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Optimal betting strategy with uncertain payout and opportunity limits 

Introduction 
Long-Term Capital Management co-founder Victor Haghani, with Richard Dewey, performed a 

fascinating experiment detailed in Rational Decision-Making Under Uncertainty: Observed Betting 

Patterns on a Biased Coin1. Sixty one subjects were recruited among financial professionals and students 

of economics or finance. They were given $25 and offered the opportunity to bet at even payout on coin 

flips with 60% chance of heads. They could play for half an hour, which meant a maximum of about 300 

flips. There was a maximum payout amount, which would be revealed if the subject tried to place a bet 

that would cause the balance to exceed the maximum if the bet won. The maximum used was $250. 

To put it mildly, participants did not do well. Only 21% reached the $250 maximum, less than the 28% 

who went broke. The overall average terminal payout was $91. A simple strategy of betting $5 each time 

gives a 76.59% chance of reaching $250, $211.72 average payout and only 13.17% chance of losing 

everything. The Kelly strategy of betting 20% of bankroll each time gives a 94.21% chance of reaching 

$250, $238.04 average payout and only 0.02% chance of going broke (theoretical Kelly never goes broke, 

but I assumed bets had to be in integer numbers of pennies, and that the subject always bet at least 

$0.01; also I never bet such that a win would put the bankroll over $250). 

I leave to others to discuss whether the poor showing results from failures in financial education or 

unshakeable perverse behavioral tendencies even among trained professionals or something else. I’m 

interested in what the optimal strategy is for this experiment. 

Parameter certainty 

Let’s begin with a simplified version. Suppose you know the maximum number of flips and the maximum 

payout. In this case asking for the optimal bet amount is the wrong way to think about the problem. The 

right way is to realize that for N flips, you have 2N possible outcomes, and the only constraint on 

choosing them is that they average to your initial bankroll. Note that this is a simple average by number 

of outcomes, not an average weighted by probability. Clearly you want to assign the highest probability 

paths to the maximum outcome, and the lowest probability paths to a zero outcome (you may need one 

intermediate probability path with an intermediate results to balance things exactly). Interestingly, this 

solution does not depend at all on the probability of winning each coin flip, as long as it is greater than 

50%.2 

To make this clear with a simple example, suppose you have $6 and five flips, with a maximum payout of 

$32. There are 32 possible paths, so you want the six highest probability paths (those with five or four 

heads) to result in a payout of $32, and the other 26 paths (those with three or fewer heads) to result in 

                                                           
1
 https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2856963 

2
 The only prior citation I can find to this result is my own in a different context, “The probability of breaking sports 

records,” Journal of Recreational Mathematics, v. 26, #1. 1994, but I suspect others have derived it. 
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zero payout. The simple average payout over paths (ignoring probability) is $6 (6 $32 paths and 26 $0 

paths), so the solution is feasible. Any other feasible solution will result in a lower expected payout. 

If you started with $1 instead of $6, you would assign a $32 payout to the five head path, and zero 

payout to all other paths. If you started with $16, you would assign a $32 payout to all paths with five, 

four or three heads. These are simple solutions because there is a unique assignment of paths to 

outcomes that maximizes expected payout. If you started with $7, it’s slightly more complicated. You 

would assign a $32 payout to all five and four-head paths, but you have $1 of “extra” wealth to use on 

three-head paths. You could assign $32 to one of the three-head paths, or $3.20 to each of the ten 

three-head paths or an infinite number of other combinations. 

How do you convert the desired outcomes to bets? The principle is simple. You pair up outcomes and 

average them. Any set of path pairings results in a feasible betting strategy, but we have to choose 

carefully if we want the $32 outcomes to be the highest probability paths. If you start with $6, that 

means the paths with four or more heads. The chance getting one of those paths, with 60% win 

probability each flip, is 33.70%, so our expected payout is 0.3370 x $32 = $10.78. The betting pattern is 

the same for any win probability greater than 50%, although of course the expected payout changes. 

The key is to pair outcomes such that we always pair paths that differ by exactly one in their number of 

heads. 

