
J. Phys. A: Math. Gen.32 (1999) 5627–5641. Printed in the UK PII: S0305-4470(99)04457-1

Aharonov–Bohm beam deflection: Shelankov’s formula, exact
solution, asymptotics and an optical analogue
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Abstract. Using a paraxial analysis, Shelankov (1998Europhys. Lett.43 623) has shown that
charged particles in a beam of small angular width 1/w, aimed at a magnetic flux line with quantum
flux α, are deflected through an angleD proportional to sin(2πα)/w, vanishing in the classical
limit and also vanishing if the incident beam has zero intensity at the flux line. These properties are
confirmed by numerical calculations based on an exact solution of the Schrödinger equation, and
the paraxial wavefunction is obtained as an asymptotic approximation for largew. Paraxial theory
suggests that the same deflection will occur for a light beam reflected by a mirror containing a step
of heightπα. A theory of this optical phenomenon, based on an exact solution (for whichD is not
periodic inα), shows that convergence to the paraxialD is fast forα � 1, and slow forα near1

2 .

1. Introduction

In the Aharonov–Bohm (AB) effect (Aharonov and Bohm 1959, Olariuet al1985), inaccessible
magnetic flux diffracts electrons, producing interference fringes whose positions depend on
the value of the flux. Classical particles would not be deflected because they traverse a region
where there is no magnetic field, and hence there is no classical force. A natural question
is: are quantum particles deflected? The usual AB theory cannot give an answer, because it
is formulated in terms of an infinitely extended (plane) incident wave, for which deflections
cannot be defined. One way to discuss deflection is to consider an incident wave that is a
collimated beam rather than a plane wave. Recently, Shelankov (1998) has given a persuasive
analysis (reviewed in section 2 for later reference) of the propagation of a beam in the presence
of a flux line, based on a paraxial approximation to the Schrödinger equation, and concludes
that there is a deflection, periodic in the flux as all AB effects must be, and given by a simple
formula (equation (12)).

My aim here is twofold: to underpin Shelankov’s theory by deriving his formula as an
asymptotic approximation (section 4) from an exact analysis (section 3), and to explore an
interesting optical analogue (section 5) that it suggests. The exact formulation is in terms of an
incident beam that is monochromatic, constructed by superposing infinitely many AB waves
incident from different directions with the same energy.

Other approaches are possible: the deflection of time-dependent wavepackets has been
studied by Keating and Robbins (in preparation) in a careful analysis of the (Hermitian)
quantum force operator; they show that although there is no classical force, there is a quantum
force, giving rise to a deflection that in the appropriate limit is given by Shelankov’s formula. A
related problem is the determination of reaction forces on a vortex line giving rise to diffraction
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Figure 1. (a) Scattering geometry for incident beam with angular spectruma(θ); (b) vector
potentialAc(r) in circular gauge; (c) vector potentialAs (r) in Shelankov (sheet) gauge.

of quasiparticles; this was considered by Iordanskii (1966), and the associated (sometimes
controversial) physics has been reviewed by Sonin (1997).

Figure 1(a) shows the (essentially two-dimensional) problem to be studied here. A
monochromatic beam of electrons (charge−e) travelling in ther = (x, y) plane, with polar
coordinates(r, φ), is incident fromx = +∞. The beam consists of plane waves travelling
in directionsθ (where|θ | < π/2) with amplitudesa(θ). Piercing the plane at the origin is a
magnetic flux line, of strength8.

Diffraction of the beam depends on the value of the flux in quantum units, that is on

α = −e8
h

(1)

and arises from the vector potentialA(r) associated with the flux. Two such potentials will
be useful in what follows:Ac(r), in the circular gauge (figure 1(b)), andAs(r), in the sheet
or Shelankov gauge (figure 1(c)); they are defined as

Ac(r) = 8

2πr
eφ As(r) = −8

2
δ(x)[2(y)−2(−y)]ex (2)

where2 denotes the unit step. Both potentials satisfy∇×A(r) = 8δ(r), and they are related
by

χ(φ) ≡ − e
h̄

∫ r

+∞ex
(Ac(r

′)−As(r
′)) · dr′ = α

[
φ − π

{
2
(
φ − π

2

)
+2

(
φ − 3π

2

)}]
(06 φ 6 2π)

χ(φ + 2π) = χ(φ)
(3)

