in ‘Quantum Coherence and Reality; celebrating the 60th Birthday of Yakir
Aharonov’ (J S Anandan and J L Safko, eds.) World Scientific, Singapore

FASTER THAN FOURIER

Michael Berry
H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, UK.

Written to celebrate the 60th Birthday of Yakir Aharonov: deep, quick, subtle.

ABSTRACT

Band-limited functions f{x) can oscillate for arbitrarily long intervals arbitrarily faster than
the highest frequency they contain. A class of integral representations exhibiting these
‘superoscillations' is described, and by asymptotic analysis the origin of the phenomenon
is shown to be complex saddles in frequency space. Computations confirm the existence
of superoscillations. The price paid for superoscillations is that in the infinitely longer
range where f(x) oscillates conventionally its value is exponentially larger. For example,
to reproduce Beethoveen's ninth symphony as superoscillations with a 1Hz bandwidth
requires a signal exp{1019} times stronger than with conventional oscillations.

1. Model for superoscillations

My purpose is to decribe some mathematics inspired by Yakir Aharonov during a
visit to Bristol several years ago. He told me that it is possible for functions to oscillate
faster than any of their Fourier components. This seemed unbelievable, even paradoxical;
I had heard nothing like it before, and learned only recently of just one related paper! in
the literature on Fourier analysis (see §4). Nevertheless, Aharonov and his colleagues had
constructed such 'superoscillations' using quantum-mechanical arguments2. Here I will
exhibit a large class of them, and use asymptotics and numerics to study their strange
properties in detail.

Consider functions f(x) whose spectrum of frequencies £ is band-limited, say by
IkI<1, so that on a conventional view f should oscillate no faster than cos(x). But we wish

fto be superoscillatory, that is to vary as cos(Kx), where K can be arbitrarily large, for an
arbitrarily long interval in x. A representation that achieves this is

f(x,A,8)= ﬁ j du exp{ixk(u)}exp{—#(u - iA)z} 1)

—00

where the wavenumber function k(i) is even, with £(0)=1 and lkI<1 for real u, A is real
and positive, and & is small. Examples are

1
ky(u) = oL ky(u) =sechu, ksy(u)= exp{——é—uz}, kq(u) = cosu Q)
2
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Aharonov's reasoning (he suggested Eq.(1) with k4) was that when & is small the
second exponential would act like a ‘complex delta-function' and so project out the value
of the first exponential at u=iA. Thus f should vary as

f =exp{ikx} where K = k(iA) 3)

Under the conditions above Eq.(2), k increases from u=0 along the imaginary axis, so
that K>1, (and for the given examples can be arbitrarily large), and so corresponds to
superoscillations. What follows is a study of the small-6 asymptotics of the integral
representing f. As well as justifying Aharonov's argument, this will dissolve the paradox
posed by superoscillations, by showing that when x>0(1/82) they get replaced by the
expected cos(x), and f gets exponentially large.

2. Asymptotics

The aim is to get an asymptotic approximation for small d to the integral defining
f, Eq.(1), which is valid uniformly in x. To achieve this, it is convenient to define

&=x8 )

so that Eq.(1) can be written

f(§/62,A,5) = ﬁ J du exp{—gl-z—tb(u,é,A)} where @ =1 (u- iA)? -iE k() (5)

—o0

For small 6, f can now be approximated by the saddle-point method, that is by deforming
the path of integration through saddles ug of the exponent and replacing @ by its quadratic
approximation near ug. f is dominated by the saddle with smallest Re®. Saddles, whose
location depends on £ (and also A) are defined by

dod . g
== 0, ie u =i[Ek"(u;)+ A] ©

Application of the saddle-point method now gives the main result:
ik 1 iA)
exp{ixk(u,)— Ez—(uS —iA)

= 7
d J1-ix82k"(u,) @

To interpret this formula, it is necessary to understand the behaviour of the dominant
saddle as € varies.
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When £<<1, that is x<<& -2, Eq.(6) gives us=iA, and (7) reduces to Eq.(3); this
is the regime of superoscillations. When £>>1, that is x>>8 -2, the saddles are the zeros
of k'(1); assuming for simplicity that £ has a single maximum at 4=0 (as in the first three
functions in Eq.(2)), this is the only real saddle, and (7) reduces to

S SR SOt AL
f= 5 x|k"(0)| cxp{lx 47z} cxp{252} ®)

This is the behaviour to be expected conventionally, that is on the basis of the frequency
content of f; in the infinite range of validity of Eq.(8), f is O(exp{A2/282} and so
exponentially amplified relative to the superoscillation regime.

