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Zero-temperature quantum annealing bottlenecks
in the spin-glass phase
Sergey Knysh1,2

A promising approach to solving hard binary optimization problems is quantum adiabatic

annealing in a transverse magnetic field. An instantaneous ground state—initially a

symmetric superposition of all possible assignments of N qubits—is closely tracked as it

becomes more and more localized near the global minimum of the classical energy. Regions

where the energy gap to excited states is small (for instance at the phase transition) are the

algorithm’s bottlenecks. Here I show how for large problems the complexity becomes

dominated by O(log N) bottlenecks inside the spin-glass phase, where the gap scales as a

stretched exponential. For smaller N, only the gap at the critical point is relevant, where it

scales polynomially, as long as the phase transition is second order. This phenomenon is

demonstrated rigorously for the two-pattern Gaussian Hopfield model. Qualitative compar-

ison with the Sherrington-Kirkpatrick model leads to similar conclusions.
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Q
uantum algorithms offer hope for tackling computer
science problems that are intractable for classical
computers1. However, exponential speed-ups seen in,

for example, number factoring2, have not materialized for more
difficult non-deterministic polynomial time (NP)-complete
problems3. Those problems are targeted by the quantum
adiabatic annealing algorithm (QA)4–6. Any NP-hard problem
can be recast as quadratic binary optimization. QA solves it by
implementing a quantum Hamiltonian, written with the aid of
Pauli matrices as

Ĥ ¼ � 1
2

XN

i;k¼1

Jikŝz
i ŝ

z
k�

XN

i¼1

hiŝz
i �GðtÞ

XN

i¼1

ŝx
i : ð1Þ

Here the first two terms, diagonal in z-basis, encode the objective
function. The last term represents the magnetic field in the
transverse direction, which is decreased from G(0)c1 to
G(Tann)¼ 0. The time Tann needed by the algorithm is
determined by a condition that the annealing rate is sufficiently
low to inhibit non-adiabatic transitions:

dG=dt � DE � DG: ð2Þ
These are most likely near points where the instantaneous gap to
excited states DE attains a minimum as a function of G; further,
DG is defined as the width of the region where the gap remains
comparable to its minimum value.

QA offers no worst-case guarantees on time complexity7, but
initial assessments of typical case complexity were optimistic.
Both experimental8 and theoretical9 evidence hinted at
performance improvement over simulated annealing for finite-
dimensional glasses; however, some empirical evidence in support
of the theory has recently been called into question10. Early exact
diagonalization studies also observed polynomially small gaps in
the constraint satisfaction problem (CSP) on random
hypergraphs11, but that finding had been challenged by
quantum Monte Carlo studies involving larger sizes12.
Benchmarking of a hardware implementation of QA, courtesy
of D-Wave Systems, shows no improvement in the scaling of the
performance13,14. Whether that might be attributable to a finite
temperature at which the device operates or its intrinsic noise is
unclear at present15–17.

Statistical physics offers some intuitive guidance: Small gaps
develop at the quantum phase transition point and become
exponentially small when the transition is first-order18–21 or
when different parts of the system become critical at different
times for strong-disorder continuous phase transitions22. The
most promising candidates for QA are thus problems with bona
fide second-order phase transitions, where the disorder is
irrelevant at the quantum critical point (QCP).

The scaling analysis described here suggests a polynomially
small gap at the critical point of the archetypal spin glass: the
Sherrington-Kirkpatrick (SK) model23–25. It has been pointed
out9,26 that QA may still be doomed by the bottlenecks in the
spin-glass phase. Exponentially small gaps away from the critical
point have been observed in simulations27, but adequate
theoretical description of this phenomenon has proven
challenging. A perturbative argument in support of this
qualitative picture has been considered in ref. 26. However, the
results were not borne out by more accurate analysis that took
into account the extreme value statistics of energy levels28.

The present manuscript sheds light on the mechanism of
tunnelling bottlenecks in the spin-glass phase. Using exact, non-
perturbative, methods, this is illustrated for a simple model, but
the main findings are expected to be valid for quantum annealing
of more realistic spin glasses. During annealing, the system must
undergo a cascade of tunnellings at some specific values of

G1,G2,y in an approximate geometric progression. For a finite
system size, these bottlenecks are few, O (log N), and may not
even appear until N is sufficiently large, highlighting the challenge
of interpreting the results of numerical studies. Bottlenecks also
become increasingly easier as G-0, counter to expectations that
tunnellings are inhibited as the model becomes more classical. A
related finding is that the time complexity of QA is exponential
only in some fractional power of problem size: a mild
improvement over more pessimistic estimates26.

Results
Summary. The spin-glass phase, which is entered below some
critical value of the transverse field Gc, is characterized by a large
number of valleys. Often, this transition is abrupt, driven by
competition between an extended state and a valley (localized
state) with the lowest energy, as occurs in the random energy
model19,20. The exponentially small overlap between the two
states then determines the gap at the phase transition. However,
even if new valleys develop in a continuous manner as G
decreases, small changes in the transverse field may result in a
chaotic reordering of associated energy levels, leading to
Landau–Zener avoided crossings and attendant exponentially
small gaps.