(of course,χ(φ) is a single-valued function of position).
The only effect of the common wavenumberk of the plane waves in the beam is to set the

scale of the diffraction pattern, so we immediately setk = 1; this amounts to measuring all
lengths in units of wavelength/2π .
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All formulae will be valid for general amplitudesa(θ) of the angular spectrum. For
explicit calculations, we will use the Gaussian model

a(θ) = exp(− 1
2θ

2w2) (|θ | < 1
2π). (4)

The r.m.s. angular width of the incident beam is 1/(w
√

2); it is helpful to bear in mind that
w = 2 corresponds to a width 27.01◦, w = 5 to 8.1◦, andw = 20 to 2.03◦. In the paraxial
regime,w is large.

2. Shelankov’s paraxial theory

Paraxially, that is replacing cosθ by 1− θ2/2 and ignoring the limits|θ | < π/2, the incident
wave, forx > 0, is the superposition

ψinc(r) = exp{−ix}√
2π

∫ ∞
−∞

dθ a(θ)exp

{
i

(
yθ +

1

2
xθ2

)}
. (5)

(Hereafter, lower caseψ will denote waves in the paraxial approximation.) Immediately to
the right of the planex = 0 containing the flux, this wave is

ψ0(y) ≡ ψinc(0+, y) = 1√
2π

∫ ∞
−∞

dθ a(θ)exp{iyθ}. (6)

For the model (4),

ψ0(y) = 1

w
exp

(
− y2

2w2

)
(7)

describing the waist of a Gaussian beam with coordinate widthw.
In Shelankov’s gaugeAs , the effect of the flux is confined to the sheetx = 0, where

the vector potential acts as a phase-changing screen. Thus the transmitted wave immediately
beyond the screen is

ψ(0−, y) = exp{iπα sgny}ψinc(0+, y) = exp{iπα sgny}ψ0(y). (8)

The beam deflectionDparaxialcan be calculated in terms of the transmitted angular distribution,
namely (cf (6))

cparaxial(α, θ) = 1√
2π

∫ ∞
−∞

dy ψ(0−, y)exp(−iθy)

= 1√
2π

∫ ∞
−∞

dy ψ0(y) exp{i(πα sgny − θy)} (9)

as the average angle of the power spectrum|cparaxial(α, θ)|2. Thus

Dparaxial(α) =
∫∞
−∞ dθ θ |cparaxial(α, θ)|2∫∞
−∞ dθ |cparaxial(α, θ)|2

. (10)

Calculation of this average is subtle, because for non-zero fluxcparaxial(α, θ) decays as
|θ | → ∞ as 1/θ (the origin of this slow decay is the singularity in the integrands of (9) at
y = 0), so the numerator integral in (10) diverges and must be regularized. One regularization
was given by Shelankov (1998). Another regularization is based on two observations. First,
the decay is the same atθ = ±∞, so the odd part of|cparaxial|2 decays faster (exponentially
fast, for the Gaussian model (4)), and both integrals in (10) can be made to converge. Second,
the phase screen transmission function can be written in terms of its even and odd parts:

exp{iπα sgny} = cos(πα) + i sgny sin(πα). (11)
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Then a short calculation leads to

Dparaxial(α) = sin(2πα)
|ψ0(0)|2∫∞

−∞ dy |ψ0(y)|2
. (12)

This is Shelankov’s formula (his expression has the opposite sign because he considers
waves incident fromx = −∞). When the wavenumberk is reinstated, it appears in the
denominator, making the angleDparaxialdimensionless and also showing thatDparaxialvanishes
classically(k→∞) and is comparable to the diffraction spreading of the beam without flux.
Evidently the deflection is an oscillatory function of the flux, and depends on the probability
density of the paraxially incident wave where it strikes the flux line. It is possible to obtain the
result (12) from the expectation value of the transverse current operator−i∂/∂y, but we will
see that the non-paraxial generalization is problematic.

For later comparison with the exact solution, we note that the paraxially transmitted wave,
for x < 0, can be calculated by regardingψ(0−, y) (equation (8)) as a source of diffracted
waves. Thus

ψ(r) = exp{−i(x + 1
4π)}√

2π |x|
∫ ∞
−∞

duψ0(u) exp

{
i

[
πα sgnu− i

2x
(y − u)2

]}
(x < 0).

