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The connection between classical and quantum mechanics (i.e. the semi-
classical limiting asymptotics as B0 (must be subtle and complicated,
because classical mechanics itself (i.e. the classical limit 4=0) is
subtle and complicated: the orbits of systems governed by Hamilton's
equations of motion mey be predictable {regular) or unpredictable (irre-
gular) depending on subtle details of the form of the Hamiltonian
H({as},{p;1)17%. A naturel question is: how does the 'chaology' of clas-
sical orbits reflect itself in the correspnding quantum system? Sometimes
this question is put in the form: what is guantum chaos?

There are many approaches to this question. One is to study the
dynamics of quentum systems which are classically chactie, that is, to
study non-stationary states. There have been many studies of methematical
models of such quantum evolution®~ !9, which have found important recent
application in interpreting experiments on the microwave ionization of
Hydrogen atoms!!™3,  Another approach is to look at stationary states
and concentrate on the form of the wave functions: these are remarkabl
different for eigenstates corresponding to regular and chaotic systems!®™19,

Here however I will concentrate on the energies of stationary states,
and ask how the distribution of eigenvalues {En}=E;,Ep... of a quantum
Hamiltonian H = H({ﬁi},{ﬁi}) reflects the chaology of the classical tra-
jectories generated by the classical H, in which {q;} and {pjlare varia-
bles rather than operators. Of course the energies {Ejldepend on &i. I
will consider only the nontrivial case where the number of freedoms N
exceeds unity, and confine myself to a brief review of current ideas.

Ideally one would like an explicit asymptotic formula giving
{E,(R)} with an error that decreases as B+0 faster than the mean level
spacing. Such a formula has been found only for classically integrable
(i.e. nonchaotic) systems20:21.22 and is a generalization of the familiar
WKB theory for one dimension. For integrable systems with N freedoms,
there are N constants of motion {including the energy) which confine
motion to N-dimensional tori in the 2N-dimensional phase space?3, 1In
lowest order, quantization gelects the energies E of those tori whose
N actions are separsted by multiples of h, i.e.
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E{ni} = H({Ii = (ni + iai)h}) {1)

where {n;} = n;—--ny are the quentum numbers, {I;} are the actions
I. =6 p.da, (2)
i Y‘ﬁ P54

i

round the irreducible eyclesy; of the torus, and the o; are constants
(Maslov indices20), Obviously (1)} works only when torl exist. In the
chaotic extreme, motion is ergodie and there are no constants of motion
apart from E; therefore there are no tori and the semiclassical rule (1)
cannot be applied: so far nobody has found a semiclassical guantization
rule for chaotic systems.

Tn these circumstances one must seek less precise information, in
the form of average properties of the distribution of energies. These
spectral averages can be defined semiclassicelly, because as h+0 infini-
tely meny levels crowd into any fixed energy interval however small. The
simplest spectral average is the mean spectral density <d(E)>. This is
the average of

d(E) =L G(E-En) = Tr &(2-H), {3)
and is given semiclassically by the 'Weyl rule!?!
dg(E) /dE
<d(E)> = == (&)
P
where R is the phase volume
_ pall LN . RPN S
a(E) = f&'qfd p, i.e. A/ = fa o/ pS{E-A({q;},{p;})). {5)

(H<E)

The Weyl rule formalises the old idea of 'one quantum state per volume

hN of phase space'. When applied to quantum billiards (vibrating drums“?),
the Weyl rule plus corrections3? can be mede the basis of a methodd! for
accurately reconstructing aspects of billiard geometry (e.g. area and
length) from sequences of eigenvalues.

The result (4) tells us nothing about quantum chacs, because the
classical volume R(E) is insensitive to the regularity or chaos of the
orbits. This is disappointing but nevertheless two useful pieces of
information can be obtained. First, the mean level specing <d>~1l is of
order hN; thus for example in a classically small energy range of size h
there are many levels (of order h—(F-1)); this will be important later.
And second, a rough quantization rule can be found by realizing that the
integral of d(E} is the spectral staircase

N(E)y = ZB(E—En) = ;f dE'a(E!) (6)

where € is the unit step; the rule, expressing the idea that the smooth
curve of the svernge staircase might intersect the steps halfway, on
average, 1s then

(a43) = <N(z)>=a(E ) /u". (1)

