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Quantum physics on the edge of chaos

Quantum physics describes the world of the very small. Classical Newtonian physics
describes larger scales. But in the border country between the two, rigorous mathematical
descriptions are difficult to find, and chaos rears its head

Michael Berry

EFORE 1900, the foundation of physics was
Newtonian mechanics. The main principle was that
forces deflect objects according to laws that we can

describe using simple mathematics. It was natural to think
that because the laws are simple the motion of objects must
be simple too. The spectacular success of classical mechanics
in explaining regularities in the motion of the Moon and
planets encouraged this view. It also inspired the invention of
mechanisms imitating those regularities, such as clockwork.

This view is mistaken. Simple deterministic laws can
generate very complicated and even random motion, because
some systems are so unstable that the course of their
trajectories depends sensitively on how they are started off.
Even the motion of a billiard ball—the archetypal Newtonian
system—can become complicated in certain simple systems.
We can idealise the billiard ball as a point reflected elastically,
in other words, without any loss of energy, from the boundary
of the region in which it moves. Figure 1 shows what happens
to the ball when we confine it in regions with different shapes.
If the enclosure is a rectangle or a circle, the ball bounces
round in a regular pattern. But if the boundary is shaped like
a stadium or a bulgy “Africa”, then the ball bounces around
chaotically, following no regular pattern at all.

Nowadays, the “chaology” of classical mechanics is an
intensively active area or research—chaology is a revival of a

term used by theologians two centuries ago to mean the study
of what existed before the Creation. It has applications rang-
ing from the irregular tumbling of Saturn’s satellite Hyperion
to the intricate orbits of food particles in a liquidiser.

Since the 1920s, we have known that Newtonian
mechanics, chaotic or not, is but an approximation to deeper
truths about physics described by quantum mechanics. When
dealing with objects and processes on atomic and smaller
scales, it is quantum, not classical theory, that agrees with
experiment. In its most familiar form, quantum mechanics is
a wave theory. One consequence of this is that the energy of
an isolated atomic system cannot take any value, as in
classical physics. It is restricted to a set of possible energy
levels. A common analogy is with a guitar string, on which
waves have a discrete set of frequencies, or harmonics, that
depend on the string’s length, tension and density. The lowest
energy corresponds to the ground state, in which the system
usually exists. Higher energies correspond to excited states.
Shining light of the appropriate frequency onto an atom will
drive it into an excited state.

Quantum physics has its own randomness, to be sharply
distinguished from any irregularity that Newtonian
trajectories might possess. We cannot, for example, predict
when a radioactive nucleus will decay, or where the next
photon in a laser beam will strike a screen. But from the
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Figure 1 The trajectory of a billiard ball depends on the shape of the
boundary that confines it. In the rectangle and circle, the orbits are
regular; in the stadium and “Africa”, they are chaotic

equations of quantum mechanics we can calculate with great
accuracy the probabilities of these events from the intensities
of the quantum waves. So quantum randomness lies not in
the waves.but in the processes the waves describe.

In the everyday world we can see, the direct effects of
quantum mechanics are unobservably small because the
wavelengths of the quantum waves are so small. Even for a
bacterium, only a thousandth of a millimetre across, creeping
at one millimetre an hour, the wavelength is a million times
smaller than the bacterium itself—and 100 times smaller than
an atom. On scales larger than an atom, we know that
Newtonian mechanics works well, so that quantum
mechanics must give the same predictions, in spite of its very
different conceptual basis.

Niels Bohr, one of the pioneers of quantum physics, saw
this relationship between Newtonian and quantum
mechanics as a deep truth, which he «called “the
correspondence principle”. Quantum mechanics must agree
with Newtonian mechanics when applied to large or heavy
systems—that is in the “classical limit” where we can neglect
wave effects. We are familiar with the principle applied to
optics. Light is a wave, but, in explaining how cameras and
telescopes work, it is useful to think in terms of well-defined
rays, very similar to the trajectories of the particles, or
“corpuscles”, Newton envisaged as the constituents of light.

We know that Newtonian physics can give rise to chaotic
behaviour. According to the correspondence principle, quan-
tum physics is identical to Newtonian physics in the classical
limit. So how does the quantum system reflect this fact? What
features of the way it evolves, and the way its energy levels are
distributed, betray the irregularity of the Newtonian
trajectories? Can quantum systems become chaotic as they
approach the classical limit? These are questions of quantum
chaology, an emerging science that is leading to the discovery
of unfamiliar regimes of behaviour in microscopic systems.

The first surprise came 10 years ago, in a theoretical study
by the Italian-Soviet-American collaboration of Giulio Casati
at Milan, Boris Chirikov and Felix Izraelev at Novosibirsk,
and Joseph Ford at Atlanta. They investigated how electrons
in highly excited atoms—atoms with electrons in states of
extremely high energy—absorb energy from radiation shining
on them. To avoid tedious computations, necessary for real
atoms containing many electrons, they thought of a simple
idealised model of a circulating electron as a bead on a circu-
lar wire, endlessly pursuing its orbit (Figure 2). The waves of
radiation shining on the electron produce an oscillatory force.
The researchers represented this as a sequence of impulses
that proved a series of kicks to the “bead”. The strength of the
impulses depend on the position of the bead on the circle.