(13)

With the model (4), explicit formulae are, for the transmitted spectrum (9),

cparaxial(α, θ) = exp

(
−1

2
θ2w2

)[
cos(πα) + sin(πα)erfi

(
wθ√

2

)]
(14)

for the transmitted wave (13),

ψ(r) = exp(−ix)√
w2 + i|x|

exp

{
− y2

2(w2 + i|x|)
}[

cos(πα) + i sin(πα) erf

{
iwy√

2|x|(|x| − iw2)

}]
(15)

and, for the deflection (12),

Dparaxial(α) = sin(2πα)

w
√
π

. (16)

Here erf is the error function (Abramowitz and Stegun 1972), and erfi(z) = −i erf(iz). Note
that whenα = 0 the wave (15) becomes the paraxially propagating Gaussian beam (with|x|
replaced byx the formula is then valid for positive as well as negativex).

3. Exact solution

In the circular gauge, a formal but multi-valued solution of Schrödinger’s equation for a plane
wave travelling in the directionkθ = (− cosθ, sinθ) (figure 1), in the presence of the flux, is

exp{i(kθ · r + αφ)} = exp{i(−r cos(φ + θ) + α(φ + θ))} exp{−iαθ}. (17)

The corresponding single-valued AB solution (Aharonov and Bohm 1959), describing the
scattering of the plane wave by the flux, is

9θ(r) =
∞∑

l=−∞
J|l−α|(r)(−i)|l−α| exp{il(φ + θ)} exp{−iαθ}. (18)
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Therefore, the wave describing the scattering of a beam with angular distributiona(θ) is

9(r) = 1√
2π

∫ π/2

−π/2
dθ a(θ)9θ(r)

=
∞∑

l=−∞
J|l−α|(r)(−i)|l−α| exp{ilφ}b(l − α) (19)

where

b(l) = 1√
2π

∫ π/2

−π/2
dθ a(θ)exp{ilθ}. (20)

Equations (19) and (20) constitute the exact AB wave for an incident beam. By restricting
directions to the range−π/2< θ < π/2, we are declaring that the incident beam contains no
waves travelling back towards +x, and no evanescent waves (which would have sinθ > 1 and
henceθ complex). Absence of evanescence amounts to the physical requirement that the beam
without flux is smooth and finite in intensity for allr; if evanescent waves were permitted,
different angular superpositions would be required in different regions (e.g.x < 0 andx > 0)
to prevent the intensity blowing up in the growing direction, and it can be shown that then
∇9 would be discontinuous at the boundaries of the regions (some interesting properties of
non-paraxial beams made of real plane waves are discussed by Berry (1994, 1998)).

The coefficientsb(l) describe a function very close to the paraxial unscattered waist wave
amplitude (6), discretely sampled. For the model (4),

b(l) = 1

w
exp

(
− l2

2w2

)[
1− Re erfc

{
1√
2

(
πw

2
− i

l

w

)}]
(21)

and asymptotics of erfc gives

b(l)− ψ0(l) ≈ −exp

(
−1

8
π2w2

)√
2

π

[ 1
2πw

2 cos( 1
2πl)− l sin( 1

2πl)]

l2 + 1
4π

2w4
(w � 1). (22)

For largew (that is, paraxial beams) this difference is negligible ifl is small; for largel, the
difference decays slowly (as 1/l) and dominatesψ0 if |l| > w2.

Because of the scattering from the flux, the angular spectrum is no longera(θ) as in the
incident wave. Moreover, the superposition of plane waves corresponding to9(r) need not
be the same in all regions of the plane, because of the singularity at the flux line. To find
the deflection, we need the superposition, with angular amplitudec(α, θ), on the scattering
side of the flux, that isx < 0 or π/2 < φ < 3π/2. To calculatec(α, θ), we use the sheet
gauge, becauseAs is zero forx < 0, to transform from the circular gauge using (3). The power
spectrum|c(θ)|2 is the same for allx < 0. We choose the line 0−, on whichφ = π− 1

2π sgny,
and

9(r) exp{−iχ(r)} = exp{iαπ}9(0−, y)exp{−iαπ(1− 1
2 sgny)}

= 1√
2π

∫
dθ c(α, θ)exp{iyey · kθ }

= 1√
2π

∫
dθ c(α, θ)exp{iy sinθ}. (23)

