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Abstract We study the wavefronts (i.e. the surfaces 
of constant phase) of the wave  discussed by Aharonov 
and  Bohm, representing a beam of particles with  charge 
q scattered by  an impenetrable cylinder of radius R 
containing  magnetic flux @. Defining the quantum flux 
parameter by a = q@/h, we  show that for the case 
R = 0 the wave I+%- possesses a wavefront  dislocation 
on the flux line, whose strength (i.e. the number of 
wave crests ending on the dislocation) equals the near- 
est integer to a. When a passes through half-integer 
values, the strength changes, by wavefronts unlinking 
and reconnecting along a nodal surface. In quantum 
mechanics this phase structure is unobservable, but we 
devise  an analogue where surface waves  on water en- 
counter an irrotational ‘bathtub’ vortex; in this  case a 
depends on the frequency of the waves  and the circula- 
tion of the vortex. Experiments show  dislocation struc- 
tures agreeing  with those predicted. is  an unusual 
function, in  which incident  and scattered waves cannot 
be  clearly separated in all  asymptotic directions; we dis- 
cuss  its properties using a new asymptotic method. 

R C m 6  L’article est consacre aux surfaces  d’onde 
(surfaces de phase constante) de l’onde, introduite par 
Aharonov et Bohm, qui decrit un faisceau de particules 
de charge q diffuse par un cylindre impenetrable, de 
rayon R, traverse par un flux magnetique m. Soit a = 
q@/h le parametre adapt6 h une description quantique 
du flux. On montre que, pour R = 0, l’onde I+%- de 
Aharonov et Bohm presente une dislocation de la sur- 
face d’onde sur la  ligne de flux; la ‘force’ de cette dislo- 
cation, c’est-&-dire le nombre de maxima  de  vibration 
se terminant sur la dislocation, est 6gale  au nombre 
entier le  plus proche de a. Quand a passe  par  une 
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valeur demi-entikre, la  ‘force’  change,  les  surfaces 
d’onde se r6arrangeant le long  d’une surface nodale. 
Cette structure des surfaces d’onde n’est pas observable 
en Mecanique Quantique, mais l’on peut proposer une 
analogie hydrodynamique, 06 des ondes de  surface sur 
l’eau rencontrent un tourbillon irrotationnel (du  type 
‘vidange de baignoire’); dans ce  cas, a depend de  la 
frequence des ondes et  de la  circulation du tourbillon. 
L’experience  met en evidence des structures de disloca- 
tions  en  accord  avec  les predictions theoriques. JIAB est 
une fonction de comportement inhabituel, pour laquelle 
les ondes incidente et diffusee ne peuvent btre claire- 
ment distinguees dans toutes les directions asymptoti- 
ques; ses proprietts sont analysees & l’aide  d’une 
methode asymptotique originale. 

1 Introduction 
In an  influential  paper,  Aharonov  and  Bohm 
(1959)  studied  the  quantum  mechanics of a beam 
of particles (with charge q and  mass m )  incident 
normally on  a long  thin  cylinder  containing a 
magnetic field B ( r )  parallel  to  its  length. They 
supposed  that  the  electrons  could  not  penetrate 
into  the  cylinder  and  that  the  magnetic field could 
not  leak  out.  This  mutual inaccessibility of particles 
and field ensures  that in  classical mechanics  the 
scattering  pattern of particles  beyond  the  cylinder 
cannot  depend on the field inside.  But in 
Schrodinger’s  equation  it is the  magnetic  vector 
potential A(r) ,  and  not  the field, that  determines 
the  wavefunction,  and A ( r )  outside  the  cylinder 
contains  the  imprint of the field inside via the 
magnetic flux @, given by the  Stokes  relation 

(1) 

where  the  integration  path  encloses  the  cylinder. 
Aharonov  and  Bohm  (1959)  showed  that  the  quan- 
tum  mechanical  scattering  pattern does indeed  de- 
pend on @, in a manner  confirmed  experimentally 
by  Chambers  (1960)  and  Mollenstedt  and  Bayh 
(1962).  This  result,  and  its  implication  that in quan- 
tum  mechanics  the  vector  potential  has a direct 
physical significance (as opposed  to classical 
mechanics  where it is a mathematical  device),  have 
become  known as the  Aharonov-Bohm (AB) 
effect. 