Nonetheless, attempts to make this intuition exact are fraught
with potential pitfalls. For increasing G, two randomly chosen
valleys are equally likely to come either closer together or further
apart in energy. In the case of the former—and further, if the
sensitivity of energy levels to changes in the transverse field is so
large that the levels ‘collide’ before either valley disappears—
avoided crossing will occur. This may not be necessarily the case
when one considers ‘collisions’ with the ground state, which are
of particular concern to QA. The ground state corresponds to a
valley with the lowest energy; this and other low-lying valleys
obey fundamentally different statistics of the extremes.

A case in point is the analysis of ref. 26, which develops
perturbation theory in G. The classical limit (G¼ 0) is used as a
starting point; how that analysis might be extended to G40 has
also been discussed29. A type of CSP has been considered: classical
energy levels are discrete non-negative integers (number of violated
constraints) but have exponential degeneracy. ‘Zeeman splitting’
for G40 scales as

ffiffiffiffi
N
p

, which, for large problems, may be sufficient
to overcome the O(1) classical gap and cause avoided crossings of
levels associated with different classical energies. Yet this trend
disappears if only levels with the smallest energies (after splitting)
are considered; these are relevant for avoided crossings with the
ground state. This about-face is not immediately apparent, only
coming into play for N\100, when the exponential degeneracy of
the classical ground state sets in. It has, however, been confirmed
with analytical argument and numerics28. Consequently,
arguments based on perturbation theory cannot be used to
establish the phenomenon.

This manuscript offers a fresh perspective, illustrated by
studying quantum annealing of the Hopfield model. Mean-field
analysis correctly describes thermodynamics if the number of
random ‘patterns’ is small. The method is further extended to
extract information about exact quantum energy levels. Impor-
tantly, the classical energy landscape is made much more complex
by insisting that the distribution of disorder is Gaussian. Figure 1
sketches a ‘phase diagram’ obtained for this model. For
decreasing G the gap changes as follows: (1) it is finite (does
not scale with N) in the paramagnetic phase, G4Gc; (2) scales as
1/N1/3 in the narrow region of width 1/N2/3 around G¼Gc; (3)
increases slightly, with typical values scaling as 1/N1/4 for GoGc.
In addition, there are avoided crossings at isolated points
G1,G2,y.
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The first non-trivial example requires two Gaussian patterns.
In this case the ‘energy landscape’ is effectively one-dimensional,
which greatly simplifies the analysis. The most important element
of this analysis is accounting for the extreme value statistics
associated with the valleys (local minima) having the lowest
energies. To this end, the distribution of energies of the classical
landscape must be conditioned so that they are never below
the energy of the global minimum. This becomes feasible
when reformulated as a continuous random process, in the
limit N-N.

This particular model is not as interesting from the computer
science perspective, not least because it affords an efficient
classical algorithm. It is sufficiently simple so that a complete
quantitative analysis presented later on in the manuscript has
been possible. Yet, the model captures the essential properties of
the spin glass: its qualitative features directly apply to much more
general models, including Sherrington-Kirkpatrick. The most
important feature of the classical energy landscape is that it
exhibits fractal properties, which both ensures that hard bottle-
necks are present in the spin-glass phase and also governs their
distribution. The role of the transverse field is to approximately
coarse-grain it on scales determined by G, eliminating small
barriers; thus the number of valleys decreases as G grows. A
specific random process, corresponding to the energy landscape
of the ‘infinite’-size instance, will contain every possible
realization of itself at some ‘length scale’. Some realizations will
contain high barriers that cannot be easily overcome; these will
lead to tunnelling bottlenecks.

This intuition can be used to immediately establish the scaling
of the number of tunnelling bottlenecks. Since the model contains
no inherent length scale in the limit N-N, it can be argued that
the expected number of tunnelling bottlenecks in a finite interval
[G1;G2] should be a function of the ratio G2/G1. The logarithm is
the only function that respects additivity, that is,
N tunn G1;G2½ �ð Þ ¼ N tunn G1;G0½ �ð ÞþN tunn G0;G2½ �ð Þ. To obtain
the total number of bottlenecks, one considers the interval
[Gmin;Gc]. Here GcB1 is the boundary of the spin-glass phase.
The lower cutoff, Gmin, corresponds to the lowest energy scale of
the classical model, which scales as an inverse power of system
size, for example, as 1/N for the Gaussian Hopfield model. In a

sense, tunnelling bottlenecks are connected to the G¼ 0 ‘fixed
point’ (note that the classical gap vanishes asymptotically). To
summarize, the number of tunnelling bottlenecks will grow as

