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Aharonov—Bohm beam deflection: Shelankov’s formula, exact
solution, asymptotics and an optical analogue
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Abstract. Using a paraxial analysis, Shelankov (199&rophys. Lett43 623) has shown that
charged particles in a beam of small angular widtty 1laimed at a magnetic flux line with quantum

flux «, are deflected through an angleproportional to si2r«)/w, vanishing in the classical

limit and also vanishing if the incident beam has zero intensity at the flux line. These properties are
confirmed by numerical calculations based on an exact solution of thé@oeper equation, and

the paraxial wavefunction is obtained as an asymptotic approximation fordargaraxial theory
suggests that the same deflection will occur for a light beam reflected by a mirror containing a step
of heightr . A theory of this optical phenomenon, based on an exact solution (for vihismot
periodic ine), shows that convergence to the paraxials fast fore « 1, and slow forx near%.

1. Introduction

Inthe Aharonov—Bohm (AB) effect (Aharonov and Bohm 1959, Olatial 1985), inaccessible
magnetic flux diffracts electrons, producing interference fringes whose positions depend on
the value of the flux. Classical particles would not be deflected because they traverse a region
where there is no magnetic field, and hence there is no classical force. A natural question
is: are quantum particles deflected? The usual AB theory cannot give an answer, because it
is formulated in terms of an infinitely extended (plane) incident wave, for which deflections
cannot be defined. One way to discuss deflection is to consider an incident wave that is a
collimated beam rather than a plane wave. Recently, Shelankov (1998) has given a persuasive
analysis (reviewed in section 2 for later reference) of the propagation of a beam in the presence
of a flux line, based on a paraxial approximation to the 8dimger equation, and concludes

that there is a deflection, periodic in the flux as all AB effects must be, and given by a simple
formula (equation (12)).

My aim here is twofold: to underpin Shelankov’s theory by deriving his formula as an
asymptotic approximation (section 4) from an exact analysis (section 3), and to explore an
interesting optical analogue (section 5) that it suggests. The exact formulation is in terms of an
incident beam that is monochromatic, constructed by superposing infinitely many AB waves
incident from different directions with the same energy.

Other approaches are possible: the deflection of time-dependent wavepackets has been
studied by Keating and Robbins (in preparation) in a careful analysis of the (Hermitian)
quantum force operator; they show that although there is no classical force, there is a quantum
force, giving rise to a deflection that in the appropriate limit is given by Shelankov's formula. A
related problem is the determination of reaction forces on a vortex line giving rise to diffraction
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Figure 1. (a) Scattering geometry for incident beam with angular spectuié; (b) vector
potential A.(r) in circular gauge;) vector potentiald (r) in Shelankov (sheet) gauge.

)

of quasiparticles; this was considered by lordanskii (1966), and the associated (sometimes
controversial) physics has been reviewed by Sonin (1997).

Figure 1@) shows the (essentially two-dimensional) problem to be studied here. A
monochromatic beam of electrons (charge travelling in ther = (x, y) plane, with polar
coordinatedr, ¢), is incident fromx = +oo. The beam consists of plane waves travelling
in directionst (where|6| < 7 /2) with amplitudes:(0). Piercing the plane at the origin is a
magnetic flux line, of strengttp.

Diffraction of the beam depends on the value of the flux in quantum units, that is on

ed

; 1)
and arises from the vector potentidlr) associated with the flux. Two such potentials will
be useful in what follows:A.(r), in the circular gauge (figure BY), and A (r), in the sheet
or Shelankov gauge (figuredy; they are defined as

P P
Ac(r) = 2y 0 As(r) = —53(16)[®(y) — O(=y)]ex 2

where® denotes the unit step. Both potentials satdéfy A(r) = ®§(r), and they are related
by

@) =—7 / (Ac(r') = A() - dr' = [qs —7 {o (6-%)+o (¢ - %’)”

o0ey

0<¢<2m) 3)
x(@+21) = x(¢)
(of course x (¢) is a single-valued function of position).

The only effect of the common wavenumizenf the plane waves in the beam is to set the

scale of the diffraction pattern, so we immediately/set 1; this amounts to measuring all
lengths in units of wavelengtht2

o =
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All formulae will be valid for general amplitudes(9) of the angular spectrum. For
explicit calculations, we will use the Gaussian model
a(d) = exp(—16%w?) (61 < 3m). (4)

The r.m.s. angular width of the incident beam j&./2); it is helpful to bear in mind that
w = 2 corresponds to a width 2¥1°, w = 5 to 81°, andw = 20 to 203. In the paraxial
regime,w is large.