The AB effect has  given rise to  controversy,  to 
which  we  shall  devote a few  remarks  at  the  end of 
the  article.  Our  main  purpose,  however, is to  de- 
scribe  and  illustrate  some  little-known  properties of 
the AB wavefunction. In $2 we  explain  that, f a r  
from  the  cylinder,  the  incident  and  scattered  waves 
can  be  distinguished  everywhere  except  near  the 
forward  direction,  where  they are inextricably  con- 
nected;  without  this  connection  both  incident  and 
scattered  waves  would  be  multivalued. The results 
are  most  transparently  obtained  by  some  unusual 
asymptotics  described in the  Appendix. 

Section 3 is the  heart of the  paper,  and  concerns 
the  wavefronts, i.e. the  lines of constant  phase of 
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the wavefunction. Their behaviour depends on the 
quantum flux parameter a, defined by 

a = q@/h,  (2) 

where h is Planck's  constant. We show that  a 
number of wave crests, equal  to  the nearest  integer 
to a, end  on  the cylinder containing the flux, which 
is therefore a 'wavefront dislocation' in the sense of 
Nye and  Berry  (1974). In quantum mechanics these 
phase singularities are unobservable, since as shown 
by Wu and Yang (1975) all observables (such as the 
AB scattering cross section) depend not directly on 
a but on exp(2ria),  and so a + 1 and a are indis- 
tinguishable. 

The presence of interesting  but  unobservable 
topology in the wavefunction prompted us to devise 
an analogue system in which the wavefronts can be 
seen directly. We show in 94 that surface waves on 
water crossing an irrotational  (bathtub) vortex con- 
stitute such a system. Qualitative and quantitative 
experimental confirmation of the predicted proper- 
ties of the wavefront dislocations are presented in 
95. 

2 Aharonov-Bob wavefundion 
Let  the incident  particles be represented by a  plane 
wave with wavenumber k incident from x =+m, 
0 = 0 (figure 1) on an impenetrable cylinder of 
radius  R  centred on the z axis and containing the 
flux (D. A  suitable vector potential yielding zero 
field outside the cylinder and satisfying (1) is 

A ( r )  = (@/2m)d, (3) 
where 6 is the azimuthal unit vector. Of course 
infinitely many other vector potentials are possible, 
related to (3)  by gauge transformations;  a  careful 
discussion of these is  given  by Ingraham  (1972). 

The wavefunction 4 ( r )  must satisfy the following 
conditions: 
(i) Schrodinger's equation: 

1 h2k2 
-((-ihV-qA(r))'+(r)=-4(r), (4) 2m 2m 

with A given  by (3). 

(ii) Single-valuedness (for detailed discussions of 
this  requirement see Merzbacher  (1962), Tassie 
and Peshkin (1961) and Kretschmar  (1965a)). 
(iii) Impenetrability: 

+ = O  when r = R .  (5) 

(iv) Asymptotics: as r + m, (I, must be  the sum of 
the incident wave plus  a purely outgoing wave; the 
mathematical expression of this condition will be 
discussed later. 

To see how subtle the problem is  we first de- 
scribe a  tempting but unprofitable approach. Con- 
sider the partial-wave expansion of the wave +&) 
corresponding to scattering by the cylinder contain- 
ing zero flux, namely 

Ilro(') =,c, m 

exp(il0) 
H[l\'(kR) 

x{JIdkr)H?(kR)-  J~dkR)Hh?(kr)}, (6) 

where J and H denote  the usual Bessel functions 
(Abramowitz and Stegun 1964).  This satisfies con- 
ditions (i)-(iv)  with @ = 0. When @ # 0, it is easily 
shown by direct  substitution that Schrodinger's 
equation (4) is satisfied by 

+ ( r )  = &(I) exp[ i q j r A ( r ' )  

where a is the flux parameter (equation (2)). This 
also satisfies conditions (iii) and (iv) but violates (ii) 
because it is not single-valued unless a is  an in- 
teger. Therefore it  is not the correct  solution. 

The failure of single-valuedness should  not be 
interpreted as  a  requirement that a must be quan- 
tised (as  in the case of superconductivity,  for  exam- 
ple,  where different physical principles operate- 
see Merzbacher  (1962)).  Instead, the multivalued 
elementary  solutions 

exp{i(l+ a)O}Jlll(kr) and  exp(i(l+ ct)e}*{)(kr) 
(8) 

must be replaced by the single-valued solutions 

\ 1 -  
Incident 
particles 

Scattered 

particles 2 
c__ 

Equation  (6) can now be modified to give the 
correct  solution, which we write as 

