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Abstract
The previously derived decomposition of the Aharonov–Bohm (AB)
wavefunction, into ‘whirling waves’ that wind different numbers of times
round the flux line, is studied in detail. Asymptotic approximations are derived,
describing many windings, far from the flux, and near the forward direction
where the incident and scattered waves cannot be separated. The many-whirls
representation gives insight into elementary explanations of the AB in terms of
interference between waves passing on either side of the flux; three whirling
waves suffice to give a very accurate description of the AB wave.

PACS numbers: 02.30.Mv, 03.65.Nk, 03.65.Vf

1. Introduction

In the Aharonov–Bohm (AB) effect [1–3], quantum waves representing a charged particle are
scattered by a magnetic flux line that is inaccessible to them. This is often interpreted, and
was so interpreted in a partial anticipation [4] of the AB effect, as interference between two
waves travelling on either side of the flux, with the interference fringes shifted by Dirac’s
magnetic phase factor. But the interference picture is an approximation, with the deficiency
that the wavefunction it implies is not singlevalued. Several decades ago, I showed [5] that
the approximation can be corrected by including waves that have made more circuits of the
flux line; the sum of these ‘whirling waves’ is singlevalued, and reproduces the exact AB
wavefunction.

My purpose here is to make a more detailed study of the whirling waves in this ‘many-
whirls’ representation. The formalism of [5] is summarized in section 2, with numerical
calculations illustrating how the contributions from the higher–order windings get smaller. In
section 3, the whirling waves are studied asymptotically, for large orders of winding, for large
distance from the flux, and close to the forward direction where the incident and scattered waves
cannot be separated. Finally, in section 4 the simple interference picture [4] is interpreted in
terms of contributions from two whirling waves and a very accurate approximation is obtained
with three whirling waves.

The treatment here will be restricted to the simplest AB wave, representing the idealized
situation of scattering of a monochromatic plane wave from an infinitely thin line of flux. This

1751-8113/10/354002+09$30.00 © 2010 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/1751-8113/43/35/354002
http://stacks.iop.org/JPhysA/43/354002


J. Phys. A: Math. Theor. 43 (2010) 354002 M V Berry

is not a serious restriction: as was shown before [5], the whirling-wave picture applies more
widely, to describe how the flux modifies scattering and interference that exists even if there
is no flux (e.g. from finite cylinders and in biprism experiments [6]).

2. Whirling-wave formulation

For flux � and incident particles with charge q, the quantum effects depend on the combination
α = q�/h, in particular the fractional part

αfr = α − int α. (2.1)

This reflects the precise identification by Wu and Yang [7] of the way in which observable
quantum effects are underdetermined by classical electromagnetic fields: the extra information
is in the gauge-independent phase factor exp(2π iα) = exp(2π iαfr). The integer part of α

contributes an overall phase factor exp(iθ intα), which is unobervable in quantum mechanics
but has been seen directly in water-wave analogue experiments [8].

In polar coordinates, the exact AB wavefunction [1], for a plane wave incident from θ =
0 (i.e. x = +∞) on a flux line of strength α at the origin, was derived by AB [1] as a sum over
Bessel functions, representing contributions corresponding to different angular momenta l:

ψ = ψ(r, θ;α) =
∞∑

l=−∞
(−i)|l−α|J|l−α|(r) exp(ilθ). (2.2)

Here distance r is measured in units 1/wavenumber = wavelength/2π , reflecting the absence
of a separate length scale. From (2.2) follows the continuation rule

ψ(r, θ;α + 1) = exp(iαθ)ψ(r, θ;α). (2.3)

Therefore, it is necessary to consider only the range 0 � α < 1, and to simplify writing some
formulas we apply this restriction from now on.