2. Shelankov’s paraxial theory

Paraxially, that is replacing césby 1 — #2/2 and ignoring the limit$9| < 7/2, the incident
wave, forx > 0, is the superposition

Yine(r) = %;x} [ : do a(®) exp{i (ye + %x@z)} . 5)

(Hereafter, lower cas¢ will denote waves in the paraxial approximation.) Immediately to
the right of the plane = 0 containing the flux, this wave is

Yo(y) = Yinc(0+, y) =

For the model (4),
_1 ¥
Vo(y) = - eXp<—2—w2) ()

describing the waist of a Gaussian beam with coordinate width

In Shelankov's gauge;, the effect of the flux is confined to the sheet= 0, where
the vector potential acts as a phase-changing screen. Thus the transmitted wave immediately
beyond the screen is

Y (0_, y) = explima sgny}¥inc(0s, y) = explira sgny}yo(y). 8)

The beam deflectioPparaxiaiCan be calculated in terms of the transmitted angular distribution,
namely (cf (6))

J%f_z do a(6) expliyo}. (6)

Cparaxia(®, ) = \/% /_: dy ¥ (0_, y) exp(—ify)

_ J%_n / Z dy vo(y) expliCra sgny — 0y)) ©

as the average angle of the power spectfeygaxial, 0)|2. Thus

ffooo deo 6|Cparaxia(05, 0)|2
f_oooo do |Cparaxialet, 6)? .

Calculation of this average is subtle, because for non-zerocfluxia(o, 0) decays as
6] — oo as Y6 (the origin of this slow decay is the singularity in the integrands of (9) at
y = 0), so the numerator integral in (10) diverges and must be regularized. One regularization
was given by Shelankov (1998). Another regularization is based on two observations. First,
the decay is the same @t= oo, so the odd part ofcparaxial> decays faster (exponentially
fast, for the Gaussian model (4)), and both integrals in (10) can be made to converge. Second,
the phase screen transmission function can be written in terms of its even and odd parts:

Dparaxial(a) = (10)

explira sgny} = cogra) +isgny sin(ra). (12)
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Then a short calculation leads to

[¥0(0)|2
S dy o2

This is Shelankov’'s formula (his expression has the opposite sign because he considers
waves incident fromx = —o0). When the wavenumbek is reinstated, it appears in the
denominator, making the angi&araxiaidimensionless and also showing &k axia vanishes
classically(k — oo) and is comparable to the diffraction spreading of the beam without flux.
Evidently the deflection is an oscillatory function of the flux, and depends on the probability
density of the paraxially incident wave where it strikes the flux line. Itis possible to obtain the
result (12) from the expectation value of the transverse current oper&igdy, but we will
see that the non-paraxial generalization is problematic.

For later comparison with the exact solution, we note that the paraxially transmitted wave,
for x < 0, can be calculated by regardigg0_, y) (equation (8)) as a source of diffracted
waves. Thus

Dparaxiact) = sin2ra) (12)

exp{—i(x + 3m)}

Y(r) = NeIa /700 du Yro(u) exp{i |:mx sghu — le—(y — u)2:|} (x <0).
(13)
With the model (4), explicit formulae are, for the transmitted spectrum (9),
Cparaxial@, 0) = €x _}szz cosra) + sin(ra)erfi wo (14)
paraxial ) - p 2 ﬁ

for the transmitted wave (13),

. > .
Y(r) = M exp{ y—} |:cos(ym) +isin(ra) erf {Iw—yH

N 2(w? +ilx]) V215 (x] — iw?)
(15)
and, for the deflection (12),
sin(27
Dparaxia®) = w(—\/;)- (16)

Here erf is the error function (Abramowitz and Stegun 1972), an:eef —ierf(iz). Note
that whene = 0 the wave (15) becomes the paraxially propagating Gaussian bearjx{ith
replaced by the formula is then valid for positive as well as negatiye