+ ( r )  = 4 . d r ) -  h 0 . 1  (10) 
where 

~~~~~~ 

and 
Figure 1 Scattering  geometry and coordinates for m 

the Aharonov-Bohm effect, showing two paths 
reaching the  same point by topologically different 
routes. 

+R(r)= C ( 
I =-P 
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Since this solution is a superposition of functions 
of the form of solution (g) ,  it obviously satisfies 
conditions (i) and (ii); moreover it also satisfies (iii). 
As the cylinder radius  R  tends to zero, +R van- 
ishes, leaving as the wave in the presence of a 
single impenetrable flux line. But is the 
wavefunction derived by Aharonov and Bohm 
(1959), so this argument justifies their claim to 
have  found the correct limiting form as R + 0. A 
solution  more  general  than  equation (lo), in that it 
allows the cylinder to be penetrable, can be  found 
in the appendix of a paper by Kretschmar  (1965b). 

Now we must show that  the wave + satisfies the 
asymptotic condition (iv). Consider first + R :  be- 
cause of the Bessel functions with argument  kR, 
the series converges rapidly for ) l  - a1 > kR,  and its 
behaviour  as  r + 00 can be  found using standard 
asymptotic forms  for fl/la,(kr), giving 

This  represents  a purely outgoing wave, consistent 
with condition (iv). 

The asymptotics of are  more subtle. In view 
of the absence of ‘outgoing’ Bessel functions H“’ 
from  equation (ll), it  is far from obvious that qAB 
can represent just the wave scattered by the flux 
line in addition to  the incident wave. That this is 
indeed the case is shown in the Appendix using 
arguments simpler than  those in the original AB 

paper.  The result is 

+ exp(ikr) sin(Ta) 
(2.rrikr)”’ cos(e/2) 

(-l)ra’exp{i([a]+f)e}, (14) 

where [a]  denotes  the integer part of a. 
To see  that  the first term of equation (14) cor- 

rectly represents  the incident wave, recall that this 
must correspond to a probability current of parti- 
cles directed along -x. The current is 

which is the expectation value of the velocity den- 
sity operator 

+ S ~ ~ - ~ o p ~ ~ ~ o p - ~ ~ o p ~ ~ .  (16) 

When applied to equation (14), equation (15) yields 
the correct result 

jAB(r)- -- x. 
r”rm Ak 

m 

The second term of equation (14) describes a 
purely outgoing wave. Therefore  the solution (10) 
does  indeed satisfy all the conditions (i)-(iv). 

It  appears from equation (14) that  the incident 
and scattered waves are multivalued functions of 0, 
but this is not the case because a narrow sector 
near  the forward direction / e /  = T is excluded. We 
show in the Appendix  that within this sector GM 
cannot  be separated  into incident and  scattered 
parts,  and that in the forward direction itself 

Thus when a = N + f ,  where  N is  an integer, +AB 

vanishes at 101 = T. This is actually a  general  result, 
valid for all r  and  for  both  and +R, i.e. 

+(r, *.rr) = 0 when a = N + f .  (19) 

An exact representation of (CIAB when a = N +f, 
valid for all r and 8, is  given by equation (A9) of 
the Appendix. The existence of a nodal line 
stretching  from 0 to m when a = N + &  and the 
stitching together of incident and  scattered waves 
near l e /  = .rr for all a, will  play an important  part in 
03. 

It is easily verified from solutions (lo), (11) and 
(12)  that + has the following symmetry properties: 

+(r, 0 ;  a + N) = exp(iNO)+(r, 8 ;  a ) ,  (20) 

+(r, e ;  -e) = +(r, - e ;  a) .  (2 1) 

These imply that all measurements of the intensity 
( + l 2  are periodic in a, that what is observed at 8 
when a = f + S will be  observed  at -8  when a = 
$ - S,  and  that 

\ + ( r ,  = I+(r, --e)\’ when 2a  = N. (22) 

Therefore when studying I+I2 it is sufficient to con- 
sider 0 s a Sf. 

As a varies, the interference pattern of waves 
scattered by the cylinder changes. When kR ”+ 0 
this pattern is simply the AB scattering cross sec- 
tion obtained from equation (14), namely 

When kR >> 1, however, the interference pattern is 
a complicated superposition of contributions  from 
direct, reflected and creeping rays (Keller 1958). In 
the general  case, the primitive notion of ‘interfer- 
ence fringes’ does not apply. But  sometimes, if the 
pattern is locally the resultant of two contributions 
of approximately equal strength, it is legitimate to 
speak  about fringes, as in elementary discussions of 
the AB effect. Then  the naive superposition of the 
contributions, with the magnetic phase difference 
exp(iq r A ( r ’ )  .dr’/h} as in equation (7), can yield 
the correct  result.  For  example, consider angular 