As x increases, the saddle moves from iA to 0 along a curved track, illustrated in
figure 1. This is the dominant saddle ug; its track resembles figure 1 for all k(u) of this
type that I have studied. There are other solutions of Eq.(6), whose arrangement and
motion are complicated and depend on the details of k(«), but they are not dominant and
so do not compromise the validity of Eq.(7) as the leading-order approximation to the
integral defining f, Eq.(1).

2
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Figure 1. Track of leading saddle ug as £ increases from 0 to o, for the wavenumber function k5(u) in
Eq.(10), for A=2 (the track is similar for any k(«) with a single maximum)

In understanding the oscillations, it is helpful to study the local wavenumber,
defined as

0d{u (£).¢,A}

-Im———
9

As illustrated in figure 2, g(£) decreases smoothly from k(iA) (which is real) to 1 as &

increases. Note that the decrease is rapid (this is true for all k() that I have studied). This
has the important implication that to observe superoscillations it is necessary to keep &

q(§)= = Rek(us(£)) ©
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much smaller than unity, and if we want to allow x to be large, in order to observe many
superoscillations, & must be correspondingly smaller, Eq.(4), and the exponential
amplification in the regime of conventional oscillation, Eq.(8), will be correspondingly

larger.
3
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Figure 2. Local wavenumber ¢(&), Eq.(9), for the k5(u) in Eq.(10), for A=2

None of the wavenumber functions in Eq.(2) gives an f whose integral
representation can be evaluated exactly in terms of special functions. However, if we

choose the wavenumber function

ks(u) =1-Lu?

(10)

we can ensure that it is band-limited ( lki<1) by restricting the range of integration in

Eq.(1) to <2. The resulting truncated integral is

2
f(x.A8)= ﬁz_;[—:{du exp{ix(l - %uz)}exp{———i—é—f(u - iA)Z} (1)

which be expressed in terms of error functions:

. 2 )
(rAS) = 1x(2+A +2ixd )}x

1
exXp -
241+ ix8? { 2(1 + L¥52)
. . <2 . . o2
x[erf[2+m+2uo }+m{2-m+2u5 }]

| 62 +2082 Sv2 +2ix5?

(12)

It is instructive to examine this in detail. The superoscillation wavenumber,

Eq.(3), is
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K = ks(ia) =1+ 1A% (13)

There is a single saddle, at (figure 1)

iA
= 14
w@)=11z (14)
and the local wavenumber is (figure 2)
AM1-&
§)=1+——-——( fz) (15)
2(1 +& )
For this case, the saddle-point approximation, Eq.(7) gives
1 A? A% X
x,A,0) = ———exp{ix| 1+ ex
S d) Trwar 21+x%6%) P 2(1+x76%) (16)

However, the asymptotics of (11) includes contributions from the end-points
u=+2 as well as the saddle ug. This can be seen by realising that the steepest path between
-2 and +2 runs from -2 to infinity in the negative half-plane, through us to infinity in the
positive half-plane, and back to +2. The end-point contributions oscillate conventionally,
with the wavenumber -1, so we must be sure that they do not mask the superoscillations
that exist for small & The condition for this is that the absolute value of the Gaussian in
(11) must not exceed unity at the end-points. Thus

2 -
exp{ A2524} <1, i.e. AL2 an

(we include the equality because the end-point contribution is smaller than that from the
saddle by a factor 8). Eq.(13) now implies that the maximum rate of superoscillation
obtainable with this model is K=3. (It is worth remarking that x=0, A=2 lies on the anti-
Stokes line for the error functions in Eq.(12), that is, where the exponential contribution
from the saddle exchanges dominance with those from the end-points.)