The above rule is rough because it fails to describe the fine-scale
fluctuations in the levels (in graphs of the E as a function of a para-
meter on which H depends, these fluctuations appearas avoided crossings24~26),
To deseribe these fluctustions it is necessary to employ statisties which
{unlike <d> and <N>) involve correlations between nearby levels, that
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is on scales hN. Such fluctuation measures have been devised in random-
matrix the02127 and applied teo sequences of excited resonance levels

of atomic nuclei. The fluctustion statistics depend not on the raw
spectrum levels {E }but on the 'unfolded' spactrum of levels {x,} which
have been scaled so as to have unit mean specing. Thus

x, + 3= <Nz )>. (8)

(without the fluctuations, {7) shows that x, would be simply n), Two
particuler useful statistics are the probability distribution P(8) of
the level spacings {8, = X4y xn}, and the spectral rigidity28-30

a0 = mint FEfHo) - 4 - 31 (9)
x-L/2

{This iz the least squeres deviation of the staircase from a straight

line, over = range of L mean spacings, averaged over an interval of
energies x that includes meny levels). P(S) is useful in describing spee-
tral correlations on the finest scales - i,e. between neighbouring levels -
end A(L)} is useful for describing how spectral correlstions depend on

range — i.e. large or small L,

When spectral statistics are computed for sequences of levels of
Hamiltonian systems with classical limits, a remarkable 'experimental'
fact emerges: +the statistics display universality, and the spectral uni-
versality class depends on the chaclogy of the classical orbits. The
universality classes are

(a) Classically integrable systems. Here the spectral s tatistics
are those of a Poisson - i1.e. uncorrelated random - distribution of
levels30,31, A%t first signt it is surprising that the quantum conditions
(1) cen give rise to a rendom sequence, but the swrprise dissipates with
the realisation that neighbouring levels Eps Epyq can have very different
sets of quantum numbers {ni}. For Poisson statistics,

P(S) = exp(-3), and A{L} = L/15 (10)

{b) Classically chaotic spinless (or integral-spin) systems with
time-reversal symmetry. Here the spectral statistlics are those of the
Gaussian orthogonal epnsemble {GOE), which consists?7of real symmetric
matrices whose elements are Gauss-distributed so as to make the statis-
tics of the ensemble invariant under orthogonal rotations. Only resl
symmetric matrices are involved because time-reversal symmetry implies
that the wavefunctions are real. For the GQOE, to a close approximation,

B(8) ~ % 5 exp(-ns°/b) (11)
and
ML} = L/15 {L<<l)
+ 1l _

2
w

,000695  (L>>1) (12)

{c) Classically chaotic systems without time-reversal symmetry.
This is in a sense the generic case which best justifies the label
'quantum chaos'. One way to bresk time-reversal symmetry (T} is with
magnetic fields. These may be smoothly-varying3? or may consist of a
single {Aharonov~Bohm) flux line®3 (which has the advantage of breaking
T without altering the classical chaology)l (An even simpler wey32, not
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involving magnetic fields, is through the massless Dirac equation with
boundary conditions correspeonding to a b-sealar potential ('neutrino
Bbilliards').) Here the spectral statistics are those of the Gaussian
unitery ensemble (GUE}27, of complex Hermitian matrices whose elements
are Gauss—-distributed so ag to make the statisties of the ensemble inva-
riant under unitary transformations. For the GUE, to a close

B(5) ~ 325° exp(-4s>/n) (13)

72

and
A(L) + L/15 {L>>1)

-+ 1lnL
— + 0.05902 {L>>1} {1h)

2w2

Before anticipating that a system without T will have QUE statistics, care
must be taken to determine whether it has any geometric symmetries, because
these can act so as to mimic T-symmetry and generate levels with GOE
statistics; in the theory of this 'felse time-reversal symmetry-breaking®*
it is shown that for GUE the system must possess no antiunitary svmmetry
operator A27:35%(commuting with }) and satisfying A2=1 or AR¥ =1 (T is
represented in position representation by the operator A—complex conju-
gation}, A set of numbers recently discovered to have GUE statistics
is the imaginary parts of zeros of Riemann's zeta function3®; this is
surprising and suggestive3’

(d) Classically chaotic systems with half-integer spin and with T
{or more generally, chaotic systems with an antiunitary symmetry satis-
fying A -—l) Here there are so far no aumerical experiments (I am
planning one now) but the spectral statistics are expected to be those
of the Gaussian symplectic ensemble (GSE)27, of guaternion real Hermitian
matrices whose elements are Gauss-distributed so as to make the ensemble
invariant under symplectic transformations. TFor the GSE, to a close
approximation,

p(s) ~2%" exp (~645°/9m) (15)