N tunn � a ln N: ð3Þ

Locations (in G) will depend on specific disorder realization, but
self-similarity ensures that the successive ratios Gn/Gnþ 1

converge to a universal distribution.
This logarithmic rise is far weaker than a power law seen in

some phenomenological models of temperature chaos30 and, as
has been argued above, likely to be a universal feature. The
prefactor is model-dependent; its numerical value can be used to
estimate the minimum problem size for which the mechanism
becomes relevant, via N tunn � 1. A value of aE0.15 is obtained
for the problem at hand, so that additional bottlenecks become an
issue for N\1,000. Prior numerical studies similarly required
large sizes before the exponentially small minimum gap was
observed27, and so far there has been no evidence of two or more
exponentially small gaps coexisting. The slow, logarithmic
increase of the expected number of bottlenecks is the most
likely culprit.

A notable feature of these results is that tunnellings become
progressively ‘easier’ as G-0 despite the fact that the model
becomes more classical. Tunnelling gaps increase as

DEðnÞtunn � e� cG3=4
n N3=4

: ð4Þ

Notice that they cease to be exponentially small for GtGmin; at
that point the ground state is already localized near the correct
global minimum. The power law exponent for this stretched
exponential is model-dependent, related to the scaling of barrier
heights. These scale as N1/2 for the Gaussian Hopfield model,
which, together with O(N) scaling of the effective mass, gives rise
to the N3/4 term in the exponent.

The finding that the gaps increase for smaller G deserves
explanation. Typically, valleys with similar energies differ by up
to N/2 spin flips. This changes once lowest energies are
considered: All spin configurations with energies less than E
above the global minimum are contained in a neighbourhood of
radius O½ðNEÞ2=3�, using Hamming distance as a metric. The
problem is not rendered easy by the mere fact that the global
minimum is so pronounced (although theoretical analysis
inspired an efficient classical algorithm for the p¼ 2 Hopfield
network, briefly described later on). It does imply, however, that
the ground state wavefunction does not jump chaotically: Every
subsequent tunnelling involves shorter distances, with O(GN)
spin flips, and achieves progressively better approximation to the
true global minimum. Absent such a trend, annealing would be
most difficult towards the end of the algorithm, when GB1/N,
and the minimum gap would exhibit less favourable exponential
scaling26.

In what follows, the model and its solution are described in
greater detail. First, finite-size scaling of the ‘easy’ QCP bottleneck
is linked to the thermodynamics of the phase transition. The next
part goes beyond thermodynamics, considering small corrections
to the extensive contribution to the free energy. The entire low-
energy spectrum, which depends on disorder realization, is
mapped onto that of a simple quantum mechanical particle in a
random potential. Finally, extreme value statistics is applied to
investigate the properties of that random potential near its global
minimum by mapping it to a Langevin process. This yields the
distribution of hard bottlenecks in a universal regime (Goo1).

Γ (a.u.)

O O (1)1

N1/3N1/4

Γc

Γmin ∼
1
N

ΔΓ ∼ 1
N3/4

ΔEtunn ∼ e − cΓn
3/4

 N
3/4

O 1

Γ1Γ2Γ3
0

ΔE
(a.u.)

Figure 1 | Scaling of the gap in various regions. Sketch of the behaviour of

the gap in a Hopfield model with the Gaussian distribution of disorder

variables (units are arbitrary): in the paramagnetic phase (G4Gc), in the

glassy phase (GoGc) and in the critical region (GEGc). Scaling of the

typical gap in these regions is indicated in bold letters using big-O notation.

The area GoGminB1/N is where the discrete nature of the energy

landscape becomes manifest: the ground state becomes nearly completely

localized. The glassy phase also contains log N isolated bottlenecks at G1,

G2, G3, and so on. (indicated with red arrows), where the gaps scale as a

stretched exponential. a.u., arbitrary units.
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Quantum Hopfield network. Consider a model with rank-p
matrix of interactions and no longitudinal field (hi¼ 0):ref. 31

Jik ¼
1
N

Xp

m¼1

xðmÞi xðmÞk ð5Þ

(cf. rk Jik¼N for SK model), where xðmÞi are taken to be independent
and identically distributed (i.i.d.) random variables of unit variance.
The thermodynamics of this quantum Hopfield model has been
worked out in great detail by Nishimori and Nonomura32. In fact,
that study motivated the development of QA4.