Figure 1 

32

0

32

0

16

0

8

24

16

0

4
2

10

6

1

1

1

1

2

1

1

1

1
2 8 22

2

2

1

1

3

3

4

4

 

Figure 1 shows the paths starting from $6 and going to either $0 or $32. The small red numbers show 

the number of outcomes taking each branch. For example, you start with $6 and bet $4, creating one set 

of paths that go to $10, and one set that goes to $2. You bet $6 if you win, and $2 if you lose. If you 

trace it through, there are 32 total paths and the five-head path and the 5 four-head paths all go to $32; 

the 26 other paths all go to zero.  
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Pathbreaking 

I constructed this tree backwards. I knew I wanted six $32 outcomes and 26 $0 outcomes after the fifth 

flip. I knew that the six $32 outcomes included the five-head path and five four-head paths. Since I 

always pair paths that are exactly one head different, the five-head path gets paired with one of the 

four-head paths, and the other four four-head paths pair with four of the three-head paths.  

The five-head path paired with a four-head path both end up at $32, so they must have $32 and four 

heads after four flips and bet zero on the fifth flip. The four four-head paths paired with three-head 

paths must have $16 and three heads after the fourth flip and bet $16 so the winners are four-head 

paths that go to $32 and the losers are three-head paths that go to $0. All the other paths go to zero, so 

they can be paired up in any matter, it doesn’t matter. Continuing to work backward gets me to the 

initial $6 wealth, and $4 bet. 

But you don’t have to go through all of this work. Notice that the average bet each round is $4, that is 

you bet $4 on the first flip, on the second flip you bet $6 half the time and $2 half the time and so on 

until the last flip when you bet $16 four times out of 16. The constant average bet is a consequence of 

the paths recombining, which in turn is a consequence of wanting the final outcome to depend only on 

the number of heads, not the order in which the heads were realized. 

Exploiting this regularity, I can solve for the optimal initial bet by computing the average last round bet, 

without drawing the entire tree. I know I want the five-head and one four-head path to result in $32, so 

if the first four flips are all heads, the last bet is $0. I want to pair the remaining four-head paths with 

three-head paths, so if three of the first four flips are heads, I want to have $32 if the fifth flip is a head 

(resulting in a total of four heads on the path) and $0 if the fifth flip is a tail (resulting in a total of three 

heads on the path). If zero, one or two of the first four flips are heads, I want to have zero whether the 

last flip is heads or tails. That means I want to bet $16 on four out of the sixteen possible paths for the 

first four flips (the four paths with exactly three heads), for an average bet of $4. Therefore, I bet $4 on 

the first flip. 

With 300 flips and a $250 maximum payout, as in the actual experiment, you have 2.04x1090 possible 

outcomes. If you start with $25, you want 2.04x1089 of the paths to result in $250, and the rest to result 

in zero. You can accomplish this by assigning every path with 162 or more heads to $250, plus 38.58% of 

the paths with 161 heads. There are multiple ways of accomplishing this, as mentioned above, so it’s 

simpler and more instructive to consider the case where you start with $23.01 and want to end up with 

$250 on exactly those paths with 162 or more heads. In that case, you bet zero if you have 162 or more 

heads on the first 299 flips (you should already have $250 at that point) or if you have 160 or fewer 

heads on the first 299 flips (you should already be down to zero at that point). On the 1.91% of paths 

that have exactly 161 heads on the first 299 flips, you want to bet $125, so you end up with $250 if you 

win and zero if you lose. Your average bet is 1.91% x $125 = $2.38, and therefore this is your initial bet 

as well. 

If you had instead started with $28.16 you would have wanted to win $250 on any path with 161 or 

more heads, meaning you would want to bet $125 if you had exactly 160 heads on the first 299 flips, 
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which happens on 2.21% of the paths, for an average bet of $2.76. If you start with $25 there is a range 

of equally good initial bets, but linear interpolation between the lower ($23.01) and higher ($28.16) 

starting amounts always gives a bet within the optimal range. That would recommend a bet of $2.53 for 

a starting wealth of $25. 

Keep it simple 

Unfortunately, this solution does not give much insight into what’s going on. That, in turn, makes it of 

limited use in practical situations in which parameters are not known exactly and any analytic result 

must be blended with other considerations. We have an exact solution to a textbook problem rather 

than a general bet-sizing principle of broad utility. 

