valued algebro-geometric solutions of the Camassa-Holm hierarchy
F. Gesztesy, H. Holden, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008

1:6:62:4On Hydromagnetic Stability of Stationary Equilibria
E. Frieman, Manuel Rotenberg, Rev. Mod. Phys., 1960

1:6:64:1Magnetic reversals in a modified shell model for magnetohydrodynamics turbulence
Giuseppina Nigro, Vincenzo Carbone, Phys. Rev. E, 2010

1:6:64:2Sign-singular measures: Fast magnetic dynamos, and high-Reynolds-number fluid turbulence
Edward Ott, Yunson Du, K. R. Sreenivasan, A. Juneja, A. K. Suri, Phys. Rev. Lett., 1992

1:6:64:3Scaling exponents for turbulence and other random processes and their relationships with multifractal structure
Samuel I. Vainshtein, K. R. Sreenivasan, Raymond T. Pierrehumbert, Vinay Kashyap, Anurag Juneja, Phys. Rev. E, 1994

1:6:64:9Cancellation exponents and fractal scaling
Andrea L. Bertozzi, Ashvin B. Chhabra, Phys. Rev. E, 1994

1:6:64:13Scale similarity of the velocity structure functions in fully developed magnetohydrodynamic turbulence
Vincenzo Carbone, Phys. Rev. E, 1994

1:6:65:1Universality of scaling and multiscaling in turbulent symmetric binary fluids
Samriddhi Sankar Ray, Abhik Basu, Phys. Rev. E, 2011

1:6:65:2Clustering transition in a system of particles self-consistently driven by a shear flow
Cristóbal López, Phys. Rev. E, 2004

1:6:65:3Active versus Passive Scalar Turbulence
Antonio Celani, Massimo Cencini, Andrea Mazzino, Massimo Vergassola, Phys. Rev. Lett., 2002

1:6:65:4Inertial- and Dissipation-Range Asymptotics in Fluid Turbulence
Sujan K. Dhar, Anirban Sain, Rahul Pandit, Phys. Rev. Lett., 1997

1:6:65:7Spherical model for turbulence
Chung-yu Mou, Peter B. Weichman, Phys. Rev. Lett., 1993

1:6:65:10Passive Scalar: Scaling Exponents and Realizability
Robert H. Kraichnan, Phys. Rev. Lett., 1997

1:6:65:12Turbulence in binary fluid mixtures
Ricardo Ruiz, David R. Nelson, Phys. Rev. A, 1981

1:6:66:1Integral equation approach to time-dependent kinematic dynamos in finite domains
Mingtian Xu, Frank Stefani, Gunter Gerbeth, Phys. Rev. E, 2004

1:6:66:2 Colloquium : Laboratory experiments on hydromagnetic dynamos
Agris Gailitis, Olgerts Lielausis, Ernests Platacis, Gunter Gerbeth, Frank Stefani, Rev. Mod. Phys., 2002

1:6:66:3Contactless inductive flow tomography
Frank Stefani, Thomas Gundrum, Gunter Gerbeth, Phys. Rev. E, 2004

1:6:66:4 Oscillatory mean-field dynamos with a spherically symmetric, isotropic helical turbulence parameter α
Frank Stefani, Gunter Gerbeth, Phys. Rev. E, 2003

1:6:68:10Reformulation of recursive-renormalization-group-based subgrid modeling of turbulence
Ye Zhou, George Vahala, Phys. Rev. E, 1993

1:6:68:11Eddy damping, backscatter, and subgrid stresses in subgrid modeling of turbulence
Ye Zhou, Phys. Rev. A, 1991

1:6:69:1Testing for Markovian character and modeling of intermittency in solar wind turbulence
Marek Strumik, Wiesław M. Macek, Phys. Rev. E, 2008

1:6:69:2Probability distributions of turbulent energy
Mahdi Momeni, Wolf-Christian Müller, Phys. Rev. E, 2008

1:6:69:3The Hydromagnetic Equations
Walter M. Elsasser, Phys. Rev., 1950

1:6:69:4Fusion Rules in Turbulent Systems with Flux Equilibrium
Victor L'vov, Itamar Procaccia, Phys. Rev. Lett., 1996

1:6:69:6Intermittency, scaling, and the Fokker-Planck approach to fluctuations of the solar wind bulk plasma parameters as seen by the WIND spacecraft
Bogdan Hnat, Sandra C. Chapman, George Rowlands, Phys. Rev. E, 2003

1:6:69:7Analytic calculation of the anomalous exponents in turbulence: Using the fusion rules to flush out a small parameter
Victor S. L’vov, Itamar Procaccia, Phys. Rev. E, 2000

1:6:70:1Cascades and dissipation ratio in rotating magnetohydrodynamic turbulence at low magnetic Prandtl number
Franck Plunian, Rodion Stepanov, Phys. Rev. E, 2010

1:6:70:2Anisotropic shell model of turbulence
Ö. D. Gürcan, R. Grappin, Phys. Rev. E, 2011

1:6:70:3Energy transfers in shell models for magnetohydrodynamics turbulence
Thomas Lessinnes, Daniele Carati, Mahendra K. Verma, Phys. Rev. E, 2009

1:6:70:5Cascade models for magnetohydrodynamic turbulence
D. Biskamp, Phys. Rev. E, 1994

1:6:70:14Scalar model for plasma turbulence
J. L. Ottinger, D. Carati, Phys. Rev. E, 1993

1:6:71:1Electron magnetohydrodynamics: Dynamics and turbulence
Maxim Lyutikov, Phys. Rev. E, 2013

1:6:71:8Kinetic Simulations of Magnetized Turbulence in Astrophysical Plasmas
G. G. Howes, W. Dorland, S. C. Cowley, G. W. Hammett, E. Quataert, A. A. Schekochihin, T. Tatsuno, Phys. Rev. Lett., 2008

1:6:71:10Nature of Subproton Scale Turbulence in the Solar Wind
C. H. K. Chen, S. Boldyrev, Q. Xia, J. C. Perez, Phys. Rev. Lett., 2013

1:6:72:7Relaxation and magnetic reconnection in plasmas
J. B. Taylor, Rev. Mod. Phys., 1986

1:6:73:1Scale-free texture of the fast solar wind
B. Hnat, S. C. Chapman, G. Gogoberidze, R. T. Wicks, Phys. Rev. E, 2011

1:6:73:2Self-Similar Signature of the Active Solar Corona within the Inertial Range of Solar-Wind Turbulence
K. Kiyani, S. C. Chapman, B. Hnat, R. M. Nicol, Phys. Rev. Lett., 2007

1:6:73:12Generalized Similarity in Finite Range Solar Wind Magnetohydrodynamic Turbulence
S. C. Chapman, R. M. Nicol, Phys. Rev. Lett., 2009

1:6:73:14Compressibility in Solar Wind Plasma Turbulence
Bogdan Hnat, Sandra C. Chapman, George Rowlands, Phys. Rev. Lett., 2005

1:6:73:18Spectral Distribution of the Cross Helicity in the Solar Wind
L. J. Milano, S. Dasso, W. H. Matthaeus, C. W. Smith, Phys. Rev. Lett., 2004

1:6:73:20 Sorriso-Valvo et al. Reply:
L. Sorriso-Valvo, V. Carbone, R. Marino, A. Noullez, R. Bruno, P. Veltri, Phys. Rev. Lett., 2010

1:6:74:1Rank-ordered multifractal analysis for intermittent fluctuations with global crossover behavior
Sunny W. Y. Tam, Tom Chang, Paul M. Kintner, Eric M. Klatt, Phys. Rev. E, 2010

1:6:74:2Rank-ordered multifractal spectrum for intermittent fluctuations
Tom Chang, Cheng-chin Wu, Phys. Rev. E, 2008

1:6:74:14Generalized Scaling Hypothesis in Multicomponent Systems. I. Classification of Critical Points by Order and Scaling at Tricritical Points
T. S. Chang, Alex Hankey, H. Eugene Stanley, Phys. Rev. B, 1973

1:6:74:15Multifractal Structure of Auroral Electrojet Index Data
Giuseppe Consolini, Maria F. Marcucci, Maurizio Candidi, Phys. Rev. Lett., 1996

1:6:77:1Lagrangian statistics and flow topology in forced two-dimensional turbulence
B. Kadoch, D. del-Castillo-Negrete, W. J. T. Bos, K. Schneider, Phys. Rev. E, 2011

1:6:77:2Persistence Problem in Two-Dimensional Fluid Turbulence
Prasad Perlekar, Samriddhi Sankar Ray, Dhrubaditya Mitra, Rahul Pandit, Phys. Rev. Lett., 2011

1:6:77:6Curvature of Lagrangian Trajectories in Turbulence
Haitao Xu, Nicholas T. Ouellette, Eberhard Bodenschatz, Phys. Rev. Lett., 2007

1:6:77:8Extreme Lagrangian Acceleration in Confined Turbulent Flow
Benjamin Kadoch, Wouter J. T. Bos, Kai Schneider, Phys. Rev. Lett., 2008

1:6:78:1 Vortices, circumfluence, symmetry groups, and Darboux transformations of the ( 2 + 1 ) -dimensional Euler equation
S. Y. Lou, M. Jia, X. Y. Tang, F. Huang, Phys. Rev. E, 2007

1:6:78:2Thermodynamical Approach for Small-Scale Parametrization in 2D Turbulence
Pierre-Henri Chavanis, Joël Sommeria, Phys. Rev. Lett., 1997

1:6:78:3Exotic Statistics of Leapfrogging Vortex Rings
Antti J. Niemi, Phys. Rev. Lett., 2005

1:6:78:6Relativistic formalism to compute quasiequilibrium configurations of nonsynchronized neutron star binaries
Silvano Bonazzola, Eric Gourgoulhon, Jean-Alain Marck, Phys. Rev. D, 1997

1:6:78:7Invariants and Geometric Structures in Nonlinear Hamiltonian Magnetic Reconnection
E. Cafaro, D. Grasso, F. Pegoraro, F. Porcelli, A. Saluzzi, Phys. Rev. Lett., 1998

1:6:78:10Secondary Instabilities and Vortex Formation in Collisionless-Fluid Magnetic Reconnection
D. Del Sarto, F. Califano, F. Pegoraro, Phys. Rev. Lett., 2003

1:6:78:12Quantum dynamics and statistics of vortices in two-dimensional superfluids
F. D. M. Haldane, Yong-Shi Wu, Phys. Rev. Lett., 1985

1:6:78:15 Glueballs, closed fluxtubes, and η ( 1440 )
Ludvig Faddeev, Antti J. Niemi, Ulrich Wiedner, Phys. Rev. D, 2004

1:6:79:1Model of driven and decaying magnetic turbulence in a cylinder
Koen Kemel, Axel Brandenburg, Hantao Ji, Phys. Rev. E, 2011

1:6:79:4Turbulent Dynamos and Magnetic Helicity
Hantao Ji, Phys. Rev. Lett., 1999

1:6:79:7Sustained Self-Reversal in the Reversed-Field Pinch
A. Y. Aydemir, D. C. Barnes, Phys. Rev. Lett., 1984

1:6:79:8Self-Consistent Dynamolike Activity in Turbulent Plasmas
A. Bhattacharjee, Eliezer Hameiri, Phys. Rev. Lett., 1986

1:6:79:11Nonlinear behavior of the reversed field pinch with nonideal boundary conditions
Y. L. Ho, S. C. Prager, D. D. Schnack, Phys. Rev. Lett., 1989

1:6:80:1Scaling law of plasma turbulence with nonconservative fluxes
Grigol Gogoberidze, Phys. Rev. E, 2005

1:6:80:4Two-Dimensional Electron Magnetohydrodynamic Turbulence
D. Biskamp, E. Schwarz, J. F. Drake, Phys. Rev. Lett., 1996

1:6:80:7Double Curl Beltrami Flow: Diamagnetic Structures
S. M. Mahajan, Z. Yoshida, Phys. Rev. Lett., 1998

1:6:86:1Experimental confirmation of self-regulating turbulence paradigm in two-dimensional spectral condensation
L. Bardóczi, A. Bencze, M. Berta, L. Schmitz, Phys. Rev. E, 2014

1:6:86:2Regime of Improved Confinement and High Beta in Neutral-Beam-Heated Divertor Discharges of the ASDEX Tokamak
F. Wagner, G. Becker, K. Behringer, D. Campbell, A. Eberhagen, W. Engelhardt, G. Fussmann, O. Gehre, J. Gernhardt, G. v. Gierke, G. Haas, M. Huang, F. Karger, M. Keilhacker, O. Klüber, M. Kornherr, K. Lackner, G. Lisitano, G. G. Lister, H. M. Mayer, D. Meisel, E. R. Müller, H. Murmann, H. Niedermeyer, W. Poschenrieder, H. Rapp, H. Röhr, F. Schneider, G. Siller, E. Speth, A. Stäbler, K. H. Steuer, G. Venus, O. Vollmer, Z. Yü, Phys. Rev. Lett., 1982

1:6:86:4Transport Control by Coherent Zonal Flows in the Core/Edge Transitional Regime
K. Hallatschek, D. Biskamp, Phys. Rev. Lett., 2001

1:6:86:5 Increased Nonlinear Coupling between Turbulence and Low-Frequency Fluctuations at the L H Transition
R. A. Moyer, G. R. Tynan, C. Holland, M. J. Burin, Phys. Rev. Lett., 2001

1:6:86:7Spatiotemporal Structure of the Interaction between Turbulence and Flows at the L-H Transition in a Toroidal Plasma
T. Estrada, C. Hidalgo, T. Happel, P. H. Diamond, Phys. Rev. Lett., 2011

1:6:86:9Experimental Evidence of Turbulent Transport Regulation by Zonal Flows
G. Birkenmeier, M. Ramisch, B. Schmid, U. Stroth, Phys. Rev. Lett., 2013

1:6:86:10 Mean and Oscillating Plasma Flows and Turbulence Interactions across the L H Confinement Transition
G. D. Conway, C. Angioni, F. Ryter, P. Sauter, J. Vicente, Phys. Rev. Lett., 2011

1:6:86:15 Zonal Flows and Transient Dynamics of the L H Transition
Eun-jin Kim, P. H. Diamond, Phys. Rev. Lett., 2003

1:6:86:17 First Evidence of the Role of Zonal Flows for the L H Transition at Marginal Input Power in the EAST Tokamak
G. S. Xu, B. N. Wan, H. Q. Wang, H. Y. Guo, H. L. Zhao, A. D. Liu, V. Naulin, P. H. Diamond, G. R. Tynan, M. Xu, R. Chen, M. Jiang, P. Liu, N. Yan, W. Zhang, L. Wang, S. C. Liu, S. Y. Ding, Phys. Rev. Lett., 2011

1:6:87:1Transport in two-fluid magnetohydrodynamic turbulence
Eun-jin Kim, Phys. Rev. E, 2007

1:6:87:2Drift-Kinetic Alfvén Waves Observed near a Reconnection X Line in the Earth’s Magnetopause
C. C. Chaston, T. D. Phan, J. W. Bonnell, F. S. Mozer, M. Acuńa, M. L. Goldstein, A. Balogh, M. Andre, H. Reme, A. Fazakerley, Phys. Rev. Lett., 2005

1:6:87:3 Zonal Flow and Zonal Magnetic Field Generation by Finite β Drift Waves: A Theory for Low to High Transitions in Tokamaks
P. N. Guzdar, R. G. Kleva, A. Das, P. K. Kaw, Phys. Rev. Lett., 2001

1:6:87:7Catastrophe Model for Fast Magnetic Reconnection Onset
P. A. Cassak, M. A. Shay, J. F. Drake, Phys. Rev. Lett., 2005

1:6:87:18 Nonlinear dynamics of the m =1 instability and fast sawtooth collapse in high-temperature plasmas
Xiaogang Wang, A. Bhattacharjee, Phys. Rev. Lett., 1993

1:6:87:19 Magnetic Reconnection in Toroidal η i Mode Turbulence
A. Zeiler, J. F. Drake, B. N. Rogers, Phys. Rev. Lett., 2000

1:6:88:1Effective diffusivity of passive scalars in rotating turbulence
P. Rodriguez Imazio, P. D. Mininni, Phys. Rev. E, 2013

1:6:90:1Fluctuation dynamo and turbulent induction at small Prandtl number
Gregory L. Eyink, Phys. Rev. E, 2010

1:6:90:3Magnetic-Field Generation in Helical Turbulence
Stanislav Boldyrev, Fausto Cattaneo, Robert Rosner, Phys. Rev. Lett., 2005

1:6:91:1Dynamical pattern formation in two-dimensional fluids and Landau pole bifurcation
Shun Ogawa, Julien Barré, Hidetoshi Morita, Yoshiyuki Y. Yamaguchi, Phys. Rev. E, 2014

1:6:91:4Looking for new problems to solve? Consider the climate
Brad Marston, Physics, 2011

1:6:92:8Time evolution of the eddy viscosity in two-dimensional Navier-Stokes flow
Marta Chaves, Sílvio Gama, Phys. Rev. E, 2000

1:6:95:3Warm Cascades and Anomalous Scaling in a Diffusion Model of Turbulence
Colm Connaughton, Sergey Nazarenko, Phys. Rev. Lett., 2004

1:6:97:3Statistical mechanics of point vortices
Victor L. Berdichevsky, Phys. Rev. E, 1995

1:6:97:5Dynamics of Two-Sign Point Vortices in Positive and Negative Temperature States
Yuichi Yatsuyanagi, Yasuhito Kiwamoto, Hiroyuki Tomita, Mitsusada M. Sano, Takeshi Yoshida, Toshikazu Ebisuzaki, Phys. Rev. Lett., 2005

1:6:98:1Elasticity in drift-wave–zonal-flow turbulence
Z. B. Guo, P. H. Diamond, Y. Kosuga, Ö. D. Gürcan, Phys. Rev. E, 2014

1:6:98:4Role of Zonal Flow Predator-Prey Oscillations in Triggering the Transition to H-Mode Confinement
L. Schmitz, L. Zeng, T. L. Rhodes, J. C. Hillesheim, E. J. Doyle, R. J. Groebner, W. A. Peebles, K. H. Burrell, G. Wang, Phys. Rev. Lett., 2012

1:6:98:10Wave-Number Spectrum of Drift-Wave Turbulence
Ö. D. Gürcan, X. Garbet, P. Hennequin, P. H. Diamond, A. Casati, G. L. Falchetto, Phys. Rev. Lett., 2009

1:6:98:11 How the Propagation of Heat-Flux Modulations Triggers E × B Flow Pattern Formation
Y. Kosuga, P. H. Diamond, Ö. D. Gürcan, Phys. Rev. Lett., 2013

1:6:99:1Self-organization phenomena and decaying self-similar state in two-dimensional incompressible viscous fluids
Yoshiomi Kondoh, Shunsuke Serizawa, Akihiro Nakano, Toshiki Takahashi, James W. Van Dam, Phys. Rev. E, 2004

1:6:99:6Self-organization of two-dimensional incompressible viscous flow in a friction-free box
Y. Kondoh, M. Yoshizawa, A. Nakano, T. Yabe, Phys. Rev. E, 1996

1:6:99:9Attractors of dissipative structure in three dissipative fluids
Yoshiomi Kondoh, Phys. Rev. E, 1994

1:6:99:10Eigenfunction for dissipative dynamic operators and the attractor of the dissipative structure
Yoshiomi Kondoh, Phys. Rev. E, 1993

1:6:99:11Self-organization of solitons for the dissipative Korteweg–de Vries equation
Y. Kondoh, J. W. Van Dam, Phys. Rev. E, 1995

1:6:100:1Non-Gaussianity as a data analysis artifact
Edoardo Milotti, Phys. Rev. E, 2011

1:6:101:1Evolution of anisotropic turbulence in nonlinear magnetic reconnection
M. Onofri, F. Malara, Phys. Rev. E, 2008

1:6:101:3Dissipation in Turbulent Plasma due to Reconnection in Thin Current Sheets
David Sundkvist, Alessandro Retinò, Andris Vaivads, Stuart D. Bale, Phys. Rev. Lett., 2007

1:6:101:6Small-Scale Magnetic Fluctuations Inside the Macrotor Tokamak
S. J. Zweben, C. R. Menyuk, R. J. Taylor, Phys. Rev. Lett., 1979

1:6:102:1Stochastic dynamo model for subcritical transition
Sergei Fedotov, Irina Bashkirtseva, Lev Ryashko, Phys. Rev. E, 2006

1:6:102:2Chaos transition despite linear stability
Thomas Gebhardt, Siegfried Grossmann, Phys. Rev. E, 1994

1:6:102:5Non-normal and stochastic amplification of magnetic energy in the turbulent dynamo: Subcritical case
Sergei Fedotov, Phys. Rev. E, 2003

1:6:102:6Origin of galactic and extragalactic magnetic fields
Lawrence M. Widrow, Rev. Mod. Phys., 2002

1:6:102:7Stochastic analysis of a non-normal dynamical system mimicking a laminar-to-turbulent subcritical transition
Sergei Fedotov, Irina Bashkirtseva, Lev Ryashko, Phys. Rev. E, 2002

1:6:103:1Determination of a flow generating a neutral magnetic mode
Vladislav Zheligovsky, Phys. Rev. E, 2009

1:6:104:1Mean-field diffusivities in passive scalar and magnetic transport in irrotational flows
Karl-Heinz Rädler, Axel Brandenburg, Fabio Del Sordo, Matthias Rheinhardt, Phys. Rev. E, 2011

1:6:104:8Growth of bubbles in cosmological phase transitions
J. Ignatius, K. Kajantie, H. Kurki-Suonio, M. Laine, Phys. Rev. D, 1994

1:6:104:9Bubble growth and droplet decay in the quark-hadron phase transition in the early Universe
K. Kajantie, Hannu Kurki-Suonio, Phys. Rev. D, 1986

1:6:105:1Effect of heat flux on differential rotation in turbulent convection
Nathan Kleeorin, Igor Rogachevskii, Phys. Rev. E, 2006

1:6:106:1Singular solutions of a modified two-component Camassa-Holm equation
Darryl D. Holm, Lennon Ó Náraigh, Cesare Tronci, Phys. Rev. E, 2009

1:6:107:11Resumming cosmological perturbations via the Lagrangian picture: One-loop results in real space and in redshift space
Takahiko Matsubara, Phys. Rev. D, 2008

1:6:110:1Magnetic helicity and the evolution of decaying magnetohydrodynamic turbulence
Arjun Berera, Moritz Linkmann, Phys. Rev. E, 2014

1:6:110:4Universal Nonlinear Small-Scale Dynamo
A. Beresnyak, Phys. Rev. Lett., 2012

1:6:110:5Scaling laws in magnetohydrodynamic turbulence
Leonardo Campanelli, Phys. Rev. D, 2004

1:6:110:6Evolution of primordial magnetic fields from phase transitions
Tina Kahniashvili, Alexander G. Tevzadze, Axel Brandenburg, Andrii Neronov, Phys. Rev. D, 2013

1:6:110:8Magnetohydrodynamics of the early Universe and the evolution of primordial magnetic fields
D. T. Son, Phys. Rev. D, 1999

1:6:113:1Single thermal plume in locally heated vertical soap films
N. Adami, S. Dorbolo, H. Caps, Phys. Rev. E, 2011

1:6:114:1Nonlinear decay of random waves described by an integrodifferential equation
Sergey N. Gurbatov, Oleg V. Rudenko, Phys. Rev. E, 2014

1:6:115:1Polymers suppress the inverse transfers of energy and the enstrophy flux fluctuations in two-dimensional turbulence
H. Kellay, Phys. Rev. E, 2004

1:6:115:2Polymers in 2D Turbulence: Suppression of Large Scale Fluctuations
Y. Amarouchene, H. Kellay, Phys. Rev. Lett., 2002

1:6:115:3Vorticity Measurements in Turbulent Soap Films
H. Kellay, X. L. Wu, W. I. Goldburg, Phys. Rev. Lett., 1998

1:6:115:5Probability Density Functions of the Enstrophy Flux in Two Dimensional Grid Turbulence
H. Kellay, C. H. Bruneau, X. L. Wu, Phys. Rev. Lett., 2000

1:6:116:3Variational Principles and Self-Organization in Two-Fluid Plasmas
Z. Yoshida, S. M. Mahajan, Phys. Rev. Lett., 2002

1:6:118:1Large-scale intermittency in two-dimensional driven turbulence
Yonggun Jun, X. L. Wu, Phys. Rev. E, 2005

1:6:118:2 Quasi-Gaussian Statistics of Hydrodynamic Turbulence in 4 3 + ϵ Dimensions
Victor S. L’vov, Anna Pomyalov, Itamar Procaccia, Phys. Rev. Lett., 2002

1:6:118:5Topology of Two-Dimensional Turbulence
W. Brent Daniel, Maarten A. Rutgers, Phys. Rev. Lett., 2002

1:6:119:1Stable stationary vortices and traveling oscillatory vortices in a stenotic fluid-flow channel
David W. Pravica, Martin Bier, Robert S. Brock, Orville W. Day, Phys. Rev. E, 2005

1:7:1:4Dependence of turbulent Rayleigh-Taylor instability on initial perturbations
Guy Dimonte, Phys. Rev. E, 2004

1:7:1:16Bubble interaction model for hydrodynamic unstable mixing
Sung-Ik Sohn, Phys. Rev. E, 2007

1:7:1:20Development and validation of a turbulent-mix model for variable-density and compressible flows
Arindam Banerjee, Robert A. Gore, Malcolm J. Andrews, Phys. Rev. E, 2010

1:7:1:22Single-mode dynamics of the Rayleigh-Taylor instability at any density ratio
P. Ramaprabhu, Guy Dimonte, Phys. Rev. E, 2005

1:7:1:27Late-time quadratic growth in single-mode Rayleigh-Taylor instability
Tie Wei, Daniel Livescu, Phys. Rev. E, 2012

1:7:1:29Effect of shear on Rayleigh-Taylor mixing at small Atwood number
Bhanesh Akula, Malcolm J. Andrews, Devesh Ranjan, Phys. Rev. E, 2013

1:7:1:35Limits of the potential flow approach to the single-mode Rayleigh-Taylor problem
P. Ramaprabhu, Guy Dimonte, Yuan-Nan Young, A. C. Calder, B. Fryxell, Phys. Rev. E, 2006

1:7:1:36Growth rate of Rayleigh-Taylor turbulent mixing layers with the foliation approach
Olivier Poujade, Mathieu Peybernes, Phys. Rev. E, 2010

1:7:1:42Turbulent mixing with physical mass diffusion
Xinfeng Liu, Erwin George, Wurigen Bo, J. Glimm, Phys. Rev. E, 2006

1:7:1:43Solution to Rayleigh-Taylor instabilities: Bubbles, spikes, and their scalings
Karnig O. Mikaelian, Phys. Rev. E, 2014

1:7:1:47Rayleigh-Taylor instability with complex acceleration history
Guy Dimonte, Praveen Ramaprabhu, Malcolm Andrews, Phys. Rev. E, 2007

1:7:1:48Experimental measurements of the nonlinear Rayleigh-Taylor instability using a magnetorheological fluid
Jeremy White, Jason Oakley, Mark Anderson, Riccardo Bonazza, Phys. Rev. E, 2010

1:7:1:51Turbulent Rayleigh-Taylor instability experiments with variable acceleration
Guy Dimonte, Marilyn Schneider, Phys. Rev. E, 1996

1:7:1:55Kinetic theoretical approach to turbulence in variable-density incompressible, statistically inhomogeneous fluids
G. Hazak, Y. Elbaz, S. Zalesak, N. Wygoda, A. J. Schmitt, Phys. Rev. E, 2010

1:7:1:58Similarity-based constitutive relations for local mass fluxes in incompressible mixing layers
John D. Ramshaw, Phys. Rev. E, 2006

1:7:1:62Effects of surface tension on immiscible Rayleigh-Taylor turbulence
M. Chertkov, I. Kolokolov, V. Lebedev, Phys. Rev. E, 2005

1:7:1:64Onset of nonlinear saturation for Rayleigh-Taylor growth in the presence of a full spectrum of modes
Steven W. Haan, Phys. Rev. A, 1989

1:7:1:66Large and Small Scale Structure in Rayleigh-Taylor Mixing
Marilyn B. Schneider, Guy Dimonte, Bruce Remington, Phys. Rev. Lett., 1998

1:7:1:69Influence of scale-breaking phenomena on turbulent mixing rates
Erwin George, James Glimm, Xiaolin Li, Yuanhua Li, Xinfeng Liu, Phys. Rev. E, 2006

1:7:1:70Size distribution and energy spectrum in the mixed state induced by Rayleigh-Taylor instability
G. Hazak, Y. Elbaz, J. H. Gardner, A. L. Velikovich, A. J. Schmitt, S. T. Zalesak, Phys. Rev. E, 2006

1:7:1:71Energy transfer in Rayleigh-Taylor instability
Andrew W. Cook, Ye Zhou, Phys. Rev. E, 2002

1:7:1:85Simple model for linear and nonlinear mixing at unstable fluid interfaces with variable acceleration
John D. Ramshaw, Phys. Rev. E, 1998

1:7:1:89Formulation of a two-scale transport scheme for the turbulent mix induced by Rayleigh-Taylor and Richtmyer-Meshkov instabilities
Ye Zhou, George B. Zimmerman, Eugene W. Burke, Phys. Rev. E, 2002

1:7:1:113Rayleigh-Taylor Instability Experiments with Precise and Arbitrary Control of the Initial Interface Shape
Zhibin Huang, Antonio De Luca, Timothy J. Atherton, Matthew Bird, Charles Rosenblatt, Pierre Carlès, Phys. Rev. Lett., 2007

1:7:1:135Launched Waves on a Beam-Plasma System
C. P. DeNeef, J. H. Malmberg, T. M. O'Neil, Phys. Rev. Lett., 1973

1:7:2:8Analytical Model of Nonlinear, Single-Mode, Classical Rayleigh-Taylor Instability at Arbitrary Atwood Numbers
V. N. Goncharov, Phys. Rev. Lett., 2002

1:7:2:18Vortex model and simulations for Rayleigh-Taylor and Richtmyer-Meshkov instabilities
Sung-Ik Sohn, Phys. Rev. E, 2004

1:7:2:20Multiscale character of the nonlinear coherent dynamics in the Rayleigh-Taylor instability
S. I. Abarzhi, K. Nishihara, R. Rosner, Phys. Rev. E, 2006

1:7:2:25Analytic approach to nonlinear hydrodynamic instabilities driven by time-dependent accelerations
Karnig O. Mikaelian, Phys. Rev. E, 2010

1:7:2:28Growth rate of the linear Richtmyer-Meshkov instability when a shock is reflected
J. G. Wouchuk, Phys. Rev. E, 2001

1:7:2:29Limitations and failures of the Layzer model for hydrodynamic instabilities
Karnig O. Mikaelian, Phys. Rev. E, 2008

1:7:2:32Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers
Karnig O. Mikaelian, Phys. Rev. E, 2003