3. Exact solution

In the circular gauge, a formal but multi-valued solution of $climger’s equation for a plane
wave travelling in the directiok, = (— cos#, sind) (figure 1), in the presence of the flux, is

expli(ky - v+ ag)} = expli(—r cogp +0) +a(p +0))} exp{—ixd). (17)
The corresponding single-valued AB solution (Aharonov and Bohm 1959), describing the
scattering of the plane wave by the flux, is

Wo(r) = D Jy-ag (M=) explil(¢ +0)} exp{—iat). (18)

l=—00
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Therefore, the wave describing the scattering of a beam with angular distrilutiprs
/2

1
U(r) = — do a(6)w
(r) Nezl a(®)Wy(r)
= > Jial (=)' explilp}b(l — @) (19)
l=—00
where
b(l L[ d.a) explite 20
=— 4 .
) Nezl a(0) explile} (20)

Equations (19) and (20) constitute the exact AB wave for an incident beam. By restricting
directions to the rangen/2 < 6 < n/2, we are declaring that the incident beam contains no
waves travelling back towardsc+and no evanescent waves (which would havesinl and
henced complex). Absence of evanescence amounts to the physical requirement that the beam
without flux is smooth and finite in intensity for alt if evanescent waves were permitted,
different angular superpositions would be required in different regionsa(e<g0 andx > 0)
to prevent the intensity blowing up in the growing direction, and it can be shown that then
VW would be discontinuous at the boundaries of the regions (some interesting properties of
non-paraxial beams made of real plane waves are discussed by Berry (1994, 1998)).

The coefficient® (/) describe a function very close to the paraxial unscattered waist wave
amplitude (6), discretely sampled. For the model (4),

1 12 1 (nw 1
b)) = — exp( w2 ) [1 Re erfc{ 7 (7 — IE) ” (21)
and asymptotics of erfc gives
b(l) — oll) ~ — exp( ) [[Z”w coszmh) ~IsinGTDL S 1), (22)
12 + 7r2w4

For largew (that is, paraxial beams) this dlfference is negligibleig small; for larged, the
difference decays slowly (ag 1) and dominates if |I| > w?.

Because of the scattering from the flux, the angular spectrum is no legeas in the
incident wave. Moreover, the superposition of plane waves correspondibgrjoneed not
be the same in all regions of the plane, because of the singularity at the flux line. To find
the deflection, we need the superposition, with angular amplié¢@s?), on the scattering
side of the flux, that i < O orn/2 < ¢ < 3n/2. To calculate:(«a, 6), we use the sheet
gauge, becausé; is zero forx < 0, to transform from the circular gauge using (3). The power
spectrumc(#)|? is the same for alt < 0. We choose the line.Q on which¢ = 7 — %n’ sgny,
and

W(r)exp{—ix(r)} = expliar }W(0_, y) exp{—iam (1l — %Sgny)}

= ﬁ / dé c(a, 6) expliye, - ko}

= \/%_n/de c(a, 0) expliy sin6}. (23)

The integral can include evanescent waves (comp)ekiut we are only interested in the
real waves-7/2 < 6 < 7/2, since these determine the deflection of the beam far from the
flux. Now ¢(e, ) is obtained by Fourier transforming over

|cosf| [ L . . 1
c(a,0) = Nz / dy exp{—iysing}expliam}W(0_, y) exp{—lom <1— Esgny)}
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= Y ()"=D)'bU - )11 - ) (24)

I=—00

where

|cosd| [ L. 1
I\ = N [m dy exp{—iy S|n9}J|M(|y|)exp{—|§7rk sgny}. (25)

Evaluating the integral using formulae (11.4.37-8) of Abramowitz and Stegun (1972) gives
the angular spectrum exactly as

2 & 1
cla, 0) = \/i Z (=)' (=)=l cos{ Zal—a)+|l — a|6} bl — ). (26)
T, 2
Finally, the deflection can be defined as the average value of the transverse momentum
siné over this spectrum (the results are hardly altered by cho@singtead), namely (cf (10))
f”ﬁz do sind|c(a, 0)|2

D(a) = ——
ST, d0 |e(e, 0) 12

(27)

From equation (26) it follows that(a, ) changes sign whem changes by unity. For the
case wheré(l) is even, representing a transversely symmetric beam striking the flux centrally,
c(a, ) possesses an additional symmetry, relating to —«, —6, so that:

c(a,0) = —cla+1,0) =c(—a, —0). (28)