The integral can include evanescent waves (complexθ ), but we are only interested in the
real waves−π/2 < θ < π/2, since these determine the deflection of the beam far from the
flux. Now c(α, θ) is obtained by Fourier transforming overy:

c(α, θ) = | cosθ |√
2π

∫ ∞
−∞

dy exp{−iy sinθ} exp{iαπ}9(0−, y)exp

{
−iαπ

(
1− 1

2
sgny

)}
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=
∞∑

l=−∞
(−i)|l−α|(−1)lb(l − α)I (l − α) (24)

where

I (λ) ≡ | cosθ |√
2π

∫ ∞
−∞

dy exp{−iy sinθ}J|λ|(|y|) exp

{
−i

1

2
πλ sgny

}
. (25)

Evaluating the integral using formulae (11.4.37–8) of Abramowitz and Stegun (1972) gives
the angular spectrum exactly as

c(α, θ) =
√

2

π

∞∑
l=−∞

(−1)l(−i)|l−α| cos

{
1

2
π(l − α) + |l − α|θ

}
b(1− α). (26)

Finally, the deflection can be defined as the average value of the transverse momentum
sinθ over this spectrum (the results are hardly altered by choosingθ instead), namely (cf (10))

D(α) =
∫ π/2
−π/2 dθ sinθ |c(α, θ)|2∫ π/2
−π/2 dθ |c(α, θ)|2

. (27)

From equation (26) it follows thatc(α, θ) changes sign whenα changes by unity. For the
case whereb(l) is even, representing a transversely symmetric beam striking the flux centrally,
c(α, θ) possesses an additional symmetry, relatingα, θ to−α,−θ , so that:

c(α, θ) = −c(α + 1, θ) = c(−α,−θ). (28)

These implyD(α) = −D(−α) = −D(1 − α), and soD( 1
2 + α) = −D( 1

2 − α), further
implying D(0) = D( 1

2) = 0, so that it is necessary to studyD(α) only for 0 6 α 6
1
2. The corresponding paraxial quantities (9) and (12) possess the additional symmetry
Dparaxial(

1
4 − α) = Dparaxial(

1
4 + α).

It might be thought that an alternative definition ofD would be as the expectation value
of the transverse momentum operator along any slice with constantx < 0, for example

D(α) ≡
∫∞
−∞ dy 9∗(0−, y)(−i∂y)9(0−, y)∫∞

−∞ dy |9(0−, y)|2
(x < 0) (29)

(whenk is reinstated in the denominator of this expression, it is dimensionless, as an angle
must be). This expectation is however frustrated, because the normalization integral almost
always diverges, for a curious reason explained in the appendix.

Now we present some numerical calculations based on the model (4), for different values
of the beam widthw and flux α. Figure 2 shows how accurately the AB deflectionD
is described by Shelankov’s paraxial formula (16), even for smallw. The maxima of the
D(α) curves are shifted slightly to the right ofα = 1

4, indicating that the paraxial symmetry
Dparaxial(

1
4 − α) = Dparaxial(

1
4 + α) is (weakly) broken for smallw. A further comparison

(figure 3) is provided by the spectrum|c(θ)|2.
Figure 4 shows density plots of the wave intensities, indicating that the excellent agreement

between paraxial and exact solutions extends to the wavefunction itself everywhere in the
scattering regionx < 0. In the regionx > 0, the exact solutions show interference between
the scattered waves and the incident beam. More details are shown in figure 5, as slices of the
wave intensity for differentα. This shows the rightward shift of the beam from zero atα = 0,
through its maximum nearα = 1

4, and back to zero atα = 1
2 and also the fact that in the

incidence regionx > 0 the beam (figure 5(f )) is hardly shifted at all, although it is affected by
waves reflected from the flux.
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Figure 2. DeflectionD versus fluxα, for the indicated
beam widthsw in the model (4). Full curves: the
exact AB deflection (27); dashed curves: deflection from
Shelankov’s formula (16).

Figure 3. Angular spectrum|c(θ)|2 for AB
scattered beams with the indicated widthsw. Full
curves: exact spectrum (26); dashed curves: paraxial
approximation (14). In (a)–(c), α = 1

4 ; in (d)–(f ),
α = 1

2 .