The standard technique for transforming sums over quantum numbers to sums over
contributions representing different topologies is the Poisson summation formula [9]. It has
been applied to waveguides [10], magnetic oscillations [11], rainbow scatttering [12–14],
electron diffraction [15], and quantum chaos [16]. For the AB effect, the quantum number
is l and the topologies, represented by an integer m, are the whirling waves with angular
dependence θ+2πm. In [5] the transformed wave was obtained as

ψ =
∞∑

m=−∞
exp{iα(θ + 2mπ)}T (r, θ + 2mπ), (2.4)

in which the individual whirling waves are

T (r, θ) =
∫ ∞

−∞
dλJ|λ|(r) exp

{
i

(
λθ − 1

2
π |λ|

)}
. (2.5)

In (2.4) the individual contributions are not singlevalued, but the sum obviously is. An
attractive feature of this representation is the explicit separation, in each of the whirling waves,
of the magnetic phase factor involving the flux. An interpretation of (2.4) is that the AB wave
lives on a Riemann surface corresponding to the angle variable θ extended to the full line
−∞ < θ < +∞, with sheets corresponding to the subintervals 2πm � θ < 2π (m + 1). The
physical AB wave can be regarded as a projection: the sum of waves on all the sheets. In the
absence of flux (α = 0), the whirling-wave decomposition is an unusual representation of the
incident plane wave exp(−ir cosθ ).
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Figure 1. Modulus |T(r, θ )| of whirl function, showing decay outside the region |θ | � π ; (a) For
r = π /2 (thin), π (dashed), 2π (dotted) and 4π (thick); (b) 3D plot.

In (2.5), the Bessel functions decay rapidly for |λ| > r, so the integral is easy to evaluate
numerically. Figure 1 illustrates how |T(r, θ )| gets smaller as θ gets farther from the interval
–π < θ < π , that is for more windings m in (2.4). This justifies the approximation of the AB
effect in terms of a few interfering waves, as will be explained in more detail in section 4.

Formula (2.5) for the whirling waves is not convenient for the analytical explorations to
follow. Instead we will use a different expression, stated without proof in [5], and here derived
in the appendix:

T (r, θ + 2πm) = exp(−ir cos θ)δm,0 − 1

π

∫ ∞

−∞
dy

(π + iy) exp(ir cosh y)

(π + iy)2 − (θ + 2πm)2
(|θ | � π).

(2.6)

The integral converges rapidly if the contour is deformed to −∞ − 1
2 iπ < y < ∞ + 1

2 iπ .
Although the singlevalued sum ψ is a smooth periodic function of θ , the individual

whirling waves, labelled by m, are discontinuous in the forward direction θ = ±π . This is
illustrated in figure 2, which also illustrates the higher whirling waves getting smaller, as will
be described analytically in the following section.

By evaluating the sum in (2.4), formula (2.6) leads to the following integral representation
for the AB wave, which, although we will not make use of it, is interesting:

ψ = exp(−ir cos θ + iαθ) − sin(πα)

π
exp{iαθ}

×
∫ ∞

−∞
dy exp(ir cosh y)

(exp(iθ) cosh(αy) + cosh((α − 1)y))

cosh y + cos θ

(0 � |θ | � π). (2.7)
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Figure 2. Modulus of individual whirling waves in cartesian coordinates, that is
|T (r =

√
x2 + y2, θ = arg(x + iy) + 2mπ)|, for (a) m = 0, (b) m = −1, (c) m = −2,

(d) m = −3 (the whirling waves for positive m are identical except that y is replaced by −y).

3. Whirl asymptotics

For the high-order whirls, (2.6) gives, in terms of the outgoing Hankel function

T (r, θ + 2πm) ≈ 2

(2πm + θ)2

∫ ∞

0
dy exp(ir cosh y)

= iπ

(2πm + θ)2
H

(1)
0 (r) (|m| � 1). (3.1)

This shows that the whirl series converges as 1/m2.
For r >> 1, that is many wavelengths from the flux line, the integrand in (2.6) oscillates
rapidly, and the main contribution comes from the stationary point at y = 0. Elementary
application of the method of stationary phase gives

T (r, θ + 2πm) ≈ exp(−ir cos θ)δm,0 −
√

2π i

r

exp(ir)

(π2 − (θ + 2πm)2)

(r � 1, 0 � |θ | � π). (3.2)

This formula and (3.1) overlap in their common range of validity, i.e. r and |m| large.
All the whirling waves except the incident-wave contribution to m = 0 radiate outwards, as

they must since the AB wave represents scattering by the flux. The sum of all the contributions
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(3.2) gives an alternative derivation of the far-field AB scattering amplitude f (θ ) obtained
originally [1], namely

ψ ≈ exp(−ir cos θ + iαθ) +
f (θ)√

r
exp(ir), (3.3)

where

f (θ) = −
√

i

2π

sin(πα)

cos
(

1
2θ

) exp

(
1

2
iθ

)
. (3.4)

In the forward direction θ = ±π , this scattering amplitude, and the whirling-wave large
r expressions (3.2) for m = 0 and m = ±1, diverge. This reflects the well-known inability to
separate the incident and scattered fields in the forward direction. Indeed, the stationary phase
approximation of (3.2) fails for θ = ±π , because in (2.6) a pole of the integrand coincides
with the stationary point as θ → ±π . To incorporate this feature, and thereby derive a version
of (3.2), that is valid close to the forward direction, we first consider the case m = 0.