fringes whose contributions have wave number m 
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and have gone round opposite sides of the cylinder 
(paths 1 and 2 on figure 1). The wave beyond the 
cylinder is then 

+!I a exp(i(rn8 + (Ye)} 
+exp(i(-rn(-2.rr+B)+a(-2n+f))} (24) 

so that 

Q 4  cos*(m(e - T)+  an}. (25) 

This  angular  fringe pattern shifts periodically with 
a in precisely the  manner observed in experiments. 

3 Wavefront dislocations 
From now on we ignore +!IR and consider only +!IM, 
in particular  its  wavefronts.  These are defined as 
lines of constant  phase x of the complex wave 

+!IM(r) = l+!IAB(r)l exp(ix(r)) (26) 

in the plane r, 8. Wave  crests are particular wave- 
fronts, defined by 

~ ( r )  = ~ M T ,  (27) 

where M is an integer. Even though IJIAB(r) is a 
single-valued function, X(r) may be multivalued, in 
the following sense:  during  a circuit C in the r 
plane, x may change by an integer multiple S,  of 
277, i.e. 

S , = - i d x = & i V X . d r .   2 T  1 (28) 

Within C, Sc wave crests must come to an end. 
Points at which this happens are singularities of 
X(r), called wavefront dislocations by Nye and 
Berry  (1974) by analogy with dislocations of atomic 
planes in crystals. At a wavefront dislocation, the 
modulus must vanish. S ,  will be called the 
dislocation strength within C. 

We now study the dislocation structure of +!IM, 
beginning with a calculation of S ,  for an anticlock- 
wise circuit C consisting of a very large circle 

Figure 2 Asymptotic  phase x - kr  for +!IM as a 
function of e. (a) a -[a]<;. ( b )  a -[a]>;. 
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surrounding the flux line.  When the flux parameter 
is an integer, that is a = N, there is no scattered 
wave and I)- is  given exactly for all 8 (and also in 
this case for all r) by the first term of equation (14). 
The phase is then 

X = - k r c o s e + N e   ( a = N )  (29) 

whose total  change round C is 277N, so that from 
equation (28) Sc= N. When a is not an integer, the 
first term of equation (14) dominates everywhere 
except  a  narrow  angular  sector  centred on 8 = T 
(see the Appendix,  equation (A@), with width 2A8. 
Between -77 + A B  and T - A 8  the phase accumula- 
tion is 2rra, which is not an integer. Within this 
sector, however, x is not given by equation (14), 
and when 8 = equation (18) shows that 

x - kr = [ a ] ~  mod 277 

when 8 = T, a-[a]<$,  
= ([a]+ 1 ) ~  mod 277 

when 8 = v, a -[a]>;. 

Figure 2 shows the phase  functions implied by this 
result, defining x + kr as zero when 8 = 0 and  in- 
terpreting the 'mod 2 ~ '  additions to give continuity 
with equation  (29).  It follows that  the total phase 
change  round  C is 27rl,, where L, is the integer 
closest to a, so that 

S ,  = 1,. (3  1) 

Now let C be a very small circle surrounding the 
flux line. Then r + 0 and the series (1 1) for +M is 
dominated by the Bessel function of lowest order, 
for which 1 is the integer closest to a. All the 
angular dependence is  in the term exp(ilO), so that 
Sc is again given by equation (31). 

The simplest picture consistent with these  results 
is of a wavefront dislocation at the flux line,  where 
Sc wave crests  emerge  and  extend out  to  the  far 
field. All other wave crests are continuous (from 
8 = -7712 to 8 = + ~ / 2 ) .  As a varies through N + ; ,  
1- and  hence Sc jump by unity, so that a new wave 
crest  appears or disappears  at r = 0. The mechan- 
ism of this change in S ,  when a = N + 1 is a discon- 
nection and reconnection of wavefronts on a nodal 
line along the negative x axis (equation  (19)). 

Wave crest patterns  are illustrated in figure 3(a) 
for some  integer values of a, and in figure 3(b)  for 
a  sequence of values of a between 1 and 2. The 
pattern for a = 1; was drawn with the aid of the 
exact  representation  (A9) in the Appendix. 

It is interesting to study the probability current j 
close to  the flux line. According to  equations (15), 
(26) and (31, 

so that  the  current is not perpendicular to  the 
wavefronts. Calculations based on  equation (11) 
give 
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- 1  
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Figure 3 Wave crests of  exp(-icr/2}+,. (a )  Integer values of a from 0 to 5 .  ( b )  Values of CY 

between 1 and 2, showing unlinking and reconnection as a passes through 1;. In all cases the waves 
are incident  from the right, and  the flux parameter corresponds to a  magnetic field at the origin and 