1:7:2:35Analytic Approach to Nonlinear Rayleigh-Taylor and Richtmyer-Meshkov Instabilities
Karnig O. Mikaelian, Phys. Rev. Lett., 1998

1:7:2:37Simple potential-flow model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for all density ratios
Sung-Ik Sohn, Phys. Rev. E, 2003

1:7:2:39Analytical Solutions of Layzer-Type Approach to Unstable Interfacial Fluid Mixing
Qiang Zhang, Phys. Rev. Lett., 1998

1:7:2:40Density dependence of a Zufiria-type model for Rayleigh–Taylor bubble fronts
Sung-Ik Sohn, Phys. Rev. E, 2004

1:7:2:43Effects of temporal density variation and convergent geometry on nonlinear bubble evolution in classical Rayleigh-Taylor instability
V. N. Goncharov, D. Li, Phys. Rev. E, 2005

1:7:2:44Quantitative modeling of bubble competition in Richtmyer-Meshkov instability
Sung-Ik Sohn, Phys. Rev. E, 2008

1:7:2:47Renormalization group approach to interfacial motion in incompressible Richtmyer-Meshkov instability
Chihiro Matsuoka, Phys. Rev. E, 2010

1:7:2:50Effects of surface tension and viscosity on the growth rates of Rayleigh-Taylor and Richtmyer-Meshkov instabilities
Sung-Ik Sohn, Phys. Rev. E, 2009

1:7:2:55Study of Nonlinear Evolution of Single-Mode and Two-Bubble Interaction under Richtmyer-Meshkov Instability
O. Sadot, L. Erez, U. Alon, D. Oron, L. A. Levin, G. Erez, G. Ben-Dor, D. Shvarts, Phys. Rev. Lett., 1998

1:7:2:58Impulsive model for the Richtmyer-Meshkov instability
Marc Vandenboomgaerde, Claude Mügler, Serge Gauthier, Phys. Rev. E, 1998

1:7:2:60Normal velocity freeze-out of the Richtmyer-Meshkov instability when a shock is reflected
J. G. Wouchuk, K. Nishihara, Phys. Rev. E, 2004

1:7:2:63Nonlinear evolution of an interface in the Richtmyer-Meshkov instability
Chihiro Matsuoka, Katsunobu Nishihara, Yuko Fukuda, Phys. Rev. E, 2003

1:7:2:64Nonlinear hydrodynamic interface instabilities driven by time-dependent accelerations
Karnig O. Mikaelian, Phys. Rev. E, 2009

1:7:2:68Investigation of the Richtmyer-Meshkov Instability with Stereolithographed Interfaces
Christian Mariani, Marc Vandenboomgaerde, Georges Jourdan, Denis Souffland, Lazhar Houas, Phys. Rev. Lett., 2008

1:7:2:70Shock Ignition of Thermonuclear Fuel with High Areal Density
R. Betti, C. D. Zhou, K. S. Anderson, L. J. Perkins, W. Theobald, A. A. Solodov, Phys. Rev. Lett., 2007

1:7:2:77High initial amplitude and high Mach number effects on the evolution of the single-mode Richtmyer-Meshkov instability
A. Rikanati, D. Oron, O. Sadot, D. Shvarts, Phys. Rev. E, 2003

1:7:2:78What is certain and what is not so certain in our knowledge of Rayleigh-Taylor mixing?
S. I. Anisimov, R. P. Drake, S. Gauthier, E. E. Meshkov, S. I. Abarzhi, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013

1:7:2:81Vortex model for the nonlinear evolution of the multimode Richtmyer-Meshkov instability at low Atwood numbers
A. Rikanati, U. Alon, D. Shvarts, Phys. Rev. E, 1998

1:7:2:82Lagrangian Formalism for the Rayleigh-Taylor Instability
G. Hazak, Phys. Rev. Lett., 1996

1:7:2:86Model of Rayleigh-Taylor Instability
Hassan Aref, Grétar Tryggvason, Phys. Rev. Lett., 1989

1:7:2:94Nonlinear three-dimensional Rayleigh-Taylor instability
S. I. Abarzhi, Phys. Rev. E, 1999

1:7:2:103Nonlinear Evolution of the Rayleigh-Taylor Instability of a Thin Layer
Edward Ott, Phys. Rev. Lett., 1972

1:7:2:107Numerical simulations of single-mode Richtmyer-Meshkov experiments
Claude Mügler, Serge Gauthier, Phys. Rev. E, 1998

1:7:2:110Two-Dimensional Simulation of Fluid Instability in Laser-Fusion Pellets
J. D. Lindl, W. C. Mead, Phys. Rev. Lett., 1975

1:7:2:116Richtmyer-Meshkov experiments on the Nova laser at high compression
Guy Dimonte, Bruce Remington, Phys. Rev. Lett., 1993

1:7:2:118Nonlinear evolution of unstable fluid interface
S. I. Abarzhi, Phys. Rev. E, 2002

1:7:2:145Comment on "Quantitative Theory of Richtmyer-Meshkov Instability"
Karnig O. Mikaelian, Phys. Rev. Lett., 1994

1:7:2:159Normal Modes and Symmetries of the Rayleigh-Taylor Instability in Stratified Fluids
Karnig O. Mikaelian, Phys. Rev. Lett., 1982

1:7:3:8The Riemann problem for fluid flow of real materials
Ralph Menikoff, Bradley J. Plohr, Rev. Mod. Phys., 1989

1:7:3:138Stationary Rarefaction Wave in Magnetized Hall Plasmas
A. S. Chuvatin, A. A. Ivanov, L. I. Rudakov, Phys. Rev. Lett., 2004

1:7:3:141Scattering of Sound by Sound in the Vicinity of the Liquid-Vapor Critical Point
N. Mujica, R. Wunenburger, S. Fauve, Phys. Rev. Lett., 2003

1:7:4:5Vorticity generation by the instantaneous release of energy near a reflective boundary
P. Moresco, T. E. Harris, V. Jodoin, Phys. Rev. E, 2014

1:7:4:6Computational parametric study of a Richtmyer-Meshkov instability for an inclined interface
Jacob A. McFarland, Jeffrey A. Greenough, Devesh Ranjan, Phys. Rev. E, 2011

1:7:4:27Distortion of a Spherical Gaseous Interface Accelerated by a Plane Shock Wave
Guillaume Layes, Georges Jourdan, Lazhar Houas, Phys. Rev. Lett., 2003

1:7:4:29Experimental Investigation of Primary and Secondary Features in High-Mach-Number Shock-Bubble Interaction
Devesh Ranjan, John Niederhaus, Bradley Motl, Mark Anderson, Jason Oakley, Riccardo Bonazza, Phys. Rev. Lett., 2007

1:7:4:32Experimental Investigation of a Strongly Shocked Gas Bubble
Devesh Ranjan, Mark Anderson, Jason Oakley, Riccardo Bonazza, Phys. Rev. Lett., 2005

1:7:4:34Vortex paradigm for shock-accelerated density-stratified interfaces
John F. Hawley, Norman J. Zabusky, Phys. Rev. Lett., 1989

1:7:4:61On Shock-Wave Phenomena; Refraction of Shock Waves at a Gaseous Interface
H. Polachek, R. J. Seeger, Phys. Rev., 1951

1:7:5:25Onset of turbulence in accelerated high-Reynolds-number flow
Ye Zhou, Harry F. Robey, Alfred C. Buckingham, Phys. Rev. E, 2003

1:7:5:27Validation of an Instability Growth Model Using Particle Image Velocimetry Measurements
K. Prestridge, P. Vorobieff, P. M. Rightley, R. F. Benjamin, Phys. Rev. Lett., 2000

1:7:5:31Scaling evolution in shock-induced transition to turbulence
P. Vorobieff, N.-G. Mohamed, C. Tomkins, C. Goodenough, M. Marr-Lyon, R. F. Benjamin, Phys. Rev. E, 2003

1:7:5:32Instability growth patterns of a shock-accelerated thin fluid layer
J. W. Jacobs, D. L. Klein, D. G. Jenkins, R. F. Benjamin, Phys. Rev. Lett., 1993

1:7:5:33Power-Law Spectra of Incipient Gas-Curtain Turbulence
Peter Vorobieff, Paul M. Rightley, Robert F. Benjamin, Phys. Rev. Lett., 1998

1:7:6:7Evolution of length scales and statistics of Richtmyer-Meshkov instability from direct numerical simulations
V. K. Tritschler, M. Zubel, S. Hickel, N. A. Adams, Phys. Rev. E, 2014

1:7:6:9Energy transfer in the Richtmyer-Meshkov instability
Ben Thornber, Ye Zhou, Phys. Rev. E, 2012

1:7:6:29Richtmyer-Meshkov Instability in the Turbulent Regime
Guy Dimonte, C. Eric Frerking, Marilyn Schneider, Phys. Rev. Lett., 1995

1:7:7:4Local dissipation scales in two-dimensional Rayleigh-Taylor turbulence
Xiang Qiu, Yu-Lu Liu, Quan Zhou, Phys. Rev. E, 2014

1:7:7:5Kolmogorov scaling and intermittency in Rayleigh-Taylor turbulence
G. Boffetta, A. Mazzino, S. Musacchio, L. Vozella, Phys. Rev. E, 2009

1:7:7:6Evolution of a double-front Rayleigh-Taylor system using a graphics-processing-unit-based high-resolution thermal lattice-Boltzmann model
P. Ripesi, L. Biferale, S. F. Schifano, R. Tripiccione, Phys. Rev. E, 2014

1:7:7:10Second-order closure in stratified turbulence: Simulations and modeling of bulk and entrainment regions
L. Biferale, F. Mantovani, M. Sbragaglia, A. Scagliarini, F. Toschi, R. Tripiccione, Phys. Rev. E, 2011

1:7:7:12Numerical simulations of Rayleigh-Taylor front evolution in turbulent stratified fluids
L. Biferale, F. Mantovani, F. Pozzati, M. Sbragaglia, A. Scagliarini, F. Schifano, F. Toschi, R. Tripiccione, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011

1:7:7:13Anomalous diffusion in confined turbulent convection
G. Boffetta, F. De Lillo, S. Musacchio, Phys. Rev. E, 2012

1:7:7:14Effects of polymer additives on Rayleigh-Taylor turbulence
G. Boffetta, A. Mazzino, S. Musacchio, Phys. Rev. E, 2011

1:7:7:16Rayleigh-Taylor Turbulence in Two Dimensions
Antonio Celani, Andrea Mazzino, Lara Vozella, Phys. Rev. Lett., 2006

1:7:7:17Anomalous scaling of three-dimensional Rayleigh-Taylor turbulence
Takeshi Matsumoto, Phys. Rev. E, 2009

1:7:7:20Nonlinear Diffusion Model for Rayleigh-Taylor Mixing
G. Boffetta, F. De Lillo, S. Musacchio, Phys. Rev. Lett., 2010

1:7:7:23Suppression of the Rayleigh-Taylor Instability due to Self-Radiation in a Multiablation Target
Shinsuke Fujioka, Atsushi Sunahara, Katsunobu Nishihara, Naofumi Ohnishi, Tomoyuki Johzaki, Hiroyuki Shiraga, Keisuke Shigemori, Mitsuo Nakai, Tadashi Ikegawa, Masakatsu Murakami, Keiji Nagai, Takayoshi Norimatsu, Hiroshi Azechi, Tatsuhiko Yamanaka, Phys. Rev. Lett., 2004

1:7:7:25Rayleigh-Taylor Turbulence is Nothing Like Kolmogorov Turbulence in the Self-Similar Regime
Olivier Poujade, Phys. Rev. Lett., 2006

1:7:7:33Implications of the Monin-Yaglom Relation for Rayleigh-Taylor Turbulence
Olivier Soulard, Phys. Rev. Lett., 2012

1:7:7:47Turbulence in binary Bose-Einstein condensates generated by highly nonlinear Rayleigh-Taylor and Kelvin-Helmholtz instabilities
D. Kobyakov, A. Bezett, E. Lundh, M. Marklund, V. Bychkov, Phys. Rev. A, 2014

1:7:8:1Rayleigh-Taylor linear growth at an interface between an elastoplastic solid and a viscous liquid
A. R. Piriz, Y. B. Sun, N. A. Tahir, Phys. Rev. E, 2014

1:7:8:2Linear analysis of incompressible Rayleigh-Taylor instability in solids
A. R. Piriz, J. J. López Cela, N. A. Tahir, Phys. Rev. E, 2009

1:7:8:3Rayleigh-Taylor instability in elastic solids
A. R. Piriz, J. J. López Cela, O. D. Cortázar, N. A. Tahir, D. H. H. Hoffmann, Phys. Rev. E, 2005

1:7:8:4Rayleigh-Taylor stability boundary at solid-liquid interfaces
A. R. Piriz, Y. B. Sun, N. A. Tahir, Phys. Rev. E, 2013

1:7:8:5Richtmyer-Meshkov instability in elastic-plastic media
A. R. Piriz, J. J. López Cela, N. A. Tahir, D. H. H. Hoffmann, Phys. Rev. E, 2008

1:7:8:6Richtmyer-Meshkov flow in elastic solids
A. R. Piriz, J. J. López Cela, N. A. Tahir, D. H. H. Hoffmann, Phys. Rev. E, 2006

1:7:8:7Shock-induced interface instability in viscous fluids and metals
Karnig O. Mikaelian, Phys. Rev. E, 2013

1:7:8:8Fastest growing linear Rayleigh-Taylor modes at solid∕fluid and solid∕solid interfaces
Guillermo Terrones, Phys. Rev. E, 2005

1:7:8:9Harmonic analysis of irradiation asymmetry for cylindrical implosions driven by high-frequency rotating ion beams
A. Bret, A. R. Piriz, N. Tahir, Phys. Rev. E, 2012

1:7:8:11Linearized Richtmyer-Meshkov flow analysis for impulsively accelerated incompressible solids
A. López Ortega, D. J. Hill, D. I. Pullin, D. I. Meiron, Phys. Rev. E, 2010

1:7:8:12Effect of viscosity on Rayleigh-Taylor and Richtmyer-Meshkov instabilities
Karnig O. Mikaelian, Phys. Rev. E, 1993

1:7:8:13Metallization of hydrogen using heavy-ion-beam implosion of multilayered cylindrical targets
N. A. Tahir, D. H. H. Hoffmann, A. Kozyreva, A. Tauschwitz, A. Shutov, J. A. Maruhn, P. Spiller, U. Neuner, J. Jacoby, M. Roth, R. Bock, H. Juranek, R. Redmer, Phys. Rev. E, 2000

1:7:8:15Implosion of multilayered cylindrical targets driven by intense heavy ion beams
A. R. Piriz, R. F. Portugues, N. A. Tahir, D. H. H. Hoffmann, Phys. Rev. E, 2002

1:7:8:16Shock-wave viscosity measurement
Gregory H. Miller, Thomas J. Ahrens, Rev. Mod. Phys., 1991

1:7:8:20Generation of a hollow ion beam: Calculation of the rotation frequency required to accommodate symmetry constraint
A. R. Piriz, N. A. Tahir, D. H. H. Hoffmann, M. Temporal, Phys. Rev. E, 2003

1:7:8:26Influence of the equation of state on the compression and heating of hydrogen
N. A. Tahir, H. Juranek, A. Shutov, R. Redmer, A. R. Piriz, M. Temporal, D. Varentsov, S. Udrea, D. H. H. Hoffmann, C. Deutsch, I. Lomonosov, V. E. Fortov, Phys. Rev. B, 2003

1:7:8:28Rayleigh-Taylor Instability in Elastic-Plastic Materials
Guy Dimonte, Robert Gore, Marilyn Schneider, Phys. Rev. Lett., 1998

1:7:8:30Use of the Richtmyer-Meshkov Instability to Infer Yield Stress at High-Energy Densities
Guy Dimonte, G. Terrones, F. J. Cherne, T. C. Germann, V. Dupont, K. Kadau, W. T. Buttler, D. M. Oro, C. Morris, D. L. Preston, Phys. Rev. Lett., 2011

1:7:8:35Rayleigh-Taylor instability in finite-thickness fluids with viscosity and surface tension
Karnig O. Mikaelian, Phys. Rev. E, 1996

1:7:8:44Viscous Rayleigh-Taylor Instability Experiments at High Pressure and Strain Rate
Hye-Sook Park, K. T. Lorenz, R. M. Cavallo, S. M. Pollaine, S. T. Prisbrey, R. E. Rudd, R. C. Becker, J. V. Bernier, B. A. Remington, Phys. Rev. Lett., 2010

1:7:8:45Comment on “Viscous Rayleigh-Taylor Instability Experiments at High Pressure and Strain Rate”
A. R. Piriz, J. J. López Cela, N. A. Tahir, Phys. Rev. Lett., 2010

1:7:8:46Influence of the equation of state of matter and ion beam characteristics on target heating and compression
N. A. Tahir, A. Shutov, D. Varentsov, P. Spiller, S. Udrea, D. H. H. Hoffmann, I. V. Lomonosov, J. Wieser, M. Kirk, R. Piriz, V. E. Fortov, R. Bock, Phys. Rev. ST Accel. Beams, 2003

1:7:9:4Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability
Oleg Schilling, Marco Latini, Wai Sun Don, Phys. Rev. E, 2007

1:7:9:21Drive Asymmetry and the Origin of Turbulence in an ICF Implosion
V. A. Thomas, R. J. Kares, Phys. Rev. Lett., 2012

1:7:9:23 Erratum: Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability [Phys. Rev. E 76 , 026319 (2007)]
Oleg Schilling, Marco Latini, Wai Sun Don, Phys. Rev. E, 2012

1:7:9:30Analytical Model for Large-Scale Turbulence
V. M. Canuto, I. Goldman, Phys. Rev. Lett., 1985

1:7:11:39Focusing of Noncircular Self-Similar Shock Waves
S. I. Betelu, D. G. Aronson, Phys. Rev. Lett., 2001

1:7:11:58Strong Ionizing Shock Waves
ROBERT A. GROSS, Rev. Mod. Phys., 1965

1:7:11:78Structure of a Shock Front in Argon
John W. Bond, Phys. Rev., 1957

1:7:13:6Long-time simulations of the Kelvin-Helmholtz instability using an adaptive vortex method
Sung-Ik Sohn, Daeki Yoon, Woonjae Hwang, Phys. Rev. E, 2010

1:7:13:9Turbulence driven by singularities in vortex sheet dynamics
Malek Abid, Alberto Verga, Phys. Rev. E, 2011

1:7:13:46Time-dependent geometry and energy distribution in a spiral vortex layer
J. R. Angilella, J. C. Vassilicos, Phys. Rev. E, 1999

1:7:15:1Analytical linear theory for the interaction of a planar shock wave with an isotropic turbulent vorticity field
J. G. Wouchuk, C. Huete Ruiz de Lira, A. L. Velikovich, Phys. Rev. E, 2009

1:7:15:3Analytical linear theory for the interaction of a planar shock wave with a two- or three-dimensional random isotropic density field
C. Huete Ruiz de Lira, A. L. Velikovich, J. G. Wouchuk, Phys. Rev. E, 2011

1:7:15:4Analytical linear theory for the interaction of a planar shock wave with a two- or three-dimensional random isotropic acoustic wave field
C. Huete, J. G. Wouchuk, A. L. Velikovich, Phys. Rev. E, 2012

1:7:15:6Analytical asymptotic velocities in linear Richtmyer-Meshkov-like flows
F. Cobos Campos, J. G. Wouchuk, Phys. Rev. E, 2014

1:7:15:7Effect of shock-generated turbulence on the Hugoniot jump conditions
A. L. Velikovich, C. Huete, J. G. Wouchuk, Phys. Rev. E, 2012

1:7:15:9Shock velocity increase due to a heterogeneity produced by a two-gas layer
Déborah Elbaz, Georges Jourdan, Lazhar Houas, Stéphane Jaouen, Philippe Ballereau, Frédéric Dias, Benoit Canaud, Phys. Rev. E, 2012

1:7:15:19Velocity and Timing of Multiple Spherically Converging Shock Waves in Liquid Deuterium
T. R. Boehly, V. N. Goncharov, W. Seka, M. A. Barrios, P. M. Celliers, D. G. Hicks, G. W. Collins, S. X. Hu, J. A. Marozas, D. D. Meyerhofer, Phys. Rev. Lett., 2011

1:7:15:48Stability of a Shock-Decelerated Ablation Front
Y. Aglitskiy, M. Karasik, A. L. Velikovich, V. Serlin, J. L. Weaver, A. J. Schmitt, S. P. Obenschain, N. Metzler, S. T. Zalesak, J. H. Gardner, J. Oh, E. C. Harding, Phys. Rev. Lett., 2009

1:7:16:3Acceleration- and deceleration-phase nonlinear Rayleigh-Taylor growth at spherical interfaces
Daniel S. Clark, Max Tabak, Phys. Rev. E, 2005

1:7:16:11Nonlinear Rayleigh-Taylor growth in converging geometry
Daniel S. Clark, Max Tabak, Phys. Rev. E, 2005

1:7:16:13Rayleigh-Taylor and Richtmyer-Meshkov instabilities and mixing in stratified spherical shells
Karnig O. Mikaelian, Phys. Rev. A, 1990

1:7:16:19Measurement of Feedthrough and Instability Growth in Radiation-Driven Cylindrical Implosions
Warren W. Hsing, Nelson M. Hoffman, Phys. Rev. Lett., 1997

1:7:16:24Measurements of Magneto-Rayleigh-Taylor Instability Growth during the Implosion of Initially Solid Al Tubes Driven by the 20-MA, 100-ns Z Facility
D. B. Sinars, S. A. Slutz, M. C. Herrmann, R. D. McBride, M. E. Cuneo, K. J. Peterson, R. A. Vesey, C. Nakhleh, B. E. Blue, K. Killebrew, D. Schroen, K. Tomlinson, A. D. Edens, M. R. Lopez, I. C. Smith, J. Shores, V. Bigman, G. R. Bennett, B. W. Atherton, M. Savage, W. A. Stygar, G. T. Leifeste, J. L. Porter, Phys. Rev. Lett., 2010

1:7:16:28Rayleigh-Taylor instabilities in stratified fluids
Karnig O. Mikaelian, Phys. Rev. A, 1982

1:7:16:29Progress toward Ignition with Noncryogenic Double-Shell Capsules
W. S. Varnum, N. D. Delamater, S. C. Evans, P. L. Gobby, J. E. Moore, J. M. Wallace, R. G. Watt, J. D. Colvin, R. Turner, V. Glebov, J. Soures, C. Stoeckl, Phys. Rev. Lett., 2000

1:7:16:30Rayleigh-Taylor Instability Experiments Examining Feedthrough Growth in an Incompressible, Convergent Geometry
S. T. Weir, E. A. Chandler, B. T. Goodwin, Phys. Rev. Lett., 1998

1:7:16:33Nonlinear free-surface Rayleigh-Taylor instability
H. J. Kull, Phys. Rev. A, 1986

1:7:16:35Three-dimensional Rayleigh-Taylor instability of spherical systems
H. Sakagami, K. Nishihara, Phys. Rev. Lett., 1990

1:7:16:38Convergent Rayleigh-Taylor Experiments on the Nova Laser
C. Cherfils, S. G. Glendinning, D. Galmiche, B. A. Remington, A. L. Richard, S. Haan, R. Wallace, N. Dague, D. H. Kalantar, Phys. Rev. Lett., 1999

1:7:16:39Simple model for linear and nonlinear mixing at unstable fluid interfaces in spherical geometry
John D. Ramshaw, Phys. Rev. E, 1999

1:7:16:43Saturation of the Rayleigh-Taylor Growth of Broad-Bandwidth Laser-Imposed Nonuniformities in Planar Targets
V. A. Smalyuk, T. R. Boehly, D. K. Bradley, V. N. Goncharov, J. A. Delettrez, J. P. Knauer, D. D. Meyerhofer, D. Oron, D. Shvarts, Phys. Rev. Lett., 1998

1:7:16:46Hydrodynamic instabilities in an imploding cylindrical plasma shell
S. J. Han, B. R. Suydam, Phys. Rev. A, 1982

1:7:16:47Stability and mix in spherical geometry
Karnig O. Mikaelian, Phys. Rev. Lett., 1990

1:7:16:48Linear Stability Analysis of Laser-Driven Spherical Implosions
J. N. Shiau, E. B. Goldman, C. I. Weng, Phys. Rev. Lett., 1974

1:7:16:52Comment on ‘‘Rayleigh-Taylor instability in spherical geometry’’
Karnig O. Mikaelian, Phys. Rev. A, 1987

1:7:17:1:12Laser-driven fusion
Keith A. Brueckner, Siebe Jorna, Rev. Mod. Phys., 1974

1:7:17:1:19Linear Perturbation Amplification in Self-Similar Ablation Flows of Inertial Confinement Fusion
F. Abéguilé, C. Boudesocque-Dubois, J.-M. Clarisse, S. Gauthier, Y. Saillard, Phys. Rev. Lett., 2006

1:7:17:1:27Measurement and Simulation of Laser Imprinting and Consequent Rayleigh-Taylor Growth
R. J. Taylor, J. P. Dahlburg, A. Iwase, J. H. Gardner, D. E. Fyfe, O. Willi, Phys. Rev. Lett., 1996

1:7:17:2:1Growth rate and the cutoff wavelength of the Darrieus-Landau instability in laser ablation
Mikhail Modestov, Vitaly Bychkov, Damir Valiev, Mattias Marklund, Phys. Rev. E, 2009

1:7:17:2:7Stability of a planar flame front in the slow-combustion regime
M. A. Liberman, V. V. Bychkov, S. M. Golberg, D. L. Book, Phys. Rev. E, 1994

1:7:17:2:13Hydrodynamic stability of cosmological quark-hadron phase transitions
P. Chris Fragile, Peter Anninos, Phys. Rev. D, 2003

1:7:17:2:14Test of Thermal Transport Models through Dynamic Overpressure Stabilization of Ablation-Front Perturbation Growth in Laser-Driven CH Foils
O. V. Gotchev, V. N. Goncharov, J. P. Knauer, T. R. Boehly, T. J. B. Collins, R. Epstein, P. A. Jaanimagi, D. D. Meyerhofer, Phys. Rev. Lett., 2006

1:7:17:2:17Instability and subsequent evolution of electroweak bubbles
Marc Kamionkowski, Katherine Freese, Phys. Rev. Lett., 1992

1:7:17:2:18Deflagration instability in the quark-hadron phase transition
Bennett Link, Phys. Rev. Lett., 1992

1:7:17:3:2Rayleigh-Taylor Instability and Laser-Pellet Fusion
Stephen E. Bodner, Phys. Rev. Lett., 1974

1:7:17:3:6Bubble Acceleration in the Ablative Rayleigh-Taylor Instability
R. Betti, J. Sanz, Phys. Rev. Lett., 2006

1:7:17:3:9Self-consistent analytical model of the Rayleigh-Taylor instability in inertial confinement fusion
J. Sanz, Phys. Rev. E, 1996

1:7:17:3:11Nonlinear Theory of the Ablative Rayleigh-Taylor Instability
J. Sanz, J. Ramírez, R. Ramis, R. Betti, R. P. J. Town, Phys. Rev. Lett., 2002

1:7:17:4:1Observation of the stabilizing effect of a laminated ablator on the ablative Rayleigh-Taylor instability
L. Masse, A. Casner, D. Galmiche, G. Huser, S. Liberatore, M. Theobald, Phys. Rev. E, 2011

1:7:17:4:4Theory of the Ablative Richtmyer-Meshkov Instability
V. N. Goncharov, Phys. Rev. Lett., 1999

1:7:17:4:6Stabilizing Effect of Anisotropic Thermal Diffusion on the Ablative Rayleigh-Taylor Instability
L. Masse, Phys. Rev. Lett., 2007

1:7:17:4:7Rayleigh-Taylor Growth Measurements in the Acceleration Phase of Spherical Implosions on OMEGA
V. A. Smalyuk, S. X. Hu, J. D. Hager, J. A. Delettrez, D. D. Meyerhofer, T. C. Sangster, D. Shvarts, Phys. Rev. Lett., 2009

1:7:17:5:1Dynamic stabilization of Rayleigh-Taylor instability in Newtonian fluids
A. R. Piriz, G. Rodriguez Prieto, I. Muñoz Díaz, J. J. López Cela, N. A. Tahir, Phys. Rev. E, 2010

1:7:17:5:3Self-consistent Analytical Model of the Rayleigh-Taylor Instability in Inertial Confinement Fusion
J. Sanz, Phys. Rev. Lett., 1994

1:7:17:5:4Stability analysis of unsteady ablation fronts
R. Betti, R. L. McCrory, C. P. Verdon, Phys. Rev. Lett., 1993

1:7:18:43Numerical viscosity and resolution of high-order weighted essentially nonoscillatory schemes for compressible flows with high Reynolds numbers
Yong-Tao Zhang, Jing Shi, Chi-Wang Shu, Ye Zhou, Phys. Rev. E, 2003

1:7:19:2Estimating the effective Reynolds number in implicit large-eddy simulation
Ye Zhou, Fernando F. Grinstein, Adam J. Wachtor, Brian M. Haines, Phys. Rev. E, 2014

1:7:21:44Model for Shock Wave Chaos
Aslan R. Kasimov, Luiz M. Faria, Rodolfo R. Rosales, Phys. Rev. Lett., 2013

1:7:22:1Vortex core dynamics and singularity formations in incompressible Richtmyer-Meshkov instability
Chihiro Matsuoka, Katsunobu Nishihara, Phys. Rev. E, 2006

1:7:22:3Analytical and numerical study on a vortex sheet in incompressible Richtmyer-Meshkov instability in cylindrical geometry
Chihiro Matsuoka, Katsunobu Nishihara, Phys. Rev. E, 2006

1:7:22:4Fully nonlinear evolution of a cylindrical vortex sheet in incompressible Richtmyer–Meshkov instability
Chihiro Matsuoka, Katsunobu Nishihara, Phys. Rev. E, 2006

1:7:22:10 Erratum: Vortex core dynamics and singularity formations in incompressible Richtmyer-Meshkov instability [Phys. Rev. E 73 , 026304 (2006)]
Chihiro Matsuoka, Katsunobu Nishihara, Phys. Rev. E, 2006

1:7:22:13Scaling Laws for Unstable Interfaces Driven by Strong Shocks in Cylindrical Geometry
Qiang Zhang, Mary Jane Graham, Phys. Rev. Lett., 1997

1:7:22:18Postponement of Saturation of the Richtmyer-Meshkov Instability in a Convergent Geometry
J. R. Fincke, N. E. Lanier, S. H. Batha, R. M. Hueckstaedt, G. R. Magelssen, S. D. Rothman, K. W. Parker, C. J. Horsfield, Phys. Rev. Lett., 2004

