For each question, you must enter your answer into the appropriate entry field in the Test Flight module (TEX entry is possible), or you may upload a file (JPEG, scanned PDF of handwritten solution, PDF from a Word file, etc.) Your answers will be peer graded according to the course rubric.

YOU ARE EXPECTED TO WORK ALONE ON THIS PROBLEM SET.

1. Say whether the following is true or false and support your answer by a proof.

$$
(\exists m \in \mathcal{N})(\exists n \in \mathcal{N})(3 m+5 n=12)
$$

2. Say whether the following is true or false and support your answer by a proof: The sum of any five consecutive integers is divisible by 5 (without remainder).
3. Say whether the following is true or false and support your answer by a proof: For any integer n, the number $n^{2}+n+1$ is odd.
4. Prove that every odd natural number is of one of the forms $4 n+1$ or $4 n+3$, where n is an integer.
5. Prove that for any integer n, at least one of the integers $n, n+2, n+4$ is divisible by 3 .
6. A classic unsolved problem in number theory asks if there are infinitely many pairs of 'twin primes', pairs of primes separated by 2 , such as 3 and 5,11 and 13 , or 71 and 73 . Prove that the only prime triple (i.e. three primes, each 2 from the next) is $3,5,7$.
7. Prove that for any natural number n,

$$
2+2^{2}+2^{3}+\ldots+2^{n}=2^{n+1}-2
$$

8. Prove (from the definition of a limit of a sequence) that if the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ tends to limit L as $n \rightarrow \infty$, then for any fixed number $M>0$, the sequence $\left\{M a_{n}\right\}_{n=1}^{\infty}$ tends to the limit $M L$.
9. Given an infinite collection $A_{n}, n=1,2, \ldots$ of intervals of the real line, their intersection is defined to be

$$
\bigcap_{n=1}^{\infty} A_{n}=\left\{x \mid(\forall n)\left(x \in A_{n}\right)\right\}
$$

Give an example of a family of intervals $A_{n}, n=1,2, \ldots$, such that $A_{n+1} \subset A_{n}$ for all n and $\bigcap_{n=1}^{\infty} A_{n}=\emptyset$. Prove that your example has the stated property.
10. Give an example of a family of intervals $A_{n}, n=1,2, \ldots$, such that $A_{n+1} \subset A_{n}$ for all n and $\bigcap_{n=1}^{\infty} A_{n}$ consists of a single real number. Prove that your example has the stated property.