When p is small (JikB1/N), it is appropriate to replace local
longitudinal fields with their mean values hi ¼

P
k Jikhsz

ki. The

identity hsz
i i ¼ hi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2þ h2

i

q
is used to close this system of

equations. For a transverse field below the critical value,
GoGc¼ 1, there appears a non-trivial (ma0) solution to the
self-consistency equation for the macroscopic order parameter, a
vector with p components:

m ¼ 1
N

XN

i¼1

xi ŝz
i

� �
: ð6Þ

Here, the disorder variables are also written using vector notation:

xi ¼ ðxð1Þi ; . . . ; xðpÞi Þ.
This model is equivalent to the Curie–Weiss (quantum)

ferromagnet, which has a continuous phase transition character-
ized by a set of mean-field critical exponents. Two of these are
particularly useful in the analysis of the annealing complexity: the
one for the singular component of the ground state energy

ðEsing
0 =N / gj jaÞ as well as the dynamical exponent for the gap

(E1�E0pgb), where g¼G�Gc is the ‘distance’ from the critical
point. These exponents are defined for the infinite system, yet
fairly general heuristic analysis (see the Methods section) predicts
finite-size scaling for the QCP bottleneck:

DEc / N �
b

a� b; DGc / N �
1

a� b: ð7Þ

Substituting values a¼ 2 and b¼ 1/2 for the problem at hand,
one may estimate the gap at the critical point and the width of the
critical region to be O (N� 1/3) and O (N� 2/3), respectively.

Worse-than-any-polynomial complexity of quantum annealing
might be expected for the first order phase transition, which exhibits
no critical scaling (but see ref. 33). Another possibility is for the
dynamical exponent to diverge at the infinite randomness QCP: the
finite-size gap scales as expð� c

ffiffiffiffi
N
p
Þ in a random Ising chain22. For

the Hopfield model, however, this scaling is polynomial, as the
disorder is irrelevant at the critical point. More intriguing is the fact
that these pessimistic scenarios are not found in SK spin glass either:
the model is characterized by the same set of critical exponents,
albeit with logarithmic corrections23–25. These corrections to scaling
increase the gap and, respectively, decrease the width of the critical
region by a factor of log2/9 N. Thus, as long as Tann\N, non-
adiabatic transitions at the critical point should be suppressed. This
presents a conundrum as SK model is known to be an NP-hard
problem; finding a polynomial-time (even in typical case) quantum
algorithm would be a surprising development. The heuristic analysis
is clearly insufficient, but ‘digging’ deeper into a problem would
require a more ‘microscopic’ analysis. In the following, the problem
is mapped to ordinary quantum mechanics to uncover its low-
energy spectrum that explicitly depends on a particular realization of
disorder, {ni}.

Exact low-energy spectrum. Mean-field theory can be derived in
a more systematic manner via Hubbard–Stratonovich transfor-
mation. General overview is presented below; additional details
can be found in Methods and the Supplementary Note 1. Finite-
temperature partition function Z(b)¼Tr(e� bH) can be written
as a path integral over m(t), which now acquires a dependence on
the imaginary time 0ptpb, with periodic boundary conditions:
m(b)¼m(0). The value of the integral is dominated by stationary
paths corresponding to the minimum of an effective potential
VðmÞ. While the discussion above has been deliberately equivocal
on the distribution of disorder variables, it is now instructive to
contrast bimodal ðxðmÞi ¼ � 1Þ and Gaussian choices. The shapes
of the effective potential for both scenarios are depicted in Fig. 2.

The conventional bimodal choice defines the model of
associative memory: In the limit G¼ 0 the ‘patterns’ can be
perfectly recalled (si¼±x(m)) when p is small. For the Gaussian
choice, the global minimum corresponds to a mixture34

si ¼ � sgn
X
m

amx
ðmÞ
i

 !
; ð8Þ

rendering memory useless. In the bimodal case, such ‘spurious’
states only become stable once the number of patterns scales
with the problem size35: p40.05N. The BCp (bimodal) or O(p)
(Gaussian) symmetry of the effective potential is only
approximate, to leading order in N. The degeneracy of the
ground state is 2 (due to global spin inversion symmetry) for
almost all disorder realizations when pX3 or pX2 in the bimodal
and Gaussian scenarios, respectively (note that that the p¼ 2
bimodal case possesses an additional symmetry, which makes the
ground state 4-fold degenerate). The system is in a symmetric
superposition of the degenerate global minima at the end of QA.
It evolves entirely in the symmetric subspace since the time-
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Figure 2 | The shape of the effective potential. The plots show the

disorder-averaged VðmÞ below the critical point (G¼0.5oGc) for (a) the

bimodal distribition and (b) the Gaussian distribution of disorder variables.

Minima of the potential are highlighted with magenta: the 2p-fold degenerate

global minima organized in pockets corresponding to encoded patterns in a, and

a continuum of degenerate minima (connected by arbitrary rotations) in b.
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dependent Hamiltonian commutes with Û ¼ expðpiŜxÞ. Thus, it
should be noted that small gaps between symmetric and
antisymmetric wavefunctions are irrelevant to QA and can be
ignored.