The orbits of this “kicked rotator”, when considered as a
Newtonian system, can be regular or chaotic, depending on
the strength of the impulses: stronger kicks give more chaos.
Classical regularity is a steady state in which the rotator, on
the average, gives back as much energy as it absorbs. We also
find this behaviour when we carry out the quantum version
of the “experiment”, by making the bead so light that we have
to take into account its wavelength. Classical chaos, on the
other hand, corresponds to erratic diffusion, with the rotator
continuing to absorb energy at a rate which, on average, is
constant.

In the chaotic case, however, the corresponding quantum

~ rotator behaves differently (Figure 3, p 46). For a while, the

growth of the rotator’s energy follows the classical straight
line, but eventually, at a certain “break-time”, the energy
begins to grow much more slowly, and may even decrease.
This was a surprise. Quantum mechanics has suppressed the
classical chaos. At first sight, it looks as though we have a
conflict with the correspondence principle. But when we
adjust the quantum model to make it more classical, for
example by making the particle heavier, the break-time,
which signals the onset of non-classical effects, gets later and
later. The theorists discovered this suppression of chaos by
using a computer to solve the quantum equations numer-
ically. After a decade of study, it is becoming clear that the
suppression is a delicate and subtle wave-interference effect,
but physicists have not yet worked out this in full detail.

A real atom differs from a model rotator in that an electron
can become so excited as to leave the nucleus altogether—
thus ionising the atom. The probability that a given period of
exposure to radiation of a certain frequency will result in
ionisation depends on the intensity of the radiation and how
excited the atom is to start with. These conditions determine
whether the classical electron trajectories are chaotic or regu-
lar, and whether the probabilities of ionisation calculated
using the classical approximation are the same as those calcu-
lated by the more accurate laws of quantum mechanics.

Figure 2 (a) The kicked rotator, an idealised model of an excited
electron; (b) the chaotic “dust” generated by plotting angular position
versus the rate of rotation after each of 5000 kicks
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Figure 3 Afier the “break-time”, the quantum rotator absorbs energy
more slowly than the chaotic classical rotator

Physicists have carried out experiments on hydrogen atoms
illuminated with microwaves in classically chaotic regimes
for which classical and quantum predictions agree—that is
before the break-time. They were surprised to find systems as
small as atoms behaving classically. Remember the absorp-
tion and emission of photons by atoms is a highly non-
classical process. The pattern of emission and absorption
lines in a spectrum was one of the observations that led to the
discovery of quantum mechanics.

The difference between the new spectroscopy and the old is
that the new experiments employ intense radiation, and the
atoms are in highly excited states to start with, so they absorb
and emit large numbers of photons, rather than one or two.
Theory predicts that, as with the rotator, quantum mechanics
will eventually suppress classical chaos. Experiments to test
this important effect would require that we measure the
ionisation after much longer periods of illumination. This
:js technically difficult and, so far, no one has managed to

0 1t.

Now we turn to the quantum chaology of systems that are
either isolated, or else are influenced by external forces that
do not vary—in contrast to the oscillatory force of radiation

just considered. The energy levels of such systems describe
their quantum states. It turns out that the distribution of
highly excited quantised energy levels—the pattern of notes
of the harmonics on the musical analogy—depends in a
fundamental way on whether the trajectories of the corres-
ponding classical system are regular or chaotic.

A system encompassing both extremes is the single electron
of a hydrogen atom in a very strong magnetic field—for
example, the magnetic field in a white dwarf star, which can
be a billion times greater than the Earth’s field. At low ener-
gies, the nucleus of the hydrogen atom, the proton, binds its
electron tightly. The electrostatic force between the proton
and the electron completely dominates the magnetic force.
The classical orbits are ellipses (Figure 4) like the paths of
planets round the Sun, and there is no chaos. At very high
energies, the electron is far from the nucleus and now it is the
magnetic force that dominates. The orbits are helices
spiralling round the lines of the magnetic field, and again
there is no chaos. At intermediate energies, however, the two
forces are comparable but exert contrary influences. The
classical electron resolves the contradiction by moving
chaotically.

For the electrons behaving in a quantum fashion, we have
to compare the distributions of large numbers of excited
energy levels in the regular and chaotic regimes. One way to
do this is by computing the statistics of the levels. One
convenient statistic is the spacings between neighbouring
levels, calculated at low and intermediate energies in the
atom’s spectrum of energy levels. If the levels are regularly
arranged, like the rungs of a ladder, the distribution of spac-
ings will cluster about the average spacing, producing a curve
like Figure 5a. You would get a similar distribution by plot-
ting the heights of a group of people. In this case there are few
small spacings—it is as though the levels repel each other. If
on the other hand, the levels are randomly distributed—that
is, uncorrelated, like the arrival times of raindrops in a
shower—the distribution of spacings will be broad, with a
preponderance of small spacings. The surprise this time was
the discovery that the levels are more regularly arranged
(Figure 5a) when the classical orbits are chaotic, and
randomly distributed when the orbits are regular (Figure 5b).
Experiments on magnetised hydrogen confirm even the fine
details of the theoretically calculated spectrum.