Shelankov’s formula (12) predicts that if the incident beam strikes the flux line non-
centrally, by being shifted sideways byy0, the deflection is smaller. In the computations, this
shift can be exactly accommodated simply by changing the argument ofb(l) in formula (26) for
c(θ) from l−α to l−α−y0. For the Gaussian model (7), the deflection (equation (16)) should
be reduced by a factor of exp(−y2

0/2w
2). Numerical calculations confirm this, although the

approach to paraxiality asw→∞ is slower than for symmetric incidence. Sinceψ0(y), and
thereforeb(l), are no longer even functions, the second symmetry in (28) is no longer exact.
In particular, the exactD does not vanish whenα = 1

2, however, this symmetry-breaking is
hardly detectable ifw exceeds about 2.

A more striking prediction is that if the incident wave (without flux) vanishes at the origin,
D(α) should be zero for allα. We can test this by choosing the model (cf (7))

ψ0(y) = y2

w
exp

(
− y2

2w2

)
. (30)

The corresponding angular spectrum is, from (6),

a(θ) = w2(1− w2θ2) exp{− 1
2w

2θ2}. (31)
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Figure 4. Density plots of the exact AB wave intensity|9(r)|2 (equation (19)) (a) and (c), and
the paraxial wave intensity|ψ(r)|2 (equation (15), withα = 0 for the incident regionx > 0), for
w = 20. In (a), (b): α = 1

4 ; in (b), (d): α = 1
2 . x horizontal,y vertical.

Using (20) and (26), the angular spectrumc(θ) of the scattered wave can be computed from
the exact theory. Figure 6 shows an example of|c(θ)|2. The exact and paraxial curves agree
rather well, even for such a smallw (wide-angle incident beam). Although the curves are not
symmetric aboutθ = 0,Dparaxial is exactly zero, from Shelankov’s theory, andD calculated
numerically from the exact formula (27) is 0.006, which is zero within the accuracy of these
computations.

This sensitivity to screening of the flux by the incident beam is a remarkable phenomenon,
because the exact AB wave (19) vanishes atr = 0 for α non-zero whatever the form of the
incident beam, so there is a sense in which the flux is always hidden from the electrons.
Nevertheless, it is possible to detect, by the deflection of a beam, whether the incident beam
intensity in the absence of flux vanishes at the place where the flux line will be inserted. In the
familiar AB scattering, the situation is different: the fractional shift of the far-field fringes is
α whether the flux line is screened by the incident beam, as in the original biprism experiment
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Figure 5. Transverse slices of the exact AB wave intensities (full curves) and paraxial
approximations (dashed curves), forw = 10 and (a)–(e) x = −20 (scattering region), (f ) x = +20
(incidence region). In (a), α = 0; (b), α = 1

8 ; (c), α = 1
4 ; (d), α = 3

8 ; (e), α = 1
2 ; (f ), α = 1

4 .

Figure 6. Angular spectrum|c(θ)|2 for AB scattered
beam with widthw = 1.5 in the model (31), for an
incident wave vanishing on the flux line, which here has
α = 1

4 . Full curve: exact spectrum (26); dashed curve:
paraxial approximation (9). (For largerw, the exact and
paraxial curves are hard to distinguish on this scale.)

of Chambers (1960), or an unobstructed plane wave, as in the original solution of Aharonov
and Bohm (1959).

Numerical computation leaves several questions unanswered. DoesD vanish exactly
when the incident intensity would be zero on the flux line, or isD merely very small? In the
latter case, how doesD depend on the details of the wavefunction near the flux? How doesD

vanish asw→∞? These are not just mathematical niceties. In any practical experiment, the
flux will be contained in a tube of finite radius, which of course must be made impenetrable
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Figure 7. Zones for the calculation of the paraxial asymptotics of9(r) in terms of the integrals
(36). In zone a onlyI II

0 (r) contributes significantly, in zone bI I
0(r) contributes ify > 0, and

I I
−1(r) contributes ify < 0.

by a scalar potential (representing its walls), in order to eliminate any non-AB deflection from
the electrons’ encounter with the real magnetic field. But walls cause the wave to vanish even
whenα = 0, and then a strict interpretation of Shelankov’s formula threatens to makeD zero
whenα 6= 0. On physical grounds, however, I expect that if the flux tube is much thinner than
an electron wavelength (a non-trivial practical constraint) the preceding theory can be applied
as though the thickness were zero, and there will be a deflection forα 6= 0; this deserves
further study.