1:7:22:22 Erratum: Nonlinear evolution of an interface in the Richtmyer-Meshkov instability [Phys. Rev. E 67 , 036301 (2003)]
Chihiro Matsuoka, Katsunobu Nishihara, Yuko Fukuda, Phys. Rev. E, 2003

1:7:23:1Spontaneous acoustic emission of a corrugated shock wave in the presence of a reflecting surface
J. G. Wouchuk, J. López Cavada, Phys. Rev. E, 2004

1:7:23:3Initial-value-problem solution for isolated rippled shock fronts in arbitrary fluid media
Jason W. Bates, Phys. Rev. E, 2004

1:7:23:10Propagation of a Rippled Shock Wave Driven by Nonuniform Laser Ablation
R. Ishizaki, K. Nishihara, Phys. Rev. Lett., 1997

1:7:23:11Phase transitions under shock-wave loading
G. E. Duvall, R. A. Graham, Rev. Mod. Phys., 1977

1:7:23:14Interface imprinting by a rippled shock using an intense laser
J. O. Kane, H. F. Robey, B. A. Remington, R. P. Drake, J. Knauer, D. D. Ryutov, H. Louis, R. Teyssier, O. Hurricane, D. Arnett, R. Rosner, A. Calder, Phys. Rev. E, 2001

1:7:23:15The D'yakov-Kontorovich Instability of Shock Waves in Real Gases
Jason W. Bates, David C. Montgomery, Phys. Rev. Lett., 2000

1:7:23:20Stability of Plane Shock Waves
G. R. Fowles, G. W. Swan, Phys. Rev. Lett., 1973

1:7:23:25Dynamic Behavior of Rippled Shock Waves and Subsequently Induced Areal-Density-Perturbation Growth in Laser-Irradiated Foils
T. Endo, K. Shigemori, H. Azechi, A. Nishiguchi, K. Mima, M. Sato, M. Nakai, S. Nakaji, N. Miyanaga, S. Matsuoka, A. Ando, K. A. Tanaka, S. Nakai, Phys. Rev. Lett., 1995

1:7:23:33Model of hydrodynamic perturbation growth in the start-up phase of laser implosion
R. Ishizaki, K. Nishihara, Phys. Rev. E, 1998

1:7:23:35Generation of Ultrahigh-Velocity Ionizing Shocks with Petawatt-Class Laser Pulses
P. M. Nilson, S. P. D. Mangles, L. Willingale, M. C. Kaluza, A. G. R. Thomas, M. Tatarakis, Z. Najmudin, R. J. Clarke, K. L. Lancaster, S. Karsch, J. Schreiber, R. G. Evans, A. E. Dangor, K. Krushelnick, Phys. Rev. Lett., 2009

1:7:24:15Relativistic Hydrodynamics in One Dimension
Montgomery H. Johnson, Christopher F. McKee, Phys. Rev. D, 1971

1:7:25:1Laminar, cellular, transverse, and multiheaded pulsating detonations in condensed phase energetic materials from molecular dynamics simulations
Vasily V. Zhakhovsky, Mikalai M. Budzevich, Aaron C. Landerville, Ivan I. Oleynik, Carter T. White, Phys. Rev. E, 2014

1:7:25:2Interaction potential for atomic simulations of conventional high explosives
Andrew J. Heim, Niels Grønbech-Jensen, Edward M. Kober, Jerome J. Erpenbeck, Timothy C. Germann, Phys. Rev. E, 2008

1:7:25:3Influence of interatomic bonding potentials on detonation properties
Andrew J. Heim, Niels Grønbech-Jensen, Timothy C. Germann, Brad Lee Holian, Edward M. Kober, Peter S. Lomdahl, Phys. Rev. E, 2007

1:7:25:4Molecular dynamics simulations of detonation instability
Andrew J. Heim, Niels Grønbech-Jensen, Edward M. Kober, Timothy C. Germann, Phys. Rev. E, 2008

1:7:25:8Detonations at nanometer resolution using molecular dynamics
D. W. Brenner, D. H. Robertson, M. L. Elert, C. T. White, Phys. Rev. Lett., 1993

1:7:25:9Molecular-dynamics study of detonation. I. A comparison with hydrodynamic predictions
Betsy M. Rice, William Mattson, John Grosh, S. F. Trevino, Phys. Rev. E, 1996

1:7:25:12Molecular-dynamics study of detonation. II. The reaction mechanism
Betsy M. Rice, William Mattson, John Grosh, S. F. Trevino, Phys. Rev. E, 1996

1:7:25:13Molecular dynamics of detonation. I. Equation of state and Hugoniot curve for a simple reactive fluid
Jerome J. Erpenbeck, Phys. Rev. A, 1992

1:7:25:17Detonations at Nanometer Resolution Using Molecular Dynamics
D. W. Brenner, D. H. Robertson, M L. Elert, C. T. White, Phys. Rev. Lett., 1996

1:7:25:21 Erratum: Atomistic Mechanism for Hot Spot Initiation [Phys. Rev. Lett.PRLTAO0031-9007 89 , 285501 (2002)]
Brad Lee Holian, Timothy C. Germann, Jean-Bernard Maillet, Carter T. White, Phys. Rev. Lett., 2003

1:7:25:23Split shock waves from molecular dynamics
D. H. Robertson, D. W. Brenner, C. T. White, Phys. Rev. Lett., 1991

1:7:25:28Evolution of Shock-Induced Orientation-Dependent Metastable States in Crystalline Aluminum
Mikalai M. Budzevich, Vasily V. Zhakhovsky, Carter T. White, Ivan I. Oleynik, Phys. Rev. Lett., 2012

1:7:25:35Two-Zone Elastic-Plastic Single Shock Waves in Solids
Vasily V. Zhakhovsky, Mikalai M. Budzevich, Nail A. Inogamov, Ivan I. Oleynik, Carter T. White, Phys. Rev. Lett., 2011

1:7:26:28The Diffraction of Strong Shock Waves
Wayland Griffith, David E. Brickl, Phys. Rev., 1953

1:7:27:3:5Plasma Response to Strongly Sheared Flow
W. E. Amatucci, D. N. Walker, G. Ganguli, J. A. Antoniades, D. Duncan, J. H. Bowles, V. Gavrishchaka, M. E. Koepke, Phys. Rev. Lett., 1996

1:7:31:1Shock-induced phase transition in systems of hard spheres with internal degrees of freedom
Shigeru Taniguchi, Andrea Mentrelli, Nanrong Zhao, Tommaso Ruggeri, Masaru Sugiyama, Phys. Rev. E, 2010

1:7:31:3Prediction and simulation of compressive shocks with lower perturbed density for increasing shock strength in real gases
Shigeru Taniguchi, Andrea Mentrelli, Tommaso Ruggeri, Masaru Sugiyama, Nanrong Zhao, Phys. Rev. E, 2010

1:7:31:12Molecular-dynamics study of melting on the shock Hugoniot of Al
Ji-Wook Jeong, In-Ho Lee, K. J. Chang, Phys. Rev. B, 1999

1:7:31:22Acoustic Velocities and Phase Transitions in Molybdenum under Strong Shock Compression
R. S. Hixson, D. A. Boness, J. W. Shaner, J. A. Moriarty, Phys. Rev. Lett., 1989

1:7:31:25 High-temperature phase diagram of the fullerene C 60
L. Mederos, G. Navascués, Phys. Rev. B, 1994

1:7:31:27Shock Compression and the Melting Curve for Argon
Marvin Ross, Phys. Rev. A, 1973

1:7:32:20Blast-wave–sphere interaction using a laser-produced plasma: An experiment motivated by supernova 1987A
Y. -G. Kang, K. Nishihara, H. Nishimura, H. Takabe, A. Sunahara, T. Norimatsu, K. Nagai, H. Kim, M. Nakatsuka, H. J. Kong, N. J. Zabusky, Phys. Rev. E, 2001

1:7:32:22Full-Trajectory Diagnosis of Laser-Driven Radiative Blast Waves in Search of Thermal Plasma Instabilities
A. S. Moore, E. T. Gumbrell, J. Lazarus, M. Hohenberger, J. S. Robinson, R. A. Smith, T. J. A. Plant, D. R. Symes, M. Dunne, Phys. Rev. Lett., 2008

1:7:33:30Acoustic effects in the nonlinear oscillations of planar detonations
Paul Clavin, Longting He, Phys. Rev. E, 1996

1:7:34:7Stability of an Impulsively Accelerated Density Interface in Magnetohydrodynamics
V. Wheatley, D. I. Pullin, R. Samtaney, Phys. Rev. Lett., 2005

1:7:34:20 Observations of Modified Three-Dimensional Instability Structure for Imploding z -Pinch Liners that are Premagnetized with an Axial Field
T. J. Awe, R. D. McBride, C. A. Jennings, D. C. Lamppa, M. R. Martin, D. C. Rovang, S. A. Slutz, M. E. Cuneo, A. C. Owen, D. B. Sinars, K. Tomlinson, M. R. Gomez, S. B. Hansen, M. C. Herrmann, J. L. McKenney, C. Nakhleh, G. K. Robertson, G. A. Rochau, M. E. Savage, D. G. Schroen, W. A. Stygar, Phys. Rev. Lett., 2013

1:7:34:21Fusion Yield Enhancement in Magnetized Laser-Driven Implosions
P. Y. Chang, G. Fiksel, M. Hohenberger, J. P. Knauer, R. Betti, F. J. Marshall, D. D. Meyerhofer, F. H. Séguin, R. D. Petrasso, Phys. Rev. Lett., 2011

1:7:35:3Exact solution of the hydrodynamical Riemann problem with nonzero tangential velocities and the ultrarelativistic equation of state
Patryk Mach, Małgorzata Piȩtka, Phys. Rev. E, 2010

1:7:35:12Three-dimensional simulations of stellar core collapse in full general relativity: Nonaxisymmetric dynamical instabilities
Masaru Shibata, Yu-ichirou Sekiguchi, Phys. Rev. D, 2005

1:7:35:20New Relativistic Effects in the Dynamics of Nonlinear Hydrodynamical Waves
Luciano Rezzolla, Olindo Zanotti, Phys. Rev. Lett., 2002

1:7:35:25Numerical relativistic hydrodynamics: Local characteristic approach
José Ma. Martí, José Ma. Ibáñez, Juan A. Miralles, Phys. Rev. D, 1991

1:7:35:28Three-dimensional relativistic simulations of rotating neutron-star collapse to a Kerr black hole
Luca Baiotti, Ian Hawke, Pedro J. Montero, Frank Löffler, Luciano Rezzolla, Nikolaos Stergioulas, José A. Font, Ed Seidel, Phys. Rev. D, 2005

1:7:35:32Relativistic magnetohydrodynamics in dynamical spacetimes: Numerical methods and tests
Matthew D. Duez, Yuk Tung Liu, Stuart L. Shapiro, Branson C. Stephens, Phys. Rev. D, 2005

1:7:36:3Mathematical model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for viscoelastic fluids
Bertrand Rollin, Malcolm J. Andrews, Phys. Rev. E, 2011

1:7:36:7Polymer Heat Transport Enhancement in Thermal Convection: The Case of Rayleigh-Taylor Turbulence
G. Boffetta, A. Mazzino, S. Musacchio, L. Vozella, Phys. Rev. Lett., 2010

1:7:38:6Formation of singularities on the free surface of an ideal fluid
E. A. Kuznetsov, M. D. Spector, V. E. Zakharov, Phys. Rev. E, 1994

1:7:39:4Experimental evidence of deviation from mirror reflection for acoustical shock waves
Régis Marchiano, François Coulouvrat, Sambandam Baskar, Jean-Louis Thomas, Phys. Rev. E, 2007

1:7:39:26Interaction of Shock Waves
Walker Bleakney, A. H. Taub, Rev. Mod. Phys., 1949

1:7:40:1Simulations of beam-matter interaction experiments at the CERN HiRadMat facility and prospects of high-energy-density physics research
N. A. Tahir, F. Burkart, A. Shutov, R. Schmidt, D. Wollmann, A. R. Piriz, Phys. Rev. E, 2014

1:7:40:2Large Hadron Collider at CERN: Beams generating high-energy-density matter
N. A. Tahir, R. Schmidt, A. Shutov, I. V. Lomonosov, A. R. Piriz, D. H. H. Hoffmann, C. Deutsch, V. E. Fortov, Phys. Rev. E, 2009

1:7:40:3Proposal for the Study of Thermophysical Properties of High-Energy-Density Matter Using Current and Future Heavy-Ion Accelerator Facilities at GSI Darmstadt
N. A. Tahir, C. Deutsch, V. E. Fortov, V. Gryaznov, D. H. H. Hoffmann, M. Kulish, I. V. Lomonosov, V. Mintsev, P. Ni, D. Nikolaev, A. R. Piriz, N. Shilkin, P. Spiller, A. Shutov, M. Temporal, V. Ternovoi, S. Udrea, D. Varentsov, Phys. Rev. Lett., 2005

1:7:40:4Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures
W. J. Nellis, A. C. Mitchell, P. C. McCandless, D. J. Erskine, S. T. Weir, Phys. Rev. Lett., 1992

1:7:40:7Necessity of bunch compression for heavy-ion-induced hydrodynamics and studies of beam fragmentation in solid targets at a proposed synchrotron facility
N. A. Tahir, A. Kozyreva, P. Spiller, D. H. H. Hoffmann, A. Shutov, Phys. Rev. E, 2001

1:7:40:8Heavy-ion-beam–induced hydrodynamic effects in solid targets
N. A. Tahir, D. H. H. Hoffmann, J. A. Maruhn, P. Spiller, R. Bock, Phys. Rev. E, 1999

1:7:40:9The CERN Large Hadron Collider as a Tool to Study High-Energy Density Matter
N. A. Tahir, V. Kain, R. Schmidt, A. Shutov, I. V. Lomonosov, V. Gryaznov, A. R. Piriz, M. Temporal, D. H. H. Hoffmann, V. E. Fortov, Phys. Rev. Lett., 2005

1:7:40:11Equation-of-state properties of high-energy-density matter using intense heavy ion beams with an annular focal spot
N. A. Tahir, D. H. H. Hoffmann, A. Kozyreva, A. Shutov, J. A. Maruhn, U. Neuner, A. Tauschwitz, P. Spiller, R. Bock, Phys. Rev. E, 2000

1:7:40:12Shock compression of condensed matter using intense beams of energetic heavy ions
N. A. Tahir, D. H. H. Hoffmann, A. Kozyreva, A. Shutov, J. A. Maruhn, U. Neuner, A. Tauschwitz, P. Spiller, R. Bock, Phys. Rev. E, 2000

1:7:40:22Three-dimensional thermal simulations of thin solid carbon foils for charge stripping of high current uranium ion beams at a proposed new heavy-ion linac at GSI
N. A. Tahir, V. Kim, B. Schlitt, W. Barth, L. Groening, I. V. Lomonosov, A. R. Piriz, Th. Stöhlker, H. Vormann, Phys. Rev. ST Accel. Beams, 2014

1:7:41:5Pressure Effect in a Shock-Wave–Plasma Interaction Induced by a Focused Laser Pulse
A. Sasoh, T. Ohtani, K. Mori, Phys. Rev. Lett., 2006

1:7:43:10Richtmyer-Meshkov mixing zone study by a multidirectional laser absorption technique
L. Houas, A. Touat, G. Jourdan, Phys. Rev. E, 1995

1:7:46:1Buoyancy-drag mix model obtained by multifluid interpenetration equations
Baolian Cheng, A. J. Scannapieco, Phys. Rev. E, 2005

1:7:46:3Statistical Evolution of Chaotic Fluid Mixing
James Glimm, David Saltz, David H. Sharp, Phys. Rev. Lett., 1998

1:7:46:5Rayleigh-Taylor and Richtmyer-Meshkov instabilities in multilayer fluids with surface tension
Karnig O. Mikaelian, Phys. Rev. A, 1990

1:7:46:7Dynamical evolution of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts
Baolian Cheng, J. Glimm, D. H. Sharp, Phys. Rev. E, 2002

1:7:46:15Reduction of increment of Rayleigh-Taylor instability in specially designed multilayer inertial-confinement-fusion targets
N. A. Inogamov, Phys. Rev. E, 1998

1:7:48:1Investigation of the Richtmyer-Meshkov instability with double perturbation interface in nonuniform flows
Jing-song Bai, Jin-hong Liu, Tao Wang, Li-yong Zou, Ping Li, Duo-wang Tan, Phys. Rev. E, 2010

1:7:48:2Experimental and numerical study of shock-accelerated elliptic heavy gas cylinders
Jing-song Bai, Li-yong Zou, Tao Wang, Kun Liu, Wen-bin Huang, Jin-hong Liu, Ping Li, Duo-wang Tan, Cang-li Liu, Phys. Rev. E, 2010

1:7:48:3Numerical simulation of the Richtmyer-Meshkov instability in initially nonuniform flows and mixing with reshock
Jing-song Bai, Bing Wang, Tao Wang, Kun Liu, Phys. Rev. E, 2012

1:7:48:5Quantitative theory of Richtmyer-Meshkov instability
John W. Grove, Richard Holmes, David H. Sharp, Yumin Yang, Qiang Zhang, Phys. Rev. Lett., 1993

1:7:48:6Growth rate of the Richtmyer-Meshkov instability at shocked interfaces
Karnig O. Mikaelian, Phys. Rev. Lett., 1993

1:7:49:1Molecular dynamics simulations of weak detonations
Morag Am-Shallem, Yehuda Zeiri, Sergey V. Zybin, Ronnie Kosloff, Phys. Rev. E, 2011

1:7:49:2Shock Wave Structure in Lennard-Jones Crystal via Molecular Dynamics
V. V. Zhakhovskiĭ, S. V. Zybin, K. Nishihara, S. I. Anisimov, Phys. Rev. Lett., 1999

1:7:49:3One-dimensional molecular-dynamics simulation of the detonation of nitric oxide
Mark L. Elert, David M. Deaven, Donald W. Brenner, C. T. White, Phys. Rev. B, 1989

1:7:49:5Shock waves in the Toda lattice: Analysis
Brad Lee Holian, Hermann Flaschka, David W. McLaughlin, Phys. Rev. A, 1981

1:7:49:6Shock Waves in High-Energy Materials: The Initial Chemical Events in Nitramine RDX
Alejandro Strachan, Adri C. T. van Duin, Debashis Chakraborty, Siddharth Dasgupta, William A. Goddard, Phys. Rev. Lett., 2003

1:7:49:12First-principles investigation of anisotropic constitutive relationships in pentaerythritol tetranitrate
M. W. Conroy, I. I. Oleynik, S. V. Zybin, C. T. White, Phys. Rev. B, 2008

1:7:49:21Microscopic model for propagation of shock-induced detonations in energetic solids
M. Peyrard, S. Odiot, E. Oran, J. Boris, J. Schnur, Phys. Rev. B, 1986

1:7:49:23 ω -phase and solitary waves induced by shock compression of bcc crystals
Johannes Roth, Phys. Rev. B, 2005

1:7:50:1Mechanisms of ignition by transient energy deposition: Regimes of combustion wave propagation
A. D. Kiverin, D. R. Kassoy, M. F. Ivanov, M. A. Liberman, Phys. Rev. E, 2013

1:7:50:2Regimes of chemical reaction waves initiated by nonuniform initial conditions for detailed chemical reaction models
M. A. Liberman, A. D. Kiverin, M. F. Ivanov, Phys. Rev. E, 2012

1:7:52:1Three-dimensional simulation strategy to determine the effects of turbulent mixing on inertial-confinement-fusion capsule performance
Brian M. Haines, Fernando F. Grinstein, James R. Fincke, Phys. Rev. E, 2014

1:7:52:16Knudsen Layer Reduction of Fusion Reactivity
Kim Molvig, Nelson M. Hoffman, B. J. Albright, Eric M. Nelson, Robert B. Webster, Phys. Rev. Lett., 2012

1:7:52:17High-Adiabat High-Foot Inertial Confinement Fusion Implosion Experiments on the National Ignition Facility
H.-S. Park, O. A. Hurricane, D. A. Callahan, D. T. Casey, E. L. Dewald, T. R. Dittrich, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, S. Le Pape, T. Ma, P. K. Patel, B. A. Remington, H. F. Robey, J. D. Salmonson, J. L. Kline, Phys. Rev. Lett., 2014

1:7:53:1Inhibition of turbulence in inertial-confinement-fusion hot spots by viscous dissipation
C. R. Weber, D. S. Clark, A. W. Cook, L. E. Busby, H. F. Robey, Phys. Rev. E, 2014

1:7:53:2Scaling laws for ignition at the National Ignition Facility from first principles
Baolian Cheng, Thomas J. T. Kwan, Yi-Ming Wang, Steven H. Batha, Phys. Rev. E, 2013

1:7:53:5Numerical Modeling of the Sensitivity of X-Ray Driven Implosions to Low-Mode Flux Asymmetries
R. H. H. Scott, D. S. Clark, D. K. Bradley, D. A. Callahan, M. J. Edwards, S. W. Haan, O. S. Jones, B. K. Spears, M. M. Marinak, R. P. J. Town, P. A. Norreys, L. J. Suter, Phys. Rev. Lett., 2013

1:7:53:13Hot-Spot Mix in Ignition-Scale Inertial Confinement Fusion Targets
S. P. Regan, R. Epstein, B. A. Hammel, L. J. Suter, H. A. Scott, M. A. Barrios, D. K. Bradley, D. A. Callahan, C. Cerjan, G. W. Collins, S. N. Dixit, T. Döppner, M. J. Edwards, D. R. Farley, K. B. Fournier, S. Glenn, S. H. Glenzer, I. E. Golovkin, S. W. Haan, A. Hamza, D. G. Hicks, N. Izumi, O. S. Jones, J. D. Kilkenny, J. L. Kline, G. A. Kyrala, O. L. Landen, T. Ma, J. J. MacFarlane, A. J. MacKinnon, R. C. Mancini, R. L. McCrory, N. B. Meezan, D. D. Meyerhofer, A. Nikroo, H.-S. Park, J. Ralph, B. A. Remington, T. C. Sangster, V. A. Smalyuk, P. T. Springer, R. P. J. Town, Phys. Rev. Lett., 2013

1:7:53:14Asymptotic Scaling Laws for Imploding Thin Fluid Shells
M. M. Basko, J. Meyer-ter-Vehn, Phys. Rev. Lett., 2002

1:7:53:15Stagnation Pressure of Imploding Shells and Ignition Energy Scaling of Inertial Confinement Fusion Targets
A. Kemp, J. Meyer-ter-Vehn, S. Atzeni, Phys. Rev. Lett., 2001

1:7:57:6Refraction of Plane Shock Waves
A. H. Taub, Phys. Rev., 1947

1:7:58:1Deflagration-to-detonation transition in inertial-confinement-fusion baseline targets
P. Gauthier, F. Chaland, L. Masse, Phys. Rev. E, 2004

1:7:58:2Monte Carlo charged-particle tracking and energy deposition on a Lagrangian mesh
J. Yuan, G. A. Moses, P. W. McKenty, Phys. Rev. E, 2005

1:7:58:10Laser-Driven Implosion of Spherical DT Targets to Thermonuclear Burn Conditions
J. S. Clarke, H. N. Fisher, R. J. Mason, Phys. Rev. Lett., 1973

1:7:59:1 Logarithmic nonlinear Schr o ·· dinger equation and irrotational, compressible flows: An exact solution
K. W. Chow, Phys. Rev. E, 2011

1:7:59:12Propagation of partially coherent solitons in saturable logarithmic media: A comparative analysis
T. Hansson, D. Anderson, M. Lisak, Phys. Rev. A, 2009

1:7:59:13Application of the nonlinear Schrödinger equation with a logarithmic inhomogeneous term to nuclear physics
Ernst F. Hefter, Phys. Rev. A, 1985

1:7:59:18New method for the solution of the logarithmic nonlinear Schrödinger equation via stochastic mechanics
Antônio B. Nassar, Phys. Rev. A, 1986

1:7:62:1Suppressing the Rayleigh-Taylor instability with a rotating magnetic field
Dirk Rannacher, Andreas Engel, Phys. Rev. E, 2007

1:7:62:4Rayleigh-Taylor Instability for Immiscible Fluids of Arbitrary Viscosities: A Magnetic Levitation Investigation and Theoretical Model
Pierre Carlès, Zhibin Huang, Giovanni Carbone, Charles Rosenblatt, Phys. Rev. Lett., 2006

1:7:62:8Rayleigh-Taylor Instabilities in Laser-Accelerated Targets
R. G. Evans, A. J. Bennett, G. J. Pert, Phys. Rev. Lett., 1982

1:7:64:3Relativistic Rankine-Hugoniot Equations
A. H. Taub, Phys. Rev., 1948

1:7:66:5Surfactant-Polymer Interactions in Freely Suspended Lyotropic Films
Oleg Krichevsky, Joel Stavans, Phys. Rev. Lett., 1994

1:7:67:12Gas Breakdown at Optical Frequencies
R. G. Meyerand, A. F. Haught, Phys. Rev. Lett., 1963

1:7:69:1Instability of a planar expansion wave
A. L. Velikovich, S. T. Zalesak, N. Metzler, J. G. Wouchuk, Phys. Rev. E, 2005

1:7:69:3Richtmyer-Meshkov instabilities in stratified fluids
Karnig O. Mikaelian, Phys. Rev. A, 1985

1:7:69:6Direct Observation of Feedout-Related Mass Oscillations in Plastic Targets
Y. Aglitskiy, A. L. Velikovich, M. Karasik, V. Serlin, C. J. Pawley, A. J. Schmitt, S. P. Obenschain, A. N. Mostovych, J. H. Gardner, N. Metzler, Phys. Rev. Lett., 2001

1:7:69:7Feedout and Rayleigh-Taylor Seeding Induced by Long Wavelength Perturbations in Accelerated Planar Foils
R. Betti, V. Lobatchev, R. L. McCrory, Phys. Rev. Lett., 1998

1:7:69:12Feed-out of Rear Surface Perturbation due to Rarefaction Wave in Laser-Irradiated Targets
K. Shigemori, M. Nakai, H. Azechi, K. Nishihara, R. Ishizaki, T. Nagaya, H. Nagatomo, K. Mima, Phys. Rev. Lett., 2000

1:7:70:1Velocity scaling of a shock wave reflected off a circular cylinder
E. Glazer, O. Sadot, A. Hadjadj, A. Chaudhuri, Phys. Rev. E, 2011

1:7:70:4Shock-Wave Mach-Reflection Slip-Stream Instability: A Secondary Small-Scale Turbulent Mixing Phenomenon
A. Rikanati, O. Sadot, G. Ben-Dor, D. Shvarts, T. Kuribayashi, K. Takayama, Phys. Rev. Lett., 2006

1:7:72:3Nonlinear Rayleigh-Taylor Evolution of a Three-Dimensional Multimode Perturbation
M. M. Marinak, S. G. Glendinning, R. J. Wallace, B. A. Remington, K. S. Budil, S. W. Haan, R. E. Tipton, J. D. Kilkenny, Phys. Rev. Lett., 1998

1:7:72:7Dependence of Shell Mix on Feedthrough in Direct Drive Inertial Confinement Fusion
S. P. Regan, J. A. Delettrez, V. N. Goncharov, F. J. Marshall, J. M. Soures, V. A. Smalyuk, P. B. Radha, B. Yaakobi, R. Epstein, V. Yu. Glebov, P. A. Jaanimagi, D. D. Meyerhofer, T. C. Sangster, W. Seka, S. Skupsky, C. Stoeckl, D. A. Haynes, J. A. Frenje, C. K. Li, R. D. Petrasso, F. H. Séguin, Phys. Rev. Lett., 2004

1:7:74:1Simple waves in relativistic fluids
Maxim Lyutikov, Phys. Rev. E, 2010

1:7:74:2Relativistic magnetohydrodynamics in one dimension
Maxim Lyutikov, Samuel Hadden, Phys. Rev. E, 2012

1:7:74:12Relativistic Magnetohydrodynamics
Edward G. Harris, Phys. Rev., 1957

1:7:78:1Pseudocompressible approximation and statistical turbulence modeling: Application to shock tube flows
Olivier Soulard, Jérôme Griffond, Denis Souffland, Phys. Rev. E, 2012

1:7:82:13Intermediate Nonlinear Evolution of the Parker Instability: Formation of Convection-Induced Discontinuities and Absence of Finite-Time Singularities
P. Zhu, A. Bhattacharjee, K. Germaschewski, Phys. Rev. Lett., 2006

1:7:86:1Dynamical evolution of volume fractions in multipressure multiphase flow models
C. H. Chang, J. D. Ramshaw, Phys. Rev. E, 2008

1:7:87:1Numerical simulations of the Richtmyer-Meshkov instability in solid-vacuum interfaces using calibrated plasticity laws
A. López Ortega, M. Lombardini, D. I. Pullin, D. I. Meiron, Phys. Rev. E, 2014

1:7:88:1Relationship between oscillatory thermal instability and dynamical thin-shell overstability of radiative shocks
J. Laming, Phys. Rev. E, 2004

1:7:88:2Instability of Taylor-Sedov blast waves propagating through a uniform gas
J. Grun, J. Stamper, C. Manka, J. Resnick, R. Burris, J. Crawford, B. H. Ripin, Phys. Rev. Lett., 1991

1:7:88:3Dynamical Overstability of Radiative Blast Waves: The Atomic Physics of Shock Stability
J. Martin Laming, Jacob Grun, Phys. Rev. Lett., 2002

1:7:89:1Unstable blast shocks in dilute granular flows
J. F. Boudet, H. Kellay, Phys. Rev. E, 2013

1:7:89:3Astrophysical blastwaves
Jeremiah P. Ostriker, Christopher F. McKee, Rev. Mod. Phys., 1988

1:7:91:1Nonlinear Rayleigh-Taylor instability of rotating inviscid fluids
J. J. Tao, X. T. He, W. H. Ye, F. H. Busse, Phys. Rev. E, 2013

1:7:91:8Weakly Nonlinear Theory for the Ablative Rayleigh-Taylor Instability
J. Garnier, P.-A. Raviart, C. Cherfils-Clérouin, L. Masse, Phys. Rev. Lett., 2003

1:7:93:1Nonlinear hydrodynamic waves: Effects of the equation of state
N. M. Bulgakova, I. M. Burakov, Phys. Rev. E, 2004

1:7:93:10Decompressive (cooling rarefaction) shock in optically thin radiative plasma
D. Kh. Morozov, M. Pekker, Phys. Rev. E, 2001

1:7:95:1Converging shocks in elastic-plastic solids
A. López Ortega, M. Lombardini, D. J. Hill, Phys. Rev. E, 2011