A more illuminating approach begins by considering the case where initial wealth (W) is half of the 

maximum payout (M). If the number of remaining flips (n) is odd, we want to attain the maximum 

payout on all paths with 
𝑛+1

2
 or more heads, which means betting 

𝑀

2
 on the last flip if there are exactly 

𝑛−1

2
 heads on the first n-1 flips and zero otherwise. If n is even, there are multiple solutions, so we’ll stick 

with the simpler case. For large n, the probability of getting exactly 
𝑛−1

2
 heads on the first n-1 flips is 

approximately √
2

𝜋𝑛
≈

0.8

√𝑛
 making the optimal initial bet approximately 

0.4𝑀

√𝑛
. This is a general principle, if 

you have n independent equally advantageous bets (n not too small, say > 5) and a maximum outcome 

of doubling your initial stake, a bet size equal to 0.4 times the maximum stake (or 0.2 times your initial 

wealth) divided by the square root of the number of potential bets, is about the right size. 

Figure 2 

 

How about for W not equal to 
𝑀

2
? Here we take advantage of our knowledge that the optimal bet is zero 

at W = 0 and W = M. It happens that the optimal bet is near quadratic in wealth, suggesting a near-

optimal bet of 
4

𝑊

𝑀
(1−

 𝑊 

𝑀
)0.4𝑀

√𝑛
=

1.6(1−
𝑊

𝑀
)

√𝑛
𝑊. For W = $25, M = $250 and n = 300 this may be a bit beyond 

$0

$50

$100

$150

$200

$250

$0 $5 $10 $15 $20 $25



Optimal betting strategy with uncertain limits 

Aaron Brown, December 8, 2016 Page 5 

what most people can do easily in their heads, but anyone should be able to figure that the optimal bet 

is 7.2% of wealth at n = 400, and 9% of wealth at n = 256, so a bet between 8% and 9% of wealth ($2.00 

and $2.25) is probably reasonable for n = 300. If you had only 75 flips instead of 300, you’d double your 

bet. If M shrank to $100, you’d multiply your bet by 
3

4
9

10

=
5

6
. These kinds of quick approximate 

calculations are more generally useful in practical risk-taking situations than exact complicated 

formulae. 

You don’t give up much expected value working with the approximation. For M = $250, W = $25 and n = 

300, Figure 2 shows the expected value of terminal payout after the first bet for any bet from $0 to $25. 

You don’t give up much value unless you make a really large bet, in fact any initial bet from $0 to $3.99 

has an expected value that rounds to the same penny, an you have to bet more than half your wealth to 

reduce your expected value by $1.00 or more. 

According to Kelly 

Using Kelly we got an expected payout of $238.04, even though it makes wildly different bets (for 

example, it bets $25 with $125 which is much higher than optimal early on, and too small near the end). 

On one hand this is further evidence that we don’t need precise strategy calculations. On the other 

hand, it undersells Kelly. We didn’t tell Kelly about either the limit on flips or payout, so it wastes a lot of 

expected value trying to get payouts above $250, and it doesn’t react when the number of remaining 

flips gets small. 

A real Kelly bettor will take these factors into account. One simple way to do that is to choose the bet 

proportion r that maximizes the chance of getting to $250 by the last flip. One way to state the general 

Kelly principle is to maximize the long-term median result. In this case, unless you are as perverse as the 

actual bettors in the experiment, the median outcome will also be the maximum outcome, $250. A 

reasonable way to adjust the Kelly solution is to minimize the percentile of the distribution that gets the 

maximum outcome. I think this is in the spirit of Kelly because it is working in percentiles of long-term 

outcome, rather than expected return or expected utility. 

The exact adjusted Kelly bet requires solving for r such that 
−𝑙𝑛(

𝑊

𝑀
)

𝑛
=

(1−𝑟)𝑙𝑛(1−𝑟)+(1+𝑟)𝑙𝑛(1+𝑟)

2
. This isn’t 

hard to solve numerically, and a good approximation is 𝑟 = √−2𝑙𝑛(
𝑊

𝑀
)

𝑛
, which has similarities to the 

approximation to the exact solution, 
1.6(1−

𝑊

𝑀
)

√𝑛
. Both have the square root of n in the denominator, the 

same value at 
𝑊

𝑀
= 1 and similar derivatives (-2 versus -1.6) at that point. Adjusted Kelly gives bets that 

are somewhat larger than optimal (since the way we set up adjusted Kelly it assumes the bet proportion 

doesn’t change, so it ignores the option of increasing bet sizes for future flips). However even with the 

simplifying assumption and approximation, this adjusted Kelly gives an expected payout of $245.52, only 

0.4% below the exact optimal solution. 
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The point is that it’s worth doing math in order to get to near the correct bet size, and to determine a 

reasonable way to change bets as results become known, but the math doesn’t have to perfect nor the 

calculations precise to get almost all the value. Math helps you understand the question and focus on 

what matters, the answer is secondary. Many real risk taking situations have aspects that are captured 

by the Kelly assumptions, and other aspects that are captured by the exact solution for the capped 

problem in which you trace out specific paths to accomplish your goal. Knowing both of these solutions 

and being able to blend them in reasonable ways is more useful in most practical situations than coming 

up with new exact models. 