4. Paraxial asymptotics

The paraxial regime isw � 1 (incident beam narrow in angle), withr located in two regions
(figure 7): zone a, wherer � w (far from the flux) and|φ| � 1 (near-backward direction),
and zone b, wherer � w and|π − φ| � 1 (near-forward direction).

There are four steps in the derivation of the paraxial wave (13) from the exact AB wave
(19). The first, which is exact, is to transform the sum (19) to a series of integrals by the
Poisson sum formula (Lighthill 1958):

9(r) = exp(iαφ)
∞∑

m=−∞
exp(2π imα)Im(r) (32)

where

Im(r) =
∫ ∞
−∞

dλ J|λ|(r)b(λ) exp(− 1
2iπ |λ|) exp{iλ(φ + 2πm)}. (33)

This is the ‘whirling-wave’ decomposition of the wave, discussed elsewhere (Berry 1980).
The second step is to replaceb(λ) by its close approximationψ0(λ), which is valid when

w � 1 (cf equations (6) and (20)). The decay ofψ0(λ) cuts off the integrals in (33) when
|λ| > w. Then, sincer � w, all the Bessel functions contributing significantly to the sum
have argument� order. This makes possible the third step, which is to replaceJ|λ|(r) by
the appropriate asymptotic expression, namely the following variant of the Debye formula
(Abramowitz and Stegun 1972):

J|λ|(r) ≈
√

2

πr
cos

(
r +
|λ|2
2r
− 1

2
|λ|π − 1

4
π

)
(34)

(note that we are not assumingr � |λ|2, when this formula reduces to the simplest large-
argument approximation). Thus

Im(r) ≈ I I
m(r) + I II

m(r) (35)



Aharonov–Bohm deflection 5637

where

I I
m(r) =

1√
2πr

exp

{
i

(
r − 1

4
π

)}∫ ∞
−∞

dλψ0(λ) exp

{
i

(
−π |λ| + λ

2

2r
+ λ(φ + 2πm)

)}
I II
m(r) =

1√
2πr

exp

{
−i

(
r − 1

4
π

)}∫ ∞
−∞

dλψ0(λ) exp

{
i

(
−λ

2

2r
+ λ(φ + 2πm)

)}
.

(36)

The final step is to retain only those integrals whose integrands possess stationary points
on the realλ axis with|λ| � w; in comparison with these, the other integrals are exponentially
small. The stationary points are located at:

integralI I : λ = r(π sgnλ− φ − 2πm) integralI II : λ = r(φ + 2πm). (37)

In zone a,|φ| is small andr � w, and the only stationary point with|λ| � w comes from
the integralI II , withm = 0. We obtain, from (32), (35) and (37),

9(r) ≈ exp{i(αφ + 1
4π − r)}√

2πr

∫ ∞
−∞

dλψ0(λ) exp

{
i

(
−λ

2

2r
+ λφ

)}
(zone a). (38)

Then usingr ≈ x + y2/2x andφ ≈ y/x gives precisely the paraxial incident beam, together
with the α-dependent phase factor associated with the flux in the circular gauge. Strictly,
the paraxial approximation fails to incorporate waves scattered back towardsx = +∞; these
inevitable reflected waves originate in the asymptotics associated with the discontinuity at
λ = 0 in the integralsI I .

In zone b, only the integralsI I have stationary points with|λ| � w, fromm = 0 when
π −φ > 0 (i.e.y > 0 andλ > 0), and fromm = −1 whenπ −φ < 0 (i.e.y < 0 andλ < 0).
Equations (32), (35) and (37) now lead to

9(r) ≈ exp{i(α(φ − π)− 1
4π + r)}√

2πr

∫ ∞
−∞

dλψ0(λ) exp

{
i

(
πα sgnλ +

λ2

2r
− λ(π − φ)

)}
(zone b). (39)

In this zone,r ≈ −x−y2/2x, andφ ≈ π +y/x, giving exactly Shelankov’s paraxial scattered
wave (13), together with theα-dependent phase factor associated with the transformation (3)
toAc fromAs.

