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Abstract~
We discuss the weakcrystallization of a liquid or a liquid crystal which is a first-order phasetransition close to a

continuousone. Such a phasetransition is accompaniedby the softeningof the orderparameter,describing the short-
wavelengthdensity modulation.The softeningoccurring in thevicinity of certain lines or surfacesin the reciprocalspace
inducesa numberof characteristicpeculiaritiesof the transition.Quantitativelythe softeningmaybe characterizedby the
valueof thegap,figuring in theexpressionfor thepaircorrelatoroffluctuationsof theorderparameter.Thevalueof thegap
is small nearthe phasetransitiontemperatureandpossessesa complexbehaviour.A peculiarityof theweakcrystallization
is the importantrole of fluctuationsof theorderparameteraccountedfor by alargephasevolume of thefluctuations.We
investigatethebehaviourof thegapboth in theframeworkof meanfield approximationandwith theeffectsof fluctuations
takeninto account.The theoryenablesus to constructthephasediagramof the systemwhich appearsto be ratherreach
for all the consideredcases.in this diagram therearise (dependingon the strengthof the anisotropyand fluctuations)
both crystallinephasesof differentsymmetryandsmectic,columnarandquasicrystallinephases.Thedynamicsof theorder
parameteris purerelaxationalandtherespectivekinetic coefficientprovesto beinsensitiveto thephasetransition,therefore
the relaxationtime is inverselyproportionalto the gap. All physicalcharacteristicsof the systemin somedegreedepend
on theproximity to thetransitionpoint. For exampletheheatcapacityandthecompressibilityof thesystemhavesingular
contributionswhich maybe expressedexplicitly throughthe value of the gap. The most singularbehaviournearthephase
transitionis inherentin thebulk viscosity coefficientsdeterminingthe soundattenuation.
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1. Infroduction

It was Landau[1937] who madethe first attempt to studythe crystallizationof aliquid in the
framework of his phasetransition theory.At the crystallizationthereemergesashort-wavelength
densitymodulationwhich shouldbe regardedas the orderparameterof this phasetransition.Since
in the expansionof the free energythereis a term,cubicwith respectto the introducedparameter,
the crystallizationmustbe a first-orderphasetransition. This conclusionis in agreementwith the
experimentalsituation.

However, the descriptionof the crystallizationin the framework of the Landauphasetransition
theory is possibleif the mentionedcubic term is anomalouslysmall. In this casethe crystallization
will be close to a Continuoustransition.This circumstance,in particular,implies that a jump of
entropyat this transitionwill be small, i.e., muchsmaller thanit usually is at thecrystallizationof
liquids. Besides,the amplitudeof the short-wavelengthdensitymodulationat sucha transitionwill
be small in comparisonwith the densityof the liquid. This phasetransitionwill be termedweak
crystallization.

The developmentof theweakcrystallizationtheorywas stimulatedby considerableachievements
in the theory of second-orderphasetransitionswherethe long-wavelengthfluctuationsof the order
parameterplay a key role. Although the order parameterof the weak crystallization theory is
short-wavelength,its fluctuationsalsoplay an essentialrole in the theory.The problemis that the
fluctuations“soften” in the vicinity of the weak crystallizationphasetransition as fluctuationsof
theorder parameternearthesecond-orderphasetransition.

Thesofteningoffluctuationsof the densitymodulationshouldleadto thesingularbehaviourofthe
structuralfactor, whichmaybe directly measuredby neutronscatteringor by X-ray scattering.This
softeningalsomanifestsitself in the anomalousbehaviourof suchcharacteristicsascompressibility
or heatcapacityof the sample.As was noted in our paper [Kats, LebedevandMuratov 19881,
mostsensitiveto the influenceof fluctuationsareviscositycoefficients,determiningthe attenuation
of sound.

A peculiarityofthe weakcrystallizationtheory in comparisonwith the conventionalsecond-order
(or weakfirst-order) phasetransitionsis that the softeningof the order parametertakesplace in
the vicinity of somespherein the reciprocalspace.Therefore the phasetransition gives rise to
condensationof severalFouriercomponentsof the order parameterwith wave vectorsnearthe
sphere.Therecanbe afew of suchphasesdueto differentpossiblestructuresof the short-wavelength
order parameter.As a result, theremay occur crystalline andquasicrystallinephases,possessing
different symmetries,betweenwhich phasetransitionscan also take place. Therefore the phase
diagramof thesystemmayprove to be fairly rich. The richnessof the phasediagramdistinguishes
weak crystallization from usual phase transitions with the conventional long-wavelengthorder
parameter.

Apparently, the first attempt to construct the phasediagram of certain systemswith weak
crystallization was madeby Kirzhnits and Nepomnyaschiy[1970]. They have formulated the
possibilityof existenceof two typesof crystals— conventionalcrystalswhereatoms are localized
in sites of a regular lattice and coherentcrystals characterizedby a smooth periodic density
modulation.Theyhaveattributedsolid helium to the secondclass.Kirzhnits andNepomnyaschiy
have consideredsome structuresof coherentcrystals (body-centeredcubic, face-centeredcubic,
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4 El. Katset al., Weakcrystallizationtheory

hexagonaland rhombic) andcomputedtheir energiesin the meanfield approximation.
The possibitity of existenceof cubic structuresin neutronstarswas discussedin the framework

of meanfield weak crystallizationtheory in the work by Baym, BetheandPethic [1971]. Then
the conclusionstheyhadarrivedat were specifiedby otherauthors[e.g.,AlexanderandMcTague
1978,Liebler 1980,FredricksonandHelfand 1987,Kendrick, SluckinandGrimson 1988].A brief
review of resultsobtainedfor weak crystallizationin the meanfield approximationcanbe found
in the monograph[Toledano andToledano19871.

Besidesthecrystallinephasesin thetheoryof theweakcrystallizationthereappearquasicrystalline
phases.Experimentallysuchphaseswere firstly observedby Shechtman[1984] andBrancel [1985]
who, studyingfastly cooledalloys by meansof X-ray scattering,obtainedasystemof reflexeswhose
analysis testifies for the presenceof an icosahedricalquasi-crystallineordering in the alloy. It is
interestingto notethat alreadyAlexanderandMacTague[19781notedthe possibilityof existence
of icosahedralstructures.Recentlythereappeareda numberof workswherequasi-crystallinephases
are studiedin termsof theweakcrystallizationtheory [seeKalugin, Kitaev andLevitov 1985,Back
1985,Trojan andMermin 1985, Jaric 1986, Toner 1986]. All thesestudieswere performedin the
framework of themeanfield approximation.

The following importantcommentwas madeby Brazovsky [1975]. He hasshown that in the
weak crystallizationtheoryan essentialrole is allotted to thermalfluctuations,concentratedin the
vicinity of the abovementionedspherein thereciprocalspace.The strengthof theorderparameter
fluctuationsis so large that due to fluctuation effects the crystallization becomesa first-order
transitionevenin the absenceof terms,odd in the orderparameter,in the expansionof the free
energy.Let usstressthat fluctuationsof the orderparameterarestrongboth in thehigh-temperature
isotropicphaseandin the low-temperaturecrystallinephasesincethe disturbanceof thestructural
factor associatedwith the appearanceof the densitymodulationis weak dueto smallnessof the
modulation.

In our survey we will mainly payattentionto fluctuation effects sincethey arecharacteristicof
weak crystallizationanddeterminethe majority of peculiaritiesof a systemneara weak crystal-
lization phasetransition.Note that if thoughfluctuationsarequantitativelysmall, theybring about
somequalitative effects. For example,they stabilize the high-temperature(high-symmetry)phase
andmakeit metastableat all temperatures.

We would like to notethat theapproachelaboratedin the frameworkof the weakcrystallization
theory is usedin thetheoryofinstabilities.Namely,avarietyof structuresappearingas aresultofthe
instability processnearthepointof absoluteinstability maybe studiedby weakcrystallizationtheory
methods.Wereferareaderinterestedin thesubjectto themonographby GershuniandZhukhovitsky
[1976] and refs. [Malomed 1983, Malomed andTribelsky 1987, Malomed,Nepomnyaschiyand
Tribeisky 19891. Practicallyall resultspresentedin our survey are applicablefor the description
of structuresarisingat convectiveinstabilities.Note, however,thatfor suchtransitionsfluctuation
contributions (the most part of our survey is devotedto) are irrelevant due to the macroscopic
value (of the orderof the thicknessof the sam..pie) of the periodof the structureswhicharise.

Weak crystallizationtheorywasalso successfullyappliedto investigationof the structureof the
so-called“blue phase”of cholestericliquid crystals. Among the works devotedto this problem
oneshould mention the worksby BrazovskyandDmitriev [1975], BrazovskyandFilev [1979],
Kleinert andMaki [1981], Grebel,HornreichandShtrikman [1983]. It is interestingthatKieinert
andMaki havearguedthat theicosahedralphasecanbe realizedas ametastableonein cholesterics.

In this reviewwe are not going to study this rangeof problems,first, becausethe formation of
“blue phases”is associatedwith “condensation”of afairly specificorientationorderparameter,and,
second,becausetheseproblemshavealreadybeenratherextensivelydescribedin theliterature(see,
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E.I. Katset aL, Weakcrystallization theory 5

e.g.,the surveyby BelyakovandDmitrienko [1985]). So to keepour reviewwithin boundswe will
consideronly thosecasesof weakcrystallizationwherethe short-wavelengthdensitymodulation~‘

is the order parameter.Thereis anothercircumstance.In our reviewwe will pay much attention
to fluctuationeffectsatweak crystallizationphasetransitions.Fluctuationsalmostundoubtedlyare
irrelevantat phasetransitionsof weakcrystallizationinto “blue phases”,which is accountedfor by
a largevalue of the periodof thesestructures.

The most comprehensivedescription, known to us, of the weak crystallization theory of an
isotropicliquid can be found in the work by Brazovsky,DzyaloshinskyandMuratov [19871. In
this paper both the meanfield theory and the fluctuation effects are discussed.The results of
Brazovskyet a!. are in agreementwith the conclusionsmadeby Dyugaev [1982], who using the
microscopicapproachinvestigatedthe ir-mesoncondensation.The weakcrystallizationtheory,with
the orderparameterfluctuationstakeninto account,wasalsodiscussedin the paperby Fredrickson
andHelfand [1987].

Unfortunately, for known simple liquids the crystallization is a strong first-order transition,
thereforethe theoryunderstudyis not applicableto such materials.Nevertheless,thereis abroad
classof substancesexperiencingphasetransitions,which could be regardedas weakcrystallization.
We meanthe substances,possessingliquid-crystalline phases.The review of propertiesof liquid
crystalsmay be found in monographsby de Gennes[1974], Chandrasekhar[1977] and Pikin
[1981], andin the surveyby StephenandStraley [1974].

As is well known,in theliquid-crystallinestateonecanobservediversephasetransitions,as arule,
associatedwith partial or completecrystallization. Firstly, transitionsfrom the nematic (which is
an anisotropicliquid) into smecticstate (which possessesone-dimensionaltranslationalorder) can
betermedcrystallization.Thesetransitionsareusuallycloseto continuousphasetransitions.Partial
(two-dimensional)crystallizationis alsothe nematic—columnarphasetransitionobservedoften in
discotic liquid crystals. Besides,completecrystallization of smecticsis also weak crystallization.
Thelatter statementrequiressomeclarification.

Different smecticphasesare traditionally labelledby the lettersA—I. Not all of thesephasesare
genuinelysmectic(genuinesmecticsarecharacterizedby the one-dimensionaldensitymodulation).
Namely, genuinesmecticsaresmectics-A,C andpart of smectics-B.To avoid confusion,in confor-
mity with the conventionalpractice,genuinesmectics-Bwill be calledhexaticsmectics-Bor simply
hexatics(the title is accountedfor by the mosttypical casewherethereis asixth-orderaxis in the
symmetrygroupof this phase).A considerablepart of smectics-Bandpractically all smecticsD—I
are,strictly speaking,genuinecrystals,thereforewe will call thesephasescrystallinesmectics.

The mentionedcrystallinephasesarecalled smecticsbecauseof their layeredstructurein virtue
of which they are in experimenthardly distinguishablefrom genuinesmectics.In particular, in
crystalline smectics the shearmodule is anomalouslysmall, which testifies for a weak density
modulationin a smectic layer. It meansthat genuinesmectic—crystallinesmectic transitionscan
be studiedin the framework of weak crystallizationtheory. Small valuesof latent heatsof these
transitionsalsoconfirm it.

In this connection we would like to say some words about the comparisonof the theory with
experiment.The experimentaldataconcerningcrystallizationtransitionsin liquid crystalesmaybe
found in the reviewsby Chandrasekhar[1982], Gramsbergen,Longa andde Jeu[1986] and in the
monographby deJeu[19801.As usual,thephasediagramcontainsmanydifferentphases.Therefore
it is impossibleto describethe behaviourof anysubstancein the overall region of existenceof
the liquid-crystalline stateon the basis of a simple model, since a great numberof parameters
characterizinganisotropy,fluctuations,mutual influenceof neighboringphasetransitionsand so on
mustbe takeninto account.
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6 E.I. Katset a!., Weakcrystallizationtheory

Nevertheless,the proposedtheory maybe usedfor a quantitativedescriptionof a substancein
someparticularregionsof thephasediagram.The theorypredictssingularcontributionsto different
physicalpropertiesof the substance.Besides,the weak crystallizationtheory enablesus to explain
qualitatively thediversityandthe structureof observablephasediagramsand the generalcharacter
of the behaviourof observablequantities.

Peculiaritiesof crystallizationphase transitions in the liquid-crystalline state are due to the
anisotropyof thestate,whichordinaryliquidsdo not possess.Thisanisotropyleadsto anonuniform
angulardistributionof the regionsin thereciprocalspacewheredensityfluctuationssoften.Besides,
in a numberof cases fluctuationsof the orientationalorder parameterare also relevant. This
complicatesthe considerationof crystallization of liquid crystals in comparisonwith the weak
crystallizationof an isotropicliquid. Nevertheless,the problemis not hopeless.

For weaklyanisotropicnematicsthe weak crystallizationtheory maybe constructedby analogy
with the weak crystallizationtheory of liquids [Kats andMuratov 1988]. For astronganisotropy
the characterof crystallizationis essentiallydifferent.The densityfluctuationsin this casesoften
either in the vicinity of a circle or in the vicinity of certain points in the reciprocalspace.The
first case is realizedfor the nematic—smectic-C,nematic—columnarphase,smectic-A—crystalline
smectictransitions;the secondcaseis realizedfor the nematic—smectic-A,nematic—smectic-Cor
hexatic—crystallinesmectictransitions.

If densityfluctuationssoftenin the vicinity of acircle (or two circles) in the reciprocalspace,
then, like in the isotropic case,fluctuation effects are very strong. In the most explicit way the
role of fluctuationsmanifestsitself in the nematic—smectic-Ctransition,which in the meanfield
theory is asecond-orderphasetransition. Fluctuationstransformthis transitioninto a first-order
transition [Swift 19761. The theory of the smectic-A—crystallinesmectic andnematic—columnar
phasetransitionswas studiedin our work [Kats, LebedevandMuratov 19891.

If densityfluctuationssoftendownonly in thevicinity ofisolatedpointsin thereciprocalspace,the
descriptionof suchcrystallizationreducesto the descriptionof astandardphasetransitionwith the
long-wavelengthorderparameter.In themeanfield theory the hexatic—crystallinesmectictransition
is a first-ordertransition,the nematic—smectic-Aand smectic-C—crystallinesmectictransitionsare
second-ordertransitions.However,the analysisof thelattertransitionsis complicatedby fluctuations
of the director. Thesefluctuationsmay lead to transformationof a second-ordertransitioninto a
first-ordertransition [Halperin, LubenskyandMa 1974,WiegmannandFilev 1975].

We would like to note that besidesthe conventional(thermotropic) liquid crystalsthere also
exist the so-calledlyotropic liquid crystalphasesobservingin watersolutionsof differentorganic
molecules.The lyotropic statepossessesthe samevariety of phasesas the thermotropicone. The
basicexperimentaldataconcerninglyotropic liquid crystalsmaybe foundin thebooksby Blumstein
[1978] and by Brown andWolken [1979]. But we should stressthat crystallizationtransitionsin
lyotropic systemscannotbe examinedin the framework of the weak crystallization theory.The
problemis that the densitymodulation emergingat the crystallization in lyotropic systemshas
severalFourierharmonicsof the sameorder.This leadsto theconclusionthat for lyotropicsystems
higher-orderterms in the Landauexpansiondescribingthe self-interactionof the orderparameter
play an important role, and thereforewe cannot limit ourselvesonly to the first terms of the
expansion.

Somewordsaboutnotationsof differentphasesin our survey.We shallusethe notations,known
from the solid state physics such as body-centeredcubic (BCC) or face-centeredcubic (FCC)
structures.Thesenotationsarepromptedby theconceptof a crystalas asystemof atoms,localized
in sitesof aregularlattice. Thisdescriptioncanbe appliedto conventionalcrystals,wherethe mean
atom displacementis smallin comparisonwith the interatomicdistance.But in the phasesemerging
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as a result of weak crystallizationtransitionsthe meandisplacementof atomsis of the order,of
interatomicdistance,andthereforethe abovementionedschemeis not adequatefor describingsuch
structures.Neverthelesswe will utilize thesedesignations,havingin mind that the symmetryof the
densitymodulationfunction in the appropriatephaseshasthe samesymmetryas in conventional
crystallinephases.

Thestructureof ourreviewis thefollowing. In section2 weconsiderthe weakcrystallizationof an
isotropicliquid andin sections3 and4 weconsiderthe weakcrystallizationtheoryin the anisotropic
state,namelyin liquid crystals.A short descriptionof liquid-crystalline phasesis presentedat the
beginningof section3. Section2 is mainly methodical,sinceknownconventionalliquids crystallize
by strong first-order transitions.Thereforewe will not considersofteningof the orderparameter
neartwo or more spheresin the reciprocalspace. This possibility, actually realizedin smectic
phasesof substancesconsistingof polar molecules,is studiedin section 3 wherethesesubstances
are considered.The theory of crystallization of weakly anisotropicliquid crystals presentedin
section4 is closeto the theoryof an isotropicliquid. Since the majority of liquid-crystalline phases
are strongly añisotropic, the theory of such systemsdescribedin section 3 is mainly related to
experiment.

2. Weakcrystallizationtheoryof liquids

We are now starting our survey with the theory of weak crystallizationof an isotropic liquid.
Despitethe fact that so far we areignorantof anysimpleliquids crystallizingby a weak first-order
phasetransition (notethat thereis probably onealloy experiencingweak first-ordercrystallization
[Voronel, Steinbergand Sverbilova 1980]), we believe it standsto reasonto study this theory
in detail. By presentingthis simple example,we can describea methodalso applicable to more
sophisticatedcases.

The theoryof weakcrystallizationis constructedin termsof the Landauphasetransitiontheory.
Therefore,in the firstplace,oneshouldintroducethe orderparameter,associatedwith the transition.
For this purpose,definethe quantity

= Pshort/P. (2.1)

Herep is along-wavelengthcomponentof thedensityand Pshoi~tis ashort-wavelengthcomponentof
thedensity. In virtue of the definition, the field ~ containsFouriercomponentswith wavevectors
ofthe orderof theinversemolecularsize.In the liquid phasetheaverage(~)= 0, in the crystalline
phasethereemergesanon-zeroaverage(v,). Thus,the field ç’ canbe regardedas the crystallization
orderparameterso this is how ~, will be termedhereafter.