1:7:97:3Onset of Hydrodynamic Mix in High-Velocity, Highly Compressed Inertial Confinement Fusion Implosions
T. Ma, P. K. Patel, N. Izumi, P. T. Springer, M. H. Key, L. J. Atherton, L. R. Benedetti, D. K. Bradley, D. A. Callahan, P. M. Celliers, C. J. Cerjan, D. S. Clark, E. L. Dewald, S. N. Dixit, T. Döppner, D. H. Edgell, R. Epstein, S. Glenn, G. Grim, S. W. Haan, B. A. Hammel, D. Hicks, W. W. Hsing, O. S. Jones, S. F. Khan, J. D. Kilkenny, J. L. Kline, G. A. Kyrala, O. L. Landen, S. Le Pape, B. J. MacGowan, A. J. Mackinnon, A. G. MacPhee, N. B. Meezan, J. D. Moody, A. Pak, T. Parham, H.-S. Park, J. E. Ralph, S. P. Regan, B. A. Remington, H. F. Robey, J. S. Ross, B. K. Spears, V. Smalyuk, L. J. Suter, R. Tommasini, R. P. Town, S. V. Weber, J. D. Lindl, M. J. Edwards, S. H. Glenzer, E. I. Moses, Phys. Rev. Lett., 2013

1:7:97:4Design of a High-Foot High-Adiabat ICF Capsule for the National Ignition Facility
T. R. Dittrich, O. A. Hurricane, D. A. Callahan, E. L. Dewald, T. Döppner, D. E. Hinkel, L. F. Berzak Hopkins, S. Le Pape, T. Ma, J. L. Milovich, J. C. Moreno, P. K. Patel, H.-S. Park, B. A. Remington, J. D. Salmonson, J. L. Kline, Phys. Rev. Lett., 2014

1:7:100:1Observations of three-dimensional Richtmyer-Meshkov instability on a membraneless gas bubble
Hong-Yu Chu, Dong-Kai Chen, Phys. Rev. E, 2013

1:7:100:2Vortex Formation in a Shock-Accelerated Gas Induced by Particle Seeding
Peter Vorobieff, Michael Anderson, Joseph Conroy, Ross White, C. Randall Truman, Sanjay Kumar, Phys. Rev. Lett., 2011

1:7:100:5High-Amplitude Single-Mode Perturbation Evolution at the Richtmyer-Meshkov Instability
Georges Jourdan, Lazhar Houas, Phys. Rev. Lett., 2005

1:7:103:2Stable Steady Flows in Rayleigh-Taylor Instability
S. I. Abarzhi, Phys. Rev. Lett., 1998

1:7:107:1Detonation wave driven by condensation of supersaturated carbon vapor
A. Emelianov, A. Eremin, V. Fortov, H. Jander, A. Makeich, H. Gg. Wagner, Phys. Rev. E, 2009

1:7:110:1Consistent thermodynamic derivative estimates for tabular equations of state
Gary A. Dilts, Phys. Rev. E, 2006

1:8:2:2Two-fluid confined flow in a cylinder driven by a rotating end wall
P. T. Brady, M. Herrmann, J. M. Lopez, Phys. Rev. E, 2012

1:8:2:47Off-axis vortex breakdown in a shallow whirlpool
Miguel A. Herrada, Vladimir N. Shtern, José María López-Herrera, Phys. Rev. E, 2013

1:8:2:60Addendum to “Two-fluid confined flow in a cylinder driven by a rotating endwall”
P. T. Brady, M. Herrmann, J. M. Lopez, Phys. Rev. E, 2012

1:8:2:89Vortex breakdown control by adding near-axis swirl and temperature gradients
Miguel Angel Herrada, Vladimir Shtern, Phys. Rev. E, 2003

1:8:2:94Bifurcation to oscillations in three-dimensional Rayleigh-Bénard convection
S. Scheel, N. Seehafer, Phys. Rev. E, 1997

1:8:2:134Kinematic separation of mixtures
M. Goldshtik, H. S. Husain, F. Hussain, Phys. Rev. A, 1992

1:8:3:84Sideband instability and recurrence of Kelvin waves on vortex cores
David C. Samuels, Russell J. Donnelly, Phys. Rev. Lett., 1990

1:8:4:40Instabilities of variable-density swirling flows
Bastien Di Pierro, Malek Abid, Phys. Rev. E, 2010

1:8:4:69Propagation in Electron-Ion Streams
R. Q. Twiss, Phys. Rev., 1952

1:8:5:3Three-Dimensional Instability of Elliptical Flow
B. J. Bayly, Phys. Rev. Lett., 1986

1:8:5:8Universal Short-Wave Instability of Two-Dimensional Eddies in an Inviscid Fluid
R. T. Pierrehumbert, Phys. Rev. Lett., 1986

1:8:5:12Magnetohydrodynamic instabilities in rotating and precessing sheared flows: An asymptotic analysis
A. Salhi, T. Lehner, C. Cambon, Phys. Rev. E, 2010

1:8:5:13Instability of subharmonic resonances in magnetogravity shear waves
A. Salhi, S. Nasraoui, Phys. Rev. E, 2013

1:8:5:16Stability of rotating stratified shear flow: An analytical study
A. Salhi, C. Cambon, Phys. Rev. E, 2010

1:8:5:29Precessing rotating flows with additional shear: Stability analysis
A. Salhi, C. Cambon, Phys. Rev. E, 2009

1:8:5:30Time-dependent rotating stratified shear flow: Exact solution and stability analysis
A. Salhi, C. Cambon, Phys. Rev. E, 2007

1:8:5:34Instability criteria for the flow of an inviscid incompressible fluid
Susan Friedlander, Misha M. Vishik, Phys. Rev. Lett., 1991

1:8:5:42Experimental Study of the Multipolar Vortex Instability
Christophe Eloy, Patrice Le Gal, Stéphane Le Dizès, Phys. Rev. Lett., 2000

1:8:5:67Stability of Taylor-Couette flow subject to an external Coriolis force
Richard J. Wiener, Philip W. Hammer, Charles E. Swanson, Russell J. Donnelly, Phys. Rev. Lett., 1990

1:8:5:69Secondary Instabilities of Flows with Elliptic Streamlines
Bruce Fabijonas, Darryl D. Holm, Alexander Lifschitz, Phys. Rev. Lett., 1997

1:8:5:70Mean Effects of Turbulence on Elliptic Instability in Fluids
Bruce R. Fabijonas, Darryl D. Holm, Phys. Rev. Lett., 2003

1:8:5:80Elliptical Flow Instability in a Conducting Fluid Triggered by an External Magnetic Field
Konrad Bajer, Krzysztof Mizerski, Phys. Rev. Lett., 2013

1:8:5:104Magnetic Field Variation Caused by Rotational Speed Change in a Magnetohydrodynamic Dynamo
Takehiro Miyagoshi, Yozo Hamano, Phys. Rev. Lett., 2013

1:8:6:5Rapidly rotating cylinder flow with an oscillating sidewall
Juan M. Lopez, Francisco Marques, Phys. Rev. E, 2014

1:8:6:8Parity-breaking flows in precessing spherical containers
R. Hollerbach, C. Nore, P. Marti, S. Vantieghem, F. Luddens, J. Léorat, Phys. Rev. E, 2013

1:8:6:14Nonlinear dynamo action in a precessing cylindrical container
C. Nore, J. Léorat, J.-L. Guermond, F. Luddens, Phys. Rev. E, 2011

1:8:8:16Driven inertial oscillations in spherical shells
A. Tilgner, Phys. Rev. E, 1999

1:8:8:24Experimental Determination of Zonal Winds Driven by Tides
C. Morize, M. Le Bars, P. Le Gal, A. Tilgner, Phys. Rev. Lett., 2010

1:8:8:26Zonal Wind Driven by Inertial Modes
A. Tilgner, Phys. Rev. Lett., 2007

1:8:10:12Coupling between a coherent structure and fine-scale turbulence
Mogens V. Melander, Fazle Hussain, Phys. Rev. E, 1993

1:8:10:29Algebraic instability of hollow electron columns and cylindrical vortices
Ralph A. Smith, Marshall N. Rosenbluth, Phys. Rev. Lett., 1990

1:8:11:4Optimal harmonic response in a confined Bödewadt boundary layer flow
Younghae Do, Juan M. Lopez, Francisco Marques, Phys. Rev. E, 2010

1:8:13:1Influence of counter-rotating von Kármán flow on cylindrical Rayleigh-Bénard convection
Lyes Bordja, Laurette S. Tuckerman, Laurent Martin Witkowski, María Cruz Navarro, Dwight Barkley, Rachid Bessaih, Phys. Rev. E, 2010

1:8:13:16Tangent double Hopf bifurcation in a differentially rotating cylinder flow
F. Marques, A. Yu. Gelfgat, J. M. Lopez, Phys. Rev. E, 2003

1:8:13:32 Erratum: Influence of counter-rotating von Kármán flow on cylindrical Rayleigh-Bénard convection [Phys. Rev. E 81 , 036322 (2010)]
Lyes Bordja, Laurette S. Tuckerman, Laurent Martin Witkowski, María Cruz Navarro, Dwight Barkley, Rachid Bessaih, Phys. Rev. E, 2010

1:8:13:33Time Dependence in Rayleigh-Bénard Convection with a Variable Cylindrical Geometry
R. P. Behringer, H. Gao, J. N. Shaumeyer, Phys. Rev. Lett., 1983

1:8:13:36Turbulent transition by photon-correlation spectroscopy
P. Tong, W. I. Goldburg, C. K. Chan, A. Sirivat, Phys. Rev. A, 1988

1:8:14:2Linear and nonlinear stability of a thermally stratified magnetically driven rotating flow in a cylinder
Ilmars Grants, Gunter Gerbeth, Phys. Rev. E, 2010

1:8:16:7Hysteresis and precession of a swirling jet normal to a wall
V. Shtern, J. Mi, Phys. Rev. E, 2004

1:8:16:8Nonparallel spatial stability of the boundary layer induced by Long’s vortex on a solid plane perpendicular to its axis
L. Parras, R. Fernandez-Feria, Phys. Rev. E, 2005

1:8:16:11Development of a swirling double counterflow
Vladimir N. Shtern, María M. Torregrosa, Miguel A. Herrada, Phys. Rev. E, 2011

1:8:16:34 Publisher’s Note: Development of a swirling double counterflow [Phys. Rev. E 83 , 056322 (2011)]
Vladimir N. Shtern, María M. Torregrosa, Miguel A. Herrada, Phys. Rev. E, 2011

1:8:20:2Transition between Kelvin’s equilibria
Hamid Ait Abderrahamne, Kamran Siddiqui, Georgios H. Vatistas, Phys. Rev. E, 2009

1:8:20:6Symmetrization of a polygonal hollow-core vortex through beat-wave resonance
Hamid Ait Abderrahmane, Kamran Siddiqui, Georgios H. Vatistas, Mohamed Fayed, Hoi Dick Ng, Phys. Rev. E, 2011

1:8:20:8Polygons on a Rotating Fluid Surface
Thomas R. N. Jansson, Martin P. Haspang, Kåre H. Jensen, Pascal Hersen, Tomas Bohr, Phys. Rev. Lett., 2006

1:8:20:10Experimental Confirmation of Kelvin’s Equilibria
Georgios H. Vatistas, Hamid A. Abderrahmane, M. H. Kamran Siddiqui, Phys. Rev. Lett., 2008

1:8:20:19Transition to chaos by interaction of resonances in dissipative systems. II. Josephson junctions, charge-density waves, and standard maps
Tomas Bohr, Per Bak, Mogens Hϕgh Jensen, Phys. Rev. A, 1984

1:8:20:22Beat-Wave Resonant Down Scattering of Diocotron and Kelvin Modes
Nathan Mattor, B. T. Chang, T. B. Mitchell, Phys. Rev. Lett., 2006

1:8:20:23Damping and Trapping in 2D Inviscid Fluids
N. Sateesh Pillai, Roy W. Gould, Phys. Rev. Lett., 1994

1:8:20:28Rotating Polygon Instability of a Swirling Free Surface Flow
L. Tophøj, J. Mougel, T. Bohr, D. Fabre, Phys. Rev. Lett., 2013

1:8:20:29Measurements of symmetric vortex merger
K. S. Fine, C. F. Driscoll, J. H. Malmberg, T. B. Mitchell, Phys. Rev. Lett., 1991

1:8:29:2Criterion for vortex breakdown on shock wave and streamwise vortex interactions
Toshihiko Hiejima, Phys. Rev. E, 2014

1:8:30:1Stable second-order scheme for integrating the Kuramoto-Sivanshinsky equation in polar coordinates using distributed approximating functionals
Peter Blomgren, Scott Gasner, Antonio Palacios, Phys. Rev. E, 2005

1:8:30:2Noise-induced intermittent cellular patterns on circular domains
Peter Blomgren, Scott Gasner, Antonio Palacios, Phys. Rev. E, 2006

1:8:30:6Ratcheting Motion of Concentric Rings in Cellular Flames
M. Gorman, M. el-Hamdi, B. Pearson, K. A. Robbins, Phys. Rev. Lett., 1996

1:8:30:7Wave-vector field of convective flow patterns
M. S. Heutmaker, J. P. Gollub, Phys. Rev. A, 1987

1:8:30:12Integrating the Kuramoto-Sivashinsky equation in polar coordinates: Application of the distributed approximating functional approach
De S. Zhang, Guo W. Wei, Donald J. Kouri, David K. Hoffman, Michael Gorman, Antonio Palacios, Gemunu H. Gunaratne, Phys. Rev. E, 1999

1:8:30:13Identification of Intermittent Ordered Patterns as Heteroclinic Connections
E. Stone, M. Gorman, M. el-Hamdi, K. A. Robbins, Phys. Rev. Lett., 1996

1:8:37:17The Origin of Ultrasonic Absorption in Water
Leonard Hall, Phys. Rev., 1948

1:8:38:2Impinging laminar jets at moderate Reynolds numbers and separation distances
Jeffrey M. Bergthorson, Kazuo Sone, Trent W. Mattner, Paul E. Dimotakis, David G. Goodwin, Dan I. Meiron, Phys. Rev. E, 2005

1:8:56:1Development of colliding swirling counterflows
Vladimir N. Shtern, Maria del Mar Torregrosa, Miguel A. Herrada, Phys. Rev. E, 2011

1:8:62:1Linear stability of an alternating-magnetic-field-driven flow in a spinning cylindrical container
Victor Shatrov, Gunter Gerbeth, Regina Hermann, Phys. Rev. E, 2008

1:8:64:1Topology changes of the interface between two immiscible liquid layers by a rotating lid
Shuhei Fujimoto, Yasushi Takeda, Phys. Rev. E, 2009

1:8:64:2Spout States in the Selective Withdrawal of Immiscible Fluids through a Nozzle Suspended above a Two-Fluid Interface
Sarah C. Case, Sidney R. Nagel, Phys. Rev. Lett., 2007

1:8:64:6Rod-Climbing Effect in Newtonian Fluids
Daniel Bonn, Mathias Kobylko, Steffen Bohn, Jacques Meunier, Alexander Morozov, Wim van Saarloos, Phys. Rev. Lett., 2004

1:8:72:1Bifurcation of conical magnetic field
Vladimir Shtern, Phys. Rev. E, 2004

1:9:1:163Investigations of single-wall carbon nanotube growth by time-restricted laser vaporization
Alex A. Puretzky, Henrik Schittenhelm, Xudong Fan, Michael J. Lance, Larry F. Allard, David B. Geohegan, Phys. Rev. B, 2002

1:9:2:2Transitions in the wake of a flapping foil
Ramiro Godoy-Diana, Jean-Luc Aider, José Eduardo Wesfreid, Phys. Rev. E, 2008

1:9:2:36How wing compliance drives the efficiency of self-propelled flapping flyers
Benjamin Thiria, Ramiro Godoy-Diana, Phys. Rev. E, 2010

1:9:3:11Interaction between a flexible filament and a downstream rigid body
Fang-Bao Tian, Haoxiang Luo, Luoding Zhu, Xi-Yun Lu, Phys. Rev. E, 2010

1:9:3:14Flapping dynamics of a flexible filament
H. Ait Abderrahmane, M. P. Paidoussis, M. Fayed, H. D. Ng, Phys. Rev. E, 2011

1:9:3:20Heavy Flags Undergo Spontaneous Oscillations in Flowing Water
Michael Shelley, Nicolas Vandenberghe, Jun Zhang, Phys. Rev. Lett., 2005

1:9:3:33Anomalous Hydrodynamic Drafting of Interacting Flapping Flags
Leif Ristroph, Jun Zhang, Phys. Rev. Lett., 2008

1:9:3:53Soap films as two-dimensional classical fluids
J. M. Chomaz, B. Cathalau, Phys. Rev. A, 1990

1:9:3:54Passive Oscillations of Two Tandem Flexible Filaments in a Flowing Soap Film
Lai-Bing Jia, Xie-Zhen Yin, Phys. Rev. Lett., 2008

1:9:3:61Dynamics of a Deformable Body in a Fast Flowing Soap Film
Sunghwan Jung, Kathleen Mareck, Michael Shelley, Jun Zhang, Phys. Rev. Lett., 2006

1:9:3:93The Clapping Book: Wind-Driven Oscillations in a Stack of Elastic Sheets
P. Buchak, C. Eloy, P. M. Reis, Phys. Rev. Lett., 2010

1:9:3:123 Erratum: Flapping States of a Flag in an Inviscid Fluid: Bistability and the Transition to Chaos [Phys. Rev. Lett. 100 , 074301 (2008)]
Silas Alben, Michael J. Shelley, Phys. Rev. Lett., 2008

1:9:3:129Finite-time singularity in the vortex dynamics of a string
A. Thess, O. Zikanov, A. Nepomnyashchy, Phys. Rev. E, 1999

1:9:4:37Spanwise gradients in flow speed help stabilize leading-edge vortices on revolving wings
T. Jardin, L. David, Phys. Rev. E, 2014

1:9:4:58Leading-edge vortex stability in insect wings
F. O. Minotti, E. Speranza, Phys. Rev. E, 2005

1:9:4:68Unsteady two-dimensional theory of a flapping wing
F. O. Minotti, Phys. Rev. E, 2002

1:9:5:5Motion transitions of falling plates via quasisteady aerodynamics
Ruifeng Hu, Lifeng Wang, Phys. Rev. E, 2014

1:9:5:8Unsteady aerodynamic forces and torques on falling parallelograms in coupled tumbling-helical motions
Kapil Varshney, Song Chang, Z. Jane Wang, Phys. Rev. E, 2013

1:9:5:12Experimetal study of a freely falling plate with an inhomogeneous mass distribution
Wentao Huang, Hong Liu, Fuxin Wang, Junqi Wu, H. P. Zhang, Phys. Rev. E, 2013

1:9:5:19Falling Paper: Navier-Stokes Solutions, Model of Fluid Forces, and Center of Mass Elevation
Umberto Pesavento, Z. Jane Wang, Phys. Rev. Lett., 2004

1:9:5:26From Flutter to Tumble: Inertial Drag and Froude Similarity in Falling Paper
Andrew Belmonte, Hagai Eisenberg, Elisha Moses, Phys. Rev. Lett., 1998

1:9:5:32Behavior of a Falling Paper
Yoshihiro Tanabe, Kunihiko Kaneko, Phys. Rev. Lett., 1994

1:9:5:40Dynamical Model for the Buoyancy-Driven Zigzag Motion of Oblate Bodies
Patricia Ern, Frédéric Risso, Pedro C. Fernandes, Jacques Magnaudet, Phys. Rev. Lett., 2009

1:9:5:48Tumbling Dynamics of Passive Flexible Wings
Daniel Tam, John W. M. Bush, Michael Robitaille, Arshad Kudrolli, Phys. Rev. Lett., 2010

1:9:5:51Dynamical Model of Bubble Path Instability
Woodrow L. Shew, Jean-François Pinton, Phys. Rev. Lett., 2006

1:9:6:55Flow-Induced Draping
Lionel Schouveiler, Christophe Eloy, Phys. Rev. Lett., 2013

1:9:7:1Fluid dynamics of moving fish in a two-dimensional multiparticle collision dynamics model
Daniel A. P. Reid, H. Hildenbrandt, J. T. Padding, C. K. Hemelrijk, Phys. Rev. E, 2012

1:9:7:3Flow over a traveling wavy foil with a passively flapping flat plate
Nansheng Liu, Yan Peng, Youwen Liang, Xiyun Lu, Phys. Rev. E, 2012

1:9:7:6Propulsive performance of a body with a traveling-wave surface
Fang-Bao Tian, Xi-Yun Lu, Haoxiang Luo, Phys. Rev. E, 2012

1:9:7:7Length effects of a built-in flapping flat plate on the flow over a traveling wavy foil
Nansheng Liu, Yan Peng, Xiyun Lu, Phys. Rev. E, 2014

1:9:7:12Flow control by means of a traveling curvature wave in fishlike escape responses
Geng Liu, Yong-Liang Yu, Bing-Gang Tong, Phys. Rev. E, 2011

1:9:7:18Optimal energy-utilization ratio for long-distance cruising of a model fish
Geng Liu, Yong-Liang Yu, Bing-Gang Tong, Phys. Rev. E, 2012

1:9:10:37Comment on “Behavior of a Falling Paper”
L. Mahadevan, H. Aref, S. W. Jones, Phys. Rev. Lett., 1995

1:9:11:3Smoothed particle hydrodynamics and element bending group modeling of flexible fibers interacting with viscous fluids
Xiufeng Yang, Moubin Liu, Shiliu Peng, Phys. Rev. E, 2014

1:9:13:33Interaction of a vortex ring with the free surface of an ideal fluid
V. P. Ruban, Phys. Rev. E, 2000

1:9:17:2Full-scale solutions to particle-laden flows: Multidirect forcing and immersed boundary method
Kun Luo, Zeli Wang, Jianren Fan, Kefa Cen, Phys. Rev. E, 2007

1:9:17:4Mirror fluid method for numerical simulation of sedimentation of a solid particle in a Newtonian fluid
Chao Yang, Zai-Sha Mao, Phys. Rev. E, 2005

1:9:17:7Numerical method for interaction between multiparticle and complex structures
Kensuke Yokoi, Phys. Rev. E, 2005

1:9:17:15Numerical method for complex moving boundary problems in a Cartesian fixed grid
Kensuke Yokoi, Phys. Rev. E, 2002

1:9:17:18Numerical method for a moving solid object in flows
Kensuke Yokoi, Phys. Rev. E, 2003

1:9:21:11Spontaneous Symmetry Breaking of a Hinged Flapping Filament Generates Lift
Shervin Bagheri, Andrea Mazzino, Alessandro Bottaro, Phys. Rev. Lett., 2012

1:9:27:19Self-Similar Wave Produced by Local Perturbation of the Kelvin-Helmholtz Shear-Layer Instability
Jérôme Hoepffner, Ralf Blumenthal, Stéphane Zaleski, Phys. Rev. Lett., 2011

1:9:28:2Evolution of localized blobs of swirling or buoyant fluid with and without an ambient magnetic field
P. A. Davidson, Binod Sreenivasan, A. J. Aspden, Phys. Rev. E, 2007

1:9:28:7Numerical computation of 3D incompressible ideal fluids with swirl
Rainer Grauer, Thomas C. Sideris, Phys. Rev. Lett., 1991

1:9:30:12Nature Optimizes the Swirling Flow in the Human Left Ventricle
Gianni Pedrizzetti, Federico Domenichini, Phys. Rev. Lett., 2005

1:9:34:2Oscillating pendulum decay by emission of vortex rings
Diogo Bolster, Robert E. Hershberger, Russell J. Donnelly, Phys. Rev. E, 2010

1:9:34:3Slowing of vortex rings by development of Kelvin waves
Robert E. Hershberger, Diogo Bolster, Russell J. Donnelly, Phys. Rev. E, 2010

1:9:37:1Interaction of bubbles in an inviscid and low-viscosity shear flow
Jai Prakash, Olga M. Lavrenteva, Avinoam Nir, Phys. Rev. E, 2013

1:9:39:9Fruit Flies Modulate Passive Wing Pitching to Generate In-Flight Turns
Attila J. Bergou, Leif Ristroph, John Guckenheimer, Itai Cohen, Z. Jane Wang, Phys. Rev. Lett., 2010

1:9:40:2Aerodynamic performance due to forewing and hindwing interaction in gliding dragonfly flight
Jie Zhang, Xi-Yun Lu, Phys. Rev. E, 2009

1:9:44:5How Bumps on Whale Flippers Delay Stall: An Aerodynamic Model
Ernst A. van Nierop, Silas Alben, Michael P. Brenner, Phys. Rev. Lett., 2008

1:9:47:1Resonance of flexible flapping wings at low Reynolds number
Hassan Masoud, Alexander Alexeev, Phys. Rev. E, 2010

1:9:53:1Ventral-clap modes of hovering passerines
Yu-Hung Chang, Shang-Chieh Ting, Jian-Yuan Su, Chyi-Yeou Soong, Jing-Tang Yang, Phys. Rev. E, 2013

1:9:53:2Aerodynamic trick for visual stabilization during downstroke in a hovering bird
Jian-Yuan Su, Shang-Chieh Ting, Yu-Hung Chang, Jing-Tang Yang, Phys. Rev. E, 2011

1:9:80:1Role of inertia in the interaction between oscillatory flow and a wall-mounted leaflet
Marija Vukicevic, Gianni Pedrizzetti, Phys. Rev. E, 2011

1:9:80:2Opening of a wall-mounted leaflet by a single flow pulse
Marija Vukicevic, Gianni Pedrizzetti, Phys. Rev. E, 2011

1:9:80:3Asymmetric Opening of a Simple Bileaflet Valve
Gianni Pedrizzetti, Federico Domenichini, Phys. Rev. Lett., 2007

1:9:80:4Kinematic Characterization of Valvular Opening
Gianni Pedrizzetti, Phys. Rev. Lett., 2005

1:9:85:1Eigenfrequencies of vortex-pair equilibria near an elliptic cylinder or a flat plate in uniform flow
T. W. G. de Laat, Phys. Rev. E, 2007

1:9:91:1Vortex ring refraction at large Froude numbers
Kerry Kuehn, Matthew Moeller, Michael Schulz, Daniel Sanfelippo, Phys. Rev. E, 2010

1:10:1:8Slow decay of concentration variance due to no-slip walls in chaotic mixing
E. Gouillart, O. Dauchot, B. Dubrulle, S. Roux, J.-L. Thiffeault, Phys. Rev. E, 2008

1:10:1:9Moving walls accelerate mixing
Jean-Luc Thiffeault, Emmanuelle Gouillart, Olivier Dauchot, Phys. Rev. E, 2011

1:10:1:10Passive scalar evolution in peripheral regions
V. V. Lebedev, K. S. Turitsyn, Phys. Rev. E, 2004

1:10:1:13Local transfer and spectra of a diffusive field advected by large-scale incompressible flows
Chuong V. Tran, Phys. Rev. E, 2008

1:10:1:14Estimating generalized Lyapunov exponents for products of random matrices
J. Vanneste, Phys. Rev. E, 2010

1:10:1:15Diffusion of passive scalar in a finite-scale random flow
Alexander A. Schekochihin, Peter H. Haynes, Steven C. Cowley, Phys. Rev. E, 2004

1:10:1:16Abnormal mixing of passive scalars in chaotic flows
O. V. Popovych, A. Pikovsky, B. Eckhardt, Phys. Rev. E, 2007

1:10:1:18Universal long-time properties of Lagrangian statistics in the Batchelor regime and their application to the passive scalar problem
E. Balkovsky, A. Fouxon, Phys. Rev. E, 1999

1:10:1:19Exponential decay of chaotically advected passive scalars in the zero diffusivity limit
Yue-Kin Tsang, Thomas M. Antonsen, Edward Ott, Phys. Rev. E, 2005

1:10:1:21Scalar decay in a three-dimensional chaotic flow
K. Ngan, J. Vanneste, Phys. Rev. E, 2011

1:10:1:22Decay of passive scalars under the action of single scale smooth velocity fields in bounded two-dimensional domains: From non-self-similar probability distribution functions to self-similar eigenmodes
Jai Sukhatme, Raymond T. Pierrehumbert, Phys. Rev. E, 2002

1:10:1:23Probability density functions of decaying passive scalars in periodic domains: An application of Sinai-Yakhot theory
Jai Sukhatme, Phys. Rev. E, 2004

1:10:1:26Scalar variance decay in chaotic advection and Batchelor-regime turbulence
D. R. Fereday, P. H. Haynes, A. Wonhas, J. C. Vassilicos, Phys. Rev. E, 2002

1:10:1:27Persistent patterns and multifractality in fluid mixing
Bala Sundaram, Andrew C. Poje, Arjendu K. Pattanayak, Phys. Rev. E, 2009

1:10:1:29Fluid-particle separation in a random flow described by the telegraph model
Gregory Falkovich, Marco Martins Afonso, Phys. Rev. E, 2007

1:10:1:32Statistics of a passive scalar advected by a large-scale two-dimensional velocity field: Analytic solution
M. Chertkov, G. Falkovich, I. Kolokolov, V. Lebedev, Phys. Rev. E, 1995

1:10:1:34Experimental Observation of Batchelor Dispersion of Passive Tracers
Marie-Caroline Jullien, Patrizia Castiglione, Patrick Tabeling, Phys. Rev. Lett., 2000

1:10:1:35Does a fast mixer really exist?
Weijiu Liu, Phys. Rev. E, 2005

1:10:1:36Lagrangian path integrals and fluctuations in random flow
Boris I. Shraiman, Eric D. Siggia, Phys. Rev. E, 1994

1:10:1:40Decay of Scalar Turbulence Revisited
M. Chertkov, V. Lebedev, Phys. Rev. Lett., 2003

1:10:1:41Mixing in fully chaotic flows
A. Wonhas, J. C. Vassilicos, Phys. Rev. E, 2002

1:10:1:43Fractal measures of passively convected vector fields and scalar gradients in chaotic fluid flows
Edward Ott, Thomas M. Antonsen, Phys. Rev. A, 1989

1:10:1:48Multifractal power spectra of passive scalars convected by chaotic fluid flows
Thomas M. Antonsen, Edward Ott, Phys. Rev. A, 1991

1:10:1:58Low-wave-number statistics of randomly advected passive scalars
Alan R. Kerstein, Patrick A. McMurtry, Phys. Rev. E, 1994

1:10:1:59Self-Similar Turbulent Dynamo
Alexander A. Schekochihin, Steven C. Cowley, Jason L. Maron, James C. McWilliams, Phys. Rev. Lett., 2004

1:10:1:66Mean first-passage time in the presence of colored noise: A random-telegraph-signal approach
M. Kuś, E. Wajnryb, K. Wódkiewicz, Phys. Rev. A, 1991

1:10:1:69Correlation functions in chaotic systems from periodic orbits
Bruno Eckhardt, Siegfried Grossmann, Phys. Rev. E, 1994

1:10:1:79 Erratum: Decay of passive scalars under the action of single scale smooth velocity fields in bounded two-dimensional domains: From non-self-similar probability distribution functions to self-similar eigenmodes [Phys. Rev. E 66 , 056302 (2002)]
Jai Sukhatme, Raymond T. Pierrehumbert, Phys. Rev. E, 2003

