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Abstract, Any chaotic classical system can be transformed into a quantum system
that preserves the chaos, because the classical Liouville equation involving 2V
phase-space variables g.p has the form of a 'Schrédinger equation’ with ‘coordinates'
O={q.p}. The feature of this quantum systcm that allows chaos to persist is lincarity
of the Hamiltonian' in the 2N ‘'momentum’ operators conjugate to @.

It is commonly stated that there is no quantum chaos, Various reasons are given:
driven quantum systems absorb energy more slowly than their chaotic classical
counterparts [1], bound systems have discrete encrgy levels, the Schridinger equation
is linear, Planck’s constant # smooths away classical phase-space fine structure [2-4]
or replaces it, effectively, by a discrete lattice {5]. Here [ want to show with a curious
example that it is in fact possible to construct quantum systems with genuinely
chaotic behaviour, and thercby demonstraie that some of the above statements are not
true. However, the systems arc so exceptional that the rcasons why they allow
quantum chaos o exist can help us understand why quantum chaos does not occur in
situations that arc physically morc reasonable. The example is in essence the same as
that described by Chirikov et al.[6], but I wish i0 present it somewhat differently and
investigate it in a little more detail.

Consider a classical time-independent Hamiltonian H (g,p) with N {reedoms,
gencrating bounded and chaotic trajectories in all or part of the 2N-dimensional phase
space. The Liouville equation governing the cvolution of classical phase-space
densilies p(g.p.1) is

ap . .
W+q-qu+p-Vpp—0 m
As has often been pointed out, the fact that this equation is lincar and yet preserves
the chaos of the trajectories disposes of the argument that the linearity of the
Schretdinger equation is responsible for the absence of chaos in quantum mechanics,
Indeed, the Liouville equation becomes a 'Schrédinger equation' if p is regarded as a
‘wavefunction’ depending on 2V ‘coordinates’' Q which are simply the variables of the
originai phase space:

0={0...0y}={a.n} @

Now let V(Q) denote the original classical phase-space velocity and P the
momentum operator conjugate to (7, L.e

V(@)= {5.5}={V H -V H ], P=-nv, 3
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Then on muliiplication by i, (1) becomes
.. op{Q.t
lhig~,—)= H ,0(Q:1) @

involving the Hermitian ‘quantum' Hamiltonian operator, depending on 4N @ and P
operators,

Hoy =5 {V(0)-P+P-V(Q)] ®

(the expected commutator term is absent because divV =0). Sce [14] for another
problem where a ‘doubled phase space’ arises.

The "Schrodinger lookalike' (4) is of course exactly the Liouville equation (1) and
so has the same solutions. In particular, the contours of any evolving density
develop infinite complexity (in the form of whorls and tendrils [7]) as the trajectories
that convect them separate exponentially. Thus these ‘wavefunctions' are chaotic:
there is no #-smoothing, no quantal suppression of chaos.

The eigenfunctions of #gy, can be chaotic too. These are of two sorts. First are
uniform densities on invariant manifolds of the original classical motion (in @
space), which have ‘cnergy’ £=0. The manifoids could be whole energy surfaces, or
closed orbits. In the latter case, an eigenfunction supported by a very long closed
orbit (or combination of closed orbits) can be arbitrarily complicated, because the
closed orbils shadow the non-closed, chaotic orbits. Second are densities restricted to
individual closed orbits, with p varying periodically round the orbit and propoertional
to

exp{in(a - mr)} ©)

where 6 is the angle variable (equal 8s in equal times) and T=2x/w is the period.
These are casily seen to satisfy (4) with 'encrgy’

E(n,T)=nho=nh/T (M

These eigenfunctions are also chaotic for long orbits, with the additional
complication when n is large that nearby parts of an orbit will have uncorrelated
phases n0. The spectrum has an infinite degeneracy at =0, and is continuous
elsewhere, because each closed orbit exists for a range of values of the original
classical energies (i.e. of H); the set of states labelled by a given value of H; forms
a dense point spectrum. All states are localized in Q.

These wavefunctions should be regarded as the result of quantizing not the original
Hamiltonian {7 (@) but the artificial clagsical Hamiltonian #£(Q ) corresponding to
(5), namety

H(Q.P)=V(Q)-P ®)
The equations of motion for the 4N phase-space variables arc

g=v(@), P=-AQ()P,
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v
where A = L oand 1<mn<2N

<, ®

In the first of these equations, the original phase-space motion simply reappears,
with all its chaos, as motion of the ‘coordinates’ Q, which are independent of the
motion of the new 'momenta’ P. The second equation shows that the P are slaved to
the @ by a linear matrix equation which is exactly that governing the linearized
small deviations from the orbit Q(f).

Before pointing out the essential peculiarity of 2y which enables it to possess
chaos, [ note some other unusual features of this Hamiltonian and its classical
counterpart H. First, the quantum states localized in @ on individual invariant
manifolds (e.g. an energy surface, or a closed orbit) are not normalizable, because
these manifolds have zero measure in (0 space. Second, there are two classically
conserved quantitics; the original encrgy H (@), and ihe value of the new
Hamiltonian #H(Q.P). Third, in the full phase space {@, P} the motion is
unbounded, because according 1o (9) the 'small deviations' P grow when the
motion is chaotic. Fourth it follows from this that the closed orbits in @ are not
pericdic in Q,P. It is amusing that the ‘amplification factor’ for 2¥-1 of the P's can
be expressed as a nonabelian geometric amplitude factor’ [8] depending only on the
geometry of the orbit's path through Q space and not on its time-dependence (the
exceptional momentum corresponds to a deviation that changes the original energy).