As follows from the definition (2.1), the condensateof the field ~‘ (i.e., (i’)) characterizesthe
amplitudeof the short-wavelengthdensitymodulationof the crystalline phase.In practically all
known crystals (cc) 1, whereas at the weak crystallization there should appeara condensate,
satisfyingthe condition

(cc)<<l. (2.2)

This inequalitymeansthat in particularin the crystallinephasein thevicinity of thephasetransition
point, the shearmoduleswill be anomalouslysmall.
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2.1. Landaufunctional

Weak crystallization can be describedphenomenologicallyby meansof the thermodynamic
potentialQ, whichis thefunctionalof the chemicalpotential~, temperatureT andfield h, thermo-
dynamicallyconjugatedto the orderparametercc. The physicalstateof the systemcorrespondsto
the valueh = 0. However,it is convenientto formally retain thedependenceof the thermodynamic
potentialon h. This is becausethe coefficientsof the expansionof Q in h arejust the correlation
functionsof the orderparameter.

The differentialof the thermodynamicpotentialis

dQ = _fdr((~)dC+(s)dT+(cc)dh). (2.3)

Here (p) and (s) are densities of the mass and entropy, averaged over fluctuations. Let us perform

the Legendre transformation

Q’=Q÷fdr(co)h. (2.4)

For the new function Q’, which we will also call the thermodynamic potential, from (2.3) follows

the relation

c5S2’/~(cc(r))= h(r). (2.5)

Since for the physical state of the system h = 0, this state, in virtue of (2.5), corresponds to the
extremum of Q’ ((cc)). The ground state of the systemcorrespondsto theabsoluteminimumof Q’.

The thermodynamic potential Q or Q’ possessestotal rotationaland translationalinvariance.
The same invariance is alsoinherent in the liquid state,where (cc) = 0. Howeverin the casewhen
the minimumof Q’ is reachedat (cc) ~ 0, thegroundstatewill no longer possesstranslationaland
rotationalinvariance.This phenomenonis spokenof as spontaneouslybreakingof the symmetryat
a phase transition.

2.1.1. Structureofthe condensate
A few words are in order about the structure of the condensate of the field cc~resulting under the

crystallization.Generallyspeaking,theaverage(cc) is asumof an infinite numberof spatialFourier
harmonics.Yet, under the condition (2.1), out of theseharmonicsone can single out principal
harmonics, whose number is finite. The remainingharmonicswill have amplitudes much smaller
thanthe amplitudesof the principalharmonics.

Thus,in the leadingapproximationthe average(cc) could be representedas

(co(r)) = 2Re~a~exp(iq~.r) = ~a~exp(iq~.r). (2.6)

Here N is the number of the principal harmonics,a~are their amplitudes. The tilde over the
summationsign in (2.6) meansthat the summationis carriedout over the positive (from 1 to N)

and over the negative (from —N to —1) values of n. Then

a~= a~, q_~= —q~. (2.7)
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The asteriskin (2.7) denotescomplexconjugation.The summationprocedure,denotedby thetilde,
will be usedby ushereafter.

From the condition (2.1) resultstheinequality

la~l‘~z1. (2.8)

Since (cc(r)) is determined by the extremum of the thermodynamic potential (2.4), one can
formulatetheiterationprocedurefor calculatinghigher-orderharmonicsvia theprincipal harmonics
(2.6). Then thereariseharmonicswith wave vectors,which are linear combinationsof the wave
vectors of the principal harmonics.Amplitudesof higher-orderharmonicswill havethe order al2,
al3 and so on, depending on the step of the iteration procedure where they emerge. From the
inequality (2.8) the amplitudes of higher-order harmonics prove to be much smaller than the
amplitudes of the principal harmonics,which in fact justifies the aboveassertion.

Note that the average of the form (2.6) may belong both to the crystalline and quasicrystalline
states. The latter is realized if among the wave vectors entering in (2.6), there are some incommen-
suratevectors.The numberof crystallineandquasicrystallinestructuresof differentsymmetriesis
rather large. The question which of the states is actually realized, cannot be solved in a general
form; the reply to this question should be sought for by minimizing the functional Q’ ((cc)) for each
individual case.

To calculate the value of the thermodynamic potential Q’, we will, as (cc)~employ the sum of
the principal harmonics (2.6). This procedure implies that the calculation of Q’ is performed in
the main approximation over the small parameter(cc). Then we will deal with the symmetry of
the sum (2.6) but not with the symmetry of the total average (cc(r)). Yet, one can assert that
these symmetries coincide. Becauseof the total rotationaland translationalinvarianceof Q’ in
the iteration procedure(as a result of which from the sum (2.6) onecanobtainthe total average
(cc(r))), the symmetry of the condensate cannot alter. Thus, the symmetry of the sum (2.6)
straightforwardly determines the symmetry of the respective phase.

To find the minimum of Q’ it is necessary to consider averages (cc) of different forms. Of course,
it is not possible to check all possible structures. Then, in principle, the ground state of the system
maybe missing. Having this in mind, we will nevertheless confine ourselves to a minimally possible
amount of structures to be studied, trying to make the choice sufficiently reasonable from the
physical point of view so as to annul the possibility to miss the ground state.
2.1.2. Landauexpansion

To find the form of the functional Q’ ((cc)), it is necessary to start with the Landau functional FL

FL=FL(cc). (2.9)

The quantity FL denotesthe energy, associated with the order parameter cc. Note that the the
functional FL can be introduced since the order parameter softens near the phase transition point.
Quantitatively, in the weak crystallization theory this “softness” is ensured by the small value of
the average cc emergingat thephasetransition.

Let us stress the distinction betweenthe functionalsFL andQ’. The former determines the energy,
associatedwith the orderparameterfluctuations,whereasthe latter is the quantity averagedover
fluctuations. The quantities Q’ and FL coincideonly if fluctuationsareneglected.

Herewe wifi, as usual,confineourselvesto the first few termsof the expansionof the Landau
functional in the order parameter.For thecaseof weakcrystallizationwearestudying,thisexpansion
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is justified by the inequality (2.2). The first termsof the expansionof FL in cc canbe written as

f dr (r’cc2/2 — pço3/6+ ~cc4/24). (2.10)

Here, thereis no linear term in cc since cc is a short-wavelength field and, consequently, does not
involve azeroFourier harmonics.By analogywith quantumfield theorywe will call the quantities
ii, ,% vertices.The higher-ordertermsof the Landauexpansionin cc canbe omittedif the vertex~.
is positiveandnot anomalouslysmall, which will be assumedbelow.

Thephasetransition,associatedwith theemergenceof the average(cc)~occurswhentheparameter
r’ in (2.10)diminishes.Due to the presenceofthe cubic termin theexpansion(2.10)thistransition
is afirst-ordertransitionandcould becomecontinuousonly in a certainisolatedpointon the phase
transitionline [Landau 1937]. The weakcrystallizationtheoryholdsactuallyin the vicinity of this
isolatedpoint. Thus, for this theory to hold, it is necessarythat the additionalcondition*) of the
small value of the coefficient jt in the expansion (2.10) should be fulfilled. This condition could
be expressedvia the inequality

(2.11)

Note that the crystallization might be described by a more sophisticated order parameter than
the densitymodulation (e.g. it may be relatedto many-pointcorrelationfunctionsof the density
modulation).In this caseit is possible to imagine the situationof all odd terms in the Landau
expansionbeingforbiddenby the symmetry[Marchenko 19911.This casecanbe formallydescribed
as well in the frameworkof our considerationif we assume~ = 0.

As hasalreadybeenmentioned,the field cc is of short-wavelengthcharacterand thereforethe
dependenceof the coefficients of the expansionof the Landaufunctional FL in cc on the wave
vectorsof the field cc is ratherimportant.Thus,the coefficient r’ in (2.10) is a functionof module
of the wave vector q. We will havein mind the situationof r’ (q) reachingthe minimum on a
certain sphere of radius q

0 in the reciprocal space. Wewill be interested in the fluctuationsof the
Fourierharmonicsof the field cc with the wave vectors in the vicinity of this sphere. Expanding t’

nearthe ~l = q0, we find with the necessaryaccuracy

= r + a(~qi— q0)
2. (2.12)

Here, the coefficients r and c~no longer contain the dependenceon q. Note that ‘r = r’ (q
0).

The parameter r in (2.12) changesits sign in the vicinity of the transitionpoint. Therefore,in
the case when the phase transition takes place at a variation of the temperature, for the parameter
r one can use the standard expression

(2.13)

Here w is a constant and T* is the temperatureat which r becomes zero. Since the phase transition
under considerationis a first-order transition, the temperatureT* does not coincide with the
crystallizationtemperature,althoughit is close to it as long as the average(q~),emergingat the
crystallization,is small. If the phasetransitiontakesplaceatavariationof concentration,thenthe

*) In this sensethereis asimilarity with thetricritical behaviour,which is observedif a certainadditionalconstrainton

the constantsofthe Landauexpansionis obeyed.
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concentrationwill play the role of the temperaturein (2.13). For the constantso, w, figuring in
(2.12), (2.13), one can expect the following natural estimates:

~ -..~%/T~’. (2.14)

These estimates, in conjunction with the inequality (2.11), guarantee the consistency of our approach
in the framework of the weak crystallization theory. Note that these estimates are sufficient but not
obligatory.

The condition for eq. (2.12) to be applicable is the inequality

jq—qol<<qo. (2.15)

In the same approximation, the second-order term of the expansion of the Landau functional in cc
can be respresented as

FJ~2~= fdr{rcc2/2+c~[(V2+q~)cc]2/8q~}. (2.16)

This expression is handy since it is easily written in a local form.
The third- and fourth-order terms of the expansion of the Landau functional can, in generalform,

be represented as

F~3~= ~ (2.17)

F~4~= ~V~2(q
1,q2,q3,q4)ço(q1)ço(q2)ço(q3)çc(q4). (2.18)

Here V is the volume of the system and cc (q) is the Fouriercomponentof the field cc:

cc(r) = ~cc(q)exp(iq.r). (2.19)

The summationin (2.17) is performedover the wavevectors,obeyingthe condition

q1 + q2 + q3 = 0, (2.20)

and in (2.18) the summation is performed over the wavevectors,obeyingthe condition

q1+q2+q3+q4=0. (2.21)

We will assume the vertex A to be positive at all wave vectors.

2.1.3. Dependenceof verticeson wave vectors
In the weak crystallization theory an important role is played only by Fourier componentsof

the field cc with the wave vectors, obeying the inequality (2.15). In this case,the condition (2.20)
determinesthe triplet of wave vectorsforminga closed,almostregulartriangleandthe vertex~uin
(2.17) canbe regardedasconstant.

The latterassertionrequiressomeclarification. It is correctif thenaturalestimate

-‘.~ (2.22)
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is correct. On the other hand, in the vicinity of an isolated point on the phase transition line (where
~uis zero), one should expect the estimate

A/q0. (2.23)

In this case the dependence of /L on the wave vectors can be relevant in the weak crystallization
theory. Yet, for the real phase transitions in liquid crystals we have in mind, rather the estimate
(2.21) is valid. Therefore, we will henceforth take ~u= const.

Since we assume that the coefficient A in (2.18) is not small, for the derivative ~A/ôq one should
expect the naturalestimate

OA/Oq ‘~A/qo. (2.24)

In this case, the dependence of A on the modules of the wave vectors q1, q2, q3, q4, can be
discarded, and we may assume these modules to be equal to q0. Then, from the condition (2.21),
the dependence of A on the wave vectors q reduces to a dependence on two angles. As these angles
one can choose the anglebetween the vectors q1 and q2 (equal to the angle between q3 and q~)
and the angle between the vectors q1 — q2 and q3 — q4. The fact that A should be symmetric with
respect to the permutation of q1, q2, q3, q4 imposes certain evident constraints on the form of this
angulardependence.

Naturally, it is impossibleto analysequantitativelythemodelwith anarbitraryangulardependence
of A on the angles.Henceforthwe will mainly consider the caseA = const., sincethe general
peculiarities of the theory may be demonstrated by this example. Certain concrete results will be
obtained for an angulardependenceof the coefficient A of the form

A(q1,q2,q3,q4) = A{(l +A’[(eie2)(e3e4) + (e1e3)(e2e4)+ (eie4)(e2e3)’J/3}. (2.25)

Here A, A’ are constants, e are unit vectors in the directions of the wave vectors q *) The interaction

term (2.18) with the function (2.25) canbe written down within the necessary accuracy as

F~
4~= ~fdr [cc4+A’(V~V~)2q~4]. (2.26)

This expression is convenient since it is written in local form. For more complicated cases we will
discuss the consequences of the angular dependence of A only qualitatively.

2.1.4. Interaction with the long-wavelengthdegreesoffreedom
So far, we have dealt only with fluctuations of the order parameter cc. Fluctuationsassociated

with long-wavelengthdegreesof freedomare not important in the weak crystallization theory.
Nevertheless,the interactionbetween“soft” short-wavelengthfield cc and long-wavelengthdegrees
of freedommustbe incorporatedin the calculationof the anomalouscontributionto suchquantities
as the heat capacity or compressibility.

Having in mind these problems as well as dynamic effects, introduce the functional

H = H(p,s,cc), (2.27)

denotingthe energyof the system.Since fluctuationsof the massdensityp andentropydensitys
are irrelevant in studying fluctuations of cc~one can treat the conditions

öH/c5p = C(r) = const., ÔH/ös = T(r) = const. (2.28)

‘> Expression(2.25) exhaustsall possiblescalarcombinationsup to thefourthorder in e.
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as fulfilled. Theseconditionsimply that in the systemthereis a thermodynamicequilibrium with
respectto thevariablesp, s.Notethat the conditions(2.28)do not imply thatp, s arehomogeneous
becausethey mayvary in spacein the presenceof adependenceof cc on r.

The conditions (2.28) indicatethat fluctuationsof cc should be describednot by meansof the
functional (2.27)but by meansof the functional,dependenton ~, T. This is the Landaufunctional
FL(~,T,cc). Thus,all coefficients‘r, a, ~u,A of the expansion of FL in cc are alsofunctionsof ~, T.

The relationbetweenthe functionalsFL andH is given by the Legendretransformation:

H=FL+fdr(~p+Ts). (2.29)

As a result of (2.29), we find the expression

p = —öFL/ö~, s = —öFL1ÔT, (2.30)

which yields local valuesof themassandentropydensitieswith fluctuationof cc takeninto account.

2.2. Meanfield theory

The meanfield approximationimplies that fluctuationsof the field cc should be neglected. This
is justified whenthe distributionfunctionover cc hasasharpmaximumin the vicinity of cc = (cc).
In this case the thermodynamic potential Q’ canbe found if the simple substitution

9’ = FL((cc)) (2.31)

is performed.
In our approximation, FL is determined by the sum of the terms (2.16), (2.17), (2.18) and as

(cc) one should use the sum (2.6). After the insertion of this sum into (2.16), (2.17), (2.18), the
thermodynamic potential is expressed via a~,q~.Minimizing Q’ over these parameters, one can
find the values of these quantities. This is alsothe way of constructingthe phasediagramof the
system since stable phases correspond to an absoluteminimum of the thermodynamicpotential.

2.2.1. Comparisonwith conventionalphasetransitions
The studyof weakcrystallizationin the frameworkof the meanfield theoryconsiderablyrepeats

the study of usual first-order phase transitions, close to continuous transitions. For convenienceof
comparison with the results of fluctuation theory, here we will quotethe main issuesof meanfield
theory (see for detailsthe monographsby LandauandLifshits [1980] andAnisimov [1991], and
the reviewsby StephenandStraley [1974] andGramsbergen,Longa andde Jeu [1986]).

Quantitatively, the traditional meanfield theory of first-order phasetransitionswith a one-
componentorderparameteris basedon the sameexpansion(2.10) ofthe thermodynamicpotential
as thetheoryof weakcrystallization.The only but very importantdistinctionis the characterof this
order parameter.For usual phasetransitionsthe orderparameteris a long-wavelengthfield, and
therefore the dependence of the Landauexpansioncoefficientson wavevectorsis alwaysirrelevant.

In the model considered(with long-wavelengthorder parameter),upon the variation of r one
phase transition is observedwhich is of first order. The phasetransition occursat the value

= ~p~/A, obtainedfrom the condition of the equality of the thermodynamicpotentialsof the
ordered (low-temperature)anddisordered(high-temperature)phases.For ~u= 0 we obtain the
continuousphasetransitionoccurringat r~= 0.
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Rememberthat in the vicinity of a weak first-order phasetransition we may assumer =

~ (T — T*), where w is a constantand T* is a temperatureclose to the transitiontemperature
T~but not equal to it. The physicalmeaningof the temperatureT* is that at this temperature the
thermodynamicpotentialminimum correspondingto the disorderedphasevanishes.Thus, T* is
the boundary of absolute instability of the overcooled high-temperature phase.

Similarly, one can find the boundary of stability of the overheated low-temperature phase T**
which is the temperature at which the minimumcorrespondingto the orderedphasevanishes.The
corresponding value of r appears to be

= ~u2/A.

For second-orderphasetransitions (i.e., at ~t = 0), the temperaturesT*, T** coincide with the
critical temperature.The closenessof thesetemperaturesor of the correspondingvaluesof the
parametersr~,ri’, ~ is accountedfor by the small valueof the Landauexpansioncoefficient ~u,
which justifies the form of the Landauexpansion(2.10).

It is well known that at asecond-orderphasetransitionthere occursa universaljump of heat
capacity,

L~tCp= 3w2/A.

At a first-orderphasetransition,to thisjump is addedthe contribution associated with the singular
temperaturedependenceof cc in theorderedphase.Due to this contribution,theheatcapacityjump
at the transitionpoint T = T~proves to be equal to l2w2/A, i.e., irrespective of the value of j.t it
increasesfour timesasmuchin comparisonwith the second-orderphasetransition.As long as the
coefficient ~udiminishes, the width of the temperature range where the characteristic behaviour of
cc leading to this jump occurs also diminishes, and at j~= 0 we go back to the well-known Landau
result for second-order phase transitions.

The behaviour of a system near the weak crystallization transition point in the framework of mean
field theory is qualitatively the sameas near the conventionalweak first-order phasetransitions.
However, there are somedistinctionswe want to stress.Firstly, in a systemthere occur several
phase transitions between different phases. Secondly, in the weak crystallizationtheory (aswe have
seen above) the coefficient A can be considerablydependenton wave vectors.The characterof
the dependenceessentiallyaffects both the structureof the phasediagram and the temperature
behaviourof all observablequantities.

The closestto thetraditional Landautheory is the weakcrystallizationtheorywith A const. In
this caseuniversalformulaefor jumpsofheatcapacityof the abovewritten typemaybe derivedfor
eachphasetransitionoccurring in the system.But the numericalcoefficients in theseexpressions
of coursewill not coincide with the coefficientappearingin the conventionaltheory.In the general
case,the coefficientswill be determinedby an integral overthe anglesof the function ~.%.

As we will see in what follows, fluctuationsqualitatively affect the characterof the temperature
dependenceof all thermodynamicquantities,evenif thecorrespondingcorrectionsarequantitatively
small. It is to the studyof theseeffectsthat the main part of our surveyis devotedto.