These implyD(a) = —D(—a) = —D(1 — a), and soD(3 + &) = —D(3 — ), further
implying D(0) = D(%) = 0, so that it is necessary to stud¥(«) only for 0 < o <

%. The corresponding paraxial quantities (9) and (12) possess the additional symmetry

Dparaxia(% —a) = Dparaxial(% +a).
It might be thought that an alternative definition@fwould be as the expectation value
of the transverse momentum operator along any slice with constar, for example

22 dy w0, y)(—id,)W(0_, y)
[, dy [W(0_, y)[2

(whenk is reinstated in the denominator of this expression, it is dimensionless, as an angle
must be). This expectation is however frustrated, because the normalization integral almost
always diverges, for a curious reason explained in the appendix.

Now we present some numerical calculations based on the model (4), for different values
of the beam widthw and flux«. Figure 2 shows how accurately the AB deflectibn
is described by Shelankov's paraxial formula (16), even for smallThe maxima of the
D(w) curves are shifted slightly to the right af= %, indicating that the paraxial symmetry
Dparaxia5 — @) = Dparaxia(3 + @) is (weakly) broken for smallv. A further comparison
(figure 3) is provided by the spectru@(®)|?.

Figure 4 shows density plots of the wave intensities, indicating that the excellent agreement
between paraxial and exact solutions extends to the wavefunction itself everywhere in the
scattering region < 0. In the regiont > 0, the exact solutions show interference between
the scattered waves and the incident beam. More details are shown in figure 5, as slices of the
wave intensity for differend. This shows the rightward shift of the beam from zera at 0,
through its maximum near = ;11, and back to zero at = % and also the fact that in the
incidence regionr > 0 the beam (figure 5}) is hardly shifted at all, although it is affected by
waves reflected from the flux.

D(a) =

(x <0 (29)
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Shelankov’s formula (12) predicts that if the incident beam strikes the flux line non-
centrally, by being shifted sideways by, the deflection is smaller. In the computations, this
shift can be exactly accommodated simply by changing the argumé) af formula (26) for
c(0) froml —a tol —a — yg. For the Gaussian model (7), the deflection (equation (16)) should
be reduced by a factor of e&py3/2w?). Numerical calculations confirm this, although the
approach to paraxiality as — oo is slower than for symmetric incidence. Singg(y), and
thereforeb(l), are no longer even functions, the second symmetry in (28) is no longer exact.
In particular, the exacDb does not vanish whew = % however, this symmetry-breaking is
hardly detectable ifv exceeds about 2.

A more striking prediction is that if the incident wave (without flux) vanishes at the origin,
D(w) should be zero for atk. We can test this by choosing the model (cf (7))

2 2
Yol = 2 exp(_y_2> . (30)

w 2w
The corresponding angular spectrum is, from (6),

a(®) = w?(1— w?0?) exp(—3w??. (31)
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Figure 4. Density plots of the exact AB wave intensity (r)|2 (equation (19))&) and ¢), and
the paraxial wave intensityy ()| (equation (15), withr = O for the incident regionr > 0), for
w = 20. In@), (b): @ = %;in (b), (d): @ = 3. x horizontal,y vertical.

Using (20) and (26), the angular spectruf) of the scattered wave can be computed from
the exact theory. Figure 6 shows an exampléc@f)|2. The exact and paraxial curves agree
rather well, even for such a smaill (wide-angle incident beam). Although the curves are not
symmetric abouf = 0, Dparaxial iS €Xactly zero, from Shelankov’s theory, afidcalculated
numerically from the exact formula (27) is 0.006, which is zero within the accuracy of these
computations.

This sensitivity to screening of the flux by the incident beam is a remarkable phenomenon,
because the exact AB wave (19) vanishes at O for « non-zero whatever the form of the
incident beam, so there is a sense in which the flux is always hidden from the electrons.
Nevertheless, it is possible to detect, by the deflection of a beam, whether the incident beam
intensity in the absence of flux vanishes at the place where the flux line will be inserted. In the
familiar AB scattering, the situation is different: the fractional shift of the far-field fringes is
a whether the flux line is screened by the incident beam, as in the original biprism experiment
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cl?
4
3
2 Figure 6. Angular spectrumc(6)|? for AB scattered
beam with widthw = 1.5 in the model (31), for an
1 incident wave vanishing on the flux line, which here has
/ o= ‘—11. Full curve: exact spectrum (26); dashed curve:
0 paraxial approximation (9). (For larger, the exact and
0.5 1 L5 paraxial curves are hard to distinguish on this scale.)

of Chambers (1960), or an unobstructed plane wave, as in the original solution of Aharonov
and Bohm (1959).