3 ﬁ3

and

A(LY + 1,/i5 (L<<l) (16)
1
+ 1l 5 006076 I>>1)
®
T

That completes the list of universality classes. But I now
reveal that life is really not so simple, and deseribe two ways in which
universality is compromised, First, most classical systems ere neither
purely regular nor purely chaoticl, but exhibit mixed {or, in the jargon
"KAM') behaviour in which some orbits are regular and some predictable,
depending on initial conditions. Such cases are important in quantum
mechanics because they correspond to the anharmonically coupled oseillators
describing vibrating molecules and to atoms in strong magnetic fields
occurring astrophysically. It is natural to expect that in lowest approxi-
mation the spectral statistics will interpolate between those of the
Poisson and the appropriate randommatrix universality classes, to a
degree which depends on the relative phase-space volumes of regions of
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regular and chaotic motion; a theory along these lines®® is supported

by numerical experimentsag. Second, even for purely regular or purely
chaotic systems the domein of universal behaviour is limited to energy
ranges not exceeding a quantity of order h; f?r the rigidity a(L), this
means that universality holds when L<Lyg, ™~ 87 N“l), s0 that in the semi-
clessical limit the domain of universelity shrinks to zeroc in energy but
nevertheless extends over infinitely meny levels. When LoLp..., numerical
experiments*? (so far restricted to integrable systems) show, and a theory??
(for beth integrable and chaotic systems) explains, that A(L) does not
continue to inerease as in (10), (12}, (1k) and (16), but saturates at
nonuniversal values characteristic of the particular system.

In spite of these caveats, the universaliiy of semiclassical spectra
is & remarkable phenomenon that demands explanation. One class of
theories®1+%2 considers the energies to depend on a parameter t which is
regarded as akin to a time variable, and the 'motion' of the eigenvalues
{E,(T)} on the E axis is put into correspondence with the statistical
mechanics of particles on a line. These theories can be made to generate
random-matrix behaviour but the derivations rest on statistical assymp—
tions about the matrix elements of the t derivatives of H between diffe-
rent eigenstates. It is desirable to understand spectral statistics
directly, without introducing parameters or extra statistical assymptions.
Some progress has been made as I now describe.

The behaviour of P{S) as 530 can be related to the codimensiona K of
degeneracies when the system is embedded in an ensemble of similar ones'*3s21,2%,
K is the number of parameters that must be varied to produce a degeneracy;
for separable systems K=1, for real symmetric matrices ¥=2, for complex
Hermitian matrices K=3 and for quaternion real matrices ¥K=5., The result
is

(s} ~ 51 a5 540 (11}
ard this agrees with (10), (11), {13) end (15). But XK is only roughly
related to the classical symmetries {subtleties arise from barrier pene-
tration**} and a semiclassical understanding of P(S) is still lacking.

The behaviour of A(L) on the other hand is rather well understood3(?
in terms of a semiclassical theory. According to (9), A(L} is a guadra-
tic functional of the spectral staircase {6). This can be expressed as
its average <N> {eguation T)} plus a series of correction terms which are
oscillatory functions of E. Each such correction comes from a closed
orbit of the classical system*™ *7, and gives an osciliation with energy
period R/T where T is the time period of the orbit. S$o values of L<<Ly,.,
corresponding to energy scales <<h , correspond to very long orbits. In
perticwlar, any fixed L corresponds as H+0 to periods of order h (B-1},
But for these very long orbits there exist universal sum rules“? which
depend on the classical chaology, and it is these that enable the theory3?
to reproduce the random-matrix results (10}, (12), (x4} {but not-yet-{16)}.
When L>>L,.., the previously-mentioned breakdown of universality occurs
and is explained by A(L) depending only on short closed orbits whickh
of course differ from system to system.

Much work remains to be done in understanding semiclassical spectra.
The most pressing and alsc fundamental problem is to discover whether
the semiclassical sum over the closed orbits of a chaotic system can be
extended (or interpreted, or analytically continued3’?) so as to describe
the finest spectral scales such as those embodied in PB(S) {or even - we
can at leest hope - a complete quantization formula}. Then there are
‘crossover' phenomena associated with the breskdown of universality when
L ™ Lpay. Finelly, higher spectral statistics, depending more than
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quadratically on N(E), should be studied semiclassically. Tt is likely
that from the program outlined in the last two sentences there might
emerge e statistic which for chactic systems depends on the Kolmogorov-
Sinail entropy which is so important in classical chaology .
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