2.2.2. Estimates
Prior to a quantitative investigation of the problem, let us give a number of estimates. A phase

transition occurs at

(2.32)
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Henceit follows thaton the planer, ~uthe phasetransitionlinesareparabolas.At thetransitionthere
emergesan average(cc) whereamplitudesof the principal harmonicshavethe orderof magnitude

(2.33)

Thus the inequality (2.11) guaranteesfulfillment of the condition (2.8). The latent heat of the
transition has the order of magnitude

Q-..~j~4/A3. (2.34)

The given estimatescanbe obtainedif

= q
0, (2.35)

which makesit possibleto ignore the gradient term in (2.16). Now we will estimatedeviations
of the wave vectormodulesfrom q0. Upon avariationof the wave vectorsby Jq, the loss of the
gradientenergyamountsto avalueof the order

(2.36)

where V is the volume of the system. The gain in the energy is related to the dependence of A on
q andcan be estimatedas

(OA/Oq)ôqa
4V. (2.37)

Comparingthe quantities(2.36) and (2.37), we get

c~’a2O2/8q. (2.38)

Thisvalueis small in virtue of the inequality (2.8).Using the naturalestimates(2.14), (2.24),we

find

ôq/q
0 -.~a~<< I.

The dependenceof 4u on q doesnot affect the resultsif the estimate(2.22) is correct.
The changeof the energyatashift of the wave vectorsby the value (2.38) can be estimatedby

substitutingthis valueinto (2.36) or (2.37), which producesagain in the energyof the orderof
magnitude

Va~(OA/Oq)
2a6’~VAa6. (2.39)

This contributioncan be neglectedas comparedto the leading term Aa4. As will be shown in
subsection2.3, all statements,devotedto öq, are valid also, with fluctuationstakeninto account.
Thus,thepresenceof the differenceof themodulesof thewavevectorsq~from q~doesnot produce
anyimportanteffects. Therefore,we will henceforthregardthe condition (2.35) as fulfilled.

2.2.3. Minimization of the thermodynamicpotential
Due to what is saidabove,thegradienttermin (2.16)dropsout from ourfurtherstudy (but only

in the meanfield approximation).Recall that the vertex jz in (2.7) can be regardedasconstant.
Also assumethat the condition

A = const. (2.40)
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is fulfilled. Thus,we return to eq. (2.10) for thefree energy,wherethe coefficients t’ r, ~t, A are
constantsand,consequently,the free energyis definedas an integralof the local expression.This
largely simplifies calculations.

Inserting eq. (2.6), as (cc), into (2.10), and performing integration, we get

Q’/V=rA+AA2/2+f. (2.41)

Here the following designations are introduced:

A = ~lanl2, (2.42)

f = —A ~ anl4/4 — ju~anamai/6+ A >aflama/ak/24. (2.43)
n=1 nml nm/k

The meaningof the tilde at the summationsign hasbeenclarified above,under eq. (2.6); in the
sumsdenotedwith the tilde only termsaretakeninto accountfor which the conditions

q~+ q~+ q
1 = 0, (2.44)

(2.45)

respectively, are fulfilled.
Let us explainthe additionalrestrictionimposedon the summationin the last sumin the right-

handside of (2.43). If all four wave vectorsof a term in the sumlie in oneplane,they form a
rhombusand thereforemaybe representedas pairs of parallel vectors.The contributions to Q’
corresponding to such configurations of wave vectorsaretakeninto accountby the the secondterm
in the right-handside of (2.41) andby the the first term in the right-handside of (2.43). Hence
there should be no terms of which the four wave vectorscontaincollinearvectors.We will call the
quartets of vectors figuring in the last sum of (2.43) (satisfying (2.45) andnot lying in the same
plane) nontrivial quartets of vectors.

The dependence of the termodynamicpotential (2.41) on the wave vectors q~reveals itself only
in the structure of thesecondandthird termsin (2.43).Thereforethe free energyminimumshould
be sought for in the following way. Firstly, we set a certain configuration of wave vectorsq~,
reflecting the assumedsymmetryof thephaseunderstudy,which determinesthe form of the term
(2.43). Then it is necessary to minimize (2.41) over a~.The latter operation can be conveniently
carriedout in two stages:first, find the minimum of the function f (2.43) over a~under the
condition (2.42), and thenperform a minimizationof (2.41) over A.

Let us illustrate the above on the simplest example, assuming that in the set q~there are no
triplets of vectorsobeying (2.44),andno nontrivial quartetsof vectors.In this case,in eq. (2.43),
for the function f oneshould incorporateonly the first term. Its minimizationovera~underthe
condition (2.42) yields the result

la1l=v~, a2=~~~=ax=O, (2.46)

f = —AA
2/4. (2.47)

Thus we arrive ataone-dimensionalmodulationof the densitywith the condensate,

(cc) = 2A”2cos(q
1z+ 1). (2.48)
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Here ~ is an arbitrary phase, the Z-axis is directed along the vector q1. The condensate of the
form of (2.48) corresponds to the smectic-A phase, which we will call SA.

The insertion of (2.47) into (2.41) leads to an expression for the thermodynamic potential which
has a minimum at a non-zero value of A at ‘r < 0. Thus, the phase with the one-dimensional
densitymodulationprovesto be metastableat leastat r < 0. The minimumof the thermodynamic
potential (2.41) is reachedat

A = —2r/A. (2.49)

The valueof the potentialin this minimum is
9SA/V = —z2/A. (2.50)

The expression(2.49) determinesthe densitymodulationamplitude in (2.48).
Now consideraconfigurationq~consistingof thefourwavevectors,obeyingthe condition (2.45)

andnot lying in the sameplane. In this casethe last term in (2.43) becomes involved, and the
function f becomes

f = —A~Ianl4/4+ 2Alaia
2a3a4Icos(~i+ ~2 + ~3 + ~4). (2.51)

Here

CX,~=arg(an). (2.52)

The minimizationof (2.51) overthe phasesP,~yields the condition

(2.53)

Insertingthis valueinto (2.51) andminimizing the result over Ia~I under the condition (2.42), we

get

au = la2l = 1a31 = 1a41 = A’/
2/2, f = —3AA2/16. (2.54)

The resultingconfiguration (cc) in terms of the symmetry belongs to an orthorhombic crystal R.
The insertion of the quantities of (2.54) into (2.41) brings about the conclusionthat this local
minimum of the free energy occurs at r < 0 and is characterized by the parameters

A = —8r/5A, QR/V = 4~2/52 (2.55)

We now studythe configurationof threevectorsq~,forming a regulartriangle. In this casethe
second term in (2.43) becomes involved and the function f reads

3

f = —A~Ia~I4/4—2~ulaia
2a3pcos(~i+ ~2 + ~3). (2.56)

Minimizing this expressionover the phasesandamplitudes,underthe condition (2.42), wefind

laul = 1a21 = a31 = (A/3)’/
2, f = —AA2/l2—2Iji~(A/3)3/2. (2.57)
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The resultingconfiguration(cc) in termsof the symmetrybelongsto ahexagonalcolumnarphase
Dh. The local minimum of the free energyfor this structurearisesat

= 4~/45A (2.58)

and is characterizedby the quantity

A112 = (3)1/2I~I(l+ (I — 10rA/~u2)”2)/5A. (2.59)

The energyof this phasenow maybe foundusingeqs. (2.41) and (2.57).

2.2.4. Moresophisticatedstructures
Here we will considermore sophisticatedstructureshaving symmetriesof known crystals (or

quasicrystals).In the generalcase,for a crystalof the given symmetry the set {q~,a~}falls into
subsetsinside which {qn, an} transforminto eachother underthe actionof elementsof the point
symmetry group of a crystal (or quasicrystal).The state of the crystal (or quasicrystal)under
theseoperationscannotchange.This meansthat the amplitudesan insidethesubsethavethe same
modules but can have differentphases.Below we will study the structures,definedby only one
subsetof this kind.

The procedurefor determiningthe structureof astableor ametastablephaseis as follows. Take
acertainpointsymmetrygroupandchosea set {q~},invariantwith respectto thissymmetrygroup.
The modulesof a~are equaland thereforethey are expressedvia the quantity A, introducedin
(2.42). The insertionof (2.6) into (2.43) yields an expressionfor the thermodynamicpotential
in termsof A andthe arguments~n, introduced in (2.52). The minimization of Q’ over ~n, A

producesthe energyof the respectivephase.Note that the crystallineor quasicrystallinecharacter
of the obtainedstate is determinedalreadyby thepoint symmetrygroup taken in the described
procedure.

Let us consider phases, possessing the cubic symmetry. Wewill confine ourselves to the structures
determined by a set of six vectorsq,~,which are diagonals of the cube facets. It is not difficult
to make sure that the set of vectors generates a body-centered cubic structure. Out of the six
vectors one can form four different triplets of vectorsobeyingthe condition (2.44) as well as three
nontrivial quartets.Thisdictatesthe structureof two last terms in (2.43).

In the searchfor the minimum of the thermodynamicpotential it is convenientto arrangethe
termsin the combinations

01 ~1 + ~2 +~3, 02 = ~1 + ~

03 = ~2~4 + ~5, 0~= —(0k + 02+ 03) = 3~5+ ~ (2.60)

For themodel with A = const.the functionf in this notation acquiresthe form

f = —AA2/24— ~u(cosO
1+ cos02+ cosO3+ cosO4)(A/3)

3122”2

+AA2[cos(0i + 02) + cos(0
1 + 03) + cos(02 + 03)1/18. (2.61)

Let us take the extremum, having the symmetryof a cubewhen all phases ~I’ are equal. Then
01 = 3~,02 = 03 = 04 = —1 andthe condition that the function f should be minimal with
respectto the phase~ yields

jt(sinP + sin3~)/6
1’2+ AA’/2sin(2~/3)= 0. (2.62)
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Fig. I. Formof the icosahedronalongthe third-ordersymmetryaxis.

Equation (2.62) hastwo solutions, correspondingto the minimum of f. One of them ensures
the smallest contribution of the terms with the coefficient ~u,the second ensures the smallest
contribution,comingfrom the nontrivial quartets.Let us label thesesolutionsasBCC1 and BCC2,
respectively.The functionsf for thesephasesequal

11 = 4. 2”
21

4u1(A/3)
312+ AA2/8, f2 = 5AA2/24. (2.63)

From a comparisonof the secondformula in (2.63) with (2.47) it becomesclear that BCC
2 is

a metastable phase. For BCC1 it is not difficult to find that the local minimum of the energy
(arising at r = I 6~u

2/1 35A) is characterized by the following values of the quantity A andof the
thermodynamicpotential9:

A”2 = 4.6_1/2I~I[l + (I — 15TA/2/12)’/2]/5A,

Qacc
1/V = —LuI(2A/3)

312 + 5AA2/8 +Ar. (2.64)

Let us considerthe possibility of the appearanceof quasicrystallineicosahedricordering in the
weak crystallization theory. We will examine the structurewhereprincipal wave vectorsof the
reciprocallattice can be arrangedas the edgesof an icosahedron.An icosahedronis a regular
polyhedron, having twenty triangular faces, thirty edgesand twelve vertices. The form of the
icosahedronalongthe third-orderaxis is shownin fig. 1. It possessessix fifth-order axes,ten third-
order symmetryaxesand fifteen second-orderaxes.In this figure we haveindicatedby numbers
(1—15) edgesof the icosahedronandby numbers1—10 (in circles) — its faces.Note that we have
enumeratedahalf of the edgesandfacesof the icosahedron.In the energyof suchstructurethere
arecontributionsfrom the triangles(e.g.a triangleformedby wave vectorsdirectedalongthe edges
1—2—3) and from nontrivial quartets(e.g. 1—2—7—6).

Like for the BCCstructure, for an icosahedral quasicrystal there are two extrema for one of which
(Y

1) the contributionof the trianglesis minimal andfor the other (Y2) the contributionfrom the
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nontrivial quartetsis minimal. The functionf for Y1 is

f = 4. 5’/
2~~(A/3)3/2 + 7AA2/60. (2.65)

It canbe shownthat for Y
2

f> —3AA
2/20. (2.66)

A comparisonof eqs. (2.65) and (2.66) with (2.47) and (2.57) showsthat for the model with
A = const.icosahedralphasescanbe metastableonly becausethe energyof the SA or Dh phaseis
lower thanthe energyin both icosahedralphasesfor anyvalueof ~rand~u.

2.2.5. Cascadeoftransitions
A comparisonof the energies,given by formulas (2.47)—(2.66) showsthat only phasesSA, D

1~
and BCC1 can be absolutely stable under the condition A = const.At increasingtemperaturethe
following cascade of phases is realizedin the model:

SA-Dh-BCC1-I,

where I denotes the isotropic liquid. The transitions between these phases take place at the following

valuesof the parameterz:
‘r(SA—Dh) = —(7 + 3.6’/

2)j~2/5A, ‘r(Dh—BCCI) ~ —0.073ji~/A,

r(BCC
1—I) = l6p

2/l35A. (2.67)

In conformity with the fundamentalstatementsof the Landautheory, the describedstructural
transformationsare first-orderphasetransitions.

The above obtainedsequenceof transitionswas first predictedby Kleinert and Maki in their
study of the theory of the “blue phase”of cholestericliquid crystals [Kleinert andMaki 1981].
Note also the paperby Leibler [19801 wherein, for a particular example,he studied the mean
field model of weakcrystallizationwith A = const. Such sequencesof phasetransformationsare
observedin experimentswith solutionsandmelts of block-copolymers[Tiddy 1980, Fredrickson
andHelfand 1987].

2.2.6.Angular dependenceofA
We now discussthe situation when the quartic vertex A in the Landauexpansiondepends

nontrivially on the momentaq. Firstly, we study the simplest dependence (2.25). It can be
rewrittenas

A(q
1,q2,q3,q4)=A(1 +A’X), (2.68)

whereq, = q0ej, and

X= [(e1e2)(e3e4)+ (e1e3)(e2e4)+ (e1e4)(e2e3)]/3.

For the A to be positive we should assumeA’ > —1. The energyof the systemin this casecan be
convenientlyrepresentedas

9/V = Ar + A(l + A’)A
2/4 + f’, (2.69)
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The functionf’ is definedby

= A ~{l + 2’/3[4(enem)2 — 1 ]}lanI2IamI2 — ~u~anama,/6
n>m nml

+ ~ (I + 2’X)aflama/ak/24. (2.70)
nm/k

With this definition the valueoff’ is zerofor the one-dimensionalordering.Therefore,the analysis
of the smectic-A phasewill be the sameaspreviously. The parametersof the phaseare set by the
formula

A = —2r/2(I +2’), QsA/V = —r2/A(l +A’). (2.71)

If thereareno nontrivial quartetsin the setq~,thenfrom symmetryconsiderationsit is evident
that one should above all studya simple cubicphase SC. It is characterizedby a set of three
mutually orthogonalwavevectorsq

1,q2,q3. For this phase

= 2A
2(l —A’/3)/6, A = 3a2. (2.72)

The respectivelocal minimum appearsfor r < 0. The parametersof the phaseare determinedby

therelations
A = —l8r/2(15 + 72’), Qsc/V = —9r2/A(15 + 72’). (2.73)

Nowtakethecasewhentherearenontrivial configurationsof wave vectors. The simplest of them
is a structureof four vectorsq~= q

0e~satisfying (2.45) and not lying in the sameplane. The
functionf’ thenacquiresthe form

f’=2a
4(3—2’+4A’X)+22a4(l+2’X)cos(~i+~

2+~3+~4).

The minimizationof f’ over thephasesyields

f’m2A
2(l—A’+2A’X)/l6, A=4a2.

The quantityX, definedby eq. (2.68),canbe determinedas a functionof the two anglesa andy
betweenthe wave vectorsin the form

X = [(cos2(2a) + 2(cos4a+ sin4acos2y)J/3.

The minimal value of the quantity X, equalto 1/9, is achievedwhen all the anglesbetweenthe
vectorsel,e2,e3,e

4 are equalto eachother and then (e,e2) = —1/3. This set of vectorscan be
arranged along the spatial diagonals of a cube. This set determines the face-centeredcubic lattice
(FCC).The function f’ is then

f’ =2A
2(9—72’)/l44. (2.74)

The parametersof the FCCphaseare setby the expressions

A = —72r/2(45 + 292’), QFcc/V = A’r/2. (2.75)
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The simpleststructurewith anon-zerocontributionof thetriplet of wavevectorssatisfying(2.34)
is still Dh. The function f’ for it equals

= —2IjiI(A/3)3/2 + 2A2/6. (2.76)

As is seenfrom (2.76), the energyof this columnarphaseis independentof the parameterA’ and
is, aspreviously,determinedby eq. (2.59).

Let uspassover to theBCC phases.The function f’ for the BCC
1 phaseequals

= —IiiK2A/3)
3’2 + AA2(27 + 2’)/72, (2.77)

andthe total energyis determinedby

QBCC
1/V = —I~I(2A/3)

3/2+ AA2(45 + l92’)/72 + Az. (2.78)

For the BCC
2 phasewe similarly get

f’ = 2A~(1—2’)/24, (2.79)

A = —l2z/(7 + 52’), QBcc2/V = Ar/2. (2.80)

An analysisof eqs. (2.71)—(2.80) leads us to the following conclusions:For negativevaluesof
the parameter2’ thereare no qualitativechangesin the phasediagram in comparisonwith the
case2 = const.,thoughthetemperatureof phasetransitionsnaturallycanchange.At 2’> 1, in the
diagram,insteadof the one-dimensionalsmectic-A phase,thereoccur new phases,namely BCC2
for 1 <2’ < 3, FCC for 3 <A’ < 15, SC for 15 <A’. The other phasesremain the sameas for
A = const.

Apart from the simplestdependenceof 2 on the directionsof the wave vectors, without any
difficulty one can study also other cases.So, for instance,if the anisotropyof 2 is such that its
minimum (sufficiently deep)canbe achievedatacertainnon-zeroangley betweenthe vectorsq5
andq,,~,theninsteadof theone-dimensionalsmectic-Astructure,absolutelystablecanbe a rhombic
crystalwith threebasisvectorsat amostfavourableangley to eachother.

The icosahedralquasicrystalY is still metastablefor the simplestanisotropyof 2 of the form of
(2.54).At the sametime it is not difficult to imaginetheanisotropyof 2, renderingthe icosahedral
phaseabsolutelystable.For this purposeit is necessarythat the vertexA should have sufficiently
deepminimafor the anglesbetweenthe basisvectorsof 36°and72°.

Thus, the nontrivial dependenceof the vertex2 on the anglesbetweenthe wave vectors may
essentiallymodify the phasediagramobtainedat the weakcrystallization.For aweakly inhomoge-
neousfunction A the sequenceof phasetransformationshasthe sameform as at 2 = const.Yet, as
long as the inhomogeneityof 2 is growing, the situationis gettingmorecomplicated.Someexamples
of this nonuniversalbehaviourhavebeenconsideredabove.