5. Optical analogue: diffraction by a reflecting step

In the paraxial theory, and using the sheet gaugeAs(r), the vector potential acts as a phase-
changing screen (equation (8)). This suggests that AB beam deflection can be simulated with
other kinds of waves, for example light. The screen could be a slab of transparent material
whose refracting surface is stepped, or, as in the case to be examined here, a mirror whose
surface contains a step with straight edges (figure 8). To implement an AB fluxα, the phase
change between waves reflected by the two sides of the step must be 2πα. Therefore the height
of the step should beπα in units where the wavenumberk is unity, that isα/2 wavelengths.
Focusing a beam with spatial widthw � 1—to ensure paraxiality—onto the step ought to
generate a reflected wave whose deflection is given by Shelankov’s formula (12); for a Gaussian
beam, the deflection should be (16).

This is an interesting optical effect, worth studying for its own sake, and seeking to detect
experimentally. In any such experiment, it is important that the step be perpendicular to the
surface and sharp on the wavelength scale. Any deviation from these conditions will spoil
the AB analogy by giving rise to a geometrical-optics deflection, corresponding to electrons
penetrating into the flux and therefore experiencing a classical force.
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Figure 8. Diffraction by a mirror step of heightπα, that is,α/2 wavelengths; the incident beam
has angular spectrumA(K), and the reflected waves have angular spectrumC(K).

However, paraxiality is an approximation, and it is necessary to compare its predictions
with those of an exact solution for waves reflected by a step. This is not the same as the exact
AB solution (section 3) in the presence of a flux line. One important difference is that reflection
from a step is not periodic in the step height: periodicity should emerge in the paraxial limit.
Another is that there is no exact analytical solution for step reflection, making it necessary
to formulate the problem in a way that can be implemented computationally, automatically
incorporating the complicated diffracted (and multiply diffracted) waves from the edges of the
step.

The step will be a perfectly reflecting surface whose profile (figure 8) is

xstep(y) = − 1
2πα sgny (40)

(again we takek = 1). Light polarized in thez direction can be represented by a scalar wave
9(r) vanishing on the step. It is convenient to label plane waves in the incident and reflected
superpositions by their amplitudes as a function of the transverse wavenumberK = sinθ ,
rather than the directionθ . The amplitudes will be denotedA(K) andC(K), related to those
defined previously by

a(θ) = cosθA(sinθ) i.e. A(K) = a(sin−1K)√
1−K2

c(θ) = cosθC(sinθ) i.e. C(K) = c(sin−1K)√
1−K2

.

(41)

The incident and reflected waves can now be written as

9inc(r) = 1√
2π

∫ 1

−1
dK A(K)exp

{
i
[
Ky − x

√
1−K2

]}
9refl(r) = 1√

2π

∫ ∞
−∞

dK C(K)exp
{
i
[
Ky + x

√
1−K2

]}
.

(42)

The limits of integration indicate that9inc does not contain evanescent waves(|K| > 1), but
9refl does; then the square root is positive imaginary.

Now the problem is to determineC(K) given A(K), using the fact that the total
wavefunction must vanish on the mirror (40). Thus∫ ∞
−∞

dK C(K)exp
{
i
[
Ky − 1

2πα sgny
√

1−K2
]}

= −
∫ 1

−1
dK A(K)exp

{
i
[
Ky + 1

2πα sgny
√

1−K2
]}
. (43)
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This must hold for ally. Multiplying by exp{i(−Qy + πα sgny/2)}, and integrating overy,
using the trick (11) and also∫ ∞

−∞
dy sgny exp{i(K −Q)y} = 2i

K −Q (44)

leads to

C(Q) cos
{

1
2πα

(√
1−Q2 − 1

)}
+

1

π

∫ ∞
−∞

dK C(K)
sin
{

1
2πα

(√
1−K2 − 1

)}
K −Q

= − A(Q) cos
{

1
2πα

(√
1−Q2 + 1

)}
+

1

π

∫ 1

−1
dK A(K)

sin
{

1
2πα

(√
1−K2 + 1

)}
K −Q (45)

where the singularities atK = Q are interpreted as principal values.
FromC(K), the deflection can be calculated from (27) and (41) as

D =
∫ 1
−1 dK K

√
1−K2|C(K)|2∫ 1

−1 dK
√

1−K2|C(K)|2
. (46)

In this formalism, the paraxial approximation is obtained by neglectingK2 andQ2, leading
to the explicit formula

C(Q) ≈ Cparaxial(Q) = −A(Q) cos(πα) +
sin(πα)

π

∫ ∞
−∞

dK
A(K)

K −Q. (47)

It is not hard to show that this is equivalent to (9), apart from an overall minus sign arising
from reflection.