The representation Eq.(1) does not have the form of a Fourier transform, namety
(for a band-limited function)

b

f(x,A8)= [dgexplixg}fla) (18)
1
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It is however easy to cast it into this form. The transform f (9) depends on the inverse
function of k(u); this is multivalued, and the path of integration can be deformed into a
loop around a cut extending along the real axis negatively from the branch point at g=1
(the ends of the loop are pinned to the cut, at g=-1 for k5 and at the essential singularity
g=0 for ki, kp, and k3). Again there is a dominant saddle, which for small & lies at g=K,
and the loop can be expanded to pass through this. All previous results can be reproduced
in this way.

3. Numerics

The aim here is twofold: to compare the saddle-point approximation Eq.(7) with
the exact integral (1), and to exhibit the superoscillations. I carried out computations of f
for the wavenumber functions k1, k2, and k3 (Eq.(2)), but will display results only for
Re f (Im f is similar) for k5 (Eq.(10)), with the truncated integral of Eq.(11), for which
the results are very similar. The computations will be exhibited for the fastest
superoscillations, namely K=3, that is A=2 (Eq.(17)), choosing 6=0.2.

Figure 3 shows the results. The superoscillations for small x, with period 27/3 ,
are shown on figure 3a, and figure 3b shows a range of x where there are conventional
oscillations, with period more than 3 times greater (actually about 8.4 - cf. figure 2,
where & ~ 1.6 corresponds to x ~ 40). In both cases, the approximation (in this case
Eq.(16)) agrees well with the exact expression, Eq.(12). For example, the fractional error
is 0.18 for x=2, and 2.8x10-18 for x=42. Note the enormous ratio of the sizes of f for
large and small x; from Eq.(16), this can be estimated as exp(36)~1016 (the asymptotic
ratio of Eq.(8) is not attained in figure 3b). The transition between the superoscillation
and conventional regimes is clearly shown in figure 3c.

In these computations, the value A=2 is the largest for which the saddle dominates
the end-points. The competition between contributions shows up most clearly at x=0, for
which (12) gives

f(0,A,8)=Re erf{% (ﬁ + i—%)} (19)

For A<2, f is well approximated by the saddle contribution of unity, for A>2, the end-
points dominate and f increases exponentially, Eq.(17), masking the superoscillations for
small x. This is illustrated in figure 4. Even at the critical value A=2, that is, on the anti-
Stokes line for the function (19), the exact value f=0.945 is close to the saddle-point
value f~1.
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Figure 3. Computations of f{x,2,0.2) for the truncated integral, Eq.(11), showing (a), superoscillations,
and (b) conventional oscillations. Circles: exact expression, Eq.(12); full lines: saddle-point
approximation, Eq.(16). In (c) the logarithms are base 10
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Figure 4. Computations of log If(0, A, 0.2)l, Eq.(19), for the truncated integral Eq.(11); logarithms are
base 10. Note the exponential growth after crossing the anti-Stokes line at A=2

4. Beethoven at 1Hz

Professor 1. Daubechies has informed me that superoscillations are known in
signal processing, in the context of oversampling. This is sampling a function faster than
the Nyquist rate, i.e. at points x=nx where the function is band-limited by IkI<1. If a
function is oversampled in a finite range, extrapolation outside this range is exponentially
unstable2. She quotes B. Logan as saying that it is possible in principle to design a
bandlimited signal with a bandwidth of 1Hz that would reproduce Beethoven's ninth
symphony exactly. With the superoscillatory functions described in this paper it is
possible to give an explicit recipe for constructing this signal, as I now explain.

We require superoscillations for the duration T (~4000s) of the symphony.
Therefore the desired signal B(f) can be represented as periodic outside this interval,
namely

. 27rnt} 20)

N
B(t)= ¥ B, cxp{l
-N T
Here N is the order of the Fourier component corresponding to the highest frequency
Vmax = N/T (~20kHz) it is desired to reproduce.

To approximate this with a signal band-limited by frequency vg (=1Hz) we make
the replacement

exp{i 2’; nt } S ,(1) @1

Untitled-2 8 27/317 7:17 pm



63

where (cf.Eq.(1)) @, is the superoscillatory function

D,(t) = 5 \l/ﬂ J du exp{i27rtv(u)}exp{— 2;2 (u-iA, )2} (22)

—oo

Here the frequency function v(u) never exceeds (for real u) its band-limited value
v(0)=vg, and A, and &, will now be determined by the requirement that &,
superoscillates with frequency »/T for time 7.