pointing out of the  paper.  The wave crests were  drawn by interpolating  between calculated positions 
for ( r  + m, 8 = *7r/2) and  on  the x axis, taking account of the calculated directions of the wave crests 
at r = O .  

when r + 0, CY not near N + &  (33) 

when r + 0, a near N+$,  i + 2K(a . - [a] - i )6  ln(l/kr) 

where K is a  constant. Therefore  the particle  cur- 
rent circulates around  the flux line, clockwise when 
[a] < a <[a] + and anticlockwise when [a] +; < 
CY <[a]+ 1; j vanishes for  integral or half-integral 
values of the flux parameter. 

The  currents just  described are invariant under 
gauge  transformations to a different vector poten- 
tial satisfying equation (1). The wavefront patterns 
(figure 3) change, however, but  their topology is 
invariant:  gauge  transformations can cause  arbit- 
rary  deformations of the wavefronts, but the 
strength Sc of the dislocation on  the flux line does 
not  change. Sc can be  regarded  as  a 'topological 
quantum number', conserved under any classically 
permissible gauge transformation. The disappoint- 
ing fact, however, is that this striking feature of $- 
is unobservable. This conclusion is not  a  consequ- 
ence of the dislocation being a  phase property, 
because phase in the position representation can 
affect amplitude in the momentum  representation. 
Rather, it is a  consequence of the following version 
of an argument given by Wu and Yang (1975). 

Experiments can measure only expectation val- 
ues of operators corresponding to observables. The 
canonical momentum is not an observable,  but the 
velocity 

V =  p-qA (34) 

is. In the  state l$), any function f(u,,) has expecta- 
tion value 

(91 f(u,) 19) = I drJI*(r)f( -ihV - qA(r))JI(r). 

In the case we have been considering, A is  given by 
equation (3). Now let the flux parameter change 
from CY to a' = a + 1. According to  the solutions 
(lo), (11) and  (12) and  equation (34), 9 and U,, 

change to 

- } (36) 

(35)  

$' = exp(i6)+ 
v'=p-qA'=p-qA-hOlr 

The expectation  value of f(vAp) is  now 

(9'1 f(ubp) 19') = 5 dr$*(r) exp(-ie) 

xf(-ihV-qA(r)-hdlr)  exp(i6)+(r), (37) 

which is easily shown to equal equation (35). 
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This means  that not only the intensity \ $ l z  but all 
observable  quantities are unaffected by changing a 
by an integer. All that can be measured is the 
deviation of the flux parameter from the nearest 
integer. The integer itself, which is precisely the 
dislocation strength Sc, cannot be observed: there 
is no ‘dislocation strength operator’ whose eigen- 
values are Sc. 

4 The Aharonov-Bob effect tor water waves 
In seeking  a system where the dislocation in 
can be observed, we first note an analogy between 
waves in the presence of a  vector  potential and 
waves in a moving medium. Such an analogy (albeit 
somewhat  different  from the  one we shall present) 
was originally suggested to us  by J H  Hannay. 

Let waves with frequency R and wavevector k 
propagate in a  stationary  isotropic  medium (which 
may be  inhomogeneous). The dispersion relation 
(i.e. the Hamiltonian) is 

a= o ( k ,  r), (38) 

and  depends only on the length k of k. In a field 
with vector  potential A, the dispersion relation 
becomes 

R = w(lk -qA(r)lhl, r ) .  (39) 

If instead the medium is moving, with flow veloc- 
ity U(r), then  a  plane wave is described locally not 
by 

$ = exp(i(k r - W ( k ,  r ) t ) }  (40) 

but by 

II, = exp(i(k ( r  - U ( r ) t )  - w ( k ,  r) t )}  
=exp(i(k - r - (w(k , r )+k .  U(r))t)}, (41) 

so that  the dispersion relation in the moving 
medium is 

R =  o(k, r) + k W ) .  (42) 

To lowest order, this can be written  as 

where U, is the 

The  step from 
valid provided 

group velocity 

U, = ao(k, r)lak. (44) 
equation (42) to equation (43) is 

I U1 K v,. (45) 

Comparing equations (43) and (39), we see that 
the effect of a slowly moving medium is the same as 
that of a  vector  potential, the precise analogy being 

From  equations (1) and (2), the analogue of the 

quantum flux parameter, in the case 
stationary  medium is homogeneous, is 

-$U dr- -W U dr f 
a- - 

AfJ, %V* 
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where the 

(47) 

where A is the wavelength and up the phase velocity 
U/ k. 
In the AB effect, the magnetic field vanishes 

outside the central flux line. Therefore  the velocity 
field U analogous to A must be  curl-free,  i.e. the 
waves must propagate on a  medium that is  flowing 
irrotationally  but with non-zero circulation. This 
can be achieved with surface waves on swirling 