2.3. Fluctuation effects

The Landaufunctional FL determinesthe energy,relatedto fluctuationsof the orderparameter
cc (r). Therefore, in conformity with the Gibbs distribution, the probability of emergenceof such
fluctuationsis proportionalto

exp(—FL/T).
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If we also introduce the field h, thermodynamicallyconjugatedto the order parametercc~the
distributionfunctionof the orderparameterfluctuationsbecomes

exP{T’(Q_FL+fdrhcc)] . (2.81)

The averages,denotedbelowwith angularbrackets,aretakenoverthe distribution function (2.81).
The cc-independentconstantQ is introducedin thedistributionfunction (2.81) for thepurposeof

normalization.This quantity coincideswith the thermodynamicpotential9 [Landau andLifshits
1976],discussedin subsection2.1. Thenormalizationconditionfor the distributionfunction (2.81)
yields the representationfor thethermodynamicpotential

exp(—Q/T)= f Dcc exp [T1 (—FL + fdrhcc)] . (2.82)

The r.h.s.of (2.81) involvesthe functional integralover fluctuationsof the orderparametercc.

2.3.1. Correlationfunctions
Recall that the physicalstateof the systemcorrespondsto h = 0. Yet, it is convenientto retain

thedependenceof thethermodynamicpotential£2 on thefield h, thermodynamicallyconjugatedto
cc. Notethat, by eq. (2.82), the coefficientsof the expansionof £2 in seriesin h coincide (with the
accuracyup to numericalfactors)with the irreduciblecorrelationfunctionsof theorderparameter
cc~calculatedfor the physicalstate (i.e.,at h = 0).

Differentiating the relation (2.82) overh, we get the expressionfor the irreduciblecorrelation
functions

(cc(r)) = —ôQ/~h(r), (cc(ru)cc(r2)) — (cc(rl))(co(r2)) = —TÔ2Q/öh(ri)ôh(r
2) (2.83)

andsoon. Herethe bracketsdenoteaveragingoverfluctuationsof cc with the distributionfunction
(2.81) at h ~ 0. The physical valuesof the quantitiesmaybe found by substitutingh = 0. The
first relation in (2.83) follows, as it should,from the identity (2.3). The secondrelation in (2.83)
yields an expressionfor the irreduciblepair correlationfunction for which we will usethe special
notation

D(r1,r2) = (cc(ru)cc(r2)) — (cc(rl))(cc(r2)). (2.84)

If, in accordancewith the definition (2.4),we passover to the function 9’ ((cc)), we obtain the
dependenceof the thermodynamicpotentialon (cc). The physicalstateof the systemis determined
by the minimum of 9’. Variational derivativesof 9’ over (cc) are “dressed”vertex functions.The
derivative

h(r) = ~
5Q’/ô(cc(r)) (2.85)

has the meaningof the field, thermodynamicallyconjugatedto cc. We will also introduce the
so-calledself-energyfunctionI in conformitywith the definition

= —ô2Qj/ô(cc(r
1))ô(~(r2)). (2.86)

HereQ~labelsthe fluctuationcontribution into the thermodynamicpotential9’.
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h= ~ +V+V+~+o
Fig. 2. One-loopcorrectionsfor thefield h, conjugatedto theorderparameterç~.

For thecorrelationfunction (2.84) thereis astandardrelation [seePopov 19831,

~D(r, ri) — J dr2 I(r,r2)D(r2, r1) = Tö(r — r1). (2.87)

Herethe operator

= z + a(V
2 + q~)2/4q~ (2.88)

actsupon the argumentr. The barevalue D
0 of the correlationfunction (2.84) is deducedif we

substitutein (2.87) 1 = 0. It is clearthat D0 will dependonly on the differencer — r1. In the
Fourierrepresentationthe expressionfor thebarevalueD0 will read

D0(q) = Jdr exp(—iq.r)Do(r,0) = T/[z+a(q—qo)
2]. (2.89)

Herewe haveusedthe inequality (2.15).
To calculatethe correlationfunctionsof the field cc with fluctuationstakeninto account,onecan

makeuseof the diagramtechniquewherethe bare Green’sfunction is determinedby eq. (2.89)
andthe bareverticesare determinedby the interactionterms(2.17) and (2.18).The perturbation
seriesfor suchquantitiesas D andI may be constructedstartedfrom the representation(2.81)
by conventionalmethods[seePopov 19831.

2.3.2. One-loopapproximation
It proves that in the weak crystallizationtheory the one-loopapproximationis the main one,

which will be demonstrated below. In this approximation the expressions for h andI aredetermined
by the diagrams, given respectively in figs. 2 and 3. In these figures the open circle denotesthe
operator(2.88), thetriangledenotesthe triple vertex/.z andthe blackcircle is the quarticvertex2.
The solid line in loops is the Green’sfunction (2.84) andthe line with acrossat the edgeis the
average(cc).

1= ~

Fig. 3. One-loopcorrectionsfor the self-energyfunction I.
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The diagramrepresentationsgiven in figs. 2 and 3, can be easilywritten out analytically i~to
assumethat A = const.Bearingin mindthatalsop = const.,we find from eqs. (2.16), (2.17) and
(2.18)

h(r) = ~(cc(r))— Au(cc(r))2/2+ 2(cc(r))3/6 + 2(ça(r))D(r,r) — pD(r,r)/2, (2.90)

I(r,r
1) = [(y(cc(r)) — 2(ço(r))

2/2—2D(r,r)/2]c5(r — r,). (2.91)

Recall that the operatorI is definedby eq. (2.88). In eq. (2.91), for I the term determinedby
the last diagramin fig. 3 is dropped,the reasonsfor this will be given below.

Introducethe notation

= z + 2(ço(r))2/2+ AD(r,r)/2. (2.92)

Here andin the following, the overbarabovea functiondenotesspatialaveraging,namely

D(r,r) =fdrD(r,r)/V. (2.93)

In other words, the overbaron a function implies that oneshould retain only the zeroFourier
harmonicsin it. Now eq. (2.87) canbe written as

[(A +a(V2+q~)2/4q~—9(r)]D(r,r
1) = Tö(r—r1). (2.94)

Here thefunction 9 satisfiesthe condition

8(r) = 0. (2.95)

It meansthat 8(r) involves Fouriercomponentsonly with non-zerowave vectorsof the orderof
q0.

2.3.3. Equationfor the gap

Let usseekfor the solutionof eq. (2.94) in the form of a seriesin 9:

D = D1 + T’D18D1 + T
2D

19D19D, +

Thefunction D1 hereis dependentonly on the differenceof the coordinatesr — r1. In the Fourier

representation, introduced similarly to eq. (2.89), we get

D1(q) = T/[A +a(q—q0)
2]. (2.96)

This expressiondiffers from the bareexpression(2.89) by the replacementz —~ A. Henceforthwe
will refer to the quantityA as the gap,which is justified by the form of the function (2.96).

Now calculatethe single-pointcorrelatorD(r, r) figuring in eqs. (2.90) and (2.91). As we will
seelater in this calculationwe canemploy eq. (2.96) as D. As a resultwe find

D(r,r) = f dqD
1(q)/(2ir)

3 = Tq~/2ir(aA)”2. (2.97)

Here we have used the inequality (2.15) and confined ourselvesto the vicinity of the sphere
I~I= q

0 in the reciprocalspace.For characteristicvectors,determiningthe integral (2.97), from
eq. (2.96) we havethe estimate

Iq—qol (A/a)’~. (2.98)
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Therefore,for the constraint(2.15) to hold it is necessarythat the inequality

A <<aq~ (2.99)

shouldbe fulfilled. Thus, if the estimate(2.14) holds,thenA <<A.
Now, estimatethe contributioninto D (r, r) due to higher-ordertermsof the expansionof D in

8. Thenoneshould rememberthe estimate

8~A. (2.100)

Firstly, considerin D the term D2 = T’D18D1, linear in 8. The quantityD2(r, r) is setby the
integraloverthe reciprocalspacefrom the two functionsD1 with the argumentsq andq + k, where
k is awavevectorof oneof theFouriercomponentsof 8; it is ofthe orderof q0. A simpleanalysis
showsthat in this situationthe maincontributionto the integral is determinedby aregion nearthe
intersectionof the respectivespheresin the reciprocalspace.The value of this integral, with the
estimate(2.100) takeninto account,is small in comparisonwith eq. (2.97), namelyof the order
(A/aq~/

2A similar analysisshowsthat, in virtue of the inequality (2.99), one can neglectthe
contributionsto D(r, r) from higher-ordertermsof the expansionof D in 8, ascomparedwith eq.
(2.97).

Employing this expression,from eq. (2.91) we get an equationfor the gapA,

A = z + A(cc(r))2/2 + flA”2, (2.101)

where

fi = 2Tq~/4ira”2. (2.102)

The first two termsin the r.h.s.of (2.101) arethe meanfield termsandthe last termemergesdue
to fluctuations.Note that for the liquid phase,i.e., at (cc) = 0, eq. (2.101) hasasolutionfor A at
an arbitraryvalueof ‘r. In otherwords, fluctuationeffects in the modelunderstudyprove to be so
strongthat they stabilisetheliquid phase(i.e., renderthis phasemetastable)evenat z <0.

2.3.4. Estimates of fluctuation contributions
The last fluctuationterm in the r.h.s.of eq. (2.101) becomesimportantin comparisonwith the

first term at

‘ri3 ~ A2T2q~/a. (2.103)

In the derivationof (2.103) we havemadeuse of the estimateA z. Since in the meanfield
theory the transitionoccursat ‘r p2/2, thefluctuation term in eq. (2.101) shouldbe importantat

i~I3~ A5/2Tq~/a’/2. (2.104)

The conditions(2.103) and(2.104) determineon the plane (z, u) a region nearthe origin where
fluctuationeffects play an essentialrole. If the estimate(2.14) holds, this region is describedby
the inequalities

~ 2T2q,~, I,u13 ~ A2Tq~. (2.105)
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Fig. 4. Main fluctuationcorrectionto thequarticvertex~.. Fig. 5. Main self-energycorrection,definedby the triple
vertexy.

An amazingpropertyof eq. (2.101) is thatat r—~0 the gap4 doesnot tendto zerobut remains

aconstantof the orderof

4 (A2T2q~/a)’/3, (2.106)

which becomesparticularly evidentfor the liquid phase,where (cc) = 0. This property testifiesto
a largestrengthfor the fluctuationsof cc in the weak crystallizationtheory,which is accountedfor
by a large phasevolume of fluctuations,distributednearthe spherein the reciprocalspace.For
comparisonnote that at a conventionalsecond-ordertransition, fluctuationsare concentratedin
the vicinity of oneor severalpointsin the reciprocalspace.

The applicability condition for the weak crystallizationtheory is the inequality (2.15) and the
relation (2.99), following from it. Equation (2.106) yields an estimateof 4 from below. Sincefor
this valuethe relation (2.99) shouldbe fulfilled, we arriveat the inequality

AT/a2qo4Z 1. (2.107)

If the estimate(2.14) holds, the conditions(2.107) bring about theinequalities

r<<2, p<<A,

valid on the boundaryof the fluctuationregion,definedfor this caseby the inequalities(2.105).
Comparingthe term in the l.h.s. of (2.101) andthe term in the r.h.s. of (2.101),we get the

estimate

(cc) -~(4/2)1/2. (2.108)

Now usingeq. (2.106), we find that, with fluctuationstakeninto account,at aphasetransition
thereemergesan average(condensate),

(cc) (T2q~/a2)’/6. (2.109)

If the estimate(2.14) holds, thendue to eqs. (2.107) and (2.109) thereis the inequality (cc) << 1.
Thus,the inequality (2.107) makesthe weakcrystallizationtheoryself-consistent.

Now considerthe fluctuation correctionto the vertex A, given by the diagram of fig. 4. The
summarywave vector in the loop will be assumedto have the order q

0. In this casefor the
correctionto the vertex we havethe estimate:

ô2~Tq02
2/ciA. (2.110)

Employingeq. (2.106),we get for ô2 an estimatefrom above.Thus

~ (AT/a~q
0)’/

3<< 1. (2.111)
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This inequality is aconsequenceof the condition (2.107).
Similarly, we can obtainan estimatefor the contributionto A, dueto the diagram,given in fig.

5:

ÔA Tqop2/aA. (2.112)

Havingin mind the constraint(2.104) andthe estimate(2.106),we get

öA/A ~ (AT/a2qo)”3 << 1. (2.113)

This inequality is a consequenceof the condition (2.107). Thus we justify the neglect of the
contributioninto A, madein the derivationof eq. (2.89).

The estimates,analogousto the ones,given above, show that as long as the parameter(2.107)
is small, under the condition (2.104) higher-orderfluctuation correctionsto p, A are also small.
This justifies all estimatesgiven in subsection2.2 for the differenceof wave vectorsmodulesof
the main harmonicsof the condensatefrom q

0. Correctis alsothe conclusionmadein subsection
2.2 that the effects, associatedwith this circumstance,are irrelevant.Thereforebelowwe, like in
subsection2.2, will believethat 1q51 = q0. This, in particular,meansthatin eq. (2.90) (but not in
eq. (2.87)!) 1 could be replacedwith ‘r.

Estimatesof the many-loopdiagramsbring us to the conclusionthat many-loopcorrectionsto
the one-loopexpressionsfor h, I written out in eqs. (2.90) and (2.91), aresmall in the parameter
(2.107).Then it shouldbe borne in mind that fluctuation effectsare importantonly at valuesof
p, determinedby (2.104). It meansthat this considerationis self-consistent.Thus,the inequality
(2.82) not only ensuresthe applicability of the weak crystallization theory (at sufficiently small
valuesof ji, of course)but also ensuresthe validity of relatively simple equationsfor h, I. This
permitsto achieveprogressin analysingthe role of fluctuationsin the weak crystallizationtheory.

2.3.5. Thermodynamicanalysis
In virtue of eq. (2.85), the variation of the thermodynamicpotential£2’ at the changeof the

condensateby d(cc(r)), could be written out as

d.Q’ = Vh(r)d(cc(r)). (2.114)

Insertinghereeq. (2.90), we get

dQ’/V = ‘r(ço(r))d(ço(r)) — ~p(cc(r))
2d(cc(r))+ ~A(cc(r))3d(cc(r))

+~A(cc(r))d(co(r))D(r,r). (2.115)

The lasttermin the r.h.s.of eq. (2.90)givesacontributionto dQ’ equalto zero,dueto homogeneity
of the functionD(r,r) definedin eq. (2.97),anddueto the conditiond(cc(r)) = 0. Now employing
eq. (2.92), we get

dQ’/V=A(cc)d(cc)—~u(cc)2d(cc)+ ~A(cc)3d(cc)—~2(cc)2(cc)d(cc). (2.116)
The equilibrium or metastablestatecorrespondsto a local minimum of 9’. That is why eq.

(2.116) could be used to determinethe explicit form of the condensate;for this purposeit is
necessaryto solve the equationdQ’ = 0, which is the condition of the extremumof £2’. Equation
(2.116) could also be usedto find the difference of valuesof the thermodynamicpotential for
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Fig. 7. “Ladder” diagramsdetermingrelevantcorrections
Fig. 6. One-loopcorrectionto the quarticvertex2. to the quarticvertex2.

variousmetastablestates.To do this oneshould continuouslytransform (cc) from onestate to
anotherandcalculatethe integral

Q~_Q=fdQ1 (2.117)
alongthe trajectory of the transformationof (cc). Here the gapA is assumedto be expressedvia
(cc) by meansof eq. (2.101).It is particularlyconvenientto chooseas the initial state in (2.117)
aliquid phase,where (cc) = 0.

2.3.6.Renormalizationofthe vertex2
The assertionthat fluctuationcorrectionsto the scatteringvertex2 are small, concernsscattering

processeswith anot smallsummarywavevector,whereascorrectionsto the scatteringvertexwith
asmall summarywavevectorprove to be not smallat all.

For instance,considerthe correction,givenby the diagramof fig. 6. The anomalouslylargevalue
of this diagramatasmallsummarywavevectoris accountedfor by the overlappingof the spheres
in whosevicinity the functionsD achievetheir maximain the reciprocalspace.A straightforward
calculationof the contributionto 2 (k, —k,k’, —k’), determedby this diagram,yields

r 2
2T 2

— — “ / d ‘D’ Y~2— — q
0 (2118)

2T(2ir)
3 J “ “ “ — 8ira’/243/2~

Herewe haveusedthe approximation (2.96) for the function D. From the estimate(2.106),the
correction2~’~provesto beof theorderof 2. The sameholdsalsofor somehigher-ordercorrections
to the scatteringvertex by the zero angle. It is not difficult to understandthat all thesecorrections
havea “ladder” structure,given in fig. 7. Summingup the “ladder” sequenceof the diagrams,we
find

A(k,—k,k’,—k’) = ZA,

where

Z = (1 +P/2A312Y’. (2.119)

Thus, the scatteringvertexwith the zerosummarywave vectoris smallerthanthebarevertexbut
of the sameorderof magnitude.

Thesecorrectionsto 2 are importantfor angles0 betweenthe wavevectorssatisfyingthe estimate

I,r—0I � (4/aq~)1/2. (2.120)
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Fromtheinequality (2.100),the region of angles(2.120) is narrow.Therefore,evena considerable
variation of the vertex A in this region doesnot affect integral characteristics.This justifies the
abovemadeassumptions.
2.3.7. Fluctuationcontributionto the long-wavelengthcharacteristics

In virtue of the identity (2.3) the densitiesof the massandof entropyequal

(p) = —~Q/ö~, (s) = —öQ/öT. (2.121)

The fluctuationcontribution into thesequantitiescould be found usingthe representation(2.82)

for the thermodynamicpotential.Differentiatingthe relation (2.82) over~, T we get
(p) = —(ôF~,/ó~’),(s) = —(ÔFL/ÔT), (2.122)

wherethe angularbracketsimply the averagingover fluctuationsof cc with the distributionfunction
(2.81). Rememberthat all coefficients in the expansionof the Landaufunctional FL in cc are
functionsof ~‘, T.

Virtually, in the expansionof FL in cc oneshould incorporatethe ~, T-dependenceof only the
coefficient r. Unlike r, the derivatives~3‘r/O ~, 8 r/8T do not containanyspecialsmallnessin the
vicinity of the phasetransitionpoint. Thereforeit is thesederivativesthat the main termsin eq.
(2.122) arerelatedto, thuswe arriveat the result

(p) = po(~,T) — (8r/04)(~,2)/2, (s) = SO(~,T) — (ôr/ÔT)(cc2)/2. (2.123)

Herethe functionspo.~odeterminethe regularbehaviorof thedensityandentropyand the second
termsin the r.h.s.of (2.123) determinethe anomalouscontributionsinto (p), (s) dueto the order
parameter.Note that theseanomalouscontributionsare proportionalto (cc2) and are small since
(cc)<<l.

The r.h.s. of (2.123) containsthequantity
+ D(r,r). (2.124)

The quantityD is determinedhereby eq. (2.97). With fluctuationscc neglected,we comebackto
the meanfield result.

Now considerthe derivatives

8(s)/0T, 49(s)/8~ = 8(p)/8T, 8(p)/~9~, (2.125)

via which suchquantitiesas heatcapacityor compressibilityareexpressed.So, for instance,

(8(s) (s) 3(p)

~

To calculatethe derivatives(2.125) onemustuse eq. (2.123),keepingin mind that the angular
bracketsdenotethe averagingoverfluctuationsof cc with the distributionfunction (2.81)andtaking
into accountthe relation (2.121).As a result, in the sameapproximationashasbeenemployedfor
the derivationof (2.123),we find

3(s)/8T= 8s
0/ÔT+ (8r/oT)2fdri ((cc

2(r)cc2(r,))). (2.126)
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The doublebracketsdenotetheirreduciblecorrelationfunction

((c’2(r)cc2(ri))) (cc~(r)cc~(ri))— (cc2(r))(cc2(ri)). (2.127)
Formulas,analogousto (2.126)arederivedfor the otherderivativesin eq. (2.125).