In between the fixed points 

Another way to demonstrate that exact solutions may not be necessary is to consider something I have 

postponed discussing in the prior examples. When I gave the optimal solution for starting with $6 and 

having five flips to get to a maximum of $32, I picked the $6 carefully. The optimal solution in that case 

is fully determined since you want to get to $32 as long as you get four or five heads. That’s six paths. 

But what if you start with $2? Now you can choose two paths, one of which should be HHHHH, but the 

other of which can be any of THHHH, HTHHH, HHTHH, HHHTH or HHHHT. In the first case, you start by 

betting $0, and then bet all your money each time thereafter. In the last case, you bet all your money on 

the first four flips and zero on the fifth flip.  

You don’t even have to pick just one of the five four-head paths. You could bet $0.50 on the first flip. If 

you lose, bet all your money for the next four flips to end up with $24 if you get THHHH. If you win, bet 

all your money on the next three flips, then $8 on the last flip. You end up with $32 for HHHHH, $24 for 

THHHH and $8 for HHHHT. This is the same expected value as getting $32 for one of the four-head 

outcomes. So any legal initial bet, from zero to $2, can be optimal. 

Figure 3 
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If 𝑊 = 𝑀 (
𝑛
𝑘

) 2−𝑛 for some k, then there is a unique optimal bet, but in-between those points there is a 

range of bets that are equally good. If W is at one of the special points, it is possible to get to M with all 

paths with no more than k tails, but only if you make the precise correct bet. In between the k and k+1 

special points, you can get to M with all paths that have no more than k tails, plus some paths with k+1 

tails, and there is a range of bets you can select that give you different sets of those k+1-tail paths. At 

the mid-point between special points, you can bet anything from zero to about the sum of the optimal 

bets on the two special points. 

Figure 3 shows the optimal initial bet for n = 300, M = $250, with W on the horizontal axis. Any bet in the 

shaded purple region can be part of an optimal strategy, the green line is the mid-point of the optimal 

bet range. However, although there are precise optimal bets for certain values of W, it obviously can’t 

make much difference if you bet quite a bit more or less, since those larger or smaller amounts are exact 

optimal bets for nearby levels of W. Figure 4 shows a close up for W = $23 to $29. Any bet from $1 to $4 

will likely give close to the maximum expected payout for any W in this range. 

Figure 4 
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𝑊𝑓(𝑊) − 𝑊𝑓(𝑊) + ∫ 𝑓(𝑥)
∞

𝑊
𝑑𝑥 = 1 − 𝐹(𝑊). We maximize expected value by assigning outcomes to 

paths such that the probability of the path times F(outcome) is constant, for all paths with nonzero 

outcome. 

This is particularly simple if F(x) = 0 for x < S, where S is the initial endowment, and 𝐹(𝑥) = 1 − 𝑒−𝑎(𝑥−𝑠) 

for x > s and some a. For easy comparisons to other parts, I’m going to write 𝑎 =
1

𝑀−𝑠
 so the expected 

value of the cap equals M. That makes 𝐹(𝑥) = 1 − 𝑒−(𝑥−𝑠)/(𝑀−𝑠) and we want the probability of each 

path that ends at terminal wealth W to be inversely proportional to 𝑒−(𝑊−𝑠)/(𝑀−𝑠). Since each path has 

1.5 times the probability of the path with one fewer head, we want it to result in an outcome 

ln(1.5) × (𝑀 − 𝑠) higher payout. 

Let’s start with n=5, s = $6 and M = $32 (remember, M is now the expected value of the cap under the 

participant’s prior distribution, not the actual cap). We want each nonzero outcome to be $10.54 below 

the outcome of a path with one more head. We can guess that three head outcomes have the lowest 

nonzero outcome and call it C, so the total of all 32 outcomes will be 16 × $0 + 10 × $𝐶 + 5 ×

($𝐶 + $10.54) + 1 × ($𝐶 + $21.08) = 16 × $𝐶 + $73.78. This must equal 32 x $6 = $192, so C = $7.38. 