1:10:1:80Quasistationary probability density functions in the turbulent mixing of a scalar field
Luis Valiño, César Dopazo, Javier Ros, Phys. Rev. Lett., 1994

1:10:1:92Zeta function for the Lyapunov exponent of a product of random matrices
Ronnie Mainieri, Phys. Rev. Lett., 1992

1:10:2:2Experimental Measurements of Stretching Fields in Fluid Mixing
Greg A. Voth, G. Haller, J. P. Gollub, Phys. Rev. Lett., 2002

1:10:2:5Three-dimensional flow in electromagnetically driven shallow two-layer fluids
R. A. D. Akkermans, L. P. J. Kamp, H. J. H. Clercx, G. J. F. van Heijst, Phys. Rev. E, 2010

1:10:2:8Topologies of velocity-field stagnation points generated by a single pair of magnets in free-surface electromagnetic experiments
J. M. García de la Cruz, J. C. Vassilicos, L. Rossi, Phys. Rev. E, 2014

1:10:2:13Scaling and asymmetry in an electromagnetically forced dipolar flow structure
M. Duran-Matute, R. R. Trieling, G. J. F. van Heijst, Phys. Rev. E, 2011

1:10:2:19Quasi-two-dimensional turbulence in shallow fluid layers: The role of bottom friction and fluid layer depth
H. J. H. Clercx, G. J. F. van Heijst, M. L. Zoeteweij, Phys. Rev. E, 2003

1:10:2:22Experimental study of freely decaying two-dimensional turbulence
P. Tabeling, S. Burkhart, O. Cardoso, H. Willaime, Phys. Rev. Lett., 1991

1:10:2:23Multiscale Laminar Flows with Turbulentlike Properties
Lionel Rossi, J. C. Vassilicos, Yannis Hardalupas, Phys. Rev. Lett., 2006

1:10:2:28Quantitative experimental study of the free decay of quasi-two-dimensional turbulence
O. Cardoso, D. Marteau, P. Tabeling, Phys. Rev. E, 1994

1:10:2:29Pair Dispersion and Doubling Time Statistics in Two-Dimensional Turbulence
M. K. Rivera, R. E. Ecke, Phys. Rev. Lett., 2005

1:10:2:31Equilibrium states of two-dimensional turbulence: An experimental study
D. Marteau, O. Cardoso, P. Tabeling, Phys. Rev. E, 1995

1:10:2:32Curvature Fields, Topology, and the Dynamics of Spatiotemporal Chaos
Nicholas T. Ouellette, J. P. Gollub, Phys. Rev. Lett., 2007

1:10:2:33Numerical simulations of experiments on quasi-two-dimensional turbulence
B. Jüttner, D. Marteau, P. Tabeling, A. Thess, Phys. Rev. E, 1997

1:10:2:43Comment on “Turbulence-Condensate Interaction in Two Dimensions”
Erik Lindborg, Phys. Rev. Lett., 2009

1:10:2:50Hydromagnetic Flow due to an Oscillating Plane
R. Hide, P. H. Roberts, Rev. Mod. Phys., 1960

1:10:2:58Experiments on stability of equilibria of two vortices in a cylindrical trap
T. B. Mitchell, C. F. Driscoll, K. S. Fine, Phys. Rev. Lett., 1993

1:10:3:2Lamination and mixing in three fundamental flow sequences driven by electromagnetic body forces
L. Rossi, D. Doorly, D. Kustrin, Phys. Rev. E, 2012

1:10:3:8Stretching fields and mixing near the transition to nonperiodic two-dimensional flow
M. J. Twardos, P. E. Arratia, M. K. Rivera, G. A. Voth, J. P. Gollub, R. E. Ecke, Phys. Rev. E, 2008

1:10:3:9Chaotic particle transport in time-dependent Rayleigh-Bénard convection
T. H. Solomon, J. P. Gollub, Phys. Rev. A, 1988

1:10:3:10Mechanism to explore lamination rate
Lionel Rossi, Phys. Rev. E, 2010

1:10:3:14Breaking time reversal symmetry by viscous dephasing
Bruno Eckhardt, Erwan Hascoët, Phys. Rev. E, 2005

1:10:3:35Chaotic advection in compressible helical flow
V. N. Govorukhin, A. Morgulis, V. I. Yudovich, G. M. Zaslavsky, Phys. Rev. E, 1999

1:10:3:36Mass Transport in Propagating Patterns of Convection
Elisha Moses, Victor Steinberg, Phys. Rev. Lett., 1988

1:10:3:44Ion-Mixing Mode and Model for Density Rise in Confined Plasmas
B. Coppi, C. Spight, Phys. Rev. Lett., 1978

1:10:4:2Observability of periodic lines in three-dimensional lid-driven cylindrical cavity flows
J. Znaien, M. F. M. Speetjens, R. R. Trieling, H. J. H. Clercx, Phys. Rev. E, 2012

1:10:4:6Comparative numerical-experimental analysis of the universal impact of arbitrary perturbations on transport in three-dimensional unsteady flows
F. Wu, M. F. M. Speetjens, D. L. Vainchtein, R. R. Trieling, H. J. H. Clercx, Phys. Rev. E, 2014

1:10:4:8Resonant mixing in perturbed action-action-angle flow
Dmitri L. Vainchtein, John Widloski, Roman O. Grigoriev, Phys. Rev. E, 2008

1:10:4:34Global Diffusion in a Realistic Three-Dimensional Time-Dependent Nonturbulent Fluid Flow
Julyan H. E. Cartwright, Mario Feingold, Oreste Piro, Phys. Rev. Lett., 1995

1:10:4:47 Erratum: Resonant mixing in perturbed action-action-angle flow [Phys. Rev. E 78 , 026302 (2008)]
Dmitri L. Vainchtein, John Widloski, Roman O. Grigoriev, Phys. Rev. E, 2010

1:10:4:55Lagrangian Acceleration of Passive Tracers in Statistically Steady Rotating Turbulence
Lorenzo Del Castello, Herman J. H. Clercx, Phys. Rev. Lett., 2011

1:10:5:1Front propagation and mode-locking in an advection-reaction-diffusion system
M. S. Paoletti, T. H. Solomon, Phys. Rev. E, 2005

1:10:5:2Targeted mixing in an array of alternating vortices
R. Bachelard, T. Benzekri, C. Chandre, X. Leoncini, M. Vittot, Phys. Rev. E, 2007

1:10:5:3Front propagation in a laminar cellular flow: Shapes, velocities, and least time criterion
A. Pocheau, F. Harambat, Phys. Rev. E, 2008

1:10:5:4Front propagation in a chaotic flow field
C. O. Mehrvarzi, M. R. Paul, Phys. Rev. E, 2014

1:10:5:5Reaction front propagation in a turbulent flow
Christophe R. Koudella, Zoltán Neufeld, Phys. Rev. E, 2004

1:10:5:6Front speed in reactive compressible stirred media
Federico Bianco, Sergio Chibbaro, Davide Vergni, Angelo Vulpiani, Phys. Rev. E, 2013

1:10:5:7Mixing and reaction efficiency in closed domains
S. Berti, D. Vergni, F. Visconti, A. Vulpiani, Phys. Rev. E, 2005

1:10:5:8Inward propagating chemical waves in Taylor vortices
Barnaby W. Thompson, Jan Novak, Mark C. T. Wilson, Melanie M. Britton, Annette F. Taylor, Phys. Rev. E, 2010

1:10:5:9Front propagation in laminar flows
M. Abel, A. Celani, D. Vergni, A. Vulpiani, Phys. Rev. E, 2001

1:10:5:11Thin front propagation in random shear flows
M. Chinappi, M. Cencini, A. Vulpiani, Phys. Rev. E, 2006

1:10:5:12Effective front propagation in steady cellular flows: A least time criterion
A. Pocheau, F. Harambat, Phys. Rev. E, 2006

1:10:5:13Front propagation in cellular flows for fast reaction and small diffusivity
Alexandra Tzella, Jacques Vanneste, Phys. Rev. E, 2014

1:10:5:14Pattern of Reaction Diffusion Fronts in Laminar Flows
M. Leconte, J. Martin, N. Rakotomalala, D. Salin, Phys. Rev. Lett., 2003

1:10:5:21Chaotic advection in a Rayleigh-Bénard flow
R. Camassa, S. Wiggins, Phys. Rev. A, 1991

1:10:5:23Spatiotemporal intermittency in lines of vortices
H. Willaime, O. Cardoso, P. Tabeling, Phys. Rev. E, 1993

1:10:5:24Chemical Reaction Fronts in Ordered and Disordered Cellular Flows with Opposing Winds
M. E. Schwartz, T. H. Solomon, Phys. Rev. Lett., 2008

1:10:5:27Front Propagation Rates in Randomly Stirred Media
P. D. Ronney, B. D. Haslam, N. O. Rhys, Phys. Rev. Lett., 1995

1:10:5:30Stability analysis of flame fronts: Dynamical systems approach in the complex plane
Oleg Kupervasser, Zeev Olami, Itamar Procaccia, Phys. Rev. E, 1999

1:10:5:39Simple Solution to the Nonlinear Front Problem
Alain Goriely, Phys. Rev. Lett., 1995

1:10:5:42Propagation of a Huygens Front Through Turbulent Medium
M. Chertkov, V. Yakhot, Phys. Rev. Lett., 1998

1:10:5:43Reaction-diffusion fronts under stochastic advection
A. C. Martí, F. Sagués, J. M. Sancho, Phys. Rev. E, 1997

1:10:5:66Scale Covariance of the Wrinkling Law of Turbulent Propagating Interfaces
A. Pocheau, D. Queiros-Condé, Phys. Rev. Lett., 1996

1:10:6:5Scalar dispersion in a periodically reoriented potential flow: Acceleration via Lagrangian chaos
D. R. Lester, M. Rudman, G. Metcalfe, M. G. Trefry, A. Ord, B. Hobbs, Phys. Rev. E, 2010

1:10:6:7Control mechanisms for the global structure of scalar dispersion in chaotic flows
Daniel Lester, Guy Metcalfe, Murray Rudman, Phys. Rev. E, 2014

1:10:6:17Detection of Coherent Oceanic Structures via Transfer Operators
Gary Froyland, Kathrin Padberg, Matthew H. England, Anne Marie Treguier, Phys. Rev. Lett., 2007

1:10:7:11Multiscale mixing efficiencies for steady sources
Charles R. Doering, Jean-Luc Thiffeault, Phys. Rev. E, 2006

1:10:7:51Stieltjes Integral Representation and Effective Diffusivity Bounds for Turbulent Transport
Marco Avellaneda, Andrew J. Majda, Phys. Rev. Lett., 1989

1:10:8:4Tailored mixing inside a translating droplet
R. Chabreyrie, D. Vainchtein, C. Chandre, P. Singh, N. Aubry, Phys. Rev. E, 2008

1:10:9:1Resonant pattern formation in active media driven by time-dependent flows
Vincente Pérez-Muñuzuri, Phys. Rev. E, 2006

1:10:9:2Chemical-wave dynamics in a vertically oscillating fluid layer
G. Fernández-García, D. I. Roncaglia, V. Pérez-Villar, A. P. Muñuzuri, V. Pérez-Muñuzuri, Phys. Rev. E, 2008

1:10:9:3Homogenization induced by chaotic mixing and diffusion in an oscillatory chemical reaction
I. Z. Kiss, J. H. Merkin, Z. Neufeld, Phys. Rev. E, 2004

1:10:9:5Mixing efficiency in an excitable medium with chaotic shear flow
Vicente Pérez-Muñuzuri, Guillermo Fernández-García, Phys. Rev. E, 2007

1:10:9:6Persistent localized states for a chaotically mixed bistable reaction
Stephen M. Cox, Phys. Rev. E, 2006

1:10:9:8Bifurcations of flame filaments in chaotically mixed combustion reactions
Shakti N. Menon, Georg A. Gottwald, Phys. Rev. E, 2007

1:10:9:9Bifurcations in reaction-diffusion systems in chaotic flows
Shakti N. Menon, Georg A. Gottwald, Phys. Rev. E, 2005

1:10:9:10Experimental Studies of Pattern Formation in a Reaction-Advection-Diffusion System
C. R. Nugent, W. M. Quarles, T. H. Solomon, Phys. Rev. Lett., 2004

1:10:9:12Excitable Media in a Chaotic Flow
Zoltán Neufeld, Phys. Rev. Lett., 2001

1:10:9:13Synchronization of Oscillating Reactions in an Extended Fluid System
M. S. Paoletti, C. R. Nugent, T. H. Solomon, Phys. Rev. Lett., 2006

1:10:9:18Noise-Sustained Coherent Oscillation of Excitable Media in a Chaotic Flow
Changsong Zhou, Jürgen Kurths, Zoltán Neufeld, István Z. Kiss, Phys. Rev. Lett., 2003

1:10:9:19Excitable media in open and closed chaotic flows
Zoltán Neufeld, Cristóbal López, Emilio Hernández-García, Oreste Piro, Phys. Rev. E, 2002

1:10:9:28Turbulence in phase-separating binary mixtures
J. A. Aronovitz, David R. Nelson, Phys. Rev. A, 1984

1:10:10:4Bridging kinematics and concentration content in a chaotic micromixer
E. Villermaux, A. D. Stroock, H. A. Stone, Phys. Rev. E, 2008

1:10:10:6Mixing as an Aggregation Process
E. Villermaux, J. Duplat, Phys. Rev. Lett., 2003

1:10:10:10Exponential tails and random advection
Alain Pumir, Boris I. Shraiman, Eric D. Siggia, Phys. Rev. Lett., 1991

1:10:10:13Coarse Grained Scale of Turbulent Mixtures
E. Villermaux, J. Duplat, Phys. Rev. Lett., 2006

1:10:10:17Simple Model of Intermittent Passive Scalar Turbulence
Jaan Kalda, Phys. Rev. Lett., 2000

1:10:10:29Entanglement Rules for Random Mixtures
J. Duplat, A. Jouary, E. Villermaux, Phys. Rev. Lett., 2010

1:10:11:1Resonant plankton patchiness induced by large-scale turbulent flow
William J. McKiver, Zoltán Neufeld, Phys. Rev. E, 2011

1:10:11:3Smooth and filamental structures in chaotically advected chemical fields
Alexandra Tzella, Peter H. Haynes, Phys. Rev. E, 2010

1:10:11:4Multifractal spectra of chemical fields in fluid flows
Izabella Júlia Benczik, Zoltán Neufeld, Tamás Tél, Phys. Rev. E, 2005

1:10:11:5Reactions in flows with nonhyperbolic dynamics
Alessandro P. S. de Moura, Celso Grebogi, Phys. Rev. E, 2004

1:10:11:6Influence of turbulent advection on a phytoplankton ecosystem with nonuniform carrying capacity
William J. McKiver, Zoltán Neufeld, Phys. Rev. E, 2009

1:10:11:7Bounding biomass in the Fisher equation
Daniel A. Birch, Yue-Kin Tsang, William R. Young, Phys. Rev. E, 2007

1:10:11:8Chemical and biological activity in three-dimensional flows
Alessandro P. S. de Moura, Celso Grebogi, Phys. Rev. E, 2004

1:10:11:9Advection of Active Particles in Open Chaotic Flows
Zoltán Toroczkai, György Károlyi, Áron Péntek, Tamás Tél, Celso Grebogi, Phys. Rev. Lett., 1998

1:10:11:11Discrete time model for chemical or biological decay in chaotic flows: Reentrance phase transitions
Izabella Júlia Benczik, Phys. Rev. E, 2005

1:10:11:13Multifractal structure of chaotically advected chemical fields
Zoltán Neufeld, Cristóbal López, Emilio Hernández-García, Tamás Tél, Phys. Rev. E, 2000

1:10:11:15Smooth-Filamental Transition of Active Tracer Fields Stirred by Chaotic Advection
Zoltán Neufeld, Cristóbal López, Peter H. Haynes, Phys. Rev. Lett., 1999

1:10:11:16Chemical or biological activity in open chaotic flows
György Károlyi, Áron Péntek, Zoltán Toroczkai, Tamás Tél, Celso Grebogi, Phys. Rev. E, 1999

1:10:11:17 k Spectrum of Finite Lifetime Passive Scalars in Lagrangian Chaotic Fluid Flows
Keeyeol Nam, Thomas M. Antonsen, Parvez N. Guzdar, Edward Ott, Phys. Rev. Lett., 1999

1:10:11:26Phototactic Clustering of Swimming Microorganisms in a Turbulent Velocity Field
Colin Torney, Zoltán Neufeld, Phys. Rev. Lett., 2008

1:10:12:2Short-time behavior of advecting-diffusing scalar fields in Stokes flows
M. Giona, P. D. Anderson, F. Garofalo, Phys. Rev. E, 2013

1:10:12:6Localization and spectral phase transition in an open advecting-diffusing three-dimensional Stokes flow
M. Giona, S. Cerbelli, Phys. Rev. E, 2008

1:10:12:7Advection diffusion in nonchaotic closed flows: Non-Hermitian operators, universality, and localization
M. Giona, V. Vitacolonna, S. Cerbelli, A. Adrover, Phys. Rev. E, 2004

1:10:12:11Spectral Properties and Transport Mechanisms of Partially Chaotic Bounded Flows in the Presence of Diffusion
M. Giona, A. Adrover, S. Cerbelli, V. Vitacolonna, Phys. Rev. Lett., 2004

1:10:12:12Localization Transitions in Non-Hermitian Quantum Mechanics
Naomichi Hatano, David R. Nelson, Phys. Rev. Lett., 1996

1:10:12:19Mixing-Induced Global Modes in Open Active Flow
Arthur V. Straube, Arkady Pikovsky, Phys. Rev. Lett., 2007

1:10:12:23Vortex pinning and non-Hermitian quantum mechanics
Naomichi Hatano, David R. Nelson, Phys. Rev. B, 1997

1:10:12:25Vortex pinning and the non-Hermitian Mott transition
Raphael A. Lehrer, David R. Nelson, Phys. Rev. B, 1998

1:10:12:27Nonuniform Stationary Measure of the Invariant Unstable Foliation in Hamiltonian and Fluid Mixing Systems
M. Giona, A. Adrover, Phys. Rev. Lett., 1998

1:10:13:1Effective dimensions and chemical reactions in fluid flows
György Károlyi, Tamás Tél, Phys. Rev. E, 2007

1:10:13:2Fast chemical reaction and multiple-scale concentration fields in singular vortices
D. Martinand, J. C. Vassilicos, Phys. Rev. E, 2007

1:10:13:3Predicting the evolution of fast chemical reactions in chaotic flows
Yue-Kin Tsang, Phys. Rev. E, 2009

1:10:13:4Fast chemical reaction in two-dimensional Navier-Stokes flow: Initial regime
Farid Ait-Chaalal, Michel S. Bourqui, Peter Bartello, Phys. Rev. E, 2012

1:10:13:6Reaction enhancement of point sources due to vortex stirring
John P. Crimaldi, Jillian R. Hartford, Jeffrey B. Weiss, Phys. Rev. E, 2006

1:10:13:7Diffusivity dependence of ozone depletion over the midnorthern latitudes
A. Wonhas, J. C. Vassilicos, Phys. Rev. E, 2002

1:10:13:11Predicting the Progress of Diffusively Limited Chemical Reactions in the Presence of Chaotic Advection
P. E. Arratia, J. P. Gollub, Phys. Rev. Lett., 2006

1:10:13:14Chemical Transients in Closed Chaotic Flows: The Role of Effective Dimensions
György Károlyi, Tamás Tél, Phys. Rev. Lett., 2005

1:10:13:15Enhancement of the reactivity by chaotic mixing
O. Paireau, P. Tabeling, Phys. Rev. E, 1997

1:10:13:16 Mixing effects in the A + B →0 reaction-diffusion scheme
I. M. Sokolov, A. Blumen, Phys. Rev. Lett., 1991

1:10:13:21Stochastic and deterministic analysis of reactions: The fractal case
G. Zumofen, J. Klafter, A. Blumen, Phys. Rev. A, 1991

1:10:13:27Temporal Chaos Versus Spatial Mixing in Reaction-Advection-Diffusion Systems
Arthur V. Straube, Markus Abel, Arkady Pikovsky, Phys. Rev. Lett., 2004

1:10:13:35 Spatial correlations and cross sections of clusters in the A + B 0 reaction
R. Reigada, F. Sagués, I. M. Sokolov, J. M. Sancho, A. Blumen, Phys. Rev. E, 1996

1:10:14:2Accurate control of hyperbolic trajectories in any dimension
Sanjeeva Balasuriya, Kathrin Padberg-Gehle, Phys. Rev. E, 2014

1:10:14:11Optimal Frequency for Microfluidic Mixing across a Fluid Interface
Sanjeeva Balasuriya, Phys. Rev. Lett., 2010

1:10:14:14Energy Constrained Transport Maximization across a Fluid Interface
Sanjeeva Balasuriya, Matthew D. Finn, Phys. Rev. Lett., 2012

1:10:14:58Stabilizing and characterizing unstable states in high-dimensional systems from time series
Valery Petrov, Eugene Mihaliuk, Stephen K. Scott, Kenneth Showalter, Phys. Rev. E, 1995

1:10:16:3Finite-time statistics of scalar diffusion in Lagrangian coherent structures
Wenbo Tang, Phillip Walker, Phys. Rev. E, 2012

1:10:16:13Chaotic Fluid Convection and the Fractal Nature of Passive Scalar Gradients
Edward Ott, Thomas M. Antonsen, Phys. Rev. Lett., 1988

1:10:18:1Rate of chaotic mixing and boundary behavior
Rob Sturman, James Springham, Phys. Rev. E, 2013

1:10:18:6Lagrangian topology of a periodically reoriented potential flow: Symmetry, optimization, and mixing
D. R. Lester, G. Metcalfe, M. G. Trefry, A. Ord, B. Hobbs, M. Rudman, Phys. Rev. E, 2009

1:10:19:6Barriers to transport induced by periodic oscillations in a physical model of the human vitreous chamber
Alberto Oliveri, Alessandro Stocchino, Marco Storace, Phys. Rev. E, 2011

1:10:20:1Topological mixing with ghost rods
Emmanuelle Gouillart, Jean-Luc Thiffeault, Matthew D. Finn, Phys. Rev. E, 2006

1:10:20:5Alternative determinism principle for topological analysis of chaos
Marc Lefranc, Phys. Rev. E, 2006

1:10:20:12Topological Signature of Deterministic Chaos in Short Nonstationary Signals from an Optical Parametric Oscillator
Axelle Amon, Marc Lefranc, Phys. Rev. Lett., 2004

1:10:20:14Measuring Topological Chaos
Jean-Luc Thiffeault, Phys. Rev. Lett., 2005

1:10:20:16Topological Structure of Chaotic Flows from Human Speech Data
Denisse Sciamarella, G. B. Mindlin, Phys. Rev. Lett., 1999

1:10:21:2Scalar fluctuations from a point source in a turbulent boundary layer
Eugene Yee, Alex Skvortsov, Phys. Rev. E, 2011

1:10:21:3Scaling laws of peripheral mixing of passive scalar in a wall-shear layer
Alex Skvortsov, Eugene Yee, Phys. Rev. E, 2011

1:10:21:4Scaling laws of passive tracer dispersion in the turbulent surface layer
Alex Skvortsov, Milan Jamriska, Timothy C. DuBois, Phys. Rev. E, 2010

1:10:21:5Chaotic Mixing in a Steady Flow in a Microchannel
Claire Simonnet, Alex Groisman, Phys. Rev. Lett., 2005

1:10:21:6Is Turbulent Mixing a Self-Convolution Process?
Antoine Venaille, Joel Sommeria, Phys. Rev. Lett., 2008

1:10:22:3Coarse-grained simulation of chaotic mixing in laminar flows
A. Vikhansky, Phys. Rev. E, 2006

1:10:22:4Self-Similar Spatiotemporal Structure of Intermaterial Boundaries in Chaotic Flows
M. M. Alvarez, F. J. Muzzio, S. Cerbelli, A. Adrover, M. Giona, Phys. Rev. Lett., 1998

1:10:22:6Dynamics of a lamellar system with diffusion and reaction: Scaling analysis and global kinetics
F. J. Muzzio, J. M. Ottino, Phys. Rev. A, 1989

1:10:22:9Diffusion and reaction in a lamellar system: Self-similarity with finite rates of reaction
F. J. Muzzio, J. M. Ottino, Phys. Rev. A, 1990

1:10:24:1Particles and fields in fluid turbulence
G. Falkovich, K. Gawȩdzki, M. Vergassola, Rev. Mod. Phys., 2001

1:10:26:6Role of Lobes in Chaotic Mixing of Miscible and Immiscible Impurities
T. H. Solomon, S. Tomas, J. L. Warner, Phys. Rev. Lett., 1996

1:10:26:26Distribution of striation thicknesses in reacting lamellar systems
I. M. Sokolov, A. Blumen, Phys. Rev. A, 1991

1:10:27:1Analysis of chaotic mixing in plugs moving in meandering microchannels
Zhizhao Che, Nam-Trung Nguyen, Teck Neng Wong, Phys. Rev. E, 2011

1:10:27:2Flow lines and mixing within drops in microcapillaries
François Blanchette, Phys. Rev. E, 2009

1:10:27:3Strategy for active mixing in microdevices
Boris Stoeber, Dorian Liepmann, Susan J. Muller, Phys. Rev. E, 2007

1:10:28:6Robust Transport Barriers Resulting from Strong Kolmogorov-Arnold-Moser Stability
I. I. Rypina, M. G. Brown, F. J. Beron-Vera, H. Koçak, M. J. Olascoaga, I. A. Udovydchenkov, Phys. Rev. Lett., 2007

1:10:30:8Passive scalar fluctuations with and without a mean gradient: A numerical study
Emily S. C. Ching, Yuhai Tu, Phys. Rev. E, 1994

1:10:30:12Stochastic Stokes Drift
Kalvis M. Jansons, G. D. Lythe, Phys. Rev. Lett., 1998

1:10:31:3Spatiotemporal resonances in a microfluidic system
A. Dodge, A. Hountondji, M. C. Jullien, P. Tabeling, Phys. Rev. E, 2005

1:10:32:2Chaotic particle sedimentation in a rotating flow with time-periodic strength
J. R. Angilella, Phys. Rev. E, 2008

1:10:32:6Control of Particles in Microelectrode Devices
Idan Tuval, Igor Mezić, Frédéric Bottausci, Yanting T. Zhang, Noel C. MacDonald, Oreste Piro, Phys. Rev. Lett., 2005

1:10:34:4Evolution of a lamellar system with diffusion and reaction: A scaling approach
F. J. Muzzio, J. M. Ottino, Phys. Rev. Lett., 1989

1:10:35:13Cyclone-Anticyclone Asymmetry in Geophysical Turbulence
Guillaume Roullet, Patrice Klein, Phys. Rev. Lett., 2010

1:10:36:5Stretching, alignment, and shear in slowly varying velocity fields
G. Haller, R. Iacono, Phys. Rev. E, 2003

1:10:39:6Small-Scale Turbulent Dynamo
M. Chertkov, G. Falkovich, I. Kolokolov, M. Vergassola, Phys. Rev. Lett., 1999

1:10:39:7Fourier space intermittency of the small-scale turbulent dynamo
S. Nazarenko, R. J. West, O. Zaboronski, Phys. Rev. E, 2003

1:10:41:5Hidden Geometry of Ocean Flows
Carolina Mendoza, Ana M. Mancho, Phys. Rev. Lett., 2010

1:10:41:6Variable Intensity of Lagrangian Chaos in the Nonlinear Dynamo Problem
E. Zienicke, H. Politano, A. Pouquet, Phys. Rev. Lett., 1998

1:10:44:1Reaction spreading on percolating clusters
Federico Bianco, Sergio Chibbaro, Davide Vergni, Angelo Vulpiani, Phys. Rev. E, 2013

1:10:44:2Reaction spreading on graphs
Raffaella Burioni, Sergio Chibbaro, Davide Vergni, Angelo Vulpiani, Phys. Rev. E, 2012

1:10:44:8Reaction kinetics on fractals: Random-walker simulations and excition experiments
R. Kopelman, P. W. Klymko, J. S. Newhouse, L. W. Anacker, Phys. Rev. B, 1984

1:10:46:1Chaotic advection in blood flow
A. B. Schelin, Gy. Károlyi, A. P. S. de Moura, N. A. Booth, C. Grebogi, Phys. Rev. E, 2009

1:10:47:1Lagrangian approach to understanding the origin of the gill-kinematics switch in mayfly nymphs
R. Chabreyrie, E. Balaras, K. Abdelaziz, K. Kiger, Phys. Rev. E, 2014

1:10:48:1Technique for backward particle tracking in a flow field
A. Nahum, A. Seifert, Phys. Rev. E, 2006

1:10:48:3Spatiotemporal Resonances in Mixing of Open Viscous Fluids
F. Okkels, P. Tabeling, Phys. Rev. Lett., 2004

1:10:48:6Mixing of a continuous flow of two fluids due to unsteady flow
R. A. Truesdell, P. V. Vorobieff, L. A. Sklar, A. A. Mammoli, Phys. Rev. E, 2003

1:10:49:1Fractal scaling of microbial colonies affects growth
György Károlyi, Phys. Rev. E, 2005

1:10:49:2Generic model of morphological changes in growing colonies of fungi
Juan M. López, Henrik J. Jensen, Phys. Rev. E, 2002

1:10:52:2Gravity-Free Hydraulic Jumps and Metal Femtoliter Cups
Manikandan Mathur, Ratul DasGupta, N. R. Selvi, Neena Susan John, G. U. Kulkarni, Rama Govindarajan, Phys. Rev. Lett., 2007

1:10:53:1Control of mixing via entropy tracking
Maarten Hoeijmakers, Francisco Fontenele Araujo, GertJan van Heijst, Henk Nijmeijer, Ruben Trieling, Phys. Rev. E, 2010

1:10:53:4Resonant Chaotic Mixing in a Cellular Flow
Dmitri L. Vainchtein, John Widloski, Roman O. Grigoriev, Phys. Rev. Lett., 2007

1:10:53:7Vortex merging, oscillation, and quasiperiodic structure in a linear array of elongated vortices
Hiroaki Fukuta, Youichi Murakami, Phys. Rev. E, 1998

1:10:54:8Thermal Transients and Convective Particle Motion in Dense Granular Materials
P. Rognon, I. Einav, Phys. Rev. Lett., 2010

1:10:55:1Finite-size particles, advection, and chaos: A collective phenomenon of intermittent bursting
Rene O. Medrano-T., Alessandro Moura, Tamás Tél, Iberê L. Caldas, Celso Grebogi, Phys. Rev. E, 2008

1:10:55:2Autocatalytic processes in mixing flows
Guy Metcalfe, J. M. Ottino, Phys. Rev. Lett., 1994

1:10:55:3Diffusion in three-dimensional Liouvillian maps
Oreste Piro, Mario Feingold, Phys. Rev. Lett., 1988