By discretizing the integral operators in the exact equations (45) and representing them
as finite matrices (setting the diagonal matrix element(K −Q)−1 to zero whenK = Q), an
effective numerical scheme can be implemented, andC(K) determined by matrix inversion.
We employ the model (4), that is

A(K) = exp{− 1
2(w sin−1K)2}√

1−K2
. (48)

Evanescent waves can be incorporated by including transverse wavenumbers|K| 6 Kmax,
|Q| 6 Kmax, whereKmax > 1. Of course, evanescent waves are necessary to make the wave
vanish on the step (figure 9). However, whenw is large the influence of the evanescent waves
on the real waves (that is, onC(K) for |K| < 1, andc(θ) for |θ | < π/2) which determine the
distant reflected field and the beam deflection, is negligible (figure 10(a)).

For small steps(α < 1
4), c(θ) is well approximated by the paraxial formula (14)

(figure 10(b)). As α approaches12 (step height of14 wavelength), the agreement gets worse,
and the expected symmetry does not materialize atα = 1

2 (figure 10(c)). As w increases,
the curves forα = 1

2 do get more symmetrical, albeit slowly. Therefore convergence of the
deflectionD toDparaxial is slow whenα is not small (figure 11). It would be useful to have an
asymptotic estimate of the rate at whichD→ 0 (if indeed it does) asw→∞ whenα = 1

2.
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Appendix. Failure of slice normalization

Consider any wave9(r) that can be expressed as an angular superposition of non-evanescent
waves in directions(cosθ, sinθ), whereθ is real:

9(r) = 1√
2π

∫
dθ a(θ)exp{i(x cosθ + y sinθ)}. (A1)

We slice9 on the line

x = x0 + s cosγ y = s sinγ (A2)

and attempt to normalize along the slice by requiring that

N(γ ) ≡
∫ ∞
−∞

ds |9(x0 + s cosγ, s sinγ )|2 (A3)

is finite.

Figure 9. Contour plots of intensity|9(r)|2 for wave
diffracted by stepα = 1

4 , with incident beam width
w = 10, including transverse wavenumbers (a): |K| < 1
(no evanescent waves); (b): |K| < 2; (c): |K| < 4. As
more evanescent waves are included, the vanishing of
9 on the step is better approximated, the wave in the
unphysical region behind the mirror(x < xstep) gets
wilder, but the contours in the far field hardly change.

Figure 10. Power spectrum|c(θ)|2 of light beam(w =
5) reflected from a mirror step, for (a), (b): α = 1

4 ; (c)
α = 1

2 . In (a), the upper curve is calculated including
evanescent waves with|K| < 2, and the lower curve with
no evanescent waves(|K| < 1). In (b) and (c) the dashed
curves show the paraxial approximation (14).
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Figure 11. Beam deflectionw
√
πD from mirror steps with heightπα. Filled circles joined by

straight lines, for (top to bottom):w = 5, 10, 20, 60; smooth curve:w
√
πDparaxial= sin(2πα).

However, a simple calculation gives

N(γ ) =
∫

dθ
|a(θ)|2 + a∗(θ)a(2γ − θ) exp{ix0(cos(2γ − θ)− cosθ)}

| sin(θ − γ )| (A4)

showing that, because of the singularity of the denominator,N(γ ) diverges unlessa(γ )
vanishes. This has the simple interpretation that9 is not normalizable on any slice for which
there is a plane wave in the superposition. Imagine now that the incident wave is such that
an interval of angles1θ is absent from the superposition, so that normalization is possible
for slices in directionsγ within 1θ . Then scattering will almost surely send waves into this
interval, destroying the normalization.

It is therefore not surprising that the AB wave (19) and (20) is not normalizable in any
direction. The same is true for the paraxial wave (13) and (15), except for the sliceγ = π/2,
where the transmitted wave (8), immediately beyond the phase-changing sheet atx = 0, is
normalizable.

Without normalization, expectation values of operators, for example the transverse current
in the slice atx (expectation value ofδ(x̂ − x)p̂y , where carats denote operators andp is
momentum) cannot be calculated.
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