If we had gotten a C < $6 or C > $6 + $10.54, we would have had to guess a different number of heads 

for the lowest nonzero outcome. 

Figure 5 
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Therefore we want to have $7.38 if we get three heads out of five, $17.92 if we get four heads and 

$28.46 if we get five heads. Actually that doesn’t quite work due to rounding, if we instead use $7.44, 

$17.92 and $28.00, which has nearly identical expected value, we’ll get no fractional cents in any of the 

betting as shown in Figure 5. Uncertainty costs us $2.00, when we knew the cap was $32 our expected 

payout was $10.78, under an uncertain cap with a mean of $32, our expected payout is $8.78. 
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What’s the bet? 

We can use the same trick as before to compute the initial bet without deriving the entire tree. If we 

have three or four heads among the first four flips, we want to bet $10.54 / 2 = $5.27 on the final flip. If 

we have two heads among the first four flips, we want to bet $7.38 / 2 = $3.69. That means our average 

bet is 
5×$5.27+6×$3.69

16
= $3.03 (this differs from the $3.02 initial bet in Figure 5 because it does not round 

bets to the nearest cent). 

Figure 6 compares the optimal bet for n = 5, M = $32 for the certainty case, where we know the cap is 

$32, and the uncertainty case, where the expected value of the cap under our prior distribution is $32.  

Figure 6 

 

We could do the case with s = $25, M = $250 and n = 300 the same way. We want the paths with 163 

heads to result in terminal W of $27.60, and for each extra head on the path, we want the outcome to 

be $91.23 higher, up to a terminal W of $12,526.06 if we win all 300 flips. We can then determine that 

our first bet should be $3.25. The optimal initial bet for all levels of W is shown in Figure 7. 

You will notice that in the 5-flip/$32 case, uncertainty made the bets smaller. In the 300-flip/$250 case, 

uncertainty made the bets larger. In the former case the uncertainty peak came before the middle 

(where the initial bet in the certainty case is largest), in the latter the uncertainty peak comes after. 

However, a moment’s reflection will recall that the certainty case is the same for all probabilities of 

winning each flip, while the uncertainty case includes a factor of 𝑙𝑛 (
𝑝

1−𝑝
), where p is the probability of 

winning each flip. That is ln(1.5) = 0.4055 for Figures 6 and 7 since the experiment involved coins with a 

60% chance of heads. A larger probability of winning would naturally make bets larger, and while it is 

not obvious but can be seen from the equations, it also makes the maximum initial bet happen at a 

higher W. 

$0

$1

$2

$3

$4

$5

$6

$0 $4 $8 $12 $16 $20 $24 $28 $32

Cap = $32 Expected Cap = $32



Optimal betting strategy with uncertain limits 

Aaron Brown, December 8, 2016 Page 10 

Figure 7 

 

Figure 8 shows what happens if we change p so the that initial bets in the uncertainty case are similar to 
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𝑘−150

√75
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25) [√
75

2𝜋
𝑒−

𝑣2

2 − 𝑣(1 − 𝑁(𝑣))] = 25. That’s a bit messy, but it’s easy to solve numerically with v = 1.47 

(an approximate closed-form solution is 𝑣 = √−ln (
2𝜋𝑠

(𝑀−𝑠)×ln(1.5)×(5√3−1)
) = 1.55). 1 − 𝑁(𝑣) = .0713 

is the fraction of paths with non-zero payout, and ln(1.5) × (𝑀 − 𝑠)(1 − 𝑁(𝑣)) = 6.50 should be the 

difference between winning and losing the first bet, so the first bet should be $3.25, which agrees to the 

penny with the exact calculation (we get $2.75 with the closed-form approximation above, which is 

close enough for practical purposes). 
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utility equal to 1 − 𝑒−𝑎𝑊 where a is a risk aversion parameter and W is wealth) then it’s easy to 

incorporate. Since the product of two exponentials is an exponential with the sum of the arguments, we 

merely have to redefine M above from the expected value of the payoff to the expected utility of the 

payoff (I’m cheating a little bit, because the cap prior distribution will generally be shifted from the total 

wealth utility distribution). Making M expected utility gives us an accurate approximate solution for any 

reasonable smooth utility function. 