The r.h.s.of eq. (2.126) involvesazeroFouriercomponentof the correlationfunction (2.127).
For this quantityall argumentsusedin the calculationof 2 (k, —k, k’, —k’) arevalid. In otherwords,
the zeroFouriercomponent(2.127) is representedas a seriesof ladderdiagramsof the typegiven
in fig. 7, the first term being the diagramwith oneloop. Summingup theladdersequence,we get

f dr
1 ((cc

2(r)cc2(ri))) = Zq~T2/2ira’12A3I2, (2.128)

whereZ is definedby eq. (2.119).
It ensuesfrom eq. (2.102) that this expressionhas the order of T/A, i.e., it doesnot contain

any factors related to the small value of 4. It apparentlymeansthat the singularcontribution
into the compressibilityor heatcapacitynear the transition point will be of the order of the
regularcontribution. Let us stressthat the latterassertionholdsonly in the region determinedby
the conditions (2.103) and (2.104),wherefluctuation effects are strong. Beyond this region the
fluctuation contribution into the heatcapacityor compressibilityis small in comparisonwith the
regularcontribution.

2.3.8. Accountof the angulardependenceof2
Now we generalizethe proposedschemefor the caseof an arbitrarydependenceof thevertex2

on wavevectors.
In this casethe self-energyfunction I will no longerhaveasimpleform (2.91). Insteadof eq.

(2.92),we introduce

4(e) = Jdridr
2 exp(iqoe.(r1—r2))I(r1,r2)/V, (2.129)

wheree is a unit vector. For the function (2.91), correspondingto 2 = const., eq. (2.129) does
not contain the dependenceon e and apparentlycoincideswith (2.92). Equation(2.87) for the
angle-dependentvertexA is now written as

[A+a(V
2+q~)2/4q~—9JD(r,r

1) = Tô(r—r1), (2.130)

whereA, ~ arelinear operators.In the Fourierrepresentation,9 is anondiagonaloperator,andA
is adiagonaloperatorwhoseaction reducesto the multiplication by A(q/q). Equation (2.130) is
the generalizationof eq. (2.94).

When the term with 9 in (2.130) is neglected,we find the functionD1, dependentonly on the
differencer — r1. In the Fourier representation,introduced similarly to (2.87) for D1 we haveeq.
(2.96),wherenow A = 4 (q/q). At the calculationof D (r, r) thematrix elementsof the operator9
for thewavevectorsof the orderof q0 arerelenant.Thereforeall abovegivenargumentsconcerning
the calculation of functions D (r, r) are valid, i.e., in calculatingthis function, it is sufficient to
confineoneselfto the approximationD = D1.

Thus,with all saidabovetakeninto account,insteadof eq. (2.42)weget for the gapthe equation

4(e) = ‘r + >A(qoe,—qoe,q~,—q~)Ja~I
2+ fdqA(qoe,_qoe,q,_q)Dl(q)/167r3. (2.131)
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This equationis the generalizationof (2.92) and transformsinto it in the caseA = const.Let us
alsogive the generalizationof eq. (2.116):

dQ’/V = —p>anamdai/2+ >A(qm/qm)(a~dam+ amda~)

+ >2(qn, q,~,q1,qj)anama,daj
nml

~ + a~da~). (2.132)
nm

The definition of the sum labelledby the tilde hasbeenintroducedin eq. (2.6); in such sumsthe
summationin performedunderthe conditions (2.20) and (2.21).

2.3.9. Concreteexamples
To illustratehowtheformulatedprocedureworks,let usconsidertheproblemof the crystallization

of liquids with fluctuationsof the orderparametertakeninto account,in the simplestcasewhen
the vertex 2 is independentof the angles betweenwave vectors.The solution of this problem
in the framework of the meanfield theory has beenobtainedin subsection2.2. It follows that
in the caseunder discussionabsolutelystablecan be four phases:the initial isotropicliquid I, a
one-dimensionallatticeof liquid layers SA, a two-dimensionalhexagonallatticeof liquid columns
Dh andabody-centeredcubiccrystalBCC1. The transitionsbetweenthesephasesat p � 0 arefirst
ordertransitionsandoccurat the valuesof the parameterz , determinedby eqs. (2.67).

In the given case,taking the fluctuations into accountdoesnot lead to the emergenceof new
absolutelystable phases.Therefore, to solve the problem with fluctuationstaken into account,
suffice it to analysethe equationsof statefor the threementionedinhomogeneousphases.

Rewriteeq. (2.101) as

A = r+ AA + flA—’/
2 (2.133)

Herethe designation

fi =

is employed,andthe parameterA, definedby eq. (2.42), for the threephasesequals

ASA=a2, Ar~=3a2, ABCC
1=6a

2.

The parametera is the module of the densitywave amplitude in inhomogeneousphases(2.6). To
get from eq. (2.133) a closedequationfor the value of the gap in an inhomogeneousphase,it is
necessaryto usethe conditionof the minimumof the potentialQ’

dQ’=O. (2.134)

Like in~subsection2.2, it is convenientto representthe potentialas a sumof the two terms

Q’/V=F+f, (2.135)
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wherethe functionf is definedby eq. (2.43). With therelation (2.116) incorporated,eq. (2.134)
can be written out as

2dQ’ — dF df — A df — 2 136

(.

Inserting the expressionsfor the functionsf from eqs. (2.47), (2.57) and (2.63) into eq. (2.136),

we get
4SA = AA/2, (2.137)

A~= AA/6 + I/LIv’~7~, (2.138)

4BCC
1 = —AA/4+ ~ (2.139)

To determinethe dependenceA(A) from the two solutionsof eqs. (2.138) and (2.139),oneshould
choosethe largestonesince it correspondsto the energyminimum. Solving eqs. (2.137)—(2.139)
with respectto A and insertingthe result into eq. (2.133),we get closedequationsfor the gap,

‘r~
4SA + pA”2 = 0, (2.140)

— 4Db + 3p2(~l — 2AA/p2 — 1)2/2 + flA~.~’12= 0, (2.141)

T~A~c~
1+ 4~t~2(~/~— 32A/2p

2 + 1)2/2+ flABc’~= 0. (2.142)

To calculatethe phasediagram,we must calculatethe energiesof inhomogeneousphases.For

this purpose,integratethe equation

dF/dA = A

over theparameterA from zeroup to the equilibriumvalue,determinedfrom eqs. (2.137)—(2.139).
In calculatingthe integral, it is convenientto passfrom the integration overA to the integration
overA, usingthe relation (2.133),

F(A)-F(0) = dA’ =fdA ~ + fl4-’/2

~ (2143)
— A

In eq. (2.143) the parameterA for the inhomogeneousphasehasto be foundfrom eqs. (2.140)—

(2.142),and4~from the solutionof eq. (2.133)for the gapin the original liquid phase,wherethe
parameterA is, naturally, zero. The equationfor the gap4~in the liquid phasehasasolution at
any z, thereforethe liquid phaseis metastableat any ‘r and its energyalso maybe definedfor any
r. From eq. (2.143) onecan thencalculatethe energyof the inhomogeneousphasefor arbitrary
valuesof r.

To completethe calculationof the phasediagramone must numerically solve eqs. (2.140)—
(2.142)and find the energyof the inhomogeneousphasesin conformity with eq. (2.135),where
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Fig. 8. Phasediagramof weakcrystallizationof aliquid, obtainedwith fluctuationstakeninto account.

F(A) is determinedby eq. (2.143),and the functionf is definedby oneof the formulas (2.47),
(2.57) and (2.63), dependingon the structureof the phases.Recall that the valuesof A, A are
connectedby relations (2.137)—(2.139).The phaserealizedat givenr, p will be determinedby the
absoluteminimum of 9’ given by eq. (2.135).
2.3.10. Results

The resultsof the calculationarepresentedin fig. 8. Forvalues

u>> (A5T2q~/a)1/6,

thediagramof state is closeto the one, aspredictedin the meanfield theory. In the region

p ~ (A5T2q~/a)’I6,

fluctuationsconsiderablyaffect the structureof the phasediagram.At decreasingparameterp the
cubicandcolumnarphasesvanishfrom the phasediagram.In conformity with the resultobtained
by Brazovsky [19751,thenthereremainsonly one SA—I transitionoccurringat thevalueof r

‘r(SA—I) ~ —2.03fl213.

In the meanfield theory this transition should be continuous,however, fluctuationsrender this
transitionafirst-order transition.

The performedanalysispermits to make generalconclusionsabout the influenceof thermal
fluctuationson the phasediagramof the systemunderthe weak crystallizationsvalid also in the
casewhen2 is dependenton the anglesbetweenthe wave vectors.As hasbeendemonstratedin
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subsection2.2, inhomogeneousphasesfall into two categories:some of them ensurethe minimal
contributionof the interactionterm 2cc4 into the total energy, these,for instance,are SA, FCC,
BCC

2, R phases,whereasthe otherscanbe absolutelystabledue to the minimal contributionof
the term ~cc

3(suchasD, BCC
1, Y phases).Out of the phasebelongingto the first categoryat the

certainanisotropyof the coefficientA in the meanfield theoryonly one is realized(which doesnot
actuallychangewhenfluctuationsare takeninto account).This phaseoccupiesin the diagramof
statea region lying at largenegative‘r. The phasesbelongingto the secondcategoryoccupyasector
betweenthe low-temperaturephaseandthe original liquid phase;as a rule herethe columnarand
BCC, phasesarerealized.

In the meanfield theory the interphaseequilibrium linesareparabolasr ~ p
2/A with a common

origin in the point (‘r, p) = (0,0). The influence of the order parameterfluctuationson the
describedphasediagramreducesto the fact that in aregion nearthe origin in the plane(‘r, p) all
intermediatephasesof the secondcategoryvanishandat adecreaseof ‘r a direct transitionfrom
the liquid phaseinto the low-temperaturephaseoccurs.Fluctuationsstabilize the original isotropic
phase,thereforethis transitionis a first-order transition at negativevalues of ‘r. For sufficiently
large valuesof the parameterp the diagramof statesis very close to the oneof the meanfield
theory.

Theseresultsforthe casewhenthevertex2 dependson the directionsof the wavevectorsareonly
qualitative. In the generalcase,the integral equationfor the gap (2.131), for a three-dimensional
systemat the angle-dependentfunctionA, canbe solvedonly numerically.For this reasona detailed
analysisof the simultaneousinfluence of the fluctuationsand the angulardependenceof the
function A in a three-dimensionalsystemis quite aproblem. At the sametime, a similar problem
in a two-dimensionalsystemin somecasesallows for an analyticalsolution (seesection3).

2.4. Dynamic phenomena

In this subsectionwe investigatetheoreticallydynamicphenomenanearthe weakcrystallization
transitionpoint. One may expectthat the dynamicphenomenawill be to somedegreeanalogous
to the phenomenaobservedneara second-orderphasetransition. Thereforewe can addressthe
readerto thetheoryof critical dynamics.The main resultsof the theoryarepresentedin the review
[Halperin andHohenberg19771.

All physical quantitieshave singular contributions near the second-ordertransition point. In
dynamicsthe singularbehaviourof suchquantitiesas soundvelocitiesis relatedto the staticcritical
behaviourof the elasticitymodules.But the critical behaviourof such purely dynamicquantities
as kinetic coefficientsis not relatedto the behaviourof any static quantity andneedsa separate
investigation.The samesituationoccursnearthe weak crystallizationtransitionpoint. Particularly,
we mayexpectan increaseof viscositycoefficientsnearthetransitionpoint.

Since the quantity cc near the phasetransitionpoint is a “soft” field (which is actually the
applicability condition for the weak crystallizationtheory), the time, characterizingthe relaxation
of the quantity to the equilibrium increasesnearthe transitionpoint. Thereforethe dynamicsof the
quantity cc shouldbe consideredin the framework of amacroscopicequationof the hydrodynamic
type. A favourable circumstancesimplifying the problem is that the dynamics of cc is purely
relaxational.

In dynamics,like in statics,fluctuationsof the orderparameterplayan essentialrole. To studythe
effectsconnectedwith thesefluctuationsonecanconstructaperturbationtheoryovernonlinearities
in the dynamicequation.As a result of the summationof the principal seriesof diagrams,the
dynamiccorrelationfunctions of the orderparametermay be found. The renormalizationof the
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correlationfunctions reduces(like it was in statics) to a redefinition of the gap A in the bare
expressions.

In order to study the influence of fluctuationsof the soft parametercc on the macroscopic
dynamicpropertiesof the system,we haveto incorporatethe interactionbetweenthe critical and
the long-wavelengthdegreesof freedom. The interaction is describedby nonlinear terms in the
overall systemof dynamicequations.Thereforeour first goal will be to incorporatethe field cc
alongsidewith the conventionalmacroscopicvariables(massdensity,momentumdensity,etc.) into
the systemof nonlinearhydrodynamicequations.

2.4.1. Derivationof the dynamicequationfor cc
It is simpler to constructthe non-dissipativepart of this systemof equationsby meansof the

Poissonbracketsmethodin termsof whichthe dynamicequationfor cc reads

8cc/Ot = {H,cc}, (2.144)

whereH is the Hamiltonianof the system.The non-dissipativedynamicequationshavea similar
structurefor otherhydrodynamicvariables.A systematicdescriptionof the Poissonbracketsmethod
for hydrodynamicsystemscan be found in the review [Dzyaloshinskyand Volovik 19801, this
methodis also formulatedin the monograph[Kats andLebedev1988].

To write out equationsof the typeof (2.144)oneshouldknowthe dependenceof the Hamiltonian
on the liydrodynamicvariablesas well as the explicit expressionsof Poissonbracketsfor all pairs
of thesevariables.Alongsidewith ç, it is convenientto usealso the following set: the massdensity
p. entropydensitys andmomentumdensityj. The Poissonbracketsfor the quantitiesp,s,j are
well-known [DzyaloshinskyandVolovik 1980, Kats andLebedev 1988] andwe will not present
them here.

We now derivethe expressionof Poissonbracketsfor cc. The non-dissipativeequationsmustbe
invariant to timereversal.Hence,it follows that in themain approximationonly the bracket{j, ~}
is non-zeroand the bracketsfor theotherhydrodynamicvariableswith ~ are zero. The structure
of this non-zerobracketis found from the momentumconservationlaw; in the general casethis
bracketcanbe written as

{J~(ri), q’ (r2 )} = —Vtccö (r, — r2) + Vk~(r1 — r2 )fak (r2). (2.145)

Here .fik is somefunction of cc~s,p, symmetric with respectto the subscripts i, k. It, however,
should be borne in mind that I is a long-wavelengthfield, whereascc is ashort-wavelengthfield.
Thereforethe function f1k should alsobe of short-wavelengthcharacter.

Henceforthwe will take the casewhen the Hamiltonian (energy) can be representedas the
integral of thelocal function:

H = fdr [(j
2/2p + E(co,Vcc,VVcc)]. (2.146)

Here E hasthe meaningof the energydensity,the characterof its dependenceon cc is determined
by the termsof the expansion(2.16), (2.26). The respectivetermsof the expansionof E canbe
obtainedin conformitywith the recipe (2.29), with (2.30) takeninto account.The generalization
of this procedurefor the casewhen E dependson higher-orderderivativesof cc is not difficult,
althoughit makesthe formulas more complicated.The resultsare not practically affectedby this
generalization.
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Employingeqs. (2.145) and (2.146),we cannow, in accordancewith the recipe (2.144),obtain
for cc thenon-dissipativeequation

dcc/dt = 0, where dcc/dt~ôcc/ôt+ vvço + fjkVivk. (2.147)

Herev = f/p is the local velocity of the medium.

With the dissipationtakeninto account,theequationfor the field cc becomes

I’dco/dt + öH/c5cc = 0. (2.148)

HereF’ is apositivekinetic coefficientanddcc/dtis definedby eq. (2.147).

2.4.2. Hydrodynamicequationsfor conventionalvariables
Now we formulatethe equationsfor the conventionalhydrodynamicalvariablesincluding terms

inducedby the field cc. The equationfor the massdensityp is well-known,

8p/0t = —Vj. (2.149)

From the Galileaninvariance,this equationis exactand thereforethereare no correctionsto the
equationconnectedwith dissipationor with thefield cc.

The equationfor themomentumdensityj hastheform of a local conservationlaw,

8j1/0t + Vk(T~+ 7~1))= 0. (2.150)

Here T~is the non-dissipative(reactive)partof the stresstensor,and7~J)is its dissipativepart.
The latter is determinedby viscosity. The non-dissipativeterm T1~is determinedby the form
of the Hamiltonian (2.146) andby the structureof the Poissonbrackets,involving j. Explicit
expressionsfor thesebracketscan be found in the survey [DzyaloshinskyandVolovik 1980] and
in the monograph[Kats andLebedev1988].

We will not derive herethe expressionsfor i~ andgive only the final result,

(r) OE 0E 8E
= FoUl + PViVk + ôVkcc — Vn8~~ V,cc + ovvvnvicc

+fik~—. (2.151)

Herethe pressureP is

P = pOE/Op+ sOE/Os—E. (2.152)

Note that in the absenceof the dependenceof E on cc eq. (2.151) reducesto a well-known
expressionfor the non-dissipativestresstensorof aconventionalliquid, which shouldbe expected.

The tensor (2.151) is not symmetric.Yet, the divergenceof this tensor,figuring in eq. (2.150),
could be reducedto the divergenceof the symmetrictensor,namely

= VkI~,
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where

(s) OH / OE OE OE7’ik = P01k + PViVk + fik~ — Vn ~OVVcc Vcc + OV,VncOvkcc — Ov,Vkcc

OE OE
+Ovccvicc + OVkVncccc

The combination

OOjfJikTIY = ö0j�jjk (o~cc’~°+ ov~ncc~~°)

determinesthe infinitesimal variation of the energydensity E at a rotation of coordinatesby
the angle O0~.From the rotational invariance,this variation is zero. Hence it follows that the
antisymmetricpart of ~ is zero, i.e., i~ is a symmetrictensor.Thus,01/0t reducesto the
divergenceof the symmetricstresstensor,which permitsus to formulatethe conventionalangular
momentumconservationlaw.

The dissipativestresstensoris written as

= —‘l,(VkVI + VIVk — ~01kV1’) —?1201k(Vv). (2.153)

Here ‘11, ~2 arecoefficientsof the first andsecondviscosities.
In studyingthe dynamicsof the orderparameter,we can neglectin the main approximationthe

non-dissipativeterms (associatedwith the velocity v) in eq. (2.148). Besides,we canassumethat
the conditions (2.28) arefulfilled. Theneq. (2.148) becomes

F’Oço/Ot + 5FL/Oco = 0. (2.154)

Thus, the dynamicsof the orderparameterprovesto be purely relaxational.
Generallyspeaking,thekinetic coefficient F’ in eq. (2.154) is a functionof thewave vectorq of

the field cc. This dependencecould havebeenfairly importantsincethe field cc is a short-wavelength
field. However, we are interestedonly in Fourier harmonicswith the wave vectors of the values
closeto q

0. In this caseonecan assumeF’ = const.,which will be impliedhenceforth.

2.4.3. Dynamicdiagram technique
To investigatefluctuation effectswe will makeuseof the diagramtechnique,especiallyadapted

for hydrodynamicsystems.Suchadiagramtechniquewas constructedfirstly by Wyld [1961] who
studiedvelocity fluctuationsin a turbulent liquid. The next stepwas madein the work [Martin,
Siggia andRose19731,wherethe Wyld techniquewasgeneralizedto abroadclassof hydrodynamic
systems.The descriptionof the Wyld diagramtechniquecanbe found in the book by Ma [1976].