The superoscillation frequency of @ ,(¢) is v(iA,) (cf. Eq.(3)). Thus from
Eq.(21) A,, must satisfy

v(i4,) = 23)

We fix 6, by requiring that the superoscillations are maintained for time 7, in the sense
that the replacement of Eq.(21) remains a good approximation. For this we require the
next correction to the superoscillatory exponential that @, () represents. Expanding the
saddle-point approximation to Eq.(22) (analogous to Eq.(7)) for small ¢, we find

(1)~ exp{i & ’”} exp{2n?57[-v2(ia,)) 2} 4)

The second factor is an increasing exponential, because v'(iA,,) is imaginary, and must
remain close to unity for O<¢<T. Thus

S, << [27r|v’(iA,, )|T]_1 (25)

Choosing A, and &, as in Eqs.(23) and (25) guarantees that the signal B,(f), with
its frequencies up to Vpax, will be imitated for time 7. When #>T the imitation will grow
rapidly in strength, and eventually, that is when it is oscillating at the frequency vg
corresponding to its Fourier content, it will acquire an amplification factor corresponding
to its largest Fourier component n=N. An argument analogous to that leading to Eq.(8)
gives this factor as

2
F=exp AA%— >> exp{A,%,nsz
26N

vy} @0

with Ay determined by Eq.(23) with the right-hand side set equal to Vipax-

Let us calculate this amplification for the model frequency function

v(u) = vy exp{—uz} 27
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(cf. k3(u) in Eq.(2)). We find

A,%,v = log{v—"‘%} (28)
Vo
and hence, from Eq.(26),
F>> exp{47£2 log? (ivm—"jv?,mﬂ} @9)
0

For Beethoven's ninth symphony this gives

F>> exp{lolg} (30)

This amplification will not be achieved until a time 77, which can be estimated by the
argument preceding Eq.(8) as

2 2
-1 T
tp ~ [voa,%] ~Ymaj08vears 31
Yo
Other choices for V(i) give similar expressions and numerical estimates.

The estimate of Eq.(30) indicates that to reproduce music as superoscillations
requires a signal with so much energy as to be hopelessly impractable, but more modest
bandwidth compression might be feasible.

5. Concluding remarks

Aharonov's discovery, elaborated here, could have applications in several
branches of physics. One possibility is the use of superoscillations for bandwidth
compression as discussed in §4. Another example, also in signal processing, concerns
the observation of oscillations faster than those expected on the basis of applied or
inferred filters. These would conventionally be interpreted as high frequencies leaking
through imperfect filters, but the arguments presented here show that the phenomenon
could have a quite different origin, namely superoscillations compatible with perfect
filtering.

Perhaps more interesting are the possible applications of superoscillatory
functions of two variables, representing images. One envisages new forms of
microscopy, in which structures much smaller than the wavelength A would be resolved
by representing them as superoscillations. (This is different from conventional
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superresolution, which is based on the fact that Fourier components larger than 27/A can
be present in the field near the surface of an object, but decay exponentially away from
the object because the wavenumber in the perpendicular direction is imaginary. With
superoscillations, the larger Fourier components are not present.)

Superoscillations can probably exist in random functions f(x): arbitrarily long
intervals, in which fis exponentially small relative to elsewhere, could superoscillate.
Consider how this might be achieved. If f is Gauss-distributed, its statistics are
completely described by its autocorrelation function, which by the Wiener-Khinchin
theorem is the Fourier transform of the power spectrum S(g) of f. Even if f is band-
limited, it ought to be possible to choose S(g) with analytic structure (saddles with
Re g >1, etc.) such that the autocorrelation superoscillates as it falls from its initial value.
This idea is worth pursuing.

On the purely mathematical side, it is clear that superoscillations carry a price: the
function is exponentially smaller than in the regime of conventional oscillations, with the
exponent increasing with the size of the interval of superoscillations. We have seen
examples of this, but there ought to be a general theorem (perhaps based on a version of
the uncertainty principle).
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