Numerical computation leaves several questions unanswered. Daoesish exactly
when the incident intensity would be zero on the flux line, abisnerely very small? In the
latter case, how doa3 depend on the details of the wavefunction near the flux? How floes
vanish asv — oo? These are not just mathematical niceties. In any practical experiment, the
flux will be contained in a tube of finite radius, which of course must be made impenetrable
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y

Figure 7. Zones for the calculation of the paraxial asymptoticali@f) in terms of the integrals
(36). In zone a onlyf)l () contributes significantly, in zone H(r) contributes ify > 0, and
1", (r) contributes ify < 0.

by a scalar potential (representing its walls), in order to eliminate any non-AB deflection from
the electrons’ encounter with the real magnetic field. But walls cause the wave to vanish even
whena = 0, and then a strict interpretation of Shelankov’s formula threatens to maezo
whena # 0. On physical grounds, however, | expect that if the flux tube is much thinner than
an electron wavelength (a non-trivial practical constraint) the preceding theory can be applied
as though the thickness were zero, and there will be a deflectiom f6r0; this deserves
further study.

4. Paraxial asymptotics

The paraxial regime i® > 1 (incident beam narrow in angle), withlocated in two regions
(figure 7): zone a, where > w (far from the flux) and¢| <« 1 (near-backward direction),
and zone b, where > w and|r — ¢| <« 1 (near-forward direction).

There are four steps in the derivation of the paraxial wave (13) from the exact AB wave
(19). The first, which is exact, is to transform the sum (19) to a series of integrals by the
Poisson sum formula (Lighthill 1958):

W(r) = expliag) Y exprima)l,(r) (32)
where
Lp(r) = /oo di Jp ()b(L) exp(— i 1)) explia(e + 2wm)). (33)

This is the ‘whirling-wave’ decomposition of the wave, discussed elsewhere (Berry 1980).
The second step is to replaké.) by its close approximatioty (i), which is valid when

w > 1 (cf equations (6) and (20)). The decayyaf(1) cuts off the integrals in (33) when

[A| > w. Then, since: > w, all the Bessel functions contributing significantly to the sum

have argument> order. This makes possible the third step, which is to replage) by

the appropriate asymptotic expression, namely the following variant of the Debye formula

(Abramowitz and Stegun 1972):

| 2 A2 1 1
J‘M(F) ~ ; COS(I" + % - §|)\.|7T - ZJT) (34)

(note that we are not assumings> |A|2, when this formula reduces to the simplest large-
argument approximation). Thus

L(r) ~ I (r) + I} (r) (35)
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where

o) 2
INGE J%exp{i (r — %n)} /m dx Yo(R) exp{i (—n|/\|2+ ’;—r +k(¢+2n'm)> }(36)
') = «/% exp{—i (r - %n)} /_OO dx Yo(n) exp{i (—;—r +A(¢+2nm)>} )

The final step is to retain only those integrals whose integrands possess stationary points
on the reak axis with|1| « w; in comparison with these, the other integrals are exponentially
small. The stationary points are located at:

integrall' : A = r( sgnA — ¢ — 27rm) integrall" : A = r(¢ + 2m). (37)

Inzone a¢| is small and- > w, and the only stationary point with| <« w comes from
the integrall"', with m = 0. We obtain, from (32), (35) and (37),

i 1. _ o 2
W) expli(ag + 3 — 1)} / dA Yo (A) exp{i <_% +A¢>} (zone a) (38)

2nr

Then using ~ x + y?/2x and¢ ~ y/x gives precisely the paraxial incident beam, together
with the «-dependent phase factor associated with the flux in the circular gauge. Strictly,
the paraxial approximation fails to incorporate waves scattered back towatdsoo; these
inevitable reflected waves originate in the asymptotics associated with the discontinuity at
A = 0inthe integrald'.