water, if the swirling takes the form of an irrota- 
tional  (‘bathtub’)  vortex. If the density, surface 
tension and  depth of the water are  denoted by  p, y 
and  d respectively, and if g  denotes the accelera- 
tion due  to gravity, the dispersion law is (Lamb 
1945) 

o = { (gk +F) tar~h(kd))”~. (48) 

This analogy provides a  means of testing the 
predictions of 13 concerning wavefront disloca- 
tions, because for water waves, as opposed to quan- 
tum mechanical waves. the crests can be  observed. 
For  the analogy to hold good, the condition (45) 
must be satisfied, but  this will always be the case far 
from the vortex because /U/ + 0 there;  the disloca- 
tion at r = 0 can be identified by counting wave 
crests at large r. According to equation (47),  the 
patterns in figure 3 correspond to water circulating 
clockwise, so that  the wavefronts should be more 
closely spaced  where the waves travel against the 
current  than when they travel with the  current, as 
expected on the basis of the Doppler effect. 

5 Experiment? 
A  rectangular perspex tank was constructed, with 
dimensions 1.0 m x 0.6 m x 0.15 m. Surface waves 
were excited on water in the tank by vibrating a 
straight  horizontal  dipper 0.15 m long connected to 
a variable-speed electric motor. The useful fre- 
quency range was from 7 to 70 Hz.  For the lower 
frequencies the gravity-wave term gk  in equation 
(48)  dominated, whilst for the higher frequencies 
the surface-tension  ripple term  yk3/p dominated; 
the water was sufficiently deep  for  the term 
tanh(kd)  to be  set equal  to unity for all frequencies. 

A vortex formed spontaneously on letting the 
water pour  out through  a  hole  6 mm  in diameter in 
the middle of the bottom of the  tank. For the 
wave-making dipper  to  operate efficiently it was 
essential to maintain a  constant  water  level;  this 

t The  results  reported in this  section  were  obtained by 
two of us (MDL and JCW) in an undergraduate  research 
project. 
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was achieved by pumping the outflowing water 
back into the  tank, taking  care to let the pumped 
water re-enter via submerged  perforated  tubes, so 
as to inhibit the development of bulk rotation. 

In  order  to ‘freeze’ the motion of the wave crests, 
the water  surface was illuminated from below by a 
stroboscope  set to the wave frequency. The light 
refracted by the wave crests formed bright caustic 
lines on a screen just  above the water. The  patterns 
on the screen were photographed; figure 4 shows a 
series of such pictures  for dislocation strengths 
ranging from  0 to 3. 

According to 93 the dislocation structure of the 
waves depends on the flux parameter cy. For  water 
waves this quantity is given  by equation (47), which 
shows that in order  to predict the dislocation 
strength it  is necessary to know not only the angu- 
lar  frequency W of the waves but also the circula- 
tion $U dr  of the vortex. To measure the circula- 
tion, small paper discs were allowed to circulate on 
the water  surface near  the vortex, and  photo- 
graphed  under  continuous illumination with  an ex- 
posure of 0.5 S. The circulating paper discs gave 
tracks whose lengths  were used to estimate the 
water velocity and hence the circulation. With the 
dipper  running, the streamlines  were approximately 
circular to a  distance of about  50 mm from the 
vortex core. Each  photograph  contained  about ten 
useful tracks, and measurement gave the same cir- 
culation for these  tracks to an accuracy of about 
20%, which enabled cy to  be estimated with a 
standard  error of less than 10%. On the  other 
hand, inspection of the photographs of wave crests, 
and comparison with the results of 93, enabled cy to 
be  estimated with an absolute accuracy of about 
0.25 (figure 4, cf figure 3). More  than fifty compari- 
sons of the values of a obtained by these two 
different methods  were made, using frequencies 
between  8 Hz and 67 Hz to  generate  the waves, 
and  a  range of water outflow rates to  generate  the 
vortex. The values of cy ranged from 0 to 2,  and in 
every  case the two methods gave complete  agree- 
ment within the  quoted accuracy, thus confirming 
the theory of 93 and 94. 

6 Discussion 
From a  mathematical  point of view, there can be no 
doubt  that GAB, given  by equation (ll), is the 
correct  solution of the AB wave equation (4). 
Moreover +m correctly models observable features 
of waves in physical systems: the periodic shifting 
of interference fringes as the flux varies, confirmed 