The diagram techniquemay be formulatedin termsof functional integration as it was firstly
suggestedby De Dominicis [1976] andJanssen[1976]. We will usesucha functionalintegration
representationin our review. A textbook descriptionof functional integration methodsclosely
relatedto the presentproblemmaybe found in the book by Popov [1983].

Following the work by de Dominicis and Peliti [1978], we may assertthat the correlation
functionsof hydrodynamicalvariablesmaybe foundby usingthe generatingfunctionalconstructed
on thebasisof nonlinearhydrodynamicalequations.Note that in the expressiongiven in this work
thereappearsa functionaldeterminantwhich maybe representedin the form of an integral over
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auxiliary Fermifields [FeigelmanandTsvelik 1982, Lebedev,SukhorukovandKhalatnikov 1983].
It canbe demonstratedthat in our casethe determinantis equalto unity becauseof the causality
propertiesof the Green’s functions. Thereforewe will omit the determinant.For detailssee the
monographby Kats andLebedev[1988], which we will follow in ourdescription.

Fluctuationeffects, associatedwith the degreeof freedom,obeyingeq. (2.154) canbe studiedby
meansof the effectiveaction

I,, = fdtdr (f’pocc/Ot +pOFL/Oco + iTF’p2). (2.155)

Herep is an auxiliary field. Like cc~p is a short-wavelengthfield; then the Fourier components
of this field with the wave vectorshavingvaluesclose to q

0, are important. Dynamiccorrelation
functionscanbe calculatedby meansof averagingoverthefields cc~p with the distribution function
exp(iI). So, for instance,

(cc(t,r)) = fDcc Dp cc(t,r)exp(iic~_ifdtdrhp) . (2.156)

In the definition (2.156) thereis a term with the field h, thermodynamicallyconjugatedto cc. The
reasonsfor its introductionhavebeendiscussedabove.

Higher-ordercorrelationfunctionsof the fields cc~p aredefinedsimilarly to eq. (2.156).We will
introducespecialnotationsfor pair correlationfunctions,

D(t1 — t2,r,,r2) = ((cc(t,,r, )cc(t2,r2))) (q~(t,,rl)cc(t2,r2))— (cc(t,,r,)Xco(t2,r2)), (2.157)

G(t1 —t2,r,,r2) = (~(t1,r,)p(t2,r2)). (2.158)

The averages(p), (pp) are zero; theproof of this fact canbe found in ref. [Khalatnikov, Lebedev
andSukhorukov 1984]. Since (p) = 0, the reduciblepart of the correlation function (2.158) is
zero, thereforewe have usedin (2.158) the designationof the conventionalaveragebut not the
designationof the irreducibleaverage,figuring in eq. (2.157).

At the variationof the field h by dh, themeanvalueof theorderparameterchangesby the value

d(cc(t,r)) = _if dtdr, G(t—t,,r,r1)dh(t,,r,). (2.159)

This relation directly entails from the definition (2.156) and from eq. (2.158). Thus, G is the
susceptibilityof the systemwith respectto the field h. Therefore,from the causalityprinciple,

G(t <0) = 0. (2.160)

For correlation functions determinedby the effective action (2.155), at h = 0 we havethe

relation
iOD(t,r,,r2)/Ot = T[—G(t,r1,r2) + G(—t,r,,r2)]. (2.161)

This equality is in fact the fluctuation—dissipationtheorem,relatingthe pair correlation function
D to the generalizedsusceptibility. In the Fourier representationeq. (2.161) acquiresthe more
habitualform

D(w) = —T[G(w) — G(—a)]/co. (2.162)
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Fig. 9. One-loopcorrectionsto the dynamicself-energyfunction I.

Integratingtherelation (2.161) over t, from — oo to 0, with (2.160) takeninto account,we get

iD(t = 0)/T = G(w = 0). (2.163)

The expressionin the r.h.s.of (2.163) isthe zeroFourierharmonicof the correlationfunctionG(t).
The l.h.s. of eq. (2.163) containsthe one-time correlationfunction, discussedin subsection2.3.
Thus,from the fluctuation—dissipationtheorem,G(cv = 0) is expressedvia staticcharacteristicsof
the system.

Inserting into eq. (2.155) the terms (2.l6)—(2.l8) of the Landauexpansion,at p = const.,
A = const. wefind

I = f dtdr(F’pOcc/Ot+p~co+iTF’p2—ppço2/2+Apço3/6). (2.164)

Here the operator~ is determinedby eq. (2.88). Barevaluesof the correlationfunctions (2.157)
and (2.158) aredeterminedby thequadraticpartof the action (2.164),the fluctuation interaction
is setby the third- andfourth-orderterms in eq. (2.164).Thus wearriveat the conclusionthat the
dynamicdiagramtechniqueinvolvesthe sameverticesp andA as the static techniquedoes.

Singlingout self-energyblocksin the diagramseriesfor the correlationfunction (2.158),wecome
to the standardrelation

(F’ 3/Ot + ~)G(t — t~,r, r,) — f dt
2 dr2 I(t — t2, r, r2)G(t2 — t1, r~, r,)

(2.165)

Here I is a self-energyfunction, determinedby the sum of a series of self-energydiagrams.It
follows from the relation (2.163) and eq. (2.87) that the quantity I (cv = 0) coincideswith the
staticself-energyfunction, introducedin subsection2.3.

2.4.4. One-loopapproximation
In theone-loopapproximationthe self-energyfunction I is determinedby the sum of diagrams,

given in fig. 9. In this figure the dashedline standsfor the correlationfunction (2.157), the solid
line for the correlationfunction (2.158), the dashedline with acrosson its edgefor the average
(2.156),the white triangle denotesthe vertex p and the black circle denotesthe vertex A. Note
the formal similarity of thediagramsof fig. 9 with the staticdiagramsfor the self-energyfunction
depictedin fig. 3.

The one-loopapproximationfor I in the framework of the weak crystallizationtheory is the
main approximation.Besides,the contributioninto I, associatedwith the last diagramof fig. 9,
can be disregarded.The argumentationof thesestatementsis analogousto the argumentationof
subsection2.3, wherethe staticcasehasbeentouchedon.
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The otherdiagramsof fig. 9 give acontributioninto I (cv), identically coincidingwith the static
expressionfor A sincethis contributiondoesnot involve the dependenceon the frequencycv and
at cv = 0 the function 1(w) must necessarilycoincide with the static function in virtue of the
fluctuation—dissipationtheorem.Actually, p, 2 in thesediagramscoincide with the staticvertices
and the average (2.156) is time-independent,thereforethe closed line in fig. 9 standsfor the
one-timecorrelationfunctionD(t = 0, r, r) coinciding with the staticcorrelationfunction.

Like in subsection2.3, retainingonly the homogeneouspart of I we find from (2.165) for the
function G in the Fourierrepresentationthe expression

G,(w,q) = —[F’cv + iA + ia(q—qo)2]’. (2.166)

Hereq is thewavevectorandA is the gapintroducedin eq. (2.92).Equation(2.166) corresponds
to the static correlationfunction (2.96). The dynamicpair correlationfunctionD canbe obtained
from eq. (2.165) by meansof the relation (2.162),whichjust thefluctuation—dissipationtheorem.

In our approximation,theexpressionfor the dressedGreenfunction Gcannow be derivedfrom
eq. (2.165) as a seriesin the inhomogeneouspart of the self-energyfunction 9,

G = G
1 - iG,ØG, - G1ØG,8G,+

This seriesis analogousto the seriesfor the functionD(t = 0), derivedin subsection2.3.
The generalizationof eq. (2.166) to the caseof the vertex A, dependenton wave vectors, is

self-evident.Since in ourapproximationcorrectionsto thecoefficient F’ areabsent,the correlation
function (2.166) conservesits form andonly the gapA will be the functionof adirection of the
wavevectordeterminedby eq. (2.131).The form of this functionhasbeendiscussedin subsection
2.3.

Since, in conformity with (2.159), the function G is the generalizedsusceptibility,singularities
of G(cv) determinethe dispersionlaw for the eigenmode,associatedwith the relaxation cc. The
function (2.166) hasapole at

cv = —i[A + a(q — q0)
2]F’. (2.167)

It is not difficult to makesurethat correctionsto the dispersionlaw (2.167) dueto the presence
of 9 are small in the parameterA/cxq~.Thus, the mode, associatedwith the parametercc~is a
purely relaxationalmode.Note that in the dispersionlaw nearthe transitionpoint only the gap A
possessesasingularbehaviour.

Let us stressthat all the above is valid both for the disordered(liquid) phaseand for the
low-temperatureorderedphases.

2.4.5. Long-wavelengthdegreesoffreedom
Ournextobjective is to studytheinfluenceof fluctuationsof the field cc on macroscopicdynamic

characteristicsof the system.Thenit is necessaryto employ the diagramtechnique,incorporating
long-wavelengthdegreesof freedom.Recall that in the caseof liquids, thesedegreesof freedomcan
be setby meansof the massdensityp, entropydensitys andmomentumdensity1.

It is convenientto developthe dynamicdiagramtechnique,starting with an expressionfor the
effective action, analogousto (2.155). With the long-wavelengthdegreesof freedomtaken into
account,the effective actionacquiresthe form

I=fdtdr [F’pOço/3t+pOH/Oço +iTF’p2 +pOf/Ot+piVkTj~

+~1(Vkpi+Vipk)(Vivk+iTVipk) + (i
2—2,i,/3)Vp(Vv+iTVp) ~ (2.168)
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Here p is an auxiliary field, conjugatedto j, the dots label the termsassociatedwith the mass
density p andentropydensity s. The terms,enteringeq. (2.168), are constructedin such a way
that the extremalsof the functionalI will be the nonlineardynamicequations(2.148) and (2.150)
(the detailscan~befound in the monograph[Kats andLebedev1988]). In writing out eq. (2.168),
we havetakeninto accountthe explicit form (2.153) of the dissipativestresstensor.

Like for the fields cc~p, the dynamic correlation functions of the long-wavelengthfields are
calculatedby meansof the distribution function exp(iI). We are interestedin the correlation
function

Gk(11 —t2,r,,r2) = (j~(tl,r,)pk(t2,r2)). (2.169)

As follows from eq. (2.168),this correlationfunction definesthe responseof the systemto the

force densityf~(t, r), appliedto the system

(j1(t,r)) = _iJdt, dr1 Gt~(t—t,,r,r1)~(t1,r,).

Thus,G~is the susceptibilityof the systemto the externalforce. Due to this, the poles of G~(cv)
determinedispersionlaws of the modes,emergingdueto excitationof the hydrodynamicmotion.

The barevalueof thecorrelationfunction (2.169),which wewill denoteas Go,k,canbe calculated
by meansof the quadraticpart of the effectiveaction (2.168).The function, obtainedin the result
of this calculation, dependsonly on the differencer1 — r2. It is convenientto write this function,
performingFouriertransformationover t — t1, r — r1. As a result,we get

G~(w,q) = —coOlk + c~qjqk/cv — i?~2q~q~— i,~,(q
2O~k+ qeqk/3). (2.170)

Here

= (OP
0/Op)a,

whereP0 is the barepressureanda = s/p is the specificentropy.The quantityc0 hasthe meaning
of thebarevalue of the velocity of sound.

Let usnowshowhowone canfrom the overall action (2.168) derive the effectiveaction (2.155)
for the field cc. Thenit is necessaryto makeuseof the relation

exp(iI~)= fDj Dp Dp Ds Dp5 Dp~exp(iI). (2.171)

This functional integral involves the auxiliary fields Pp, p~,conjugatedto p ands. The relation
(2.171) meansthat the correlation functionsof the fields cc~p, which are by definition set by
integralsover all degreesof freedom,canbe calculatedaccordingto the recipe(2.156).

Fluctuationsof the variables,describingthe long-wavelengthdegreesof freedomoverwhich the
integrationis performedin eq. (2.171), can be neglected.This meansthat the integral (2.171)
can be calculatedin the Gaussianapproximation,then it is sufficient to retain in the effective
action I the second-ordertermswith respectto fluctuationsof j, p, p, s, Ps, Pp. As is known,
Gaussianintegralsare calculatedexactly. The explicit calculation of the integral (2.171) in the
main approximationyields eq. (2.155).

Let us now clarify how in the result of the describedcalculation in the effective action there
emergesaLandaufunctionalof which all expansiontermsarefunctionsof thetemperatureT and
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the chemicalpotential ~. Write out oneof the termsof the interactionof long-wavelengthdegrees
of freedomandthe fields cc~p,

lint = fdt dr (t~pccOp/p+ Vtp,r~ço2/2). (2.172)

Here

= p(0t/0p)~, (2.173)

andthe derivativein eq. (2.173)is takenat a constantspecificentropya. For the constant(2.173)
we havethe estimate

~ (2.174)

The first term in (2.172) emergesfrom the term pOH/Oco in (2.168), and the secondterm in
(2.172) emergesfrom the termp

1V,P in (2.168),which is generatedby the termwith thepressure
in the non-dissipativestresstensor(2.151).

At the Gaussianintegrationdue to the interaction term (2.172) in the effective action there
emergesan additionalterm,which canbe written as

ir~p~(OpVtpt)oq,
2/2, (2.175)

wherethe subscript0 labelsthebarevalue. Theemergenceofthe term (2.175) impliesredefinitionof
the quarticvertex2(p,s), resultingfrom the expansionof H. Employingthe fluctuation—dissipation
theoremit is possibleto showthat the redefinitionof the vertex2 determinedby the term (2.175)
implies the Legendretransformation(2.29) from the variabless, p to the variablesT, ~.

2.4.6. Correlationfunctionsof the long-wavelengthdegreesoffreedom
Now it is necessaryto findanexpressionfor thecorrelationfunction (2.169)with thecontribution

due to the interactionof long-wavelengthdegreesof freedomwith the field cc~describedby the
termsof the typeof (2.172).The analysisof the diagrams,giving the main contributionsinto Gk,
is identical to the analysis,performedin the work [Gurovich, Kats and Lebedev1988] for the
caseof critical dynamics.A detailedformulationof the selectionrule for diagramsfor G,k as well
as the methodof their summationcanbe found in the work [Gurovich, Kats andLebedev1991].
Therefore,omitting the intermediatecalculations,we will give the result for the renormalization,
generatedby the interactionterm of the typeof (2.172).

The renormalizedvalueof Gk(cv,q) differs from thebarevalueGoIk (cv,q) by the replacementof
thebareelasticitymoduleswith renormalizedmodules.In this casereplacingcg by the renormalized
value/1, we find

G~(w,q)= —wO,k + flq~qk/co—ifl2qJqk—ifl,(q2O~k+qiq,/3). (2.176)

The expressionfor fi reads

~(w) =c~—p’t~F(w)/[l +F(w)Y]. (2.177)

Here

Y = (Ot/O~’)T(Ot/OP)s+ (Ot/OT)c(OtjOs)p, (2.178)
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F(cv) = fdtdri exp(icvt)(cc2(t,rj)p(0,r
2)q,(0,r2)). (2.179)

The averaginghereis performedover r2.
Equation(2.177)holdsas long asthe condensate(cc) is small,which is satisfiedin the framework

of weak crystallizationtheory. Note that in the isotropic (liquid) phasethe correlation function
(cc

2pcc) dependsonly on the differencer
1 — r2. In the crystallinephasein this correlationfunction

thereoccur terms,dependenton the both arguments,which is accountedfor by the emergenceof
the condensate(cc). However, theamplitudeof thesetermsis smallas long as (cc) is small, therefore
we will discardthem. In this approximationit is possibleto performexplicitly the averagingover
r2 in eq. (2.179).

We will be interestedin thelong-wavelengthlimit, characterizedby largescalesand low frequen-
cies.This region is determinedby the inequalities

R>>.~/~[A, cv<<A/F. (2.180)

HereR is acharacteristiclength scale,cv is acharacteristicfrequency.
Having in mind eq. (2.180) we retain in eq. (2.179) only a zero Fourier spatialcomponent.

We haveretainedin this expressionthe dependenceon thefrequencycv, sinceapartfrom the zero
term, we will alsoneedthe first term of the expansionof F (cv) in the frequency

F(cv)~Fo+iycv. (2.181)

Thesetwo termsof the expansionproduceeffects, differentby their physicalmeaning,i.e., renor-
malizationof the real part of the spectrumof the modesandtheir damping.

Firstly considerthe term F0 in the r.h.s. of eq. (2.181).A relatiOn of the type (2.161) makesit
possibleto expressthis term via the integralof the one-timecorrelationfunction

F0 = dr(cc
2(0,r)cc2(0,0)). (2.182)

Equation(2.182),with the irrelevantfactoromitted,coincideswith thequantity (2.126),determin-
ing the fluctuationcontributionto the heatcapacity,compressibility,etc.The methodof calculating
this one-timecorrelationfunction hasbeendiscussedin subsection2.3. Inserting eq. (2.128) into
eq. (2.182),wefind

F
0 = TZq~/47ro1”

2A3/2, (2.183)

wherewe employ the quantity, introducedin eq. (2.119),

Z = (1 + ATq~/8irc~”2A312Y’. (2.184)

Prior to the analysisof the secondterm in (2.181), let us clarify the structureof the diagram
determiningthe correlationfunction (2.179).Like in the staticcase,in the main approximationthe
dynamiccorrelationfunction (2.179) is determinedby the sumof theladderdiagramsdepictedin
fig. 10. Rememberthat the dashedline standsfor the correlationfunction (2.157), the solid line
for the correlationfunction (2.158) andthe blackdot labelsthe vertexA.

To obtainthefirst term of the expansionof the correlationfunction (2.179) in cv, it is necessary
to expandthe expressiondeterminedby oneof the loops of the ladderdiagramin cv, in the other
loopswe canput cv = 0. Thisoperationis depictedin fig. 11, wherethe loop in which the expansion
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+ CXI) •• S

Fig. 10. “Ladder” diagramsdetermingrelevantcorrections Fig. 11. A “ladder” contributionto (ço2pço) expandingin w
to the dynamiccorrelationfunction (ç~2p~’). (thecrossedioop designatestheterm linear in a.

in cv is performed,is crossedout. The sumof blocksto theleft of the crossedloop gives the factor
(2.184).The samefactor is givenalso by the sum of blocksto the right of the crossedloop.

Transformingthe first term of the expansionof the loop in cv by meansof the relation (2.162),
weget the representation

z2
~= ~ (2.185)

The integral in (2.185) after the insertionof (2.166) and (2.162) is calculatedexplicitly, which
yields

= TF’Z2/32irci~”2A5/2. (2.186)

Now we can insert (2.186) into (2.177),obtaining from (2.176) an expressionfor the function
Gk. Having in mind the inequalities(2.180),in /3 oneshould retain only the zeroand first terms
of the expansionin cv, definedby (2.181). Comparingthe derived expressionfor G~’with the
barevalue (2.170),we arriveat the following conclusions.