In zone b, only the integralg' have stationary points witfi.| < w, fromm = 0 when
7 —¢ >0(.e.y >0andr > 0), and fromm = —1whenr —¢ < 0 (i.e.y < Oandir < 0).
Equations (32), (35) and (37) now lead to

_explila(p —m) — 3w +r)} [ . A2
W(r) ~ Nz f_oo dx Yo(r) exp{| <mx sgna + > Al — ¢)> }

(zone b) (39)

In this zoner ~ —x — y?/2x, and¢ ~ m +y/x, giving exactly Shelankov’s paraxial scattered
wave (13), together with the-dependent phase factor associated with the transformation (3)
to A; from As.

5. Optical analogue: diffraction by a reflecting step

In the paraxial theory, and using the sheet gaige-), the vector potential acts as a phase-
changing screen (equation (8)). This suggests that AB beam deflection can be simulated with
other kinds of waves, for example light. The screen could be a slab of transparent material
whose refracting surface is stepped, or, as in the case to be examined here, a mirror whose
surface contains a step with straight edges (figure 8). To implement an AR flire phase
change between waves reflected by the two sides of the step mus&bé& Berefore the height

of the step should beg« in units where the wavenumbéris unity, that ise/2 wavelengths.
Focusing a beam with spatial widih > 1—to ensure paraxiality—onto the step ought to
generate areflected wave whose deflection is given by Shelankov’s formula (12); for a Gaussian
beam, the deflection should be (16).

This is an interesting optical effect, worth studying for its own sake, and seeking to detect
experimentally. In any such experiment, it is important that the step be perpendicular to the
surface and sharp on the wavelength scale. Any deviation from these conditions will spoil
the AB analogy by giving rise to a geometrical-optics deflection, corresponding to electrons
penetrating into the flux and therefore experiencing a classical force.
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mirror siep height
/2 wavelengths

Figure 8. Diffraction by a mirror step of height«, that is,«/2 wavelengths; the incident beam
has angular spectrum(K ), and the reflected waves have angular spectfifii).

However, paraxiality is an approximation, and it is necessary to compare its predictions
with those of an exact solution for waves reflected by a step. This is not the same as the exact
AB solution (section 3) in the presence of a flux line. One important difference is that reflection
from a step is not periodic in the step height: periodicity should emerge in the paraxial limit.
Another is that there is no exact analytical solution for step reflection, making it necessary
to formulate the problem in a way that can be implemented computationally, automatically
incorporating the complicated diffracted (and multiply diffracted) waves from the edges of the
step.

The step will be a perfectly reflecting surface whose profile (figure 8) is

Xstey) = —%na sgny (40)

(again we také = 1). Light polarized in the direction can be represented by a scalar wave

W (r) vanishing on the step. It is convenient to label plane waves in the incident and reflected
superpositions by their amplitudes as a function of the transverse wavenkmbaesing,

rather than the directiof. The amplitudes will be denotetl(K) andC(K), related to those
defined previously by

; : a(sint K)
a(f) = cosf A(sing) ie. A(K) = —
Lok (41)
c(6) = cosOC(sing) ie.cx)= SN K
JViI-K?

The incident and reflected waves can now be written as
1 1
JE—— i _ _ 2
\/Ef_ldKA(K)exp{l[Ky xV/1 K“
1 o0
_ i _ 2
"I’refl(r)——@/deC(K)EXp{I[Ky+x\/1 K ]}

Wine(r) =
(42)

The limits of integration indicate tha¥;,. does not contain evanescent waygs| > 1), but
Vs does; then the square root is positive imaginary.

Now the problem is to determin€(K) given A(K), using the fact that the total
wavefunction must vanish on the mirror (40). Thus

/_OO dK C(K) exp{i [Ky - Ina Sgny\/ﬁ]}

= - /l dK A(K) exp{i [Ky + lrasgnyy/1— KZ]} . (43)
-1
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This must hold for ally. Multiplying by exp{i(—Qy + wa sgny/2)}, and integrating ovey,
using the trick (11) and also

o0 , 2i
/ dy sgny expli(K — Q)y} =

K—-0

(44)
leads to
C(0) COS{%na (/TQZ _ 1)] + ; /Z dK C(K)
= —A(Q) cos{%na (/TQH 1)]
+1/1 sin{3ra (VI K7 +1)}

sin{3ra (VI=K? - 1)}
k-0

dK A(K
. (K) K—0

where the singularities & = Q are interpreted as principal values.
FromC(K), the deflection can be calculated from (27) and (41) as

b JYdK KT K2|C(K)?
LAk VI K2C(K)2

In this formalism, the paraxial approximation is obtained by negledtihgndQ?, leading

C(Q) ~ Cpaa a(Q) - A(Q) COq:ZC’) I (7'[ ) / ( )
- X —00 K gz

It is not hard to show that this is equivalent to (9), apart from an overall minus sign arising
from reflection.