1:10:55:5Sand stirred by chaotic advection
Cristóbal López, Andrea Puglisi, Phys. Rev. E, 2003

1:10:55:6 Publisher's Note: Finite-size particles, advection, and chaos: A collective phenomenon of intermittent bursting [Phys. Rev. E 78 , 056206 (2008)]
Rene O. Medrano-T., Alessandro Moura, Tamás Tél, Iberê L. Caldas, Celso Grebogi, Phys. Rev. E, 2008

1:10:56:1Effect of demographic noise in a phytoplankton-zooplankton model of bloom dynamics
Piero Olla, Phys. Rev. E, 2013

1:10:57:1Optimally coherent sets in geophysical flows: A transfer-operator approach to delimiting the stratospheric polar vortex
Naratip Santitissadeekorn, Gary Froyland, Adam Monahan, Phys. Rev. E, 2010

1:10:58:1Topology of advective-diffusive scalar transport in laminar flows
M. F. M. Speetjens, Phys. Rev. E, 2008

1:10:59:1Topology of magnetic field lines: Chaos and bifurcations emerging from two-action systems
Tomoshige Miyaguchi, Makoto Hosoda, Katsuyuki Imagawa, Katsuhiro Nakamura, Phys. Rev. E, 2011

1:10:59:2Ubiquity of chaotic magnetic-field lines generated by three-dimensionally crossed wires in modern electric circuits
M. Hosoda, T. Miyaguchi, K. Imagawa, K. Nakamura, Phys. Rev. E, 2009

1:10:59:3Physics of magnetically confined plasmas
Allen H. Boozer, Rev. Mod. Phys., 2005

1:10:62:1Equilibrium statistics of a slave estimator in Langevin processes
David S. Dean, Ian T. Drummond, Ron R. Horgan, Satya N. Majumdar, Phys. Rev. E, 2005

1:10:62:3Structure of small-scale magnetic fields in the kinematic dynamo theory
Alexander Schekochihin, Steven Cowley, Jason Maron, Leonid Malyshkin, Phys. Rev. E, 2001

1:10:63:12Study of the transition to Taylor vortex flow
Kwangjai Park, Russell J. Donnelly, Phys. Rev. A, 1981

1:10:64:1Onset of chaotic advection in open flows
J. J. Benjamin Biemond, Alessandro P. S. de Moura, György Károlyi, Celso Grebogi, Henk Nijmeijer, Phys. Rev. E, 2008

1:10:64:2Fractal boundaries in open hydrodynamical flows: Signatures of chaotic saddles
Áron Péntek, Zoltán Toroczkai, Tamás Tél, Celso Grebogi, James A. Yorke, Phys. Rev. E, 1995

1:10:66:1Intermittent flow in yield-stress fluids slows down chaotic mixing
D. M. Wendell, F. Pigeonneau, E. Gouillart, P. Jop, Phys. Rev. E, 2013

1:10:66:3Rotation Shields Chaotic Mixing Regions from No-Slip Walls
E. Gouillart, J.-L. Thiffeault, O. Dauchot, Phys. Rev. Lett., 2010

1:10:66:5Topological Chaos and Periodic Braiding of Almost-Cyclic Sets
Mark A. Stremler, Shane D. Ross, Piyush Grover, Pankaj Kumar, Phys. Rev. Lett., 2011

1:10:67:1Chaotic mixing in effective compressible flows
R. Volk, C. Mauger, M. Bourgoin, C. Cottin-Bizonne, C. Ybert, F. Raynal, Phys. Rev. E, 2014

1:10:67:2Population Dynamics At High Reynolds Number
Prasad Perlekar, Roberto Benzi, David R. Nelson, Federico Toschi, Phys. Rev. Lett., 2010

1:10:67:7Population Genetics in Compressible Flows
Simone Pigolotti, Roberto Benzi, Mogens H. Jensen, David R. Nelson, Phys. Rev. Lett., 2012

1:10:68:1Impurity and trace tritium transport in tokamak edge turbulence
V. Naulin, Phys. Rev. E, 2005

1:10:68:3Equipartition and Transport in Two-Dimensional Electrostatic Turbulence
V. Naulin, J. Nycander, J. Juul Rasmussen, Phys. Rev. Lett., 1998

1:11:1:22Time persistence of floating-particle clusters in free-surface turbulence
Salvatore Lovecchio, Cristian Marchioli, Alfredo Soldati, Phys. Rev. E, 2013

1:11:1:105Turbulence of a Free Surface
Ralph Savelsberg, Willem van de Water, Phys. Rev. Lett., 2008

1:11:3:15Lagrangian-Eulerian dynamics of breaking shallow water waves through tracer tracking of fluid elements
Ue-Yu Pen, Mei-Chu Chang, Lin I, Phys. Rev. E, 2013

1:11:4:41Evolution of turbulence in an oscillatory flow in a smooth-walled channel: A viscous secondary instability mechanism
J. A. Cosgrove, J. M. Buick, S. J. Tonge, Phys. Rev. E, 2003

1:11:22:5Shear instability of fluid interfaces: Stability analysis
A. Alexakis, Y. Young, R. Rosner, Phys. Rev. E, 2002

1:11:41:1Weakly breaking waves in the presence of surfactant micelles
Xinan Liu, James H. Duncan, Phys. Rev. E, 2007

1:11:41:4Energy and Momentum Growth Rates in Breaking Water Waves
Michael L. Banner, Xin Tian, Phys. Rev. Lett., 1996

1:11:41:5Adsorption Kinetics in Micellar Solutions of Nonionic Surfactants
Daniel M. Colegate, Colin D. Bain, Phys. Rev. Lett., 2005

1:11:55:1Near-wall turbulent transport of large-Schmidt-number passive scalars
P. L. Garcia-Ybarra, Phys. Rev. E, 2009

1:11:56:1Complex dynamics in simple systems with periodic parameter oscillations
L. Héctor Juárez, Holger Kantz, Oscar Martínez, Eduardo Ramos, Raúl Rechtman, Phys. Rev. E, 2004

1:12:1:3Streamline segment statistics of premixed flames with nonunity Lewis numbers
Nilanjan Chakraborty, Lipo Wang, Markus Klein, Phys. Rev. E, 2014

1:12:3:3Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability
Swetaprovo Chaudhuri, V’yacheslav Akkerman, Chung K. Law, Phys. Rev. E, 2011

1:12:3:4Theory and modeling of accelerating flames in tubes
Vitaly Bychkov, Arkady Petchenko, V’yacheslav Akkerman, Lars-Erik Eriksson, Phys. Rev. E, 2005

1:12:3:5Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations
Swetaprovo Chaudhuri, Fujia Wu, Chung K. Law, Phys. Rev. E, 2013

1:12:3:6Explosion triggering by an accelerating flame
Vitaly Bychkov, V’yacheslav Akkerman, Phys. Rev. E, 2006

1:12:3:8Field equation for interface propagation in an unsteady homogeneous flow field
Alan R. Kerstein, William T. Ashurst, Forman A. Williams, Phys. Rev. A, 1988

1:12:3:12Scale invariance in turbulent front propagation
A. Pocheau, Phys. Rev. E, 1994

1:12:3:19Propagation of curved stationary flames in tubes
V. V. Bychkov, S. M. Golberg, M. A. Liberman, L. E. Eriksson, Phys. Rev. E, 1996

1:12:3:20Importance of the Darrieus-Landau instability for strongly corrugated turbulent flames
Vitaly Bychkov, Phys. Rev. E, 2003

1:12:3:21Propagation rate of growing interfaces in stirred fluids
Alan R. Kerstein, Wm. T. Ashurst, Phys. Rev. Lett., 1992

1:12:3:36Numerical studies of flames in wide tubes: Stability limits of curved stationary flames
O. Yu. Travnikov, V. V. Bychkov, M. A. Liberman, Phys. Rev. E, 2000

1:12:3:37Turbulent scales smaller than the flame thickness
Bruno Denet, Phys. Rev. E, 1999

1:12:4:53Stability of pole solutions for planar propagating flames
M. Rahibe, N. Aubry, G. I. Sivashinsky, Phys. Rev. E, 1996

1:12:8:1Shapes and speeds of steady forced premixed flames
Guy Joulin, Bruno Denet, Phys. Rev. E, 2014

1:12:8:2Wrinkled flames and geometrical stretch
Bruno Denet, Guy Joulin, Phys. Rev. E, 2011

1:12:8:3Sivashinsky equation for corrugated flames in the large-wrinkle limit
Guy Joulin, Bruno Denet, Phys. Rev. E, 2008

1:12:8:4Stationary solutions and Neumann boundary conditions in the Sivashinsky equation
Bruno Denet, Phys. Rev. E, 2006

1:12:8:5Sivashinsky equation in a rectangular domain
Bruno Denet, Phys. Rev. E, 2007

1:12:8:7Pseudoresonant interaction between flame and upstream velocity fluctuations
V. Karlin, Phys. Rev. E, 2006

1:12:8:12Random noise and pole dynamics in unstable front propagation
Zeev Olami, Barak Galanti, Oleg Kupervasser, Itamar Procaccia, Phys. Rev. E, 1997

1:12:8:20First Experimental Study of the Darrieus-Landau Instability
C. Clanet, G. Searby, Phys. Rev. Lett., 1998

1:12:8:29Nonlinear equation for curved nonstationary flames and flame stability
V. V. Bychkov, K. A. Kovalev, M. A. Liberman, Phys. Rev. E, 1999

1:12:9:2Different stages of flame acceleration from slow burning to Chapman-Jouguet deflagration
Damir M. Valiev, Vitaly Bychkov, V’yacheslav Akkerman, Lars-Erik Eriksson, Phys. Rev. E, 2009

1:12:9:3Hydrogen-oxygen flame acceleration and transition to detonation in channels with no-slip walls for a detailed chemical reaction model
M. F. Ivanov, A. D. Kiverin, M. A. Liberman, Phys. Rev. E, 2011

1:12:9:4Role of compressibility in moderating flame acceleration in tubes
Vitaly Bychkov, V’yacheslav Akkerman, Damir Valiev, Chung K. Law, Phys. Rev. E, 2010

1:12:9:17Physical Mechanism of Ultrafast Flame Acceleration
Vitaly Bychkov, Damir Valiev, Lars-Erik Eriksson, Phys. Rev. Lett., 2008

1:12:9:24Speedup of Doping Fronts in Organic Semiconductors through Plasma Instability
V. Bychkov, P. Matyba, V. Akkerman, M. Modestov, D. Valiev, G. Brodin, C. K. Law, M. Marklund, L. Edman, Phys. Rev. Lett., 2011

1:12:9:26Anisotropic properties of spin avalanches in crystals of nanomagnets
C. M. Dion, O. Jukimenko, M. Modestov, M. Marklund, V. Bychkov, Phys. Rev. B, 2013

1:12:9:31Detonative Propagation and Accelerative Expansion of the Crab Nebula Shock Front
Yang Gao, Chung K. Law, Phys. Rev. Lett., 2011

1:12:9:35Ultrafast Spin Avalanches in Crystals of Nanomagnets in Terms of Magnetic Detonation
M. Modestov, V. Bychkov, M. Marklund, Phys. Rev. Lett., 2011

1:12:9:36Spontaneous Transition of Turbulent Flames to Detonations in Unconfined Media
Alexei Y. Poludnenko, Thomas A. Gardiner, Elaine S. Oran, Phys. Rev. Lett., 2011

1:12:10:3Noise influence on pole solutions of the Sivashinsky equation for planar and outward propagating flames
R. V. Fursenko, K. L. Pan, S. S. Minaev, Phys. Rev. E, 2008

1:12:10:21Formation of wrinkles in outwardly propagating flames
M. Rahibe, N. Aubry, G. I. Sivashinsky, R. Lima, Phys. Rev. E, 1995

1:12:10:29Geometry of Developing Flame Fronts: Analysis with Pole Decomposition
Oleg Kupervasser, Zeev Olami, Itamar Procaccia, Phys. Rev. Lett., 1996

1:12:10:36Dynamics and Wrinkling of Radially Propagating Fronts Inferred from Scaling Laws in Channel Geometries
Barak Galanti, Oleg Kupervasser, Zeev Olami, Itamar Procaccia, Phys. Rev. Lett., 1998

1:12:12:6Stability analysis of confined V-shaped flames in high-velocity streams
Hazem El-Rabii, Guy Joulin, Kirill A. Kazakov, Phys. Rev. E, 2010

1:12:12:8Exact Equation for Curved Stationary Flames with Arbitrary Gas Expansion
Kirill A. Kazakov, Phys. Rev. Lett., 2005

1:12:12:9Nonperturbative Approach to the Nonlinear Dynamics of Two-Dimensional Premixed Flames
Hazem El-Rabii, Guy Joulin, Kirill A. Kazakov, Phys. Rev. Lett., 2008

1:12:16:2Accelerative propagation and explosion triggering by expanding turbulent premixed flames
V’yacheslav Akkerman, Swetaprovo Chaudhuri, Chung K. Law, Phys. Rev. E, 2013

1:12:16:3Self-similar accelerative propagation of expanding wrinkled flames and explosion triggering
V’yacheslav Akkerman, Chung K. Law, Vitaly Bychkov, Phys. Rev. E, 2011

1:12:16:7Stability and the Fractal Structure of a Spherical Flame in a Self-Similar Regime
V. V. Bychkov, M. A. Liberman, Phys. Rev. Lett., 1996

1:12:16:8Flame Speed and Self-Similar Propagation of Expanding Turbulent Premixed Flames
Swetaprovo Chaudhuri, Fujia Wu, Delin Zhu, Chung K. Law, Phys. Rev. Lett., 2012

1:12:16:10Effect of the Darrieus-Landau instability on turbulent flame velocity
Maxim Zaytsev, Vitaliy Bychkov, Phys. Rev. E, 2002

1:12:16:16Violent Folding of a Flame Front in a Flame-Acoustic Resonance
Arkady Petchenko, Vitaly Bychkov, V’yacheslav Akkerman, Lars-Erik Eriksson, Phys. Rev. Lett., 2006

1:12:16:22Resonance of a Turbulent Flame in a High-Frequency Acoustic Wave
Vitaliy Bychkov, Phys. Rev. Lett., 2002

1:12:20:2Pattern formation of flames in radial microchannels with lean methane-air mixtures
Sudarshan Kumar, Kaoru Maruta, S. Minaev, Phys. Rev. E, 2007

1:12:20:7Rotating Spiral Edge Flames in von Karman Swirling Flows
V. Nayagam, F. A. Williams, Phys. Rev. Lett., 2000

1:12:20:11Fingering instability in nonadiabatic low-Lewis-number flames
Michael L. Frankel, Gregory I. Sivashinsky, Phys. Rev. E, 1995

1:12:21:1Potential-flow models for channelled two-dimensional premixed flames around near-circular obstacles
G. Joulin, B. Denet, H. El-Rabii, Phys. Rev. E, 2010

1:12:21:5Landau-Darrieus instability and the fractal dimension of flame fronts
Sergei Iv. Blinnikov, Pavel V. Sasorov, Phys. Rev. E, 1996

1:12:21:18Coordinate-free description of corrugated flames with realistic density drop at the front
Vitaly Bychkov, Maxim Zaytsev, V’yacheslav Akkerman, Phys. Rev. E, 2003

1:12:21:22Nonlinear hydrodynamic instability of expanding flames: Intrinsic dynamics
Guy Joulin, Phys. Rev. E, 1994

1:12:26:2Instability induced by symmetry reduction
J. Guckenheimer, A. Mahalov, Phys. Rev. Lett., 1992

1:12:26:16Dynamic Origin of Azimuthal Modes Splitting in Vortex-State Magnetic Dots
Konstantin Y. Guslienko, Andrei N. Slavin, Vasyl Tiberkevich, Sang-Koog Kim, Phys. Rev. Lett., 2008

1:12:26:17Mode degeneracy due to vortex core removal in magnetic disks
F. Hoffmann, G. Woltersdorf, K. Perzlmaier, A. N. Slavin, V. S. Tiberkevich, A. Bischof, D. Weiss, C. H. Back, Phys. Rev. B, 2007

1:12:26:24Controlled Coupling of Counterpropagating Whispering-Gallery Modes by a Single Rayleigh Scatterer: A Classical Problem in a Quantum Optical Light
A. Mazzei, S. Götzinger, L. de S. Menezes, G. Zumofen, O. Benson, V. Sandoghdar, Phys. Rev. Lett., 2007

1:12:33:3Model flames in the Boussinesq limit: The case of pulsating fronts
N. Vladimirova, R. Rosner, Phys. Rev. E, 2005

1:12:43:1Detection and control of combustion instability based on the concept of dynamical system theory
Hiroshi Gotoda, Yuta Shinoda, Masaki Kobayashi, Yuta Okuno, Shigeru Tachibana, Phys. Rev. E, 2014

1:12:43:4 Publisher's Note: Detection and control of combustion instability based on the concept of dynamical system theory [Phys. Rev. E 89 , 022910 (2014)]
Hiroshi Gotoda, Yuta Shinoda, Masaki Kobayashi, Yuta Okuno, Shigeru Tachibana, Phys. Rev. E, 2014

1:12:44:1Dynamic properties of unstable motion of swirling premixed flames generated by a change in gravitational orientation
Hiroshi Gotoda, Takaya Miyano, Ian G. Shepherd, Phys. Rev. E, 2010

1:12:45:1Alignment statistics of active and passive scalar gradients in turbulent stratified flames
Sean P. Malkeson, Nilanjan Chakraborty, Phys. Rev. E, 2011

1:12:54:1Fronts in randomly advected and heterogeneous media and nonuniversality of Burgers turbulence: Theory and numerics
Jackson R. Mayo, Alan R. Kerstein, Phys. Rev. E, 2008

1:12:54:2Scaling and intermittency in Burgers turbulence
J. P. Bouchaud, M. Mézard, G. Parisi, Phys. Rev. E, 1995

1:12:54:3Wave Propagation in a Medium with Disordered Excitability
I. Sendiña-Nadal, A. P. Muñuzuri, D. Vives, V. Pérez-Muñuzuri, J. Casademunt, L. Ramírez-Piscina, J. M. Sancho, F. Sagués, Phys. Rev. Lett., 1998

1:12:54:11Passage rates of propagating interfaces in randomly advected media and heterogeneous media
Alan R. Kerstein, Wm. T. Ashurst, Phys. Rev. E, 1994

1:12:56:1Turbulent front speed in the Fisher equation: Dependence on Damköhler number
Axel Brandenburg, Nils Erland L. Haugen, Natalia Babkovskaia, Phys. Rev. E, 2011

1:12:56:2Effect of Chemical Reactions and Phase Transitions on Turbulent Transport of Particles and Gases
Tov Elperin, Nathan Kleeorin, Igor Rogachevskii, Phys. Rev. Lett., 1998

1:12:60:6Numerical study on lateral movements of cellular flames
Satoshi Kadowaki, Phys. Rev. E, 1997

1:12:62:2Frankel equation for turbulent flames in the presence of a hydrodynamic instability
Bruno Denet, Phys. Rev. E, 1997

1:12:62:6Velocity of Turbulent Flamelets with Realistic Fuel Expansion
Vitaliy Bychkov, Phys. Rev. Lett., 2000

1:12:63:1Reconnecting flux-rope dynamo
Andrew W. Baggaley, Carlo F. Barenghi, Anvar Shukurov, Kandaswamy Subramanian, Phys. Rev. E, 2009

1:12:63:4Overcoming the Backreaction on Turbulent Motions in the Presence of Magnetic Fields
Eric G. Blackman, Phys. Rev. Lett., 1996

1:12:64:2Bubble motion in a horizontal tube and the velocity estimate for curved flames
Vitaliy V. Bychkov, Phys. Rev. E, 1997

1:13:2:53Shock Modon: A New Type of Coherent Structure in Rotating Shallow Water
Noé Lahaye, Vladimir Zeitlin, Phys. Rev. Lett., 2012

1:13:5:4The tripole vortex: Experimental evidence and explicit solutions
Ziv Kizner, Ruvim Khvoles, Phys. Rev. E, 2004

1:13:5:6Nonshielded multipolar vortices at high Reynolds number
L. A. Barba, Phys. Rev. E, 2006

1:13:5:19Symmetrization of 2D Vortices by Beat-Wave Damping
T. B. Mitchell, C. F. Driscoll, Phys. Rev. Lett., 1994

1:13:5:26Coherent Vorticity Holes from 2D Turbulence Decaying in a Background Shear Flow
X. -P. Huang, K. S. Fine, C. F. Driscoll, Phys. Rev. Lett., 1995

1:13:5:39Analytical Description of a Neutral-Induced Tripole Vortex in a Plasma
J. Vranješ, A. Okamoto, S. Yoshimura, S. Poedts, M. Kono, M. Y. Tanaka, Phys. Rev. Lett., 2002

1:13:6:37Lyapunov exponents and the merger of point-vortex clusters
M. Jentschel, A. Thess, U. Bahr, Phys. Rev. E, 1995

1:13:7:14Non-self-similar, partial, and robust collapse of four point vortices on a sphere
Takashi Sakajo, Phys. Rev. E, 2008

1:13:8:33Energy of infinite vortex lattices
L. J. Campbell, M. M. Doria, J. B. Kadtke, Phys. Rev. A, 1989

1:13:9:8 Vortex Waves: Stationary " V States," Interactions, Recurrence, and Breaking
Gary S. Deem, Norman J. Zabusky, Phys. Rev. Lett., 1978

1:13:10:22Vortex Motion Driven by a Background Vorticity Gradient
David A. Schecter, Daniel H. E. Dubin, Phys. Rev. Lett., 1999

1:13:10:33Experimental Dynamics of a Vortex within a Vortex
D. Durkin, J. Fajans, Phys. Rev. Lett., 2000

1:13:11:33Bénard–von Kármán Vortex Street in a Bose-Einstein Condensate
Kazuki Sasaki, Naoya Suzuki, Hiroki Saito, Phys. Rev. Lett., 2010

1:13:11:34Dynamics of bubbles in a two-component Bose-Einstein condensate
Kazuki Sasaki, Naoya Suzuki, Hiroki Saito, Phys. Rev. A, 2011

1:13:12:1Modulated point-vortex pairs on a rotating sphere: Dynamics and chaotic advection
Gábor Drótos, Tamás Tél, Gergely Kovács, Phys. Rev. E, 2013

1:13:12:3Dynamics of blinking vortices
Anton Daitche, Tamás Tél, Phys. Rev. E, 2009

1:13:12:5Regular and chaotic advection in the flow field of a three-vortex system
Leonid Kuznetsov, George M. Zaslavsky, Phys. Rev. E, 1998

1:13:12:7Passive particle transport in three-vortex flow
Leonid Kuznetsov, George M. Zaslavsky, Phys. Rev. E, 2000

1:13:12:8Advection in chaotically time-dependent open flows
Z. Neufeld, T. Tél, Phys. Rev. E, 1998

1:13:12:9Experimental Evidence for Chaotic Scattering in a Fluid Wake
John C. Sommerer, Hwar-Ching Ku, Harold E. Gilreath, Phys. Rev. Lett., 1996

1:13:12:13Chaotic advection near a three-vortex collapse
X. Leoncini, L. Kuznetsov, G. M. Zaslavsky, Phys. Rev. E, 2001

1:13:14:10Elliptically Desingularized Vortex Model for the Two-Dimensional Euler Equations
M. V. Melander, A. S. Styczek, N. J. Zabusky, Phys. Rev. Lett., 1984

1:13:15:6Transport and disruption of Bose-Einstein condensates in optical lattices
R. G. Scott, A. M. Martin, S. Bujkiewicz, T. M. Fromhold, N. Malossi, O. Morsch, M. Cristiani, E. Arimondo, Phys. Rev. A, 2004

1:13:15:8Observation of Hybrid Soliton Vortex-Ring Structures in Bose-Einstein Condensates
Naomi S. Ginsberg, Joachim Brand, Lene Vestergaard Hau, Phys. Rev. Lett., 2005

1:13:15:9Creating Vortex Rings and Three-Dimensional Skyrmions in Bose-Einstein Condensates
J. Ruostekoski, J. R. Anglin, Phys. Rev. Lett., 2001

1:13:15:12Three-dimensional vortex configurations in a rotating Bose-Einstein condensate
Amandine Aftalion, Ionut Danaila, Phys. Rev. A, 2003

1:13:15:13Vortex Rings in a Bose Fluid
D. Amit, E. P. Gross, Phys. Rev., 1966

1:13:15:15Vortex Nucleation by Collapsing Bubbles in Bose-Einstein Condensates
Natalia G. Berloff, Carlo F. Barenghi, Phys. Rev. Lett., 2004

1:13:15:17Evolution of rarefaction pulses into vortex rings
Natalia G. Berloff, Phys. Rev. B, 2002

1:13:15:25Vortex structures formed by the interference of sliced condensates
R. Carretero-González, N. Whitaker, P. G. Kevrekidis, D. J. Frantzeskakis, Phys. Rev. A, 2008

1:13:15:26Dynamics of vortex formation in merging Bose-Einstein condensate fragments
R. Carretero-González, B. P. Anderson, P. G. Kevrekidis, D. J. Frantzeskakis, C. N. Weiler, Phys. Rev. A, 2008

1:13:15:27Kelvin modes of a fast rotating Bose-Einstein condensate
F. Chevy, S. Stringari, Phys. Rev. A, 2003

1:13:15:28Vortices in an Imperfect Bose Gas. IV. Translational Velocity
Alexander L. Fetter, Phys. Rev., 1966

1:13:15:29Kelvin mode of a vortex in a nonuniform Bose-Einstein condensate
Alexander L. Fetter, Phys. Rev. A, 2004

1:13:15:30Creation of Quantized Vortex Rings in Superfluid Helium
George Gamota, Phys. Rev. Lett., 1973

1:13:15:31Generating vortex rings in Bose-Einstein condensates in the line-source approximation
M. Guilleumas, D. M. Jezek, R. Mayol, M. Pi, M. Barranco, Phys. Rev. A, 2002

1:13:15:32Bending-wave instability of a vortex ring in a trapped Bose-Einstein condensate
T.-L. Horng, S.-C. Gou, T.-C. Lin, Phys. Rev. A, 2006

1:13:15:34Vortex rings and mutual drag in trapped Bose-Einstein condensates
B. Jackson, J. F. McCann, C. S. Adams, Phys. Rev. A, 1999

1:13:15:36Spinor Bose-Einstein condensate flow past an obstacle
A. S. Rodrigues, P. G. Kevrekidis, R. Carretero-González, D. J. Frantzeskakis, P. Schmelcher, T. J. Alexander, Yu. S. Kivshar, Phys. Rev. A, 2009

1:13:15:37Engineering vortex rings and systems for controlled studies of vortex interactions in Bose-Einstein condensates
Janne Ruostekoski, Zachary Dutton, Phys. Rev. A, 2005

1:13:15:38Vortex waves in trapped Bose-Einstein condensates
T. P. Simula, T. Mizushima, K. Machida, Phys. Rev. A, 2008

1:13:15:39Crow instability in trapped Bose-Einstein condensates
Tapio P. Simula, Phys. Rev. A, 2011

1:13:18:9Exact Two Vortices Solution of Navier-Stokes Equations
O. Agullo, A. D. Verga, Phys. Rev. Lett., 1997

1:13:18:15Effect of viscosity in the dynamics of two point vortices: Exact results
Olivier Agullo, Alberto Verga, Phys. Rev. E, 2001

1:13:18:21Unsteady models for the nonlinear evolution of the mixing layer
Eckart Meiburg, Paul K. Newton, Narayanan Raju, Greg Ruetsch, Phys. Rev. E, 1995

1:13:21:1Anomalous transport in Charney-Hasegawa-Mima flows
Xavier Leoncini, Olivier Agullo, Sadruddin Benkadda, George M. Zaslavsky, Phys. Rev. E, 2005

1:13:21:2Polynomial dispersion of trajectories in sticky dynamics
G. M. Zaslavsky, M. Edelman, Phys. Rev. E, 2005

1:13:21:7Jets, stickiness, and anomalous transport
Xavier Leoncini, George M. Zaslavsky, Phys. Rev. E, 2002

1:13:21:8Dynamics of coherent structures and turbulence of plasma drift waves
C. Ferro Fontán, A. Verga, Phys. Rev. E, 1995

1:13:21:12Self-similar transport in incomplete chaos
G. M. Zaslavsky, D. Stevens, H. Weitzner, Phys. Rev. E, 1993

1:13:21:16Reply to “Comment on ‘Self-similarity and transport in the standard map’ ”
S. Benkadda, S. Kassibrakis, R. White, G. M. Zaslavsky, Phys. Rev. E, 1999

1:13:22:1Stochastic theory of an optical vortex in nonlinear media
Hiroshi Kuratsuji, Phys. Rev. E, 2013

1:13:22:2Stochastic theory of quantum vortex on a sphere
Hiroshi Kuratsuji, Phys. Rev. E, 2012

1:13:22:3Theory of Bound States in a Random Potential
J. Zittartz, J. S. Langer, Phys. Rev., 1966

1:13:22:5Dynamic spatial solitons
A. W. Snyder, S. J. Hewlett, D. J. Mitchell, Phys. Rev. Lett., 1994

1:13:22:7Vortex motion and the Hall effect in type-II superconductors: A time-dependent Ginzburg-Landau theory approach
Alan T. Dorsey, Phys. Rev. B, 1992

1:13:22:8Statistical Properties of Waves in a Random Medium
Moshe Fibich, Eugene Helfand, Phys. Rev., 1969

1:13:22:9Quantized vortices in two-dimensional superfluids and generalized Hamiltonian dynamics
Hiroshi Kuratsuji, Phys. Rev. Lett., 1992

1:13:22:12Instability of two-dimensional solitons and vortices in defocusing media
E. A. Kuznetsov, J. Juul Rasmussen, Phys. Rev. E, 1995

1:13:22:15Dynamics of two-dimensional dark quasisolitons in a smoothly inhomogeneous Bose-Einstein condensate
L. A. Smirnov, V. A. Mironov, Phys. Rev. A, 2012

1:13:22:17 Publisher's Note: Stochastic theory of quantum vortex on a sphere [Phys. Rev. E 85 , 031150 (2012)]
Hiroshi Kuratsuji, Phys. Rev. E, 2012

1:13:22:18Fractional Statistics of the Vortex in Two-Dimensional Superfluids
Raymond Y. Chiao, Alex Hansen, Andrew A. Moulthrop, Phys. Rev. Lett., 1985

1:13:22:20 Thermal fluctuations of vortex lines, pinning, and creep in high- T c superconductors
M. V. Feigel’man, V. M. Vinokur, Phys. Rev. B, 1990

1:13:22:21Quantum Theory of Superfluid Vortices. I. Liquid Helium II
Alexander L. Fetter, Phys. Rev., 1967

1:13:22:22 Superfluid transition of He 4 films adsorbed in porous materials
Vincent Kotsubo, Gary A. Williams, Phys. Rev. B, 1986