Figure 8 
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after she learns the cap. Before she learns the cap her situation is similar to the case with uncertain cap, 

except that she has some incentive to bet larger if the sum of wealth plus bet is higher than any previous 

wealth plus bet, so she can gain information, which increases her expected payout because she can play 

better knowing the cap. How does this affect optimal bet size? 

One immediate observation is she should always bet her entire wealth on the last flip (if this would 

result in a win taking her over the cap, the bet will be automatically reduced to avoid that). This is the 

same as the certainty case. 

The 5-flip case starting with $6 and an expected cap of $32 is tractable by computer search. As you 

would expect, the early bets are somewhat higher than the permanent uncertainty case considered 

above, about $4.07 versus $3.03 for the first flip and $5.89 versus $3.99 for the second flip if you win the 

first. For all other cases, you bet your entire wealth. 

The 300-flip/$25/$250 expected cap case in the original experiment is too large for convenient 

computer search. The complexity results needing to optimize decisions for any value of wealth, with 

either any known minimum cap (for example, if you have $25 and bet $5, and the bet is accepted, you 

know that the cap is at least $30, even if you lose the bet), or any known cap. This creates path 

dependencies in the solution. Instead of 
300(300+1)

2
= 45,150 decisions to consider, you have 

300 × 2300 = 6 × 1092. 

I suspect that the early bets are somewhat larger than in the permanent uncertainty case, but by a few 

percent rather than the 35% to 50% of the 5-flip case. If you have not discovered the cap, the increases 

should over the permanent uncertainty case should get larger as the remaining flips dwindle, 

particularly if W is low relative to the minimum possible cap. 

I close with one of the concluding thoughts in the original paper: 

Given that many of our subjects received formal training in finance, we were surprised 

that the Kelly Criterion was virtually unknown and that they didn’t seem to possess the 

analytical tool-kit to lead them to constant proportion betting as an intuitively appealing 

heuristic. Without a Kelly-like framework to rely upon, we found that our subjects 

exhibited a menu of widely documented behavioral biases such as illusion of control, 

anchoring, over-betting, sunkcost bias, and gambler’s fallacy. We reviewed the syllabi of 

introductory finance courses and elective classes focused on trading and asset pricing at 

five leading business schools in the United States.3 Kelly was not mentioned in any of 

them, either explicitly, or by way of the topic of optimal betting strategies in the 

presence of favorable odds. Could the absence of Kelly be the effect of Paul Samuelson’s 

                                                           
3
 MIT, Columbia, Chicago, Stanford and Wharton 
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vocal critique of Kelly in public debate with Ed Thorp and William Ziemba?4. If so, it’s 

time to bury the hatchet and move forward. 

I certainly agree with the sentiment here, but I want to focus in on the most important aspect of Kelly 

for this problem. Samuelson would tell bettors to determine their utility function of terminal wealth and 

find the betting strategy that maximizes its expected value. I assume most of the study participants 

could have solved this as a textbook problem, at least for the easiest version (known number of flips and 

cap). Clearly they didn’t do this, or even try to guesstimate an approximate solution to this problem, 

because a utility theory solution is a sound betting strategy (a Samuelson partisan might say it gives the 

optimal betting strategy). 

Why didn’t participants use what they had presumably learned in the classroom? One possibility is that 

they didn’t believe it. Another is that it was too complicated, especially if they tried to tackle the most 

difficult version of temporary uncertainty. What’s worrying is that either issue is made worse by real-life 

risk decisions. If you don’t believe textbook solutions for simple games with small amounts at stake, why 

would you believe them for far more complicated and high-stakes gambles like how to invest or whether 

to take a loan? And if you can’t come up with even approximate solutions for fully specified coin flip 

problems, you will be completely at sea with complex problems with uncertain parameters and 

outcomes, including considerations that cannot be measured in money. 

It’s not the precise Kelly computation that’s important here, it’s having simple, reliable general tools to 

make reasonable decisions. And just as important, actually trusting and using those tools. The former 

requires additions to the curriculum, the latter requires practical risk-taking experience. The experiment 

should be a wake-up call to finance teachers. If they don’t heed it, I predict they will have to suffer the 

embarrassment of foolish risk decisions by many of their students. 

                                                           
4
 Ziemba, W.T. 2015 Response to Paul A Samuelson letters and papers on the Kelly capital growth investment 

strategy, Journal of Portfolio Management, Fall, 153-167. 