What allows quantum chaos in this class of examples? It is the fact that the
Hamiltonian #yy is linear in the momentum operators. At first this scems an odd
assertion, because the classical chaos, whilst not being incompatible with the fact
that (8) is lincar in P, is preserved when 74 is replaced by any function of itsclf (e.g.
2:2) - such transformations leave the orbits unchanged apart from an energy-
dependent time rescaling. But in quantum mechanics it is the linearity in P that
prevents the spreading of wavepackets which eventually obliterates chaos. This can
be seen by comparing the propagators for the trivial one-dimensional quantum
Hamiltonians P and PZ:

H=P, (Q|cxp{—th ) h}IQ') = 6(Q - - I) (10)

exp{i(Q—Q’)2 /4m}
+2it

H=P%, (Qlexp{-its/ n}|0}= (11

For P and P2 the orbits are lines of constant P, but the fact, classically trivial, that
the velocity of @ is independent of P in the first case, and proportional to P in the
second case, has a crucial effect on the Q-propagator. (Because of linear canonical
invariance, this argument about what permits quantum chaos is not restricted to
Hamiltonians lincar in the 2N Ps: it also holds for Hamiltonians that depend linearly
on any commuting set of 2N of the Qs and Ps.)

It is worth remarking that the P-linearity of #{y, and hence the associated quantum
chaos, is not destroyed by arbitrary canonical transformations among the original
phase-space variables Q. In the doubled phase space these are just coordinate
transformations, and generate new Ps depending linearly on the old ones.

Linearity permits quantum chaos but of course does not guaraniee it Obvicusly
there is no chaos in (10), which was intended only to illusirate nonspreading. And if
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in the classically chaotic and quantally nonchaotic kicked rotator [1,5] the kinetic
energy term P2 js replaced by P, the aim is achieved of making the quantum motion
exactly follow the classical motion [9], but at the pricc of destroying the chaos,
Another class of classically chaotic but quantally nonchaotic linear Hamiltonians are
those which, as in neutrino billiards [10], act on spinors rather than scalars, -
although Pasmanter [11] gives two interesting examples where quantum
spinorization docs not destroy the chags,

It is curious that whereas in classical mechanics chaos requires nonfinearity in the
cquations of motion (that is, H¢(@) must be more than quadratic in some of its
variables), the preservation of that chaos into the 'Schrédinger lookalike' via
Liouville's equation requires linearity of Hyy in P.

When the quantum Hamiltonian is not linear in momentunt, we have the now-
familiar situation: quantum mechanics suppresses the chaos, and the characteristic
phenomena of quantum chaology appear (12,13].

Acknowledgment. I thank Dr J. Robbins for some illuminating comments.
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Abstract. Since the research field of nuclear physics is expanding rapidly, it is
becoming more imperative to develop the microscopic theory of nuclear matter
physics which provides us with a unified understanding of diverse phenomena
exhibited by nuclei. An establishment of various stable mean-fields in nuclei
allows us to develop the microscopic theory of nuclear collective dynamics
within the mean-field approximation. The classical-level theory of nuclear col-
lective dynamics is developed by exploiting the symplectic structure of the time-
dependent Hartree-Fock (TDHF)-manifold. The importance of exploring the
single-particle dynamics, e.g. the level-crossing dynamics in connection with
the classical order-to-chaos transition mechanism is pointed out. Since the
classical-level theory is directly related to the full quantum mechanical boson
expansion theory via the symplectic structure of the TDHF-manifold, the quan-
tum theory of nuclear collective dynamics is developed at the dictation of what
ig developed in the classical-level theory. The quantum theory thus formulated
enables us to introduce the quantum integrability and quantum chaoticity for
individual eigenstates. The inter-relationship between the classical-level and
quantum theories of nuclear collective dynamics might play a decisive role in
developing the quantum theory of many-body problems,

1. Introduction

1.1. Basic Problems in Nuclear Matter Physics

In the light of the recent developments of nuclear physics, new trends of nu-
clear collective dynamics in the 1990s seem to be focussing on the following
three subjects; first; the dynamics of symmetry breaking, i.e. the dynamical
relation among many vacua with different symmetries, second: the dynamics
of the order-to-chaos fransition mechanism in the quantum system, and: the
dynamics of the many-body quantum system in terms of geometrical or topolog-
ical structure of the symplectic manifold. Nowadays, these basic problems are
becoming rather commeon in many other fields of theoretical physics. It is an
objective of the present contribution to try to explain how suitable it is to exam-
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Figure 1. Three characteristic regimes of nuclear matter physics.

ine these fascinating subjects in the field of nuclear physics. With this aim, let
us start by summarizing the present status of nuclear physics.

With the aid of recent improved expertmental facilities both in accelerators
and in complex detector systems, a great variety of phenomena are being
extensively studied, ranging from the low-lying collective excited states up to
the violent high energy heavy-ion reactions in the so-called BUU or VUU
regime [1]. These phenomena might be classified into three characteristic
regimes shown in the phase diagram in Fig. 1. The first regime is character-
ized by local phenomena which are understood by introducing an appropriate
stable mean-field with one local minimum specified by a certain symmetry,
special coupling scheme, group theoretical model space or phenomenclogical
collective subspace etc. In the second regime, there are medium- or large-
amplitude collective phenomena which are usually described by a suitable
mean-field with many local minima with different symmetries. The third
regime consists of statistical or probabilistic phenomena which are explained
by means of thermo-dynamical concepts like the transport equation, stochastic
equation, temperature, dissipation, equation of states etc. Since a great store of
knowledge on individual phenomena is now available and since our knowledge
on each phenomenon is expected to expand rapidly, it becomes quite imperative
to develop the fundamental theory of nuclear matter physies which provides us
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