This behaviour is not just a peculiarity of the magnetised
hydrogen atom. On the contrary, the spacings of the quantum
energy levels always depend only on whether the classical
orbits are chaotic or regular and not on any other details of

the system. To illustrate this,
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Figure 5 also shows the distri-
butions of the spacings of
energy levels for the quan-
tised versions of two of the
billiard ball games in Figure
1. The stadium game is clas-
sically chaotic but has regular
spacings of its quantum
levels (Figure 5c), while the
rectangle game is classically
regular but has random spac-
ings of its quantum levels
corresponding to chaotic
motion. These tend to repel
one another. Quantum
billiards might appear to be
an exotic creation of
theorists, far removed from
reality, but exactly the
same mathematics describes
the frequencies of a
vibrating membrane shaped

R

Figure 4 Electron orbits: (a) regular motion in the field of a proton alone; (b) regular motion in a magnetic
field alone; (c) chaotic motion in the combined field

like the billiard table. In the
three-dimensional  version,
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Figure 6 The distribution of spacings where there is no symmeiry: (a)
several hundred energy levels of the Africa game of quantum billiards
in a magnetic field; (b) 100 000 zeros of Riemann’s zeta function

Figure 5 The distribution of spacings between neighbouring energy

levels: (a) hydrogen in a magnetic j?(’!d with chaotic classical orbits

showing repulsion of levels; (b) hydrogen in a magnetic field with

regular classical orbits showing clustering of levels; (c) the energy

levels for quantum billiards in a stadium, (d) the energy levels for
quantum billiards in a rectangle

it also describes the acoustics of a concert hall.

The repulsion of levels in Figures 5b and 5d is not the most
general quantum signature of classical chaos, because all
systems so far discussed have a special feature, namely
symmetry. The atom in a magnetic field has the symmetry of
a cylinder, and the movement of the billiards is symmetrical
with respect to time, in the sense that, if at any instant the
velocity of the moving billiard ball reverses, it will retrace its
previous path. When there is no symmetry of any kind and
the classical orbits are chaotic—a combination of circum-
stances still out of range of experiment—theory predicts that
repulsion between the levels remains but it is of the slightly
stronger kind shown in Figure 6a, in which the slope of the
curve vanishes at zero spacing—the curve flattens out. This
particular calculation was for the energies of a charged quan-
tum particle moving in the Africa billiard table of Figure 1
with a magnetic field acting at right angles to the plane, but
it represents quantum chaology in the most general case.

At this point, quantum chaology makes unexpected
contact with one of the long-standing problems of pure math-
ematics, namely the Riemann hypothesis of number theory.
In 1859, Georg Bernhard Riemann—a German mathe-
matician who also developed the study of geometry to include

Three views of Saturn’s satellite, Hyperion, obtained by Voyager 2.
Hyperion, which is shaped like a hamburger, is not gravitationally
stable and tumbles chaotically

-
a
-5

that with more than three
dimensions—was  studying
the distribution of prime
. numbers. He devised a quan-
M %ity, which he called the zeta
function, whose  value
depends on position in a
plane of complex numbers.

\ Rieman
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X
Complex numbers (denoted
by s) have a “real” part and
an “imaginary” part invol-

Zeros

ving the square root of minus
1. The x axis represents real
numbers and the y axis imag-
inary numbers. Riemann’s
function was the extension to
the whole s plane of

Figure 7 The plane inhabited by
Riemann’s zeta function. His
hypothesis is that the function's

zeros lie on the line shown zeta(s) =1+ £+ 3"+ ...

His famous hypothesis was that the points at which the zeta
function vanishes—its zeros—lie on the straight line with
x = 1. (If the hypothesis were true, certain theorems about
prime numbers would follpw.) Numerical studies have shown

that the first 15 000 000/ zeros lie on Riemann’s line, but

nobody has been able to prove that they all do.

The connection with quantum chaology comes in calcu-
lations by Andrew Odlyzko (AT and T Bell laboratories, New
Jersey) of the distribution of the spacings between neigh-
bouring zeros; this takes 20 hours of Cray supercomputer
time and results in the graph in Figure 6. It is not just the
evident similarity between Figures 6a and 6b but also a
variety of other evidence which suggests that underlying
Riemann’s zeta function is some unknown classical, mechan-
ical system whose trajectories are chaotic and without
symmetry, with the property that, when quantised, its
allowed energies are the Riemann zeros. These connections
between the seemingly disparate worlds of quantum mechan-
ics and number theory are tantalising.

The phenomena of quantum chaology lie in the largely
unexplored border country between quantum and classical
mechanics; they are part of semiclassical mechanics. This is
an area where rigorous mathematical development, as
employed elsewhere in mechanics, is difficult. Most discov-
eries have been made by computer experiments with the
quantum equations, guided by intuition and analogy. As the
subject matures we can expect, on the one hand, more experi-
ments on real physical systems, and, on the other, the precise
formulation and proof of mathematical theorems. O

[ Michael Berry is a professor of physics at Bristol University
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