Disorder fluctuations ‘nudge’ QA towards the ‘correct’ pattern
as it passes the critical point in the bimodal Hopfield model. No
further bottlenecks are encountered; gaps for GoGc as well as the

‘classical’ (G¼ 0) gap are O(1). By contrast, the classical gap
scales as O(1/N) in the Gaussian Hopfield model, alerting to a
‘danger’ posed by the G¼ 0 ‘fixed point’. To find the low-energy
spectrum when GoGc, note that the dominant contribution to
the path integral is from paths where the magnitude of the
‘magnetization’ vector remains approximately constant, close to
its saddle-point value, while the angle is a slow function of time:

mðtÞ � mG
� sinWðtÞ

cosWðtÞ

� �
for p¼ 2. Integrating out the ampli-

tude degrees of freedom, the partition function is rewritten as

ZðbÞ /
Z

dWðtÞ½ �e�
R b

0
M
2

dW
dtð Þ

2 þVGðWÞ
� �

dt
; ð9Þ

which describes a quantum-mechanical particle of mass
M¼O(N) moving on a ring, subjected to a random potential

VGðWÞ ¼ �
X

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2þm2

Gx
2
i sin2 W� yið Þ

q
þN

� ffiffiffiffiffiffi� � �p �
x; ð10Þ

where xi 	 xi
cos yi

sin yi

� �
and the last term, written in shorthand,

adds a constant offset so that hV(W)in¼ 0. Notice that VGðWÞ /ffiffiffiffi
N
p

via central limit theorem, thereby representing a higher-
order correction to the extensive part of the free energy.

Since the partition function ZðbÞ ¼
P

n e�bEn encodes
information about the spectrum, low-energy (Goldstone) excita-
tions of the many-body problem are in one-to-one correspondence
with the energy levels of a quantum mechanical particle, up to a
constant shift. The next step is to find the properties of this
potential near a global minimum. These are relevant in a regime
away from the critical point, GooGc, where the universal behaviour
characterized by the appearance of ‘hard’ bottlenecks sets in.

Evolution of the random potential. Scaling of the gap for GoGc

can be obtained via semiclassical analysis. Small level splitting due
to tunnelling between wells at the two degenerate global minima
(this degeneracy is a consequence of the global Z2 symmetry:
VG(Wþ p)¼VG(W)) is not relevant to QA. Higher degeneracies
are statistically unlikely; quantization rules predict O(N� 1/4) gaps
between energy levels within the symmetric subspace. But this
refers to the typical gap, obtained for fixed G for almost all reali-
zations of disorder. As quantum annealing sweeps the transverse
field for a fixed realization of disorder, VG (W) might undergo
global bifurcation. This would result in a small tunnelling gap for a
specific value of G when the competing minima are in resonance.

Such a scenario is impossible near the QCP. Coefficients in the
Fourier expansion of the random potential, Sk(ak cos 2kWþ bk sin
2kW), decrease as m2k/G2k� 1 so that the first harmonic dominates
for GEGc. Semiclassical analysis confirms a O(N� 1/3) gap at the
critical point (where the curvature of the effective potential
vanishes, leaving only the quartic part). As G decreases, the
random potential becomes more rugged (see Fig. 3a), smooth
only on scales DWBG, which makes global bifurcations more
likely. Furthermore, it exhibits properties that allow one to make
important predictions without detailed calculations. Rescaling the
potential in the vicinity of either global minimum VGðW
Þ ¼ V
G,

W�W
 ! ‘ðW� W
Þ;
VG�V
G ! ‘3=2ðVG�V
GÞ;

ð11Þ

describes the same model but for the rescaled G! ‘G and a
different realization of disorder. This scale invariance is
responsible for the logarithmic scaling of the number of
tunnelling bottlenecks as has been explained earlier in the text.
However, it still remains necessary to demonstrate that the
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density of bottlenecks is non-zero, which entails an examination
of the properties of the random potential in the limit G¼ 0.

The classical optimization problem corresponds to maximizing
the magnitude of

P
i xisi. A necessary condition for a local

minimum is that two sets of vectors, {ni|si¼ þ 1} and
{ni|si¼ � 1}, can be separated by a line. As the angle of this
line changes, fluctuations of the amplitude give rise to a random
potential V0 (W) (see Fig. 4). This suggests a linear-time algorithm
for finding a global minimum: Sort all vectors by angle (this may
introduce an extra log N factor due to sorting overhead) and
exhaustively check all possible angles. Of course, QA algorithm is
too generic to exploit the specific structure of the problem;
moreover ad hoc efficient algorithms are unlikely to exist for
more general spin-glass problems.

On short intervals, the random process is described as an
undamped Langevin process36,37 in the continuous (N-N) limit
(hence the exponent of 3/2 in equation (11), corresponding to its
fractal dimension). Properly taking into account the statistics of the
extremal properties, the process must be conditioned on the fact
that V0ðW
Þ4V0ðW
0Þ ¼ V
0 away from the global minimum. As
described in Methods and the Supplementary Notes 2 and 3, such
a conditioned process consists of two uncorrelated branches,

V0ðWÞ�V
0 /
ffiffiffiffi
N
p wþ ; W4W
0;

w� ; WoW
0:

	
Integrating equations

dðln w� Þ=dt ¼ n� ðtÞ;
dW=dt ¼ � w2=3

� ;
ð12Þ

defines wþ (W) and w� (W) parametrically, in terms of random
processes n�(t) that correspond to a Brownian motion in a non-
linear potential depicted in Fig. 3b. This potential is biased towards
positive ‘velocities’ n so that V0�V
0 �

ffiffiffiffi
N
p
ðW�W
Þ3=2 from

equation (12). It will, however, experience arbitrary percentage
drops due to subpaths with no0 (albeit with decreasing
probability).