1:13:23:11Tracer dynamics in a flow of driven vortices
A. Witt, R. Braun, F. Feudel, Celso Grebogi, J. Kurths, Phys. Rev. E, 1999

1:13:24:2Central configurations of identical masses lying along curves
Kevin A. O’Neil, Phys. Rev. E, 2009

1:13:24:5Observation of Stationary Vortex Arrays in Rotating Superfluid Helium
E. J. Yarmchuk, M. J. V. Gordon, R. E. Packard, Phys. Rev. Lett., 1979

1:13:26:10 Vortex Waves: Stationary " V States," Interactions, Recurrence, and Breaking.
Gary S. Deem, Norman J. Zabusky, Phys. Rev. Lett., 1978

1:13:29:1Static configurations and nonlinear waves in rotating nonuniform self-gravitating fluids
A. K. Nekrasov, Phys. Rev. E, 2006

1:13:29:2Generation of Zonal Flow and Meridional Anisotropy in Two-Layer Weak Geostrophic Turbulence
Tarmo Soomere, Phys. Rev. Lett., 1995

1:13:29:3Interchange mode in the presence of dust
J. Vranješ, M. Y. Tanaka, M. Kono, S. Poedts, Phys. Rev. E, 2003

1:13:29:5Three-Wave Interaction in a Self-Gravitating Fluid
J. Vranješ, S. Poedts, Phys. Rev. Lett., 2002

1:13:29:9Venusian “hot spots”: Physical phenomenon and its quantification
V. P. Goncharov, V. M. Gryanik, V. I. Pavlov, Phys. Rev. E, 2002

1:13:29:17Static configurations of gravitating dusty plasmas
Frank Verheest, V. M. Čadež, Phys. Rev. E, 2002

1:13:33:1Stabilization of vortices in the wake of a circular cylinder using harmonic forcing
Georges C. Chamoun, Frank Schilder, Morten Brøns, Phys. Rev. E, 2011

1:13:36:1Adaptive geometric numerical integration for point vortex dynamics
A. San Miguel, Phys. Rev. E, 2006

1:13:39:6Quantum Theory of Superfluid Vortices. II. Type-II Superconductors
Alexander L. Fetter, Phys. Rev., 1967

1:13:40:4Method for finding stationary states of point vortices
James B. Kadtke, L. J. Campbell, Phys. Rev. A, 1987

1:13:42:1Variational principle in dynamics of a vortex filament
Victor L. Berdichevsky, Phys. Rev. E, 2008

1:13:42:5Statistical mechanics of vortex lines
V. Berdichevsky, Phys. Rev. E, 1998

1:13:42:7Variational principle for frozen-in vorticity interacting with sound waves
V. P. Ruban, Phys. Rev. E, 2003

1:14:10:6Coiling, Entrainment, and Hydrodynamic Coupling of Decelerated Fluid Jets
Christopher Dombrowski, Braddon Lewellyn, Adriana I. Pesci, Juan M. Restrepo, John O. Kessler, Raymond E. Goldstein, Phys. Rev. Lett., 2005

1:14:10:7Inertially driven buckling and overturning of jets in a Hele-Shaw cell
Adriana I. Pesci, Martin A. Porter, Raymond E. Goldstein, Phys. Rev. E, 2003

1:14:14:3Scaling of circulation in buoyancy generated vortices
P. Stansell, R. V. R. Pandya, Phys. Rev. E, 2006

1:14:17:1Pressure oscillations in a chemical garden
J. Pantaleone, A. Toth, D. Horvath, L. RoseFigura, W. Morgan, J. Maselko, Phys. Rev. E, 2009

1:14:17:2Oscillations of a chemical garden
J. Pantaleone, A. Toth, D. Horvath, J. Rother McMahan, R. Smith, D. Butki, J. Braden, E. Mathews, H. Geri, J. Maselko, Phys. Rev. E, 2008

1:14:18:3Plumes and waves in two-dimensional turbulent thermal convection
Alain P. Vincent, David A. Yuen, Phys. Rev. E, 1999

1:14:18:9 Transition to turbulent thermal convection beyond R a = 10 10 detected in numerical simulations
Alain P. Vincent, David A. Yuen, Phys. Rev. E, 2000

1:15:1:4Multiple flow transitions in a box heated from the side in low-Prandtl-number fluids
D. Henry, H. BenHadid, Phys. Rev. E, 2007

1:15:2:1Long-term behavior of cooling fluid in a rectangular container
Wenxian Lin, S. W. Armfield, Phys. Rev. E, 2004

1:15:2:2Scaling laws for unsteady natural convection cooling of fluid with Prandtl number less than one in a vertical cylinder
Wenxian Lin, S. W. Armfield, Phys. Rev. E, 2005

1:15:2:4 Unified Prandtl number scaling for start-up and fully developed natural-convection boundary layers for both Pr 1 and Pr 1 fluids with isothermal heating
Wenxian Lin, S. W. Armfield, Phys. Rev. E, 2012

1:15:2:7 Prandtl number scaling of unsteady natural convection boundary layers for Pr > 1 fluids under isothermal heating
Wenxian Lin, S. W. Armfield, J. C. Patterson, Chengwang Lei, Phys. Rev. E, 2009

1:15:2:15Weak fountains in a stratified fluid
Wenxian Lin, S. W. Armfield, Phys. Rev. E, 2002

1:15:4:7Bathtub vortex induced by instability
Jiro Mizushima, Kazuki Abe, Naoto Yokoyama, Phys. Rev. E, 2014

1:15:4:8Anatomy of a Bathtub Vortex
A. Andersen, T. Bohr, B. Stenum, J. Juul Rasmussen, B. Lautrup, Phys. Rev. Lett., 2003

1:15:4:18A Nonuniformly Stretched Vortex
M. Rossi, F. Bottausci, A. Maurel, P. Petitjeans, Phys. Rev. Lett., 2004

1:15:6:7Natural convection in tilted cylindrical cavities embedded in rocks
F. Sánchez, F. J. Higuera, A. Medina, Phys. Rev. E, 2005

1:15:6:18Natural convection, Taylor dispersion, and diagenesis in a tilted porous layer
Stefan J. Linz, Andrew W. Woods, Phys. Rev. A, 1992

1:15:12:3Absolute and convective instabilities of natural convection flow in boundary-layer regime
J. Tao, P. Le Quéré, S. Xin, Phys. Rev. E, 2004

1:15:12:8Absolute and convective instabilities of the natural convection in a vertical heated slot
Jianjun Tao, Fenggan Zhuang, Phys. Rev. E, 2000

1:15:13:2 Pr < 1 intrusion flow induced by a vertical heated wall
Feng Xu, John C. Patterson, Chengwang Lei, Phys. Rev. E, 2010

1:15:13:14Three-Dimensional Patterns in a Transient, Stratified Intrusion Flow
Wolfgang Schöpf, Olaf Stiller, Phys. Rev. Lett., 1997

1:15:13:15Thermal Instability of Flows with a Horizontal Temperature Gradient
Olaf Stiller, Wolfgang Schöpf, Phys. Rev. Lett., 1997

1:15:14:3Impact of conditions at start-up on thermovibrational convective flow
D. E. Melnikov, V. M. Shevtsova, J. C. Legros, Phys. Rev. E, 2008

1:15:14:6Experimental Evidence of Thermal Vibrational Convection in a Nonuniformly Heated Fluid in a Reduced Gravity Environment
A. Mialdun, I. I. Ryzhkov, D. E. Melnikov, V. Shevtsova, Phys. Rev. Lett., 2008

1:15:14:26Kinetics of the Soret effect: Transient in the transport process
S. Van Vaerenbergh, J. C. Legros, Phys. Rev. A, 1990

1:15:15:1Transition to chaos of natural convection between two infinite differentially heated vertical plates
Zhenlan Gao, Anne Sergent, Berengere Podvin, Shihe Xin, Patrick Le Quéré, Laurette S. Tuckerman, Phys. Rev. E, 2013

1:15:18:1Scalings for unsteady natural convection boundary layers on an evenly heated plate with time-dependent heating flux
Wenxian Lin, S. W. Armfield, Phys. Rev. E, 2013

1:15:20:1 Unsteady natural convection on an evenly heated vertical plate for Prandtl number Pr < 1
Wenxian Lin, S. W. Armfield, Phys. Rev. E, 2005

1:15:22:3Large-scale spiral structures in turbulent thermal convection between two vertical plates
Minghao Wang, Song Fu, Guanghua Zhang, Phys. Rev. E, 2002

1:15:22:7Parity breaking and solitary waves in axisymmetric Taylor vortex flow
Richard J. Wiener, Daniel F. McAlister, Phys. Rev. Lett., 1992

1:15:25:3Blue Sky Catastrophe in Double-Diffusive Convection
Esteban Meca, Isabel Mercader, Oriol Batiste, Laureano Ramírez-Piscina, Phys. Rev. Lett., 2004

1:15:25:5Nonchaotic Rayleigh-Bénard Convection with Four and Five Incommensurate Frequencies
R. W. Walden, Paul Kolodner, A. Passner, C. M. Surko, Phys. Rev. Lett., 1984

1:15:33:1Analytic solutions to the shallow water equations
R. Iacono, Phys. Rev. E, 2005

1:16:1:2Exact solution for the self-induced motion of a vortex filament in the arc-length representation of the local induction approximation
Robert A. Van Gorder, Phys. Rev. E, 2012

1:16:1:7Scaling laws and accurate small-amplitude stationary solution for the motion of a planar vortex filament in the Cartesian form of the local induction approximation
Robert A. Van Gorder, Phys. Rev. E, 2013

1:16:1:9 Three-dimensional vortex dynamics in superfluid He 4 : Line-line and line-boundary interactions
K. W. Schwarz, Phys. Rev. B, 1985

1:16:1:21 Vortex motion in superfluid He 4 : Reformulation in the extrinsic vortex-filament coordinate space
Bhimsen K. Shivamoggi, Phys. Rev. B, 2011

1:16:1:24Decay of superfluid turbulence at a very low temperature: The radiation of sound from a Kelvin wave on a quantized vortex
W. F. Vinen, Phys. Rev. B, 2001

1:16:1:25Instability of a Vortex Array in He II
William I. Glaberson, Warren W. Johnson, Richard M. Ostermeier, Phys. Rev. Lett., 1974

1:16:1:26Superfluid turbulence in the low-temperature limit
Boris V. Svistunov, Phys. Rev. B, 1995

1:16:1:27Rotating Superfluid Turbulence
Makoto Tsubota, Tsunehiko Araki, Carlo F. Barenghi, Phys. Rev. Lett., 2003

1:16:1:28Interaction of Kelvin waves and nonlocality of energy transfer in superfluids
Jason Laurie, Victor S. L’vov, Sergey Nazarenko, Oleksii Rudenko, Phys. Rev. B, 2010

1:16:1:29Reconnection of Superfluid Vortex Bundles
Sultan Z. Alamri, Anthony J. Youd, Carlo F. Barenghi, Phys. Rev. Lett., 2008

1:16:1:36Phys. Rev. Lett.
Hongyun Wang, Phys. Rev. Lett., 1998

1:16:1:40
Influence of an Axial Heat Current on Negative-Ion Trapping in Rotating Helium II
D. K. Cheng, M. W. Cromar, R. J. Donnelly, Phys. Rev. Lett., 1973

1:16:1:42The role of the Josephson-Anderson equation in superfluid helium
Richard E. Packard, Rev. Mod. Phys., 1998

1:16:1:44Vortex-Density Fluctuations, Energy Spectra, and Vortical Regions in Superfluid Turbulence
Andrew W. Baggaley, Jason Laurie, Carlo F. Barenghi, Phys. Rev. Lett., 2012

1:16:1:47 Turbulence in Boundary Flow of Superfluid He 4 Triggered by Free Vortex Rings
R. Goto, S. Fujiyama, H. Yano, Y. Nago, N. Hashimoto, K. Obara, O. Ishikawa, M. Tsubota, T. Hata, Phys. Rev. Lett., 2008

1:16:1:51Solitons, Euler’s equation, and vortex patch dynamics
Raymond E. Goldstein, Dean M. Petrich, Phys. Rev. Lett., 1992

1:16:1:52Breathers on Quantized Superfluid Vortices
Hayder Salman, Phys. Rev. Lett., 2013

1:16:2:2Statistics of Lagrangian quantum turbulence
Christian Beck, Shihan Miah, Phys. Rev. E, 2013

1:16:2:4Quantum turbulent velocity statistics and quasiclassical limit
A. W. Baggaley, C. F. Barenghi, Phys. Rev. E, 2011

1:16:2:7Acceleration statistics in thermally driven superfluid turbulence
Andrew W. Baggaley, Carlo F. Barenghi, Phys. Rev. E, 2014

1:16:2:9Energy Spectrum of Superfluid Turbulence with No Normal-Fluid Component
Tsunehiko Araki, Makoto Tsubota, Sergey K. Nemirovskii, Phys. Rev. Lett., 2002

1:16:2:10Velocity Statistics Distinguish Quantum Turbulence from Classical Turbulence
M. S. Paoletti, Michael E. Fisher, K. R. Sreenivasan, D. P. Lathrop, Phys. Rev. Lett., 2008

1:16:2:11Nonclassical Velocity Statistics in a Turbulent Atomic Bose-Einstein Condensate
A. C. White, C. F. Barenghi, N. P. Proukakis, A. J. Youd, D. H. Wacks, Phys. Rev. Lett., 2010

1:16:2:12Kolmogorov Turbulence in Low-Temperature Superflows
C. Nore, M. Abid, M. E. Brachet, Phys. Rev. Lett., 1997

1:16:2:13Kolmogorov Spectrum of Superfluid Turbulence: Numerical Analysis of the Gross-Pitaevskii Equation with a Small-Scale Dissipation
Michikazu Kobayashi, Makoto Tsubota, Phys. Rev. Lett., 2005

1:16:2:15Bottleneck crossover between classical and quantum superfluid turbulence
Victor S. L’vov, Sergei V. Nazarenko, Oleksii Rudenko, Phys. Rev. B, 2007

1:16:2:16Steady-state counterflow quantum turbulence: Simulation of vortex filaments using the full Biot-Savart law
Hiroyuki Adachi, Shoji Fujiyama, Makoto Tsubota, Phys. Rev. B, 2010

1:16:2:17Emergence of Turbulence in an Oscillating Bose-Einstein Condensate
E. A. L. Henn, J. A. Seman, G. Roati, K. M. F. Magalhães, V. S. Bagnato, Phys. Rev. Lett., 2009

1:16:2:20Quantum Turbulence in a Propagating Superfluid Vortex Front
V. B. Eltsov, A. I. Golov, R. de Graaf, R. Hänninen, M. Krusius, V. S. L’vov, R. E. Solntsev, Phys. Rev. Lett., 2007

1:16:2:21Vortex Locking in Direct Numerical Simulations of Quantum Turbulence
Karla Morris, Joel Koplik, Damian W. I. Rouson, Phys. Rev. Lett., 2008

1:16:2:23Numerical study of velocity statistics in steady counterflow quantum turbulence
Hiroyuki Adachi, Makoto Tsubota, Phys. Rev. B, 2011

1:16:2:25Coherent Structure Formation in Turbulent Thermal Superfluids
Demosthenes Kivotides, Phys. Rev. Lett., 2006

1:16:2:27 Fluctuations and Correlations of Pure Quantum Turbulence in Superfluid He 3 B
D. I. Bradley, S. N. Fisher, A. M. Guénault, R. P. Haley, S. O’Sullivan, G. R. Pickett, V. Tsepelin, Phys. Rev. Lett., 2008

1:16:2:28Quantum Signature of Superfluid Turbulence
D. Kivotides, J. C. Vassilicos, C. F. Barenghi, M. A. I. Khan, D. C. Samuels, Phys. Rev. Lett., 2001

1:16:2:35Emergence and Decay of Turbulence in Stirred Atomic Bose-Einstein Condensates
N. G. Parker, C. S. Adams, Phys. Rev. Lett., 2005

1:16:2:38 Quantum turbulence of bellows-driven 4 He superflow: Steady state
S. Babuin, M. Stammeier, E. Varga, M. Rotter, L. Skrbek, Phys. Rev. B, 2012

1:16:2:40Noise from Vortex-Line Turbulence in He II
Henry Hoch, Lynda Busse, Frank Moss, Phys. Rev. Lett., 1975

1:16:3:2Depolarization of decaying counterflow turbulence in He II
C. F. Barenghi, A. V. Gordeev, L. Skrbek, Phys. Rev. E, 2006

1:16:3:3Oscillating-grid experiments in water and superfluid helium
Rose E. Honey, Robert Hershberger, Russell J. Donnelly, Diogo Bolster, Phys. Rev. E, 2014

1:16:3:4 Effective kinematic viscosity of turbulent He II
T. V. Chagovets, A. V. Gordeev, L. Skrbek, Phys. Rev. E, 2007

1:16:3:5Decay of vorticity in homogeneous turbulence
Michael R. Smith, Russell J. Donnelly, Nigel Goldenfeld, W. F. Vinen, Phys. Rev. Lett., 1993

1:16:3:6Decay of Grid Turbulence in a Finite Channel
Steven R. Stalp, L. Skrbek, Russell J. Donnelly, Phys. Rev. Lett., 1999

1:16:3:8Decay of counterflow He II turbulence in a finite channel: Possibility of missing links between classical and quantum turbulence
L. Skrbek, A. V. Gordeev, F. Soukup, Phys. Rev. E, 2003

1:16:3:10Transition to Normal Fluid Turbulence in Helium II
David J. Melotte, Carlo F. Barenghi, Phys. Rev. Lett., 1998

1:16:3:12Four Regimes of Decaying Grid Turbulence in a Finite Channel
L. Skrbek, J. J. Niemela, Russell J. Donnelly, Phys. Rev. Lett., 2000

1:16:3:14 Decay of Pure Quantum Turbulence in Superfluid He 3 B
D. I. Bradley, D. O. Clubb, S. N. Fisher, A. M. Guénault, R. P. Haley, C. J. Matthews, G. R. Pickett, V. Tsepelin, K. Zaki, Phys. Rev. Lett., 2006

1:16:3:18Spatial distribution of vortices and anisotropy of mutual friction in rotating He II
P. Mathieu, B. Placais, Y. Simon, Phys. Rev. B, 1984

1:16:3:19 Anomalous decay of turbulence in superfluid He 4
K. W. Schwarz, J. R. Rozen, Phys. Rev. Lett., 1991

1:16:3:20Angular Dependence of Mutual Friction in Rotating Helium II
H. A. Snyder, Zimri Putney, Phys. Rev., 1966

1:16:3:23Thermal Conduction in Liquid Helium II. I. Temperature Dependence
C. E. Chase, Phys. Rev., 1962

1:16:3:24Thermal Conduction in Liquid Helium II. II. Effects of Channel Geometry
C. E. Chase, Phys. Rev., 1963

1:16:3:25Transient behavior of superfluid turbulence in a large channel
K. W. Schwarz, J. R. Rozen, Phys. Rev. B, 1991

1:16:3:27Steady and Decaying Flow of He II in a Channel with Ends Blocked by Superleaks
T. V. Chagovets, L. Skrbek, Phys. Rev. Lett., 2008

1:16:3:30Induced Vorticity Fluctuations in Counterflowing He II
Carlo F. Barenghi, Charles E. Swanson, Russell J. Donnelly, Phys. Rev. Lett., 1982

1:16:3:34Anisotropy and drift of a vortex tangle in helium II
R. T. Wang, C. E. Swanson, R. J. Donnelly, Phys. Rev. B, 1987

1:16:3:36Properties of Superfluid Turbulence in a Large Channel
D. D. Awschalom, F. P. Milliken, K. W. Schwarz, Phys. Rev. Lett., 1984

1:16:3:41 Order-parameter textures and boundary conditions in rotating vortex-free B 3
J. S. Korhonen, A. D. Gongadze, Z. Janú, Y. Kondo, M. Krusius, Yu. M. Mukharsky, E. V. Thuneberg, Phys. Rev. Lett., 1990

1:16:3:42Scanning Superfluid-Turbulence Cascade by its Low-Temperature Cutoff
Evgeny Kozik, Boris Svistunov, Phys. Rev. Lett., 2008

1:16:3:43Free Decay of Superfluid Turbulence
F. P. Milliken, K. W. Schwarz, C. W. Smith, Phys. Rev. Lett., 1982

1:16:3:45Turbulence in superfluid helium: Steady homogeneous counterflow
K. W. Schwarz, Phys. Rev. B, 1978

1:16:3:46Critical Velocity for a Self-Sustaining Vortex Tangle in Superfluid Helium
K. W. Schwarz, Phys. Rev. Lett., 1983

1:16:3:47Energy spectrum of grid-generated He II turbulence
L. Skrbek, J. J. Niemela, K. R. Sreenivasan, Phys. Rev. E, 2001

1:16:3:50 Theory of quantum grid turbulence in superfluid He 3 B
W. F. Vinen, Phys. Rev. B, 2005

1:16:4:2Three-dimensional inverse energy transfer induced by vortex reconnections
Andrew W. Baggaley, Carlo F. Barenghi, Yuri A. Sergeev, Phys. Rev. E, 2014

1:16:4:4 Three-dimensional vortex dynamics in superfluid He 4 : Homogeneous superfluid turbulence
K. W. Schwarz, Phys. Rev. B, 1988

1:16:4:5Vortex reconnection in superfluid helium
Joel Koplik, Herbert Levine, Phys. Rev. Lett., 1993

1:16:4:6Spectrum of turbulent Kelvin-waves cascade in superfluid helium
Andrew W. Baggaley, Carlo F. Barenghi, Phys. Rev. B, 2011

1:16:4:7Sound Emission due to Superfluid Vortex Reconnections
M. Leadbeater, T. Winiecki, D. C. Samuels, C. F. Barenghi, C. S. Adams, Phys. Rev. Lett., 2001

1:16:4:8Quantum and Quasiclassical Types of Superfluid Turbulence
P. M. Walmsley, A. I. Golov, Phys. Rev. Lett., 2008

1:16:4:13Vortex-density fluctuations in quantum turbulence
A. W. Baggaley, C. F. Barenghi, Phys. Rev. B, 2011

1:16:4:14Thermally and mechanically driven quantum turbulence in helium II
A. W. Baggaley, L. K. Sherwin, C. F. Barenghi, Y. A. Sergeev, Phys. Rev. B, 2012

1:16:4:16Cascade of vortex loops initiated by a single reconnection of quantum vortices
Miron Kursa, Konrad Bajer, Tomasz Lipniacki, Phys. Rev. B, 2011

1:16:4:17Energy spectra of quantum turbulence: Large-scale simulation and modeling
Narimasa Sasa, Takuma Kano, Masahiko Machida, Victor S. L’vov, Oleksii Rudenko, Makoto Tsubota, Phys. Rev. B, 2011

1:16:4:23Quasiclassical and ultraquantum decay of superfluid turbulence
A. W. Baggaley, C. F. Barenghi, Y. A. Sergeev, Phys. Rev. B, 2012

1:16:4:24Large-scale properties of wave turbulence
E. Balkovsky, G. Falkovich, V. Lebedev, I. Ya. Shapiro, Phys. Rev. E, 1995

1:16:4:25Negative-viscosity phenomena in three-dimensional flows
V. Yakhot, G. Sivashinsky, Phys. Rev. A, 1987

1:16:4:27Decay of superfluid turbulence via Kelvin-wave radiation
M. Leadbeater, D. C. Samuels, C. F. Barenghi, C. S. Adams, Phys. Rev. A, 2003

1:16:4:28 Structure of a Vortex in Superfluid H 4 e
Michael Sadd, G. V. Chester, L. Reatto, Phys. Rev. Lett., 1997

1:16:5:10 Stability and Dissipation of Laminar Vortex Flow in Superfluid He 3 B
V. B. Eltsov, R. de Graaf, P. J. Heikkinen, J. J. Hosio, R. Hänninen, M. Krusius, V. S. L’vov, Phys. Rev. Lett., 2010

1:16:5:18Instability of vortex array and transitions to turbulence in rotating helium II
Makoto Tsubota, Carlo F. Barenghi, Tsunehiko Araki, Akira Mitani, Phys. Rev. B, 2004

1:16:5:24Unpinning triggers for superfluid vortex avalanches
L. Warszawski, A. Melatos, N. G. Berloff, Phys. Rev. B, 2012

1:16:5:25 Spin-up problem in superfluid He 4
P. W. Adams, M. Cieplak, W. I. Glaberson, Phys. Rev. B, 1985

1:16:5:48Commensurability and hysteretic evolution of vortex configurations in rotating optical lattices
Daniel S. Goldbaum, Erich J. Mueller, Phys. Rev. A, 2009

1:16:5:49Hysteresis effects in rotating Bose-Einstein condensates
B. Jackson, C. F. Barenghi, Phys. Rev. A, 2006

1:16:5:50Appearance of vortices in rotating He II
C. A. Jones, K. B. Khan, C. F. Barenghi, K. L. Henderson, Phys. Rev. B, 1995

1:16:6:3Magnetic Structures Produced by the Small-Scale Dynamo
S. Louise Wilkin, Carlo F. Barenghi, Anvar Shukurov, Phys. Rev. Lett., 2007

1:16:6:4 Metastable Helium Molecules as Tracers in Superfluid He 4
W. Guo, J. D. Wright, S. B. Cahn, J. A. Nikkel, D. N. McKinsey, Phys. Rev. Lett., 2009

1:16:6:5Normal-fluid velocity measurement and superfluid vortex detection in thermal counterflow turbulence
Demosthenes Kivotides, Phys. Rev. B, 2008

1:16:6:9Relaxation of superfluid vortex bundles via energy transfer to the normal fluid
Demosthenes Kivotides, Phys. Rev. B, 2007

1:16:6:16Motion of a spherical solid particle in thermal counterflow turbulence
Demosthenes Kivotides, Phys. Rev. B, 2008

1:16:6:17Diffusion of inhomogeneous vortex tangle and decay of superfluid turbulence
Sergey K. Nemirovskii, Phys. Rev. B, 2010

1:16:6:19Polarization of Superfluid Turbulence
Carlo F. Barenghi, Sarah Hulton, David C. Samuels, Phys. Rev. Lett., 2002

1:16:6:26Response of superfluid vortex filaments to concentrated normal-fluid vorticity
David C. Samuels, Phys. Rev. B, 1993

1:16:6:27Quantum Dynamics of a Bose Superfluid Vortex
L. Thompson, P. C. E. Stamp, Phys. Rev. Lett., 2012

1:16:6:37Controlled Vortex-Sound Interactions in Atomic Bose-Einstein Condensates
N. G. Parker, N. P. Proukakis, C. F. Barenghi, C. S. Adams, Phys. Rev. Lett., 2004

1:16:6:38A Damping Length Scale for Superfluid Turbulence
David C. Samuels, Demosthenes Kivotides, Phys. Rev. Lett., 1999

1:16:7:6Classical character of turbulence in a quantum liquid
W. F. Vinen, Phys. Rev. B, 2000

1:16:7:17Evolution of superfluid turbulence in thermal counterflow
K. P. Martin, J. T. Tough, Phys. Rev. B, 1983

1:16:8:2Distribution of Vortices in Rotating Helium II
Dietrich Stauffer, Alexander L. Fetter, Phys. Rev., 1968

1:16:8:7Quantization of Macroscopic Motions and Hydrodynamics of Rotating Helium II
E. L. ANDRONIKASHVILI, YU. G. MAMALADZE, Rev. Mod. Phys., 1966

1:16:8:8Superfluid Rayleigh criterion
Carlo F. Barenghi, Phys. Rev. B, 1995

1:16:8:18Phenomenological description of counterflow superfluid turbulence in rotating containers
D. Jou, M. S. Mongiovì, Phys. Rev. B, 2004

1:16:8:19Constraining Hadronic Superfluidity with Neutron Star Precession
Bennett Link, Phys. Rev. Lett., 2003

1:16:8:20Spatial distribution of vortices and metastable states in rotating He II
P. Mathieu, J. C. Marechal, Y. Simon, Phys. Rev. B, 1980

1:16:8:22Detection of a Vortex-Free Region in Rotating Liquid Helium II
J. A. Northby, R. J. Donnelly, Phys. Rev. Lett., 1970

1:16:8:27Type-I superconductivity and neutron star precession
Armen Sedrakian, Phys. Rev. D, 2005

1:16:8:30Rotation of a Tangle of Quantized Vortex Lines in He II
Charles E. Swanson, Carlo F. Barenghi, R. J. Donnelly, Phys. Rev. Lett., 1983

1:16:9:1Experimental investigation of the macroscopic flow of He II due to an oscillating grid in the zero temperature limit
H. A. Nichol, L. Skrbek, P. C. Hendry, P. V. E. McClintock, Phys. Rev. E, 2004

1:16:9:2 Experimental investigation of the dynamics of a vibrating grid in superfluid He 4 over a range of temperatures and pressures
D. Charalambous, L. Skrbek, P. C. Hendry, P. V. E. McClintock, W. F. Vinen, Phys. Rev. E, 2006

1:16:9:3Transition from laminar to turbulent drag in flow due to a vibrating quartz fork
M. Blažková, D. Schmoranzer, L. Skrbek, Phys. Rev. E, 2007

1:16:9:4Turbulent and Laminar Drag of Superfluid Helium on an Oscillating Microsphere
J. Jäger, B. Schuderer, W. Schoepe, Phys. Rev. Lett., 1995

1:16:9:5Flow of He II due to an Oscillating Grid in the Low-Temperature Limit
H. A. Nichol, L. Skrbek, P. C. Hendry, P. V. E. McClintock, Phys. Rev. Lett., 2004

1:16:9:7 Emission of Discrete Vortex Rings by a Vibrating Grid In Superfluid He 3 B : A Precursor to Quantum Turbulence
D. I. Bradley, D. O. Clubb, S. N. Fisher, A. M. Guénault, R. P. Haley, C. J. Matthews, G. R. Pickett, V. Tsepelin, K. Zaki, Phys. Rev. Lett., 2005

1:16:9:10 Repetitive Single Vortex-Loop Creation by a Vibrating Wire in Superfluid 3 He B
D. I. Bradley, Phys. Rev. Lett., 2000

1:16:9:17Transition from Dissipationless Superflow to Homogeneous Superfluid Turbulence
Marie L. Baehr, L. B. Opatowsky, J. T. Tough, Phys. Rev. Lett., 1983

1:16:9:18 Vortex Nucleation in Ultradilute Superfluid He 3 / He 4 Solutions
R. M. Bowley, G. G. Nancolas, P. V. E. McClintock, Phys. Rev. Lett., 1984

1:16:9:22Macroscopic quantum tunneling of vortices in He II
P. C. Hendry, N. S. Lawson, P. V. E. McClintock, C. D. H. Williams, R. M. Bowley, Phys. Rev. Lett., 1988

1:16:9:23 Fluctuative Mechanism of Vortex Nucleation in the Flow of 4 He
F. V. Kusmartsev, Phys. Rev. Lett., 1996