First, we write (2.6) as

T (r, θ) = exp (−ir cos θ)

− 1

2π

∫ ∞

−∞
dy exp (ir cosh y)

(
1

π + iy − θ
+

1

π + iy + θ

)
(|θ | � π) . (3.5)

At θ = π (θ = −π) the first (second) factor in the parenthesis has a pole, For large r, the main
contribution to each integral comes from the stationary point at y = 0, so we can approximate
cosh y ≈ 1 − 1

2y2. The integral without a pole can be approximated by stationary phase, and
the integral with a pole can be evaluated in terms of the complementary error function. A
short calculation leads to

T (r, θ) ≈ exp(−ir cos θ) − exp
{
i
(
r + 1

4π
)}

√
2πr (π + |θ |)

− exp
{
ir

(
1 − 1

2 (π − |θ |)2
)}

2
Erfc

(
exp

(
−1

4
iπ

) √
r

2
(π − |θ |)

)

(−π � θ � π). (3.6)

The Erfc function gives a significant modification to (3.2) in the near-forward intervals
π − |θ | < 1/

√
r , where, as is already known [8], the incident and scattered waves cannot be

separated. Outside these intervals, Erfc can be approximated by its large-argument asymptotic
approximation, and (3.6) reduces to (3.2). As figures 3(b) and (c) illustrate, (3.6) is an
extraordinarily accurate approximation, uniformly valid over the whole angular range, even
very close to the flux line (in figure 3(c), r = 1 = wavelength/2π ).

However, (3.6) is not quite smooth; the dependence on |θ | signals a discontinuity of
slope in the backward direction θ = 0, arising from the first correction to the leading-order
asymptotics of Erfc. This is very weak: the slope at θ = 0 is smaller than that at θ = ±π by a
factor

√
2/π7/2r3/2—invisible in figure 3(c) and barely discernible for r = 0.5, which is only

1/4π wavelengths from the flux.
For m = ±1, a similar argument gives the uniform approximations

T (r, θ ± 2π) ≈ −exp
{
i
(
r + 1

4π
)}

√
2πr(3π ± θ)

+
exp

{
ir

(
1 − 1

2 (π ± θ)2
)}

2
Erfc

(
exp

(
−1

4
iπ

)√
r

2
(π ± θ)

)

(−π � θ � π). (3.7)
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Figure 3. Full curves: |T(r,θ )| for (a), (b) r = 10, (c) r = 1. Dashed curves: (a)
large r approximation (3.2), (b), (c) uniform approximation (3.6) (in (b) the two curves are
indistinguishable).

In both cases, |T| decays monotonically away from the forward direction, that is θ increasing
from −π for T(r, θ + 2π ), and θ decreasing from π for T(r, θ − 2π ).

The error function with argument proportional to exp(−iπ/4) can be expressed in terms
of the Fresnel sine and cosine integrals, represented geometrically in terms of the Cornu spiral.
In AB theory these integrals were originally noticed for the special case α = 1/2 [1], and the
Cornu spiral is the basis of a very accurate approximation for all α [17], different from the
whirling-wave deomposition studied here.

4. Ehrenberg–Siday approximation

Elementary accounts of the AB effect, starting with the partial anticipation by Ehrenberg and
Siday (ES) [4], commonly consider the incident wave split into two halves, passing different
ways round the flux line and accumulating different magnetic phase factors, that are then
recombined and interfere. For the idealized situation considered here, where there is no
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Figure 4. Waves at points P after passing above and below the flux, leading to the wave (4.1).

interference without flux, the superposition is (cf figure 4)

ψ (r, θ) ≈ 1
2 exp (−ir cos θ + iαθ) + 1

2 exp (−ir cos θ + iα (θ − 2πsgnθ))

= exp(ir cos μ + iαμ) cos π α(−π � θ � π), (4.1)

where μ = θ -πsgnθ is a coordinate varying smoothly through the forward direction
μ = 0.