For small but finite G, the ‘separating line’ becomes blurred.
The random potential adds a ‘quantum correction’ (see Methods
and the Supplementary Note 2), VGðWÞ�V0ðWÞ ¼ O

ffiffiffiffi
N
p

G3=2
� �

.

For two minima to come into resonance, they cannot be more
than DWBG apart (that is, O (NG) spin flips). The tunnelling
exponent is given by under-the-barrier action A �

ffiffiffiffiffiffiffiffiffiffiffiffi
MDV
p

DW,
where the effective mass MBN/G2 and DV �

ffiffiffiffi
N
p

G3=2, leading
to equation (4). Numerical results for the universal distribution of
tunnelling jumps and exponents are exhibited in Fig. 5.

Discussion
Poor scalability of classical annealing of spin-glass models had
been linked to the phenomenon of temperature chaos38.
Interestingly, its existence in mean-field glasses had been
debated39–41, although it is uncontroversial in finite-
dimensional models42,43. Similarly, failures of quantum
annealing might be attributed to transverse field chaos. The
phenomenon described in this manuscript represents a much
stronger finding. The mere fact that ground states at G and
GþDG will have vanishingly small overlap as N-N is not
inconsistent with the continuously evolving ground state and
poses no ‘threat’ to QA. By contrast, ‘hard’ bottlenecks
correspond to isolated discontinuities that persist as DG-0.

To dwell upon the generality of these results, first note that
scaling of the tunnelling exponent will depend on the universality
class of the model. The SK model, for instance, exhibits different
scaling of barrier heights, believed to be pN1/3 (see for example,
ref. 44). In the model studied, the decrease in the number of spins
involved in tunnellings offsets the divergence of the effective mass
in the classical limit G-0. As the height of the barriers also
decreases, the tunnelling gaps widen towards the end of the
algorithm. One might expect qualitatively similar behaviour in
realistic spin glasses.

The logarithmic scaling of the number of bottlenecks is due to
self-similar properties of the free energy landscape in the interval
[Gmin, Gc]. The lower cutoff should correspond to the smallest
energy scale in the classical limit, which for the SK model is also a
negative power of N, namely 1=

ffiffiffiffi
N
p

. This is related to the linear
vanishing of the density of distribution of effective fields as h-0
at zero temperature45 (since

R hmin

0 PðhÞdh � 1=N). The picture is
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less clear for CSPs, where the energies are constrained to be non-
negative integers; that is, the classical gap is O(1). These energy
levels have exponential degeneracy, which is lifted by the transverse
field. A value sufficient to make the spectrum effectively quasi-
continuous might serve as an appropriate lower cutoff Gmin in
problems of this type. Lack of ‘hard’ bottlenecks in the Hopfield
model with the bimodal distribution of disorder and p¼O (1)
could be attributed to the fact that the number of valleys is finite,
which is not representative of a true spin glass.

An interesting observation is that since ‘hard’ bottlenecks
correspond to Landau–Zener crossings, annealing times need not
be exponentially small. The probability that QA fails to follow the
ground state every single time in n repeated experiments is

pðnÞfail ¼ e�
pDE�DG
4ðdG=dtÞ


 �n
; ð13Þ

which exactly matches the probability of failure for the annealing
rate that is n times slower. Using shorter annealing cycles with
many repetitions can minimize the effects of decoherence. It
suffices that non-adiabatic transitions are suppressed at the
critical point only, dG

dtt1=N .
Even with polynomial annealing rates, coherent evolution would

require much better isolation from the environment than what
is currently feasible. The only commercial implementation of
QA (D-Wave) must contend with a fairly strong coupling to a
thermal bath. On the positive side, it accommodates faster annealing
cycles, acting as a ‘safety valve’ to dissipate any heat generated during
the non-adiabatic process. At the same time, it all but ensures that
the system is always in thermal equilibrium with the environment.

The theory presented here breaks down when GoT so that
quantum bottlenecks described here may not be a limiting factor
if ln (Gc/T)t1/a. Main source of errors will be from exponen-
tially many thermally occupied excited states. If the annealing
profile were adjusted so that the energy spacing increased beyond
T towards the end, this would effectively implement classical
annealing. An intricate relationship between temperature,
problem size, and the properties of the spin-glass model might
determine which mechanism (quantum or classical annealing)
will be dominant.