Fluctuationsof cc bring about a renormalizationof the velocity of sound c
0 —* c, where the

velocity of soundc is definedby

= c~— p’~Fo/(1 + F0Y). (2.187)

Hereall the coefficients,exceptF0, behaveregularlynearthe transitionpoint. Thereforethe singular
behaviourof the velocity c nearthe transitionpoint and its jump in this point are determinedby
the function F0, expressedvia the gapA by meansof eqs. (2.183) and (2.184).

Besides,fluctuationsof cc contributeto the viscositycoefficients. In our approximationthereis
only acontributionto the secondviscositycoefficient p72, having singularbehaviour,

‘12 = 7120 + p
1r~y(l+ F~Y~2, (2.188)

wherey is definedby eq. (2.186).
The analysis,analogousto the oneperformedin subsection2.3, revealsthat the constantZ 1

andunderthe naturalassumptionthatF
0Y 1 will be c c0. Thus, the singularpartof the second

viscosity is

‘12 7120’~10
2TF’r~/pct’/245/2.

It is difficult to say somethingdefinite about the value of this contribution,since it dependson
the valueof the kinetic coefficient F’, determiningthe dynamicsof the field cc. Yet, the singular
part of ‘12 hasa largerpower of A in the denominatorthan the singularpart of c2 in eq. (2.187).
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Thereforeonecan expectthat nearthe weakcrystallization’phasetransition,the singularpart of ‘12
will exceedthe regularpart.

The secondviscosity coefficient ‘12 has the strongestsingularity over 4 amongall quantities
studiedby us. In the approximationwe are using,the first viscosity coefficient i~ doesnot possess
anysingularbehaviour.To investigatethe singularbehaviourof ‘1i oneshouldgo beyondthe scope
of this approximation.As a result, we concludethat under the natural assumptionsthe singular
part of ‘1i hasavalueof the orderof magnitudeof the regularpart of ‘11.

2.4.7. Conclusion
Let usnow formulatethemain resultsobtainedin this subsection.Fluctuationsof thesoft field ~

induceabnormalcontributionsto thedynamiccharacteristicsof thesystemwhich, as a consequence
showssingularbehaviournearthe transitionpoint. The contributionsare of the sameorderboth
in the high-temperatureliquid phaseandin the low-temperatureorderedphases.

All thecontributionsmaybe expressedthroughthefundamentalquantity,characterizingfluctua-
tionsofthe soft field thegapA. The dynamicsofthe soft field is purely relaxational.The relaxation
time is inverselyproportionalto the gapA.

The temperaturedependenceof the soundvelocitiesis relatedto thetemperaturedependenceof
the appropriateelasticitymodules.The secondviscositycoefficienthasthemostsingulardependence
on thetemperature,this coefficientbeingproportionalto A 5/2~The appropriateviscosity coefficient
in the orderedphasehasthe samedependenceon A. In other words, in the vicinity of the phase
transitionthe attenuationof (longitudinal) soundwill noticeablyincrease.

3. Stronglyanisotropicnematicsand smectics-A

3.1. Introduction

As has beenmentioned,known isotropic liquids are crystallized by strong first-order phase
transitions. That is why the theory, developedin section 2 is not straightforwardlyapplicable
to theseliquids. At the sametime, in the liquid-crystalline state onecan observediverse phase
transitionswhich are accompaniedby partial or completecrystallization and in fact are weak
first-ordertransitions.To describethesephasetransitionsit is necessaryto generalizethedeveloped
weak crystallizationtheory to the caseof an anisotropicsystem,which is a liquid crystal. Having
this in mind we will briefly describethe structureof knowntypesof liquid crystals,which combine
propertiesof acrystal andof a liquid.

3.1.1. Typesofliquid crystals
The liquid crystallinephases(mesophases)are observedin substances,consistingof molecules

of a rod-like or of adisc-likeshape.The anisotropyof moleculeson the macroscopiclevel leadsto
the appearancebetweenthe solid andthe liquid statesof mesophasespossessinga stronganisotropy
revealingitself in the anisotropyof different tensorcharacteristicssuchaspolarizability. A review
of the propertiesof liquid crystalsmaybefound in the monographsby de Gennes[1974], Stephen
andStraley [1974], Chandrasekhar[1977] andPikin [1981].

The liquid crystallinephasesmostcloseto liquids arecallednematics.Onecanimagineanematic
as asystemof moleculeswhose masscentersare positionedchaotically in space,but whosemain
axes havea preferreddirection. Molecules then can slip freely with respectto oneanotherand
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rotate around their long axes. The unit vector n characterisingthis preferreddirection is called
director.

In substances,consisting of rod-like molecules, betweenthe nematic and solid phasesthere
usuallyexists asmecticphase,wherein comparisonwith the nematicphase,aviolation occursof
the translationalsymmetryalong oneof the directions.In otherwordssmecticcanbe represented
as an orderedsystemof liquid (or liquid-crystalline) layers. Then the masscentersof molecules
are arrangedregularly in the direction of the normal to the layersbut chaotically in the planeof
the layer. Smecticlayerscan slip freely with respectto oneanotherin a liquid-like manner.

In the simplestcasethe smectic layers are isotropic, which correspondsto the so-calledA-
phase.Smectic-A can be representedas a systemof liquid layers of moleculeswhosemain axes
are perpendicularto smecticlayers. The layers of so-calledsmectics-Cpossessa lower rotational
symmetry.This is a consequenceof the fact that the main axesof moleculesin smectics-Care
tilted by a certainangleto the normal of the layer. In other words, in smectics-Athe director is
perpendicularto layers and in smectics-Cit is not.

In hexaticsmectics-B(or hexatics)the mainaxesof the moleculesareperpendicularto thelayer
(like in smectics-A),but in contrastto smectics-Amoleculescannotfreely rotatearoundtheirmain
axeswith respectto oneanother.Usually,in this casethe layerhasa sixth-orderaxis,which explain
the notation of thesesmectics.We will denotesmectics-Aas SA, smectics-Cas SC and hexatic
smectics-Bas SB.

Experimentallyit is difficult to distinguish the latter smecticsfrom layered hexagonalcrystals
which are alsooftencalledsmectics-B,or moreaccurately,crystallinesmectics-B.Therealsoexists
anumberof layeredcrystallinephasesof different symmetry,which are labelledas smectics-E,F,
G, H, I. Note that the designationsmectics-Dis attributedto complexcubic crystalline structures
possessingweakdensitymodulation.Besidesthesephases,also phasesare observedwhich can be
consideredas smecticswith one-dimensionaldensity modulationin a layer [Sigaudet al. 1981,
Hardouinetal. 1982].Thesephasesareusuallycalledmodified smectics(smectics-Am,smectics-Cm
etc.) andaredistinguishedby layerstructuresandby tilting of the director.The main experimental
dataconcerningsmecticphasesmaybe found in the works [Hardouin et al. 1983, de Jeu1992].

Violation of the translationalsymmetryof the nematicphase,consistingof disc-likemolecules,
occursfairly specifically. Theprolateshapeof moleculesbringsaboutthefact that the translational
symmetry is violated in the plane of the preferredorientationof molecules.Thus there appears
acolumnarliquid-crystallinephase,which can be representedasa systemof columnsor threads,
forminga regulartwo-dimensionallattice in the planeorthogonalto the threads.The masscenters
of moleculesin eachthreadare positionedchaotically, thereforethe threadscan slip with respect
to oneanotherin a liquid-like manner.

Let us stressthat becauseof intensivethermalmotion of moleculesin liquid crystalsthe pictures
of moleculearrangementin thesephaseshavelittle to do with the experimentalsituation. These
picturescan be usedfor illustration only. Thereforewe will payattention to the structureof the
densitymodulationwhich is a directly observablequantity. Thesestructuresare characterizedby
their symmetry.Herewe presentashort symmetryclassificationof liquid-crystallinephases.

The symmetryof anyphasesetby the spatialgroupS = G A T, which is asemi-directproductof
the translationgroupT andofthe rotationgroup G, renderingthe structureinvariant.For instance,
for an isotropic liquid G = 0(3) or G = °h(3), i.e., three-dimensionalgroup of rotations, and
T = R3, i.e., a group of three-dimensionaltranslations.All possibletypes of liquid crystals are
classifiedaccordingto subgroupsof this semi-directproduct0(3) A R3.

The mesophaseswith the symmetrygroup G A R3, whereG is a subgroupof the total group of
rotations,shouldnaturally becalled nematics.Amongthis classthereareclassicaluniaxial nematics
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with G = D~h,orthorhombicbiaxial nematicswith G = D2h and other orientationallyordered
phaseswhose existencehas not yet beenreliably confirmed: icosahedral,hexaticand tetragonal
nematics.Any other subgroupsof 0(3) or any other types of nematics are not in principle
prohibited.We will denotethem as follows: conventionaluniaxial nematicsas N, as it is usually
donein the literatureon liquid crystals,andthe othersin accordancewith thelargestorderof the
symmetryaxisof the subgroupG, i.e., orthorhombicbiaxial nematicsasN2, hexaticas N6, etc.

Similarly, all mesophases,whereT = R
2® Z’ (where ® denotesthe direct productof the two-

dimensionalgroup of continuoustranslationsR2 and of the one-dimensionalgroup of discrete
translationsZ’) can naturally be termed smectics,whereasall mesophases,where T = R1 ® Z2
are termed columnarphases. Smectic-A, for instance,is characterizedby the symmetry group
D~hA R2® Z’, smectic-Cby the groupC2h AR2 ® Z’, hexaticsmectic-Bby thegroupD6hA R2® Z’,
hexagonalcolumnarphasesby the group D6h A R’ ® Z~and tetragonalcolumnar phasesby the
group D4hA R’ ® Z2. Note that the modified smecticphasesmentionedabovehavethe symmetry
G A R’ ® Z2 (whereG is a discreterotation group) coincidingwith the symmetryof rhombic or
monocliniccolumnarphases.

3.1.2. Peculiaritiesof weak‘crystallization ofliquid crystals
Recallthat the main peculiaritiesof the weak crystallizationof liquids are accountedfor by the

fact thatthe crystallineorderparametersoftensin the vicinity of aspherein the reciprocalspace.
In this section we will dwell upon the casewhen the order parametersoftens in the vicinity of
a circle (or a coupleof circles) in the reciprocalspace.This canoccur in systemspossessingthe
symmetryaxisC~.We speakabout the weakcrystallizationof uniaxial nematicsand smectics-A.

To avoid confusion, note that nematicsand smectics-Acan get crystallizedby different mech-
anisms.So, in the result of the phasetransition they can transforminto molecularcrystals (not
possessingapronouncedlayeredstructure).If such atransitionis weakcrystallization,it occursat
asufficiently weakanisotropyof the system.This caseis studiedin section4.

On the otherhand,onecanalsoobservethe nematic—smectic-Atransitionat whichthe crystalline
orderparametersoftensin the vicinity of two isolatedpoints in the reciprocalspace.Thistransition
canbedescribedin the frameworkof the conventionalphasetransitiontheory.In termsof the mean
field theory this transitionis asecond-ordertransition.However,in this transitionan importantrole
is playedby fluctuationsof the director [Halperin, LubenskyandMa 1974, WiegmannandFilev
1975], which apparentlyresult in the transformationof this transitioninto a first-order transition
[Anisimov etal. 1987, 1990]. We will not discussin detail the nematic—smectic-Aor the analogous
smectic-C—smectic-Ctransitionsin our review.

In this sectionwe considertwo possibilitiesof crystallizationof smectics-Aandnematicsdictated
by their symmetry.The first possibility is associatedwith the softeningof the orderparameterin
the vicinity of acircle in the reciprocalspace.This possibilitywill be called simplecrystallization,
it is usually realized in smectics-A.The nematic—columnarphasetransitionis analogousto the
simple crystallizationof smectics-Aand is describedby the samemodel. The secondpossibility is
associatedwith the softeningof the orderparameterin the vicinity of two circlesin the reciprocal
space. The nematic—smectic-Ctransition gives such a example. In smecticsa realization of the
secondpossibility is accompaniedby such effects as doubling of the interlayer period or even
formationof an incommensuratestructure.

To studythecrystallizationof asmectic-Aor anematicwewill makeuseoftheweakcrystallization
theory of an isotropic liquid, describedin section 2. However it is in need ofsomemodification
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becauseof anisotropyof a smectic-A or anematicphase.Our approachwill be groundedon the
works [Kats, LebedevandMuratov 1988, 1989; LebedevandMuratov 19911.

3.2. Simplecrystallization.Meanfield theory

As wehavealreadymentioned,weakcrystallizationis associatedwith the softeningof theshort-
wavedensitymodulation.In the caseof the liquid possessingfull rotationalinvariancethe softening
occursneara spherein the reciprocalspace.In the caseof a smectic-A or a nematicpossesing
uniaxial symmetry the softeningoccursnearthe circle (or circles) in the reciprocalspace.In this
andin the nextsubsectionswewill considerthe caseof softeningnearonecircle which we will call
simplecrystallization.

As previously, we will start from the Landaufunctional setby eqs. (2.10), (2.17) and (2.18).
But the characterof the dependenceof thecoefficientsin theseexpressionson wavevectorswill be
different.Particularly,we shouldto addto eq. (2.16) an anisotropicterm of the form

F’~2~= ~J-Jdr (lVco)2. (3.1)

Herethe unit vector I determinesthe direction of the normal to a smecticlayer (for the nematic
it should be replacedby the director “), ~i is the expansioncoefficient.We supposethat a~> 0.
In the oppositecasea

1 <0, thesofteningof theorderparameterwill takeplaceneartwo circlesin
the reciprocalspace.We will considerthis casein the nextsubsection.

It will be our assumptionthat at equilibrium the layers are orthogonalto the Z-axis. Then
(IV) = Vz. In the caseof astronganisotropy,typical of smecticsandnematics,the coefficient a11
mustbe of the orderof the coefficient a, figuring in eqs. (2.12) and (2.16). It meansthat for the
characteristicvaluesof ~at which the transitiontakesplace,the inequality

I r << a1~q~ (3.2)

is fulfilled. The caseof weakanisotropy,whenthe inequality (3.2) is not fulfilled, will be discussed
in section4.

3.2.1. Interaction term
The short-wavelengthfield cc (r), describingthe densitydistribution, can be written asaFourier

expansion,

cc(r) = ~~(q)exp(iq.r), (3.3)

wherenow the componentsof cc(q) with the wavevectors, lying in the vicinity of a circle in the
reciprocalspaceqz = 0, I q I = q0 are relevant.Thus,at thecrystallizationof smectics-Athereis a
loss of translationalinvariancein the smecticlayerplane.

Now considerthe fourth-orderterm in the Landauexpansion(2.18),

F~
4~=

4~A(q1,q2,q3,q4)~(ql)cc(q2)cc(q3)~(q4). (3.4)

Thesummationin (3.4) is performedoverasetof vectors,obeyingthe conditionq1 + q2+ q3 + q4 =

0. Since all vectorsq. arelying in the sameplaneandare identicalover the absolutevalue, they
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canbe arrangedas a rhombus.The quantity 2 which canbe treatedas the scatteringvertex, is a
functionof the valueof angle0 of the rhombus,obeyingthe self-evidentrelations

2(6) =2(—0) =2(ir—6) =A(2ir+O). (3.5)

This function canbe written as aFourierexpansion,

2(0) = 20(1 +~1kcos(2kO)). (3.6)

Henceforth,as a rule, we will considersomeparticular casesof the dependence2(0), when in
the series (3.6) only oneterm with k = 1,2,3 is non-zero,anddescribethe phasediagramsthus
obtained.

Naturally, the theory we are employing, is applicableonly if 1(0) > 0. In the oppositecase
2(0) < 0 the functional F is not positively defined andas a result the usual first-order phase
transitionwith the condensationof the field cc in the region correspondingto the negative2(0)
will take place.In this caseit is necessaryto takeinto accounthigher-ordertermsof the expansion
of F in the field cc. We will not considerthis case.For the dependence2(0) of the form

2(0) Ao(l + lkcos(2k0)),

the condition2(0) > 0 implies thatthe condition I 1k 1< 1 mustbe fulfilled.
With fluctuationsof the field cc neglected,the problemof crystallizationof smectics-Ais virtu-

ally a problemof a conventionaltwo-dimensionalcrystallization.Then all the argumentsgiven in
subsection2.2 hold. The simplecrystallizationof smectics-Aor nematicsin the mean-fieldapprox-
imation is describedanalogouslyto the weakcrystallizationof an isotropicliquid. Particularlythe
sequenceof smecticphasesappearingatthe increasingof temperaturemaybe deducedby renaming
of the sequenceof phasesfoundfor the crystallizationof the liquid (certainlywithout phaseswith
three-dimensionalordering).

3.2.2. The caseA = const.
Firstly, considerthe casewhen in the series (3.6) all coefficients1k are zero, i.e., the quartic

scatteringvertex doesnot dependon the anglebetweenthe wavevectors.In this casein the phase
diagramthere emergephaseswith the samecondensatesas the averages,found in subsection2.2
for a three-dimensionalsystem,with the exceptionof the condensate,describingthe BCC

1 phase.
It meansthatat increasingr thereoccursthe sequenceof phases

SAm SBSA.

HereSA is the original smectic-Aphase,SB is ahexagonallayeredcrystal, which it is~morenatural
to call a crystallinesmectic-B,SAm is the so-calledmodifiedsmectic-A,i.e., asmecticphasewhere
the density in a smecticlayeris modulatedin onedirection.The symmetryof the SAm phaseis
the sameas the symmetry of columnar phasessince it is characterizedby the two-dimensional
translationalorder.

The difference betweenthe energyof the crystalline smectic-B phaseand the energy of the
original smectic-Ais definedby eq. (2.59), andthe differencebetweenthe energyof the modified
smectic-Amandthe latterenergyby eq. (2.50). The amplitudesof the arisingdensitywavesin SB
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andSAm are alsodefinedby eqs. (2.59) and (2.49), respectively.The phasetransitionstakeplace
at the following valuesof the parameterr:

T(SAmSB) = ~(7+ 3~)jt2/Ao), r(SBSA) = _~,i2/2~. (3.7)

Recall that the simplecrystallizationof anematicis describedby the samemodel as the simple
crystallization of a smectic-A. It meansfor example that the sequenceof phasesfor the simple
crystallisationof nematicmaybe deducedfrom the onefor smecticby denominationof thephases.
The SA phasecorrespondsto the nematicphase,theSB phaseto the columnaroneandthe modified
smectic-A could correspondto the smectic-Cphasewith the tilt angle,r/2. Unfortunatelywe do
not know experimentsin which such C phaseswere observed.

3.2.3. Anisotropic 2
Let usassumenowthat thevertex2 dependson the anglesbetweenthe wavevectorsandanalyse

consequencesof this dependence.It is convenient,like it hasbeendone in subection2.2. (seeeqs.
(2.69)), to representthe energyof the inhomogeneousphaseas

Q/V = Ar + ~A(0 = 0)A2 + f’, (3.8)

whereA is the sum (2.42) andthe function f’ is definedby

f’ = ~[2(0n0m) ~A(0 = 0)]a~4—~JL>anamal. (3.9)
n>m nml

With this definition the functionf’ is zero for the modified smectic-Am.
Let only oneterm with k = I in the seriesof eq. (3.6) be non-zero.It is clearthat in this case

the tetragonalphaseTe with the condensate

(cc(r)) = 2[a
1 cos(q0x)+ a2cos(qoy)]

canbecomeabsolutelystable.The functionf’ for this phaseequals

f’ = Ao(l — 321 )a~a~/2. (3.10)

The total energyof the tetragonalphaseand the amplitudeof the density

Q’re/V = —r
2/22

0(l —2k), a1 = a2 = ~/A7~. (3.11)

For11> 1/3 the valueof Q for the tetragonalphasebecomeslower thenfor the modified smectic-A
(becausefor SAm f’ = 0 and for Te it follows from eq. (3.10) that f’ <0 at 2~> 1/3). So, for
2~> 1/3, the sequenceof transitionsat increasingtemperatureis

Te-SB-SA.