by Chambers (1960) and Mollenstedt  and Bayh 
(1962), and the changing of the wavefront topology 
as the circulation varies, which  we have confirmed 
and  studied ($5). But the physical interpretation of 
the mathematics  and the experiments  continues to 
cause  controversy. The question is, are  the  pre- 
dicted  and  observed fringe shifts really effects of 
potentials in the absence of electromagnetic fields 

accessible to  the particles, or is  it possible to exp- 
lain them  entirely in terms of accessible fields? 

Weisskopf (1961) considers the flux to be 
switched on from  zero to its final value a. He 
shows that  the evolution of the wavefunction to 
Gm can be explained entirely in terms of the 
accessible electric field induced outside the cylin- 
der. even if this field  is made arbitrarily small by 
changing the flux  very slowly. Casati  and Guarneri 
(1979) consider the cylinder to  be slightly penetra- 
ble, and  modelled by a high potential V for r < R. 
They show that for any finite V, however large, the 
fringe shifts can be explained entirely in terms of 
the magnetic field within the cylinder, which is  now 
accessible to  the particles (their analysis is  in terms 
of the hydrodynamical formulation of quantum 
mechanics, rather than the wave equation, but their 
conclusions do not depend on this). Roy (1980) 
considers the cylinder to be  a solenoid of finite 
length L. He shows that no  matter how large L is, a 
gauge can be found in which the vector potential 
can be expressed entirely in terms of the weak 
magnetic field leaking out of the ends of the cylin- 
der  into  the space accessible to the particles. 

In view of these  arguments we must agree  that if 
any electromagnetic fields, however small, are  or 
have  ever  been accessible to  the particles,  then the 
state of the particles, in quantum as  well as classical 
mechanics, can be  described entirely in terms of 
these fields. It could be argued  that since such fields 
always exist in practice, there is no AB effect, i.e. 
no observable  consequence of inaccessible fields. 
But in view of the fact that  the wave always tends 
to (LAB, no matter how the limiting process is per- 
formed, those who argue  thus must also believe 
that infinitesimal causes (fields) can produce finite 
effects (fringe shifts). O n  the  other  hand, if we 
consider the vector  potential (as embodied in the 
gauge-invariant and quantum-mechanically observ- 
able deviation of the flux parameter from an in- 
teger) as a primary causative agent,  then there is no 
infinite discordance between the magnitudes  of 
causes and effects in the limit of inaccessibility. We 
therefore consider the question of the reality of the 
AB effect to be metaphysical and devoid of observa- 
vational implication. 
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Appendix 
The first step in studying the asymptotics of as 
defined by equation (11) is to replace the Bessel func- 
tions by the integral  representation 

J,,(z) = 2, jc exp(i(vt -2  sin t ) }  dt (AI) 

(Gradshteyn and Ryzhik 1965), where  C is the contour 
shown in figure Al(a). Then equation (11) becomes 

1 
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Figure 4 Water wave crests  passing an irrotational vortex,  giving  rise to different  strengths of wave- 
front dislocation. Waves are incident from the right and the water is circulating clockwise. Estimated 
values of the flux parameter a are indicated. 
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Figure A1 Integration contours in the t plane. 

1 ,  

= Jc dt exp(-ikr sin t )  

x I = ”  c exp[i(l8-(l-al-+ll-af 7r 2 

The  sum converges because Im t > 0, and can be 
evaluated by splitting the range into l ~ [ a ]  and 
I s [ a ] + l ,  to give 

exdi([ale + ( t  - d2Na -[a]))} 
X (  1-exp(i(t-a/2-@)) 

exp{i([a]+l)e+(t-?r/2)([a]-ar+l))}  
1 - exp(i(t - 7r/2 + e))  

For large k r  the integral is dominated by its poles 

+ ). (A31 

and saddle  points. The saddle  points  occur  where 
(d/dt)(kr sin t )  = 0, i.e. at t = * r / 2 .  The integration  contour 
can be deformed into C (figure Al(b)) so as to pass 
through these. During  the  deformation, the  contour 
crosses a  pole, whose contribution  must be included. 
The first term in (A3) has  a  pole if t - 7r/2 - 0 = 0, and 
this  contributes if -TI < 8 < 0: the second  term in (A3) 
has  a pole if t - 7r/2 + 0 = 0, and this  contributes if 
0<19 (71. Both  contributions are of the same form, 
namely 

GAB(pole) = exdi(-kr cos e +a@} (0 < p  < T ) .  
(A41 

This is precisely the incident wave in equation  (14). 