By discretizing the integral operators in the exact equations (45) and representing them
as finite matrices (setting the diagonal matrix elem@t- Q)~* to zero whenk = Q), an
effective numerical scheme can be implemented, @kl) determined by matrix inversion.

We employ the model (4), that is
exp{—3(wsin™ K)?}
VI—kZ

Evanescent waves can be incorporated by including transverse wavenKNb€r« max,

Q| < Kmax WhereKmax > 1. Of course, evanescent waves are necessary to make the wave
vanish on the step (figure 9). However, wheiis large the influence of the evanescent waves
on the real waves (that is, @\ K) for |K| < 1, andc(0) for |6] < 7r/2) which determine the
distant reflected field and the beam deflection, is negligible (figura)LO(

For small stepsa < 211), c(9) is well approximated by the paraxial formula (14)
(figure 100)). As« approache% (step height o% wavelength), the agreement gets worse,
and the expected symmetry does not materialize at % (figure 10€)). As w increases,
the curves fox = % do get more symmetrical, albeit slowly. Therefore convergence of the
deflectionD to Dparaxialis Slow whenx is not small (figure 11). It would be useful to hallve an

asymptotic estimate of the rate at whith— 0 (if indeed it does) ag — oo whena = 5.

(45)

(46)

(47)

A(K) =

(48)
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Appendix. Failure of slice normalization

Consider any wav@ (r) that can be expressed as an angular superposition of non-evanescent
waves in directiongcos, sinf), whered is real:

Y(r) = J% / do a(0) expli(x cost + y sinb)}. (A1)
We sliceW on the line

X = xg + s COSy y =ssiny (A2)

and attempt to normalize along the slice by requiring that

N(y) E/ ds |W (xq + s COSy, s Siny)|? (A3)

(o]

is finite.

@)

0.6

Figure 9. Contour plots of intensityw (r)|? for wave  Figure 10. Power spectruni(9)|? of light beam(w =
diffracted by stepp = %, with incident beam width 5) reflected from a mirror step, for), (b): « = %; (©

w = 10, including transverse wavenumbeal (K| <1 ¢ = 1. In (a), the upper curve is calculated including
(no evanescent wavesp)( |K| < 2; (€): |K| < 4. As  evanescentwaves witl | < 2, and the lower curve with
more evanescent waves are included, the vanishing ﬁb evanescentwavésk | < 1). In (b) and €) the dashed
W on the step is better approximated, the wave in theurves show the paraxial approximation (14).
unphysical region behind the mirr@gx < xsep gets

wilder, but the contours in the far field hardly change.
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D
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04 /

02

0 01 02 03 04 _ 05
a

Figure 11. Beam deflectiorw./z D from mirror steps with height«. Filled circles joined by
straight lines, for (top to bottom)y = 5, 10, 20, 60; smooth curveo /7 Dparaxial = SiN(2ra).

However, a simple calculation gives

la(0)|% + a*(0)a(2y — 6) explixo(cos2y — ) — cosh)}
N(y) = fd@ .
|sin@ — y)I

showing that, because of the singularity of the denominatty) diverges unless(y)
vanishes. This has the simple interpretation thas not normalizable on any slice for which
there is a plane wave in the superposition. Imagine now that the incident wave is such that
an interval of angleg\é is absent from the superposition, so that normalization is possible
for slices in directiong within A9. Then scattering will almost surely send waves into this
interval, destroying the normalization.

It is therefore not surprising that the AB wave (19) and (20) is not normalizable in any
direction. The same is true for the paraxial wave (13) and (15), except for the/stice /2,
where the transmitted wave (8), immediately beyond the phase-changing sheet @t is
normalizable.

Without normalization, expectation values of operators, for example the transverse current
in the slice atx (expectation value o8 (X — x)p,, where carats denote operators gnés
momentum) cannot be calculated.

(A4)
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