Yet another tradeoff in the design of D-Wave chip is a quasi-
two-dimensional (2D) topology of interactions Jik due to
fabrication constraints, which incurs significant performance
penalty when mean-field models are ‘embedded’ into a ‘Chimera’
graph46. So-called ‘native’ problems corresponding to uniformly
random instances on this quasi-2D lattice have been argued to be
poor candidates for QA due to the lack of a finite-temperature
classical phase transition47; at the same time, a quantum phase
transition at Gc40 is expected in 2D glasses48.

Whereas first-order phase transition immediately implies
exponential complexity, even for small sizes, problems having a
continuous phase transition may remain tractable up to a
threshold, Nc, beyond which tunnelling bottlenecks become
dominant (a ln NcB1). This ‘tractability threshold’ serves as a
silver lining fot this otherwise negative result. Moreover, the
picture of ‘hard’ bottlenecks may be equally applicable to classical
annealing. A recent study demonstrated that classically ‘hard’
instances that exhibit temperature chaos also take much longer
time to solve on a D-Wave machine49. While in some crafted
examples classical annealing is at a unique disadvantage due to
first-order phase transition50, for most interesting problems both
classical and quantum transitions are second-order. In such a
scenario, the density of bottlenecks becomes a tie-breaker for
evaluating relative performance. Whether quantum annealing can
be advantageous in terms of this metric and determining which
models will benefit is a practically important question for follow-
up work.

There remains a question whether the failure mechanism
described here can be somehow circumvented. Such a feat is
feasible, for example, for a disordered Ising chain, where an
exponentially small gap develops at the critical point, which is a
manifestation of Griffiths singularities22. Modification of QA that
requires controlling the transverse field for each spin individually
can suppress these singularities and restore a polynomial gap.

Based on comparison with another exactly solvable model, it
seems that frustration—in addition to disorder—is essential for
the appearance of small gaps in the spin-glass phase proper. The
seemingly random profile of the energy landscape for finite G heralds
difficulties in avoiding these bottlenecks in generic spin glasses.
Although any prospects of exponential speedup should be met with
skepticism, heuristics inspired by spin-glass theory revolutionalized
branch-and-bound algorithms for CSPs51. One can remain hopeful
that theoretical advances can similarly aid quantum optimization.

Methods
Scaling analysis. Finite-size scaling of the gap at QCP is best understood using an
example of a finite-dimensional system. In thermodynamic limit, both correlation
length and characteristic time diverge near the phase transition as

xc / ðG�GcÞ� n; tc / ðG�GcÞ� zn: ð14Þ
In a finite system this divergence is smoothed out as soon as the correlation length
becomes comparable to lattice size (xcBN1/d). The minimum gap (the reciprocal of t)
and the width of the critical region should scale as N� z/d and N� 1/(dn), respectively.
In this paper, the product zn has been labelled as exponent b. Singular behaviour of
normalized ground state energy (free energy) is related to the specific heat exponent
(a¼ 2� a). Dimensionality d can be eliminated with the aid of hyperscaling relation
2� a¼ (dþ z)n to yield equation (7) of the main text. Independent estimates of the
specific heat exponent can be obtained from the exponents for the order parameter
and the susceptibility (2� a¼ 2bþ g).

Mapping to quantum mechanics. Finite-temperature partition function can be
written as a sum over a set of paths [si(t)] with 0ptpb, where si (t) alternates
between the values ±1. Hubbard–Stratonovich transformation can be used to
rewrite it as a path integral

Z �
X
½fsiðtÞg�

e
1

2N

R b

0

P
i
xi siðtÞð Þ2

dtþ
P

i
KG ½siðtÞ�

�
Z

dmðtÞ½ �e
� N

2

Rb
0

m2ðtÞdtþ
P

i

ln Zi

:

ð15Þ

The ‘kinetic’ term KG½sðtÞ� in the first equation penalises kinks, representing
G-dependent ferromagnetic couplings between Trotter slices. As the interaction
term is decoupled, the problem reduces to that of evaluating the single-site
partition function Zi for a spin subjected to a magnetic field with the transverse
component G and the ‘time-dependent’ longitudinal component hi (t)¼ nim (t). To
leading order in N, the saddle-point of the path integral (15) is a solution of
mean-field equations. This becomes a degenerate manifold for Gaussian disorder
distribution; to determine higher-order contribution all paths such that |m(t)|¼mG

are considered. Evaluating Zi is best performed in the adiabatic basis that diag-
onalizes the 2-level Hamiltonian Ĥi ¼ � hiðtÞŝz �Gŝx ,

Zi ¼ Tr T � e
R b

0
ĤiðtÞdt ¼ Tr T e�

R b

0
ÊiðtÞþ i @@tV̂iðtÞð Þdt

: ð16Þ

Here ÊiðtÞ is diagonal with eigenvalues �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ h2

i ðtÞ
q

. Its fluctuations around the

mean give rise to the random potential VG(W). Non-adiabatic terms due to rotation

of the basis Û ¼ e� iV̂iðtÞ

 �

are treated using second order perturbation theory,

giving rise to a kinetic term p(dW/dt)2. Note a simple form of the perturbative
term in equation (16) owing to the fact that V̂iðtÞ commute for all t. The details of
this calculation are given in Supplementary Note 1.