1:16:9:27 Comment on “Repetitive Single Vortex-Loop Creation by a Vibrating Wire in Superfluid H 3 e B
M. Niemetz, W. Schoepe, M. Krusius, Phys. Rev. Lett., 2001

1:16:9:28 Vortex nucleation in phase-slippage experiments in ultrapure superfluid 4 He below 0.5 K
E. Varoquaux, O. Avenel, Phys. Rev. B, 2003

1:16:10:4Kelvin Waves Cascade in Superfluid Turbulence
D. Kivotides, J. C. Vassilicos, D. C. Samuels, C. F. Barenghi, Phys. Rev. Lett., 2001

1:16:10:5Interactions between particles and quantized vortices in superfluid helium
Demosthenes Kivotides, Carlo F. Barenghi, Yuri A. Sergeev, Phys. Rev. B, 2008

1:16:10:9Mobility of the Electron Bubble in Superfluid Helium
Gordon Baym, R. G. Barrera, C. J. Pethick, Phys. Rev. Lett., 1969

1:16:10:11Spherical probes and quantized vortices: Hydrodynamic formalism and simple applications
K. W. Schwarz, Phys. Rev. A, 1974

1:16:10:13Measurement of the Normal-Fluid Velocity in Superfluids
Demosthenes Kivotides, Carlo F. Barenghi, Yuri A. Sergeev, Phys. Rev. Lett., 2005

1:16:10:14Interaction of Solid Particles with a Tangle of Vortex Filaments in a Viscous Fluid
Demosthenes Kivotides, Carlo F. Barenghi, Antony J. Mee, Yuri A. Sergeev, Phys. Rev. Lett., 2007

1:16:10:16 Pinning and depinning of two quantized vortices in superfluid He 4
Makoto Tsubota, Susumu Maekawa, Phys. Rev. B, 1993

1:16:10:18 Quantum Turbulence in Superfluid H e 3 Illuminated by a Beam of Quasiparticle Excitations
D. I. Bradley, S. N. Fisher, A. M. Guénault, M. R. Lowe, G. R. Pickett, A. Rahm, R. C. V. Whitehead, Phys. Rev. Lett., 2004

1:16:10:19Collision of a tracer particle and a quantized vortex in superfluid helium: Self-consistent calculations
Demosthenes Kivotides, Carlo F. Barenghi, Yuri A. Sergeev, Phys. Rev. B, 2007

1:16:10:20Motion of micron-size particles in turbulent helium II
Y. A. Sergeev, C. F. Barenghi, D. Kivotides, Phys. Rev. B, 2006

1:16:10:21 Erratum: Motion of micron-size particles in turbulent helium II [Phys. Rev. B 74 , 184506 (2006)]
Y. A. Sergeev, C. F. Barenghi, D. Kivotides, Phys. Rev. B, 2007

1:16:10:22Instability of trajectories of solid particles around vortex lines
Y. A. Sergeev, C. F. Barenghi, D. Kivotides, W. F. Vinen, Phys. Rev. B, 2006

1:16:11:2Experimental study of surface waves scattering by a single vortex and a vortex dipole
Francisco Vivanco, Francisco Melo, Phys. Rev. E, 2004

1:16:11:3Spatial and temporal turbulent velocity and vorticity power spectra from sound scattering
Shahar Seifer, Victor Steinberg, Phys. Rev. E, 2005

1:16:11:6Significance of Electromagnetic Potentials in the Quantum Theory
Y. Aharonov, D. Bohm, Phys. Rev., 1959

1:16:11:7The Aharonov-Bohm Effect Revisited by an Acoustic Time-Reversal Mirror
Philippe Roux, Julien de Rosny, Mickael Tanter, Mathias Fink, Phys. Rev. Lett., 1997

1:16:11:9Spectral analysis of the von Kármán flow using ultrasound scattering
C. Baudet, S. Ciliberto, J. F. Pinton, Phys. Rev. Lett., 1991

1:16:11:11Propagation of Sound through a Turbulent Vortex
R. Labbé, J.-F. Pinton, Phys. Rev. Lett., 1998

1:16:11:13Scattering of sound by a vorticity filament: An experimental and numerical investigation
Sébastien Manneville, Philippe Roux, Mickaël Tanter, Agnès Maurel, Mathias Fink, Frédéric Bottausci, Philippe Petitjeans, Phys. Rev. E, 2001

1:16:11:19Scattering of dislocated wave fronts by vertical vorticity and the Aharonov-Bohm effect. I. Shallow water
Christophe Coste, Fernando Lund, Makoto Umeki, Phys. Rev. E, 1999

1:16:11:20Scattering of dislocated wave fronts by vertical vorticity and the Aharonov-Bohm effect. II. Dispersive waves
Christophe Coste, Fernando Lund, Phys. Rev. E, 1999

1:16:11:23Surface Wave Scattering by a Vertical Vortex and the Symmetry of the Aharonov-Bohm Wave Function
Francisco Vivanco, Francisco Melo, Christophe Coste, Fernando Lund, Phys. Rev. Lett., 1999

1:16:11:24Surface Spiral Waves in a Filamentary Vortex
Francisco Vivanco, Francisco Melo, Phys. Rev. Lett., 2000

1:16:11:25 Wexler et al. Reply:
C. Wexler, D. J. Thouless, P. Ao, Q. Niu, Phys. Rev. Lett., 1998

1:16:12:3Kelvin-Wave Cascade and Decay of Superfluid Turbulence
Evgeny Kozik, Boris Svistunov, Phys. Rev. Lett., 2004

1:16:12:6Route to vortex reconnection
A. T. A. M. de Waele, R. G. K. M. Aarts, Phys. Rev. Lett., 1994

1:16:12:10Vortex-phonon interaction
Evgeny Kozik, Boris Svistunov, Phys. Rev. B, 2005

1:16:12:12Vortex Multiplication in Applied Flow: A Precursor to Superfluid Turbulence
A. P. Finne, V. B. Eltsov, G. Eska, R. Hänninen, J. Kopu, M. Krusius, E. V. Thuneberg, M. Tsubota, Phys. Rev. Lett., 2006

1:16:13:1Energy cascade with small-scale thermalization, counterflow metastability, and anomalous velocity of vortex rings in Fourier-truncated Gross-Pitaevskii equation
Giorgio Krstulovic, Marc Brachet, Phys. Rev. E, 2011

1:16:13:2Comment on “Berry's Phase and the Magnus Force for a Vortex Line in a Superconductor,” “Transverse Force on a Quantized Vortex in a Superfluid,” and “Magnus and Iordanskii Forces in Superfluids”
E. B. Sonin, Phys. Rev. Lett., 1998

1:16:13:3Magnus and Iordanskii Forces in Superfluids
C. Wexler, Phys. Rev. Lett., 1997

1:16:13:4Dissipative Dynamics of Superfluid Vortices at Nonzero Temperatures
Natalia G. Berloff, Anthony J. Youd, Phys. Rev. Lett., 2007

1:16:13:5Scenario of strongly nonequilibrated Bose-Einstein condensation
Natalia G. Berloff, Boris V. Svistunov, Phys. Rev. A, 2002

1:16:13:7 Fuchs et al. Reply:
J. Fuchs, G. Malka, J. C. Adam, F. Amiranoff, S. D. Baton, N. Blanchot, A. Héron, G. Laval, J. L. Miquel, P. Mora, H. Pépin, C. Rousseaux, Phys. Rev. Lett., 1998

1:16:13:8Comment on “Magnus and Iordanskii Forces in Superfluids”
H. E. Hall, J. R. Hook, Phys. Rev. Lett., 1998

1:16:13:9Decay Rates in Attractive Bose-Einstein Condensates
C. Huepe, S. Métens, G. Dewel, P. Borckmans, M. E. Brachet, Phys. Rev. Lett., 1999

1:16:13:10Finite-temperature vortex dynamics in Bose-Einstein condensates
B. Jackson, N. P. Proukakis, C. F. Barenghi, E. Zaremba, Phys. Rev. A, 2009

1:16:13:13Anomalous vortex-ring velocities induced by thermally excited Kelvin waves and counterflow effects in superfluids
Giorgio Krstulovic, Marc Brachet, Phys. Rev. B, 2011

1:16:13:14Comment on “Superfluid Turbulence from Quantum Kelvin Wave to Classical Kolmogorov Cascades”
Giorgio Krstulovic, Marc Brachet, Phys. Rev. Lett., 2010

1:16:13:15Scattering of first sound by superfluid vortices
C. Nore, M. E. Brachet, E. Cerda, E. Tirapegui, Phys. Rev. Lett., 1994

1:16:13:17Comment on “Transverse Force on a Quantized Vortex in a Superfluid”
G. E. Volovik, Phys. Rev. Lett., 1996

1:16:13:18 Wexler et al. Reply:
C. Wexler, D. J. Thouless, P. Ao, Q. Niu, Phys. Rev. Lett., 1998

1:16:14:1Velocity, energy, and helicity of vortex knots and unknots
F. Maggioni, S. Alamri, C. F. Barenghi, R. L. Ricca, Phys. Rev. E, 2010

1:16:14:7Numerical investigation of the flow properties of He II
R. G. K. M. Aarts, A. T. A. M. de Waele, Phys. Rev. B, 1994

1:16:14:8Motion of vortex ring with tracer particles in superfluid helium
Carlo F. Barenghi, Yuri A. Sergeev, Phys. Rev. B, 2009

1:16:14:10Transition to quantum turbulence in a Bose-Einstein condensate through the bending-wave instability of a single-vortex ring
T.-L. Horng, C.-H. Hsueh, S.-C. Gou, Phys. Rev. A, 2008

1:16:14:11Dynamics of quantum vortices in a toroidal trap
Peter Mason, Natalia G. Berloff, Phys. Rev. A, 2009

1:16:15:1Vortex knots in a Bose-Einstein condensate
Davide Proment, Miguel Onorato, Carlo F. Barenghi, Phys. Rev. E, 2012

1:16:15:4Slowing down of vortex rings in Bose-Einstein condensates
John L. Helm, Carlo F. Barenghi, Anthony J. Youd, Phys. Rev. A, 2011

1:16:15:7Hidden symmetry and knot solitons in a charged two-condensate Bose system
Egor Babaev, Ludvig D. Faddeev, Antti J. Niemi, Phys. Rev. B, 2002

1:16:15:10Non-Meissner electrodynamics and knotted solitons in two-component superconductors
Egor Babaev, Phys. Rev. B, 2009

1:16:15:11Dual Neutral Variables and Knot Solitons in Triplet Superconductors
Egor Babaev, Phys. Rev. Lett., 2002

1:16:15:12Andreev-Bashkin effect and knot solitons in an interacting mixture of a charged and a neutral superfluid with possible relevance for neutron stars
Egor Babaev, Phys. Rev. D, 2004

1:16:16:1Anomalous translational velocity of vortex ring with finite-amplitude Kelvin waves
C. F. Barenghi, R. Hänninen, M. Tsubota, Phys. Rev. E, 2006

1:16:16:2 Kelvin-Wave Cascade on a Vortex in Superfluid H e 4 at a Very Low Temperature
W. F. Vinen, Makoto Tsubota, Akira Mitani, Phys. Rev. Lett., 2003

1:16:16:5 Dynamics of vortex tangle without mutual friction in superfluid 4 He
Makoto Tsubota, Tsunehiko Araki, Sergey K. Nemirovskii, Phys. Rev. B, 2000

1:16:16:6Nucleation of Quantized Vortex Rings by Ions in Helium II
Russell J. Donnelly, Paul H. Roberts, Phys. Rev. Lett., 1969

1:16:16:8Solitons, solitonic vortices, and vortex rings in a confined Bose-Einstein condensate
S. Komineas, N. Papanicolaou, Phys. Rev. A, 2003

1:16:16:11Evidence for The Creation and Motion of Quantized Vortex Rings in Superfluid Helium
G. W. Rayfield, F. Reif, Phys. Rev. Lett., 1963

1:16:17:1 Experiments on the rapid mechanical expansion of liquid He 4 through its superfluid transition
V. B. Efimov, O. J. Griffiths, P. C. Hendry, G. V. Kolmakov, P. V. E. McClintock, L. Skrbek, Phys. Rev. E, 2006

1:16:17:3Evaporation of a Packet of Quantized Vorticity
Carlo F. Barenghi, David C. Samuels, Phys. Rev. Lett., 2002

1:16:17:4Vortex oscillations and hydrodynamics of rotating superfluids
E. B. Sonin, Rev. Mod. Phys., 1987

1:16:17:5Observation of a Remanent Vortex-Line Density in Superfluid Helium
D. D. Awschalom, K. W. Schwarz, Phys. Rev. Lett., 1984

1:16:17:6 Generation and Detection of Quantum Turbulence in Superfluid H 3 e B
S. N. Fisher, A. J. Hale, A. M. Guénault, G. R. Pickett, Phys. Rev. Lett., 2001

1:16:17:8 Depression of the superfluid transition temperature in He 4 by a heat current
Robert V. Duncan, Guenter Ahlers, Victor Steinberg, Phys. Rev. Lett., 1988

1:16:17:14 First Observation of Self-Focusing of Nonlinear Second Sound in Superfluid Helium near T λ
L. C. Krysac, Phys. Rev. Lett., 1994

1:16:17:15Spontaneous fluxon formation in annular Josephson tunnel junctions
R. Monaco, J. Mygind, R. J. Rivers, Phys. Rev. B, 2003

1:16:17:16Evolution of superfluid vortex line density behind a heat (second-sound) pulse in helium II
M. v. Schwerdtner, G. Stamm, D. W. Schmidt, Phys. Rev. Lett., 1989

1:16:18:1Poincaré recurrence and spectral cascades in three-dimensional quantum turbulence
George Vahala, Jeffrey Yepez, Linda Vahala, Min Soe, Bo Zhang, Sean Ziegeler, Phys. Rev. E, 2011

1:16:18:3Superfluid Turbulence from Quantum Kelvin Wave to Classical Kolmogorov Cascades
Jeffrey Yepez, George Vahala, Linda Vahala, Min Soe, Phys. Rev. Lett., 2009

1:16:18:4 Kolmogorov and Kelvin-wave cascades of superfluid turbulence at T = 0 : What lies between
Evgeny Kozik, Boris Svistunov, Phys. Rev. B, 2008

1:16:18:7Quantum turbulence in a trapped Bose-Einstein condensate
Michikazu Kobayashi, Makoto Tsubota, Phys. Rev. A, 2007

1:16:18:9 Yepez et al. Reply:
Jeffrey Yepez, George Vahala, Linda Vahala, Min Soe, Phys. Rev. Lett., 2010

1:16:19:1Kelvin-wave cascade and dissipation in low-temperature superfluid vortices
Giorgio Krstulovic, Phys. Rev. E, 2012

1:16:19:2Dispersive Bottleneck Delaying Thermalization of Turbulent Bose-Einstein Condensates
Giorgio Krstulovic, Marc Brachet, Phys. Rev. Lett., 2011

1:16:19:4Exact solution for the energy spectrum of Kelvin-wave turbulence in superfluids
Laurent Boué, Ratul Dasgupta, Jason Laurie, Victor L’vov, Sergey Nazarenko, Itamar Procaccia, Phys. Rev. B, 2011

1:16:19:5Scale-Separation Scheme for Simulating Superfluid Turbulence: Kelvin-Wave Cascade
Evgeny Kozik, Boris Svistunov, Phys. Rev. Lett., 2005

1:16:19:6 Symmetry of Kelvin-wave dynamics and the Kelvin-wave cascade in the T = 0 superfluid turbulence
E. B. Sonin, Phys. Rev. B, 2012

1:16:19:11Nonthermal fixed points, vortex statistics, and superfluid turbulence in an ultracold Bose gas
Boris Nowak, Jan Schole, Dénes Sexty, Thomas Gasenzer, Phys. Rev. A, 2012

1:16:19:12Critical dynamics of a two-dimensional superfluid near a nonthermal fixed point
Jan Schole, Boris Nowak, Thomas Gasenzer, Phys. Rev. A, 2012

1:16:20:6 Turbulent drag on a low-frequency vibrating grid in superfluid 4 He at very low temperatures
D. I. Bradley, S. N. Fisher, A. M. Guénault, R. P. Haley, Mukesh Kumar, C. R. Lawson, Roch Schanen, P. V. E. McClintock, Lydia Munday, G. R. Pickett, Malcolm Poole, V. Tsepelin, Paul Williams, Phys. Rev. B, 2012

1:16:20:8Axisymmetric Turbulent Wakes with New Nonequilibrium Similarity Scalings
J. Nedić, J. C. Vassilicos, B. Ganapathisubramani, Phys. Rev. Lett., 2013

1:16:21:3Magnus force in superfluids and superconductors
E. B. Sonin, Phys. Rev. B, 1997

1:16:21:4Transverse Force on a Quantized Vortex in a Superfluid
D. J. Thouless, Ping Ao, Qian Niu, Phys. Rev. Lett., 1996

1:16:21:5Iordanskii force and the gravitational Aharonov-Bohm effect for a moving vortex
Michael Stone, Phys. Rev. B, 2000

1:16:21:8Absorption of Sound by Vortex Filaments
Sergey V. Nazarenko, Phys. Rev. Lett., 1994

1:16:23:3Vortices and the Couette flow of helium II
Carlo F. Barenghi, Phys. Rev. B, 1992

1:16:23:10Instability of Taylor-Couette flow of helium II
Chris J. Swanson, Russell J. Donnelly, Phys. Rev. Lett., 1991

1:16:24:2 Visualization Study of Counterflow in Superfluid He 4 using Metastable Helium Molecules
W. Guo, S. B. Cahn, J. A. Nikkel, W. F. Vinen, D. N. McKinsey, Phys. Rev. Lett., 2010

1:16:25:1Unitary-quantum-lattice algorithm for two-dimensional quantum turbulence
Bo Zhang, George Vahala, Linda Vahala, Min Soe, Phys. Rev. E, 2011

1:16:25:2Shear Flow and Kelvin-Helmholtz Instability in Superfluids
R. Blaauwgeers, V. B. Eltsov, G. Eska, A. P. Finne, R. P. Haley, M. Krusius, J. J. Ruohio, L. Skrbek, G. E. Volovik, Phys. Rev. Lett., 2002

1:16:25:5Two-dimensional quantum turbulence in a nonuniform Bose-Einstein condensate
T.-L. Horng, C.-H. Hsueh, S.-W. Su, Y.-M. Kao, S.-C. Gou, Phys. Rev. A, 2009

1:16:25:6Direct energy cascade in two-dimensional compressible quantum turbulence
Ryu Numasato, Makoto Tsubota, Victor S. L’vov, Phys. Rev. A, 2010

1:16:25:7Quantum Kelvin-Helmholtz instability in phase-separated two-component Bose-Einstein condensates
Hiromitsu Takeuchi, Naoya Suzuki, Kenichi Kasamatsu, Hiroki Saito, Makoto Tsubota, Phys. Rev. B, 2010

1:16:26:1Radiation and vortex dynamics in the nonlinear Schrödinger equation
Giorgio Krstulovic, Marc Brachet, Enrique Tirapegui, Phys. Rev. E, 2008

1:16:28:3 Thermodynamics and Experimental Tests of Static Scaling and Universality near the Superfluid Transition in He 4 under Pressure
Guenter Ahlers, Phys. Rev. A, 1973

1:17:12:1Pulsating laminar fully developed channel and pipe flows
Kais Haddad, Özgür Ertunç, Manoranjan Mishra, Antonio Delgado, Phys. Rev. E, 2010

1:17:21:1Formation and dynamics of finite amplitude localized pulses in elastic tubes
B. Eliasson, P. K. Shukla, Phys. Rev. E, 2005

1:17:21:2Monovariable representation of blood flow in a large elastic artery
J. F. Paquerot, S. G. Lambrakos, Phys. Rev. E, 1994

1:17:21:3Reflection and transmission of nonlinear blood waves due to arterial branching
Wen-shan Duan, Ben-ren Wang, Rong-jue Wei, Phys. Rev. E, 1997

1:17:21:7Dynamics of solitary blood waves in arteries with prostheses
S. Noubissie, P. Woafo, Phys. Rev. E, 2003

1:17:21:9The 1976 Oppenheimer lectures: Critical problems in plasma astrophysics. II. Singular layers and reconnection
Roald Z. Sagdeev, Rev. Mod. Phys., 1979

1:18:5:3Full perturbation solution for the flow in a rotating torus
A. Chupin, R. Stepanov, Phys. Rev. E, 2008

1:18:5:5Flow in a rotating curved circular pipe
Jinsuo Zhang, Ning Li, Benzhao Zhang, Phys. Rev. E, 2003

1:18:9:1Dean instability in double-curved channels
J.-D. Debus, M. Mendoza, H. J. Herrmann, Phys. Rev. E, 2014

1:18:9:12Lattice Boltzmann model for ultrarelativistic flows
F. Mohseni, M. Mendoza, S. Succi, H. J. Herrmann, Phys. Rev. D, 2013

1:18:10:3Growth model for ramified electrochemical deposition in the presenceof diffusion, migration, and electroconvection
Guillermo Marshall, Pablo Mocskos, Phys. Rev. E, 1997

1:19:5:6Dissipation of kinetic energy in two-dimensional bounded flows
H. J. H. Clercx, G. J. F. van Heijst, Phys. Rev. E, 2002

1:19:5:12Energy Dissipating Structures Produced by Walls in Two-Dimensional Flows at Vanishing Viscosity
Romain Nguyen van yen, Marie Farge, Kai Schneider, Phys. Rev. Lett., 2011

1:20:9:1:1Arterial wall tethering as a distant boundary condition
S. Hodis, M. Zamir, Phys. Rev. E, 2009

1:20:9:1:2Coupled radial and longitudinal displacements and stresses within the arterial wall in pulsatile flow under tethered and free-wall conditions
S. Hodis, M. Zamir, Phys. Rev. E, 2011

1:20:9:1:3Solutions of the Maxwell viscoelastic equations for displacement and stress distributions within the arterial wall
S. Hodis, M. Zamir, Phys. Rev. E, 2008

1:20:9:2:1Effect of surrounding tissue on propagation of axisymmetric waves in arteries
K. Jagielska, D. Trzupek, M. Lepers, A. Pelc, P. Zieliński, Phys. Rev. E, 2007

1:20:12:1Inexact Picard iterative scheme for steady-state nonlinear diffusion in random heterogeneous media
P. Surya Mohan, Prasanth B. Nair, Andy J. Keane, Phys. Rev. E, 2009

1:20:12:19Prior mapping for nonlinear flows in random environments
Daniel M. Tartakovsky, Alberto Guadagnini, Phys. Rev. E, 2001

1:20:15:1Nonlinear phasing and dephasing of three-wave mixing of acoustic guided waves
Christoph Klieber, David Linton Johnson, Phys. Rev. E, 2013

1:20:15:8Effects of Dispersion and Focusing on the Production of Optical Harmonics
P. D. Maker, R. W. Terhune, M. Nisenoff, C. M. Savage, Phys. Rev. Lett., 1962

1:21:3:4On the Radiation of Sound from an Unflanged Circular Pipe
Harold Levine, Julian Schwinger, Phys. Rev., 1948

1:21:8:1Acoustical impedance defined by wave-function solutions of the reduced Webster equation
Barbara J. Forbes, Phys. Rev. E, 2005

1:21:8:2Acoustical Klein-Gordon Equation: A Time-Independent Perturbation Analysis
Barbara J. Forbes, E. Roy Pike, Phys. Rev. Lett., 2004

1:22:6:1Stability of vortex flow in a modulated channel
Ehab Abu-Ramadan, Roger E. Khayat, Phys. Rev. E, 2007

1:22:7:1Spatially modulated thermal convection of viscoelastic fluids
Séliatou Kayodé, Roger E. Khayat, Phys. Rev. E, 2004

1:23:1:1Effective potential and chiral symmetry breaking
David Hochberg, Phys. Rev. E, 2010

1:23:1:2Mirror symmetry breaking as a problem in dynamic critical phenomena
David Hochberg, María Paz Zorzano, Phys. Rev. E, 2007

1:23:1:28Mirror Symmetry Breaking and Restoration: The Role of Noise and Chiral Bias
David Hochberg, Phys. Rev. Lett., 2009

1:23:2:1Appearance of a homochiral state of crystals induced by random fluctuation in grinding
Hiroyasu Katsuno, Makio Uwaha, Phys. Rev. E, 2012

1:23:2:2Chiral Symmetry Breaking During Crystallization: Complete Chiral Purity Induced by Nonlinear Autocatalysis and Recycling
Cristobal Viedma, Phys. Rev. Lett., 2005

1:23:2:5Chiral Symmetry Breaking in Crystallization: The Role of Convection
T. Buhse, D. Durand, D. Kondepudi, J. Laudadio, S. Spilker, Phys. Rev. Lett., 2000

1:23:2:6Chiral Symmetry Breaking during Crystallization: An Advection-Mediated Nonlinear Autocatalytic Process
Julyan H. E. Cartwright, Juan Manuel García-Ruiz, Oreste Piro, C. Ignacio Sainz-Díaz, Idan Tuval, Phys. Rev. Lett., 2004

1:23:2:7Ostwald Ripening, Chiral Crystallization, and the Common-Ancestor Effect
Julyan H. E. Cartwright, Oreste Piro, Idan Tuval, Phys. Rev. Lett., 2007

1:23:2:13Chiral Symmetry Breaking in Crystal Growth: Is Hydrodynamic Convection Relevant?
B. Martin, A. Tharrington, X-l. Wu, Phys. Rev. Lett., 1996

1:23:3:1Breakdown of chiral symmetry during saturation of the Tayler instability
Alfio Bonanno, Axel Brandenburg, Fabio Del Sordo, Dhrubaditya Mitra, Phys. Rev. E, 2012

1:23:3:5Flow patterns and nonlinear behavior of traveling waves in a convective binary fluid
Elisha Moses, Victor Steinberg, Phys. Rev. A, 1986

1:23:3:7 Destabilization of a faceted smectic- A –smectic- B interface
Francisco Melo, Patrick Oswald, Phys. Rev. Lett., 1990

1:23:4:1Resonance instability of axially symmetric magnetostatic equilibria
Alfio Bonanno, Vadim Urpin, Phys. Rev. E, 2011

1:23:5:1Spontaneous chiral symmetry breaking by hydromagnetic buoyancy
Piyali Chatterjee, Dhrubaditya Mitra, Axel Brandenburg, Matthias Rheinhardt, Phys. Rev. E, 2011

1:23:5:5Primordial Magnetic Fields, Right Electrons, and the Abelian Anomaly
M. Joyce, M. Shaposhnikov, Phys. Rev. Lett., 1997

1:23:5:9Estimate of the Primordial Magnetic Field Helicity
Tanmay Vachaspati, Phys. Rev. Lett., 2001

1:23:6:1Diffusion accelerates and enhances chirality selection
Ryo Shibata, Yukio Saito, Hiroyuki Hyuga, Phys. Rev. E, 2006

1:23:7:1Numerical study of a field theory for directed percolation
Ronald Dickman, Phys. Rev. E, 1994

1:24:1:2Electromagnetic enhancement of turbulent heat transfer
Saša Kenjereš, Phys. Rev. E, 2008

1:24:1:3Numerical Simulation of a Turbulent Magnetic Dynamo
S. Kenjereš, K. Hanjalić, Phys. Rev. Lett., 2007

1:24:1:5Effect of a vertical magnetic field on turbulent Rayleigh-Bénard convection
S. Cioni, S. Chaumat, J. Sommeria, Phys. Rev. E, 2000

1:24:2:5Magnetic control of convection in nonconducting diamagnetic fluids
Jie Huang, Donald D. Gray, Boyd F. Edwards, Phys. Rev. E, 1998

1:24:2:22Magnetically Controlled Convection in a Diamagnetic Fluid
H. Nakamura, T. Takayama, H. Uetake, N. Hirota, and K. Kitazawa, Phys. Rev. Lett., 2005

1:24:3:1Oscillatory states in thermal convection of a paramagnetic fluid in a cubical enclosure subjected to a magnetic field gradient
S. Kenjereš, L. Pyrda, W. Wrobel, E. Fornalik-Wajs, J. S. Szmyd, Phys. Rev. E, 2012

1:24:3:3Thermoconvective instability of paramagnetic fluids in a nonuniform magnetic field
Jie Huang, Donald D. Gray, Boyd F. Edwards, Phys. Rev. E, 1998

1:24:3:4Convective rolls and heat transfer in finite-length Rayleigh-Bénard convection: A two-dimensional numerical study
S. Kenjereš, K. Hanjalić, Phys. Rev. E, 2000

1:24:4:1Interaction of Kelvin force and transport across a melting substrate in a microgravity environment
Nicholas K. Burgess, Kannan N. Premnath, Phys. Rev. E, 2010

1:24:4:2Magnetic control of convection in nonconducting paramagnetic fluids
Jie Huang, Boyd F. Edwards, Donald D. Gray, Phys. Rev. E, 1998

1:26:1:1Role of the Kelvin-Helmholtz instability in the evolution of magnetized relativistic sheared plasma flows
Nathaniel D. Hamlin, William I. Newman, Phys. Rev. E, 2013

1:26:1:23Diffusion of Like Particles Across a Magnetic Field
Albert Simon, Phys. Rev., 1955

1:26:2:1Resonant Kelvin-Helmholtz modes in sheared relativistic flows
Manuel Perucho, Michal Hanasz, José-María Martí, Juan-Antonio Miralles, Phys. Rev. E, 2007

1:26:2:2Stability of the Interface between Two Fluids in Relative Motion
RICHARD A. GERWIN, Rev. Mod. Phys., 1968

1:26:3:1Interactions between two magnetohydrodynamic Kelvin-Helmholtz instabilities
S. H. Lai, W.-H. Ip, Phys. Rev. E, 2011

1:26:3:4Competing Mechanisms of Plasma Transport in Inhomogeneous Configurations with Velocity Shear: The Solar-Wind Interaction with Earth’s Magnetosphere
M. Faganello, F. Califano, F. Pegoraro, Phys. Rev. Lett., 2008

1:26:3:12Nonlinear Evolution of the Magnetohydrodynamic Kelvin-Helmholtz Instability
Akira Miura, Phys. Rev. Lett., 1982

1:26:3:17Decay of MHD-Scale Kelvin-Helmholtz Vortices Mediated by Parasitic Electron Dynamics
T. K. M. Nakamura, D. Hayashi, M. Fujimoto, I. Shinohara, Phys. Rev. Lett., 2004

1:26:3:18Magnetic Effects on the Coalescence of Kelvin-Helmholtz Vortices
T. K. M. Nakamura, M. Fujimoto, Phys. Rev. Lett., 2008

1:26:3:20Anomalous ion mixing within a Kelvin-Helmholtz vortex in a collisionless plasma
T. Terasawa, M. Fujimoto, H. Karimabadi, N. Omidi, Phys. Rev. Lett., 1992