The factor cosπα captures the AB interference in a rudimentary form, but the intensity of
the approximate wave (4.1) is constant. Worse, it is obvious that this wave must be multivalued:
in the form written, it is discontinuous in the backward direction x > 0, corresponding to the
incident wave (figure 5(a)). This corresponds to the situation in many interferometers, where
the incident wave is split into two, but in every interferometer the wave must be singlevalued
in the full space (an observation with interesting consequences [18]). Usually it is hard
to write the singlevalued wave explicitly, but this was achieved for the AB wave with the
function (2.2).

Figure 5(b) shows the exact AB wavefunction. Clearly, the approximation (4.1) captures
little of its richness. But the whirling-wave decomposition described earlier [5], and elaborated
here, can build on the insight embodied in (4.1), by representing ψ as the sum (2.4) over a
few windings. The simplest approximation capturing the behaviour near the forward direction
involves the whirling waves m = 0, 1, −1, namely

ψ ≈ T (r, θ) exp{iαθ} + T (r, θ + 2π) exp{iα(θ + 2π)}
+ T (r, θ − 2π) exp{iα(θ − 2π)} (−π � θ � π). (4.2)

The term m = +1 corrects the wave near θ = −π , and the term m = −1 corrects the wave
near θ = +π . With the exact whirling waves (2.5) or (2.6), these three contributions give a
very accurate description, for example a picture indistinguishable from the exact AB wave
in figure 5(b). The same is true if the whirling waves in (4.2) are replaced by the uniform
approximations (3.6) and (3.7).

Of course these approximations must fail somewhere. Already mentioned is the weak
discontinuity for x > 0, in the slope of the uniform approximation (3.6) for m = 0. Truncation
of the whirling-wave sum at |m| = 1 introduces a discontinuity in the value of ψ itself in the
forward direction x < 0. This is very weak, and decays with increasing r: asymptotically, the
jumps in ψ and the modulus |ψ | are

ψ(r, π) − ψ(r,−π) ≈ i
sin (3πα)

(2π)3/2 √
r

exp

{
i

(
r +

1

4
π

)}
,

|ψ (r, π)| − |ψ (r,−π)| ≈ sin (3πα)

4 (π)3/2 √
r
.

(4.3)
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Figure 5. Modulus (grayscale) and wavefronts (phase contours) of the AB wave ψ for flux α

= 0.75, corresponding to a plane wave incident from x = +∞; the full curves represent argψ =
(0 and π ), dashed curves represent argψ = ±π/2, and distances are labelled in wavelength units.
(a) simple interference approximation (4.1); (b) exact AB wavefunction (2.2); (c) magnification
of (b); (d) representation in terms of three whirling waves (4.3), approximated uniformly by (3.6)
and (3.7). In (d) the discontinuity in the forward direction (x < 0) is barely discernible.

To see the jumps, it is necessary to look close to the flux line. Even then, they can barely
be seen: compare figure 5(c), which is a magnification of the exact AB wave in figure 5(a),
with the three-whirl approximation in figure 5(d). The jump in the forward direction can be
reduced by incorporating the higher whirls |m| = 2,3 . . . , and of course disapppears when all
windings are included.
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Appendix. Derivation of whirling-wave expression (2.6)

Beginning with (2.5), the first step is to replace the Bessel functions by the integral
representation

J|λ|(r) = exp
(

1
2π |λ|)
2π

∫
C

ds exp{i(|λ|s − r cos s)}, (A.1)

where C is the contour {i∞ − π , −π , π , π + i∞} infinitesimally shifted to the left. Writing
the whirl index explicitly gives, from (2.5)

T (r, θ + 2πm) = 1

2π

∫
C

ds exp(−ir cos s)

∫ ∞

−∞
dλ exp {i (|λ| s + λ (θ + 2πm))}

= i

π

∫
C

ds exp(−ir cos s)
s

s2 − (θ + 2πm)2
(|θ | � π). (A.2)

For the leg of C on the real axis, the contributions for all m �= 0 vanish because the integrand
is odd, and for m = 0 there are contributions from poles at s = ±θ . For the vertical legs,
we write s = ±π + iy, and combine the two integrals into a single integral over the interval
−∞ < y < +∞. These observations lead directly to (2.6).
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