Continuous limit. In the limit N-N, the random potential VG(W) defined in
equation (10) in the main text converges to a Gaussian process that can be specified
completely by its covariance matrix hVG(W)VG0(W0)i. This can be ‘diagonalized’,
alternatively expressing the random potential as a linear combination of white-
noise processes {zn(W)}. One representation, as a convolution seriesP1

n¼0ðf
ðnÞ
G 
znÞðWÞ with kernels

f ðnÞG ðWÞ /
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ x2m2

Gsin2W
q

xaþ 1e� x2=2LðaÞn
x2

2

� �
dx; ð17Þ

relies on orthogonal properties of associated Laguerre polynomials. The choice
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a¼ 1 ensures that only n¼ 0 term survives in the limit G¼ 0. The random
potential should satisfy a stochastic equation

d2V0

dW2 þV0 ¼
2
ffiffiffiffi
N
p

p
z0: ð18Þ

As a side note observe that a similar equation is obtained by taking a continuous
limit in the identities that follow from elementary geometry (see Fig. 4 in the main
text, Vk ¼ N

2 m2
k):

Vkþ 1 �Vk

xkþ 1
� Vk �Vk� 1

xk
¼

2
N
ðxkþ 1 þ xkÞþ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Vk=N

p
cos

aþk � a�k
2

cos
aþk þ a�k

2

ð19Þ

For finite G, the form of the potential is modified as follows: It is convolved with a
smoothing kernel of width DWBG, which raises the global minimum by
O

ffiffiffiffi
N
p

G3=2
� �

. Additional random contributions (from nX1) have similar scaling.
This derivation is presented in greater detail in Supplementary Note 2.

Extreme value statistics. In the vicinity of the global minimum, the statistics of
the classical potential is fundamentally different. The ‘returning force’ in
equation (18) can be neglected; additionally the process should be conditioned on
the fact that it stays above its value at W¼ 0 (no generality is lost by choosing the
global minimum as the origin). This problem has been a subject of a considerable
body of work36,37, although important aspects ought to be revisited. Here, I present
a particularly simple self-contained derivation.

A pair (w,u)—where w / V0 �V
0 is interpreted as the ‘coordinate’ and
u¼ dw/dW as the ‘velocity’ (W being ‘time’)—forms a Markov process. The
probability distribution p (W; w, u) satisfies, for W40,

@p
@W
¼ � u

@p
@w
þ 1

2
@2p
@u2

; while pðW; þ 0; uÞ ¼ 0ð8u40Þ ð20Þ

serves as a boundary condition for the absorbing boundary. This probability is
‘renormalized’ to condition on the fact that it survives until some YcW. It becomes
a conserved quantity, but the diffusion equation adds a drift, � q(log PY)/qu,
repelling from the boundary. The ‘survival’ probability PY in the limit Y-N is, up
to ‘time-reversal’, the universal asymptotic solution of (20), reduced to ordinary
differential equation using scaling ansatz:

pðW; w; uÞ / w2a=3p
ðu=w1=3Þ
Wa

: ð21Þ

This exploits a fact that fractal dimensions of ‘velocity’ and ‘coordinate’ are
[u]¼ [W]1/2 and [w]¼ [W]3/2. The asymptotics is dominated by solutions with the
smallest possible exponent, a¼ 1/4 out of the infinite set of eigenvalues for the
ordinary differential equation. This matches a known value obtained with a different
method36.

The next step performs a change of variables, introducing ‘dimensionless’
velocity n¼ u/w1/3, and ‘logarithmic’ coordinate m¼ ln w. With the ‘time’ variable
redefined via dt¼ dW/w2/3, Markov process is described by a tuple (W, m, n).
Marginalizing out m and W in the equation for p (t; W, m, n) produces Fokker–Planck
equation for a stochastic motion of particle in a potential

UðnÞ ¼ � ln n=61=3

 �

Ai n2=62=3

 �

þAi0 n2=62=3

 �
 �

: ð22Þ

Given a particular realization of n(t), the full process (m, n, W) is determined
deterministically, by integration (see equation (12) in the main text). The
construction of a realization of a random process is performed independently for
W40 and Wo0. More detailed analysis is presented in Supplementary Note 3.

Numerical simulations rescale this random potential instead of evolving the

transverse field: W7!e�
DG
G W and w 7!e�

3
2
DG
G w. The process is extended to larger values

of t as needed (details of the process for small t, where they fall below the numerical
precision, are ‘forgotten’). A fairly large range of t is required to gather the sufficient
statistics.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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