Next, the contributions to  the integral  over C‘ from 

the  saddle points at t = *7r/2 must be evaluated by the 
method of steepest  descents (De Bruijn 1970). A 
straightforward calculation for t = - ~ / 2  gives 

$,,,(saddlepoint at t = -m/2) 

- - exp(ikr) sin(aa) 
(27rikr)”*  COS(^/^) 

(-l)ra1 exp{i([a]+$)e}. (AS) 

This is precisely the outgoing  scattered wave in equa- 
tion (14). The saddle  point at f = +wJ2 would give an 
incoming ‘scattered’ wave, but  substitution into equation 
(A3) shows that  the coefficient of this wave is zero. 

Our arguments leading to  the asymptotic  form  (14) 
for $AB fail when 6 is close to 0 or T ,  because  then  the 
pole is close to one of the saddle  points and  the con- 
tributions of these two points  cannot be  separated. 

In the backward direction 8 = 0, the saddle  point at 
~ / 2 ,  which gave no incoming wave, coincides with a 
pole in each term of (A3);  the  contour C on figure 
Al(c) gives a pole contribution identical with (A4) (with 
0 = O), as  well  as a principal-value integral which van- 
ishes as k r  + a. Therefore equation (14) remains valid 
as 0 + 0 .  

In the forward direction 0 = T ,  the saddle point at 
t = -7r/2, which gave rise to the  outgoing wave (AS), 
coincides with a pole in each term of (A3):  the  contour 
C”’ on figure Al (d )  gives a pole contribution 

$,,(saddle point and pole at t = -7r/2) 
= exp(i(kr + 7r[a])} cos{~(a  -[a])}, 0 = T,  (A6) 

together with a  principal-value integral which vanishes 
as r + a. This justifies equation (18). 

‘diffraction shadow‘, near  the forward  direction, within 
which (A4) and (AS) are not valid. The ‘domain’ A t  of 
the stationary point at t = “a/2 is given by 

Next we must estimate the angular width of the 

A(kr sin t)  - 1  radian,  i.e. A t  -(2/kr)”’. (A7) 

In order for  a pole of (A3)  to give a separate contribu- 
tion, it must lie outside the domain At. This excludes 
the sector of width 2A0 defined by 

Ae=.rr-lel<O(kr)”/*, (A81 

hence  the  restriction  on 101 in equation  (14). 
For the  important  transitional case of half-integer 

flux, equation  (A3) can,  after  some  calculation, be  re- 
duced to the simple form 

(2kr)1’2C0~(8/2) 

exp(it2)  dt when a = N + &  (A9) 

which is (apart from a slight correction)  the same as 
equation  (23) in the original paper by Aharonov  and 
Bohm (1959). It is evident  from  (A9) that GAB is 
single-valued. 
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Abslrad Non-linear parital differential equations in 
physics are discussed  using water waves in a channel as 
an illustration. Weakly non-linear waves,  wave breaking, 
shocks, and solitary  waves are considered in this paper. 
Although these topics  have  been understood for many 
years,  they are unfamiliar to the majority of physicists. 
They are also the background to the recent advances  in 
non-linear physics  which  will be  discussed in a cornpan- 
ion paper. 

Resume L‘utilisation en physique des tquations aux 
dtrivbes partielles non-lineaires est discutte sur l’exem- 
ple  illustratif des ondes a la surface de l’eau dans un 
canal. Sont en particulier examintes les questions 
suivantes: ondes faiblement non-linbaires, dtferlement, 
chocs, ondes solitaires. Ces questions, bien que com- 
prises  depuis longtemps, sont resttes peu  connues de la 
majoritt des  physiciens;  elles prtsentent  de plus  l’intCr&t 
d’&tre B la base des  progrks rtcents en physique  des 
phbnomenes  non  linbaires, qui sont examines dans un 
article du  m&me journal. 

1 Introduction 
Non-linear  physics  has  largely  been  ignored  in  the 
education of physicists. The  reasons for this  stem 
from  the  attitude of physicists to  their  subject. 
Physicists  are  very  cautious  people:  they  always 
solve  the  simplest  problems first. They  only  move 
on to  more  complex  problems  when  they  have a 
thorough  understanding of the  easiest  ones.  There- 
fore,  the  problems  studied  during  the  early  de- 
velopment of classical physics  were  linear,  either by 
nature  or  design. In a linear  problem,  the  be- 
haviour of the  unknown  variables of interest is 
governed  by  partial  differential  equations (PDES) 
which  are  particularly  simple:  the  variables  occur  in 
the PDE only  to first order.  One of the  most  impor- 
tant  properties of a linear  problem is that  solutions 
may  be  superposed  to  obtain  new  solutions.  Super- 
position  makes  possible a general  technique  for 
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