Let us now describethe phasediagrams,occurring at the crystallizationof smectics-Afor the
case,whenin the series(3.6) the termswith k = 2,3 are non-zero.Skipping simple calculations,
we presentonly results.Fork = 2 at22 > 3 the modifiedsmectic-Ais replacedby arhombicphase
R with the condensate

(cc(r)) = 2a[cos(qox) + cos(qo(x + y)/v~))].
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For k = 3 thereare two transitions.Firstly, at 23 > 1/3 the modified smectic-A is replacedby a
tetragonalphase.Note that in this casein our approximationthereis adegeneration:the energies
of the tetragonalandrhombicphaseR’ with the condensate

(cc(r)) = 2a[cos(q0x) + cos(qo(x+ V’~y)/2)]

identically coincide. Secondly,at 23 > 0.224on the phasediagrambetweenthe regionsof stability

SAm and SB thereemergesaquasicrystalwith the condensate

(cc(r)) =2a~cos(qn.r),

wherethe six vectorsq~areequalin absolutevalueandhavethe angles r/6 betweeneachother.
Thus, the cascadesof transitions

SAm-Q6SBSA, Te-Q6-SB-SA

becomepossible.All phasetransitionsin thesesequencesarefirst-orderphasetransitions.
As is seenfrom the aboveanalysis,new phasesemergeonly for positivevaluesof the parameter2k• At negativevaluesof 2k thephasediagramdoesnot qualitativelychangein comparisonwith the

the diagramat A = const.This is accountedfor by the fact that for 2k <0 themodifiedsmectic-A
alwayshasasmallerenergythanthe tetragonalor rhombicphase.

3.2.4. Quasicrystals
We now study the problemunderwhat conditionsthe emergenceof absolutelystablequasicrys-

talline phasesis possible.We will confineourselvesto the casewhen the triple vertex ~uin the
Landauexpansion~ssmall and canbe neglected.Following the work [Malomed, Nepomnyashiy
andTribelsky 19891 wherethe authorsstudiedthe problemof structuresappearingat convective
instabilities, it is easyto get a necessarybut not sufficient condition for absolutestabilityof qua-
sicrystallinephases.As an illustrationof this statementlet us consider,as competingstructures,the
structureswith the condensate

(cc(r)) = 2a>Jcos(qoea.r), (3.12)

Heree, areunit vectors,havinganglespr/n with eachother. Thephasewith n = 1 is the modified
smectic-A.The phasewith n = 2 ande

1 I e2 is the tetragonalphaseTe andunderthe condition
(e 1e2) = 1/2 is the rhombic phaseR. Finally, the structurewith n = 4, wherethe anglesbetween
vectorsq are ir/4, is the quasicrystalQ~.

Let a certain dependenceof the vertex A on the angle0 betweenthe wave vectorsbe set.To
investigatethe problemof stability of the mentionedphasesin the framework of the meanfield
theory,suffice it to know the two values

2(3,r/4)/2(0) = A(ir/4)/2(0) = y~, A(ir/2)/A(0) = Y2. (3.13)

Notethat from the condition2(0) > 0 it ensuesthatboth y~> 0 and Y2 > 0.
Next, calculatethe functionsf’ for the four phasesunderconsiderationin conformitywith the

definition (3.9),

f’(Am) = 0, f’(R) = A(0)(2y1 — l)A
2/8,

f’(Te) = 2(0)(2y2— l)A2/8, f’(Q,~)= 2(O)(2y~+ Y2 — 3/2)A2/8. (3.14)
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Comparingeqs. (3.14) with each other, we see that the most energeticallyfavourableout of the
four phasesare

(a) y~>1/2, Y2 > 1/2, SAm,
(b) y~<1/2, Y2 <1/2, R,
(c) yi > (2y~+ l)/4, Y2 < 1/2, Te,
(d) ~i < (2y~ + l)/4, Y2 < 1/2, Q~.

Thetwo latter inequalitiesrestrictthe regionof the parameterswherethe absolutelystablephaseis
aquasicrystalQ.~.

Notethatabovewhenwehaveusedtheparametrisation2(0) = 2~[1 + 2k cos(2k0)], the stability
region of aquasicrystalQ,~was unatainable,sincethe inequalities(d) could not be simultaneously
satisfied.At the sametime if thetwo non-zeroharmonicsin the series (3.6) aretakeninto account
it is possible to attain the stability region of a quasicrystal.The quasicrystalQ6 proves to be
absolutelystable for k = 3, due to the cubic term of the Landauexpansion,which for other
consideredphaseswas identically equalto zero. The describedsimpleanalysiscaneasilybecarried
out for othercases,e.g., for pentagonalquasicrystals.

Let us recallthat all abovedescribedresultscanbe applyedto asimplecrystallizationof strongly
anisotropicnematics(with theevidentredesignationsofphases).At thecrysallizationof anematicof
consideringtypeatwo-dimensionaldensitymodulationappearcorrespondingto differentcolumnar
phases,observingusuallyin the discotic liquid crystals.It is interestingto notethat the sequence
Dt—Dh—N (where D

1 is the tetragonalcolumnarphaseand Dh is the hexagonalcolumnarphase)
correspondingto the aboveformulated sequenceTe—SB—SA for smectics,is actuallyobservedin
discotics [Levelut 1979, 1983].

3.3. Simplecrystallization. The role offluctuations

In this subsectionwe will go on with the analysis of the crystallization of smectics-Aand
nematicsin the frameworkof the developedmodel.Rememberthat all conclusionsof this analysis
are applicableto the nematic—columnarphasetransition. In contrastto subsection3.2, wherethe
analysishasbeencarriedout in the framework of the meanfield theory,now we will take into
considerationfluctuationsof the order parametercc~which play an importantrole in the weak
crystallizationtheory.The diagramtechnique,necessaryfor this purpose,has been developedin
subsection2.3. This diagram techniqueinvolves verticesiz and2 as well as the pair correlation
function (cccc). The analysisof the role of fluctuationsin the anisotropiccaselargely repeatsthe
analysis,performedin section2 for an isotropic system,thereforeour considerationherewill be
morebriefandschematic.

Note that with fluctuationstaken into account,the weak crystallization of films will not be
analogousto the weakcrystallizationof the systemsunderstudysincethe strengthof fluctuations
in a two-dimensionalsystemis larger. In this sensea two-dimensionalsystemresemblesratheran
isotropic liquid. Certainpeculiaritiesof the weak crystallizationof films wereinvestigatedin the
work [LebedevandMuratov 1990].

3.3.1. Equationfor the gap
The analysisof correctionsto the correlationfunction (cccc) enablesoneto cometo theconclusion

thatatthe softeningof cc in thevicinity of a circle in thereciprocalspace,in themain approximation,
like in the isotropiccase,it sufficesto confineoneselfto the self-energycontributionrepresentedby
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Fig. 12. Main self-energycorrectionto the correlationfunction((q~)).

the diagramgiven in fig. 12. The accountof this diagramleadsto the expressionfor the correlation
function

((cc(q)cc(—q)))= T/[A + a11q~+ aq — q0)
2]. (3.15)

Thebarevalueof 4 is equalto r, theaccountof thediagramin fig. 12 reducestotherenormalization
of the gapin eq. (3.15).

Henceforth,we will assumethat the conditions

A<<a
11q~, A<<aq~ (3.16)

arefulfilled. Theseconditionsgeneralize eqs. (3.2) to the caseunderdiscussion.Theseinequalities
are necessaryto makethe weak crystallization theory applicable.They also will enableus to
perform analyticalcalculationsto the end. Besides,if the first condition in (3.16) is fulfilled, it
is possibleto confineourselvesonly to the oneanisotropicterm (3.15) in the Landaufunctional,
sincehigher-ordertermsof the expansionin (1 V) bring aboutthe effects, small in the parameter
A/a11q~.

First considerthe case2 = const. Calculatingthe self-energycontribution,depictedin fig. 12, we
arriveat the equationfor the gap 4 in the smectic-Aphase

= ‘r+ ~ln(4ajjq~/4A), fi = AqoT/8ic.j~~f. (3.17)

Note that insteadof the power of A, figuring in the equation for the isotropic system, here there
arisesa logarithm, which is aconsequenceof the structureof the correlationfunction (3.15). As
for the weakcrystallizationof isotropicliquids, this equationhasasolutionfor thegapat anyvalue
of t. it meansthat theSA phaseis alwaysatleast metastable.Thisfact allows us to usetheenergy
of the SA phaseas the referencepoint for the energyof differentphases.

In low-symmetryphasesthe condensate(cc(r)) is non-zero,

(cc(r)) = ~2amcos(qoem.r), (3.18)

whereem arethe unit vectorsdeterminingthetype of latticeandlying in the XY-plane, andamare
the amplitudesof densitywaves.Explicitly, the equationfor the gap in the low-symmetryphases
reads

A = r + AA + flln(4a11q~/A). (3.19)

Therelationbetweenthe parameterA, introduced in (2.42), and the value of the gapA for modified
smectics-Aandcrystalline smectics-Bmaybe found from the equationd.Q’/dA = 0. Using this
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Fig. 13. Phasediagramof weakcrystallizationof smectics-Ain thecase).= const.

relation,it is easyto get from (3.19) a closedequationfor the gap. For examplefor the modified
smectic-Ait is

flln(4a11q
2/4A~)+ ~+ ~Am = 0. (3.20)

The calculation of the energy of the phases is analogous to that presented in section 2. As a result

we find

(RAm .C2sA)/V = —(A,~+ A~m)/2A+

(QB—Q5A)/V= (A~—A,~)/22+(fl/2)(AB—AA)—2I~uI(AB/3)3/2—2A~/l2. (3.21)

Employing eqs. (3.21), it is not difficult to determinethe diagram of states, emergingat the
crystallizationof smectics-A.It is given in fig. 13. For the caseunderdiscussionthe characteristic
value of the parameter ~uis the ordinate of the triple point in the phase diagram,

~uo~ 0.l7(22qoT)”2/(aa
11)

1/4.

Note that the difference of ~tz
0from zero is purely a fluctuation effect; in meanfield theory

/20 = 0. The general features of the influence of fluctuations on the weak crystallization phase
transition are the same as in the isotropic system. Wesee that fluctuations do not create new stable
(or metastable) phases. All phases in the phase diagram have corresponding three-dimensional
analogues. The most important qualitative fluctuation effect is the presence of a direct first-order
SAmSAtransition in the region of strong fluctuations /L <lAo.

The value of the gap 4 can be computed numerically using presented equations. Figure 14 gives
the dependence of the gap 4 on the parameter r for two values of the triple vertex p = 0 and
p = 2.65po. Besides a continuous behaviour of the gap we see jumps: the value of the gap A
increases at a transition to a low-temperature phase.

3.3.2. Accountofanisotropy
Next, we generalizetheabovedescribedresultsto the casewhenthe quarticvertex2 dependson

the anglebetweenthe wave vectors.Take the dependence2(0) to be of the form of (3.6), where
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Fig. 14. Dependenceof thegap4 in thecorrelationfunction((qi9~))onthevalueof theparameterrat theweakcrystallization
of smectics-Afor the valuesp = 0 andp = 0.45).~~(aa11~’/~.

in the Fourierseriesonly oneterm is non-zero.Fromthe calculationperformedin the meanfield
theory we know structureswhich thencan be absolutelystable. Let first k = 1. Apart from the
phases,stableat A = const.,for Ai > 1 /3 in the phasediagramthereemergesaregion of stability
of a tetragonalcrystal. Derive the equationsfor the gap A and find energyvalues for all the four
phases:SA, SAm, SB, Te.

The correlationfunction ((cccc)) has,as usual,the form (3.15). The equationfor the gap in the
smectic-Aphaseis derivedanalogouslyto (3.17),

AA=r+floln(4a11qg/AA), (3.22)

wherePb = 20q0T/8irVn~,and2o is the zero Fourierharmonicsof the vertex2(0).
In thelow-symmetryphasethegapA becomesanisotropic.Its dependenceon the angle0, referred

to from oneof the directionsof crystallizatione1, is governed by theequation

A(0)_r+~A(00m)a~+ ~~Jdo’A(oo’)ln[4aii~~/A(o’)]. (3.23)

For thetetragonalandhexagonalphaseseq. (3.23) reads

A(0) =r+AoA+ do’ [I +2icos(2(0—0’))]ln[4aj1q~/A(0’)], (3.24)

whereATe = 2a
2, A

5g = 3a
2. It hasthetrivial solution 4(0) = A, wherethe valueof A satisfies

A =r+AoA+$oln(4cs
11q~/A). (3.25)

The relation betweenA andA is

ATe =
4ATe/2b(l + A

1),

A5 = 3{[~2 +2Ao(l +2i)AB]~I’
2HpI}/2o(l+2k).
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Hence,to define thevalueof thegap, we get the systemof equations

flo1n(4ap1q~/A.r~)+ (
3A1)ATe/(l +2k) + ‘r = 0,

floln(4a
11q~/A5)+ 2OAB — AB + ~ = 0. (3.26)

Out of thetwo solutionsof the systemof equations(3.26) oneshouldchoosethe largestby absolute
value.It is clearfrom theseequationsthat solutionsforthe tetragonalphaseandcrystallinesmectic-B
existat any2 and ~1i, althoughthesephasescanbe metastable.

Recall that the difference betweenthe energiesof low-symmetry phasesand the energyof the
high-energyphase (namely smectic-A) can be computedthe most easily. For the tetragonaland
hexagonalstructures,they,respectively,equal

QTCQSA [(3Ai)/(l+2i)1A~e+A,~ /~O4
V 2Ao +~-( Te A),

~QB—QSA = ~ +~(AB_AA)_2IpJ(~AB)3/2_i~2o(l+2~)4. (3.27)

Theseexpressions will be usedlater.

3.3.3. Mody?edsmecticphase
Now let usconsideraone-dimensionalstructure,i.e., smectic-Am.In this casethegapwill not be

isotropic. Thereforewe shoulduseeq. (3.23) for an anisotropicgap.For the phaseconsideredit is

AAm(O) =~+ dO’ [1 +Alcos(2(0—O’)]ln[4/JAm(0’)]. (3.28)

In thefollowing, for convenience,we will usethe dimensionlessvariablesA, ~, ~ü,definedby

= ..AoqoT A = ~
2o~oT = ~ (3.29)

(act
11)’!

4

Equation(3.28)hasthesolutionA = x + ycos(20), wherethe quantitiesx andy obeythesystem
of equations

x = ~+AAm+ (l/8ir)ln[8/(x+ (x2—y2)’12)],

y = AA~—y/87r[x+ (x2—y2)”2]. (3.30)

The relationbetweentheparameterAAm and the valueof the gapis determinedby

- 4Am(00) x+yAA=2 =2m l+2~ 1+2k

Thus,weget a systemfor definingbothharmonicsx andy of thegapof the modified smectic-Am,

x(l—2,) +2y = —(1 +2,){~+ (l/8~r)ln[8/(x-i- (x2_y2)’!2)]},

2A,x_y(l_2,)=A,l+21 y8ir
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which after the replacement y = x sina results in

f64ir[22,—(l—A,)sina] \ - 1—2,-j-2sina
ln( . I +8irr+A,tan(a/2) . =0. (3.31)

\ 2,(l+A1)sina j 22,—(1—A,)smct

The quantity x is related to the root of this equation as

— 1+2, A,tan(ct/2)
— 8,r 2A,—(l—2,)sina~

An analysis of eq. (3.31) shows that in the case 2~< 1/3 at a sufficiently low temperature
there are two solutions for a from which the largest in absolute value corresponds to the energy
minimum. If 2, > 1 / 3, the solution that is interesting for us vanishes at decreasing temperature. The
disappearance of the solution is connected with the fact that A (0) becomes zero in the direction
orthogonal to the direction of crystallization, i.e., with the loss of stability of the smectic-Am.

Now we have to calculate the energy of the modified smectic-A. The difference between this
energy and the energy of the smectic-A phase is determined by

- - A A
~Am~A_

1~-dA’— “ ‘dA’ (x+y)2
V JdA’ _j~X+Y/ — l+2~

0 0

wherethe relationbetweenx, y andA’ is set by eq. (3.30). The integral is calculated analytically,
and we finally obtain

QA,~—QA_x2—A,~ X—AA y2(x+y)2 (332)

V — 2 + 8ir +22 1+1,

The dimensionalvalueof Q is equalto (2oq~T2/aa
11)Q.

3.3.4. Phasediagram
Now it is possible to obtain the total phasediagramfor the caseunderstudy. fig. 1 5a shows

the phase diagram of the system for A, = 0.34. It is clear that fluctuations modify the mean field
behaviourin the region of small p. If in the meanfield theoryat increasing2, at 2, = 1/3 there
occursacontinuoustransitionand the modified smecticis replacedby a tetragonalphase.With
fluctuations taken into account, the modified smectic-A remains absolutely stable in a certain region
of parameters also for 2, > 1/3. The temperatureof theSAm—Te transitionbecomesdependenton
2, and tendsto —oc at 2, —+ 1/ 3 + 0. The modified smectic looses its stability at r~somewhat
smaller than the value of r at the transition, namely

11 ( 64irqoj~~(32,—l)~ 2 3—1,1 333Z~fl = — ~n ~ TA0I,(1 + 1~) ) + ‘32, —1] Pb. (

Thus, fluctuationsrenderthe SAm—Te transitiona first-order transition. At a further increaseof
2, the modified smectic vanishes and, for instance, for 2, = 0.6 the diagram acquires the form,
plotted in fig. 1 5b.

Similarly, onecanconsiderthe casesk = 2, 3. We will not give all formulas but give the results
only for a few valuesof the parameter

2k, anddiscussthe form of the obtaineddiagrams.
Above all, the valueof the gapin the tetragonalphasedependson the angle0 only atk = 2, and

in the smectic-B only at k = 3. In the modified smectic-A the gapis alwaysanisotropic,however,
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Fig. 15. Phasediagramof weakcrystallizationof smectics-Afor the case (a))., = 0.34; (b) A~= 0.6.

the final formulas for this phasedo not at all dependon the number of the harmonicsk to be
takeninto accountwith the accuracyup to the replacementA, —~

1k~In all other cases the gap in
the correlation function (cccc) remainsisotropic and the calculation only slightly differs from the
onefor the caseA = const.

The structureof the phasediagramfor k = 2, i.e., for A(0) = Ao(1 + 22cos(4O)), identically
coincideswith the diagram for k = 1, if 2, = 22. The only distinction is that in the latter case
instead of the tetragonal phase in the diagramthereis a rhombic phaseR, describedin subsection
3.2.

The phasediagramsfor k = 3, 23 = 0.34, 0.4, 0.6 are given in figs. 16a—l6c. As has been
explainedin subsection3.2, in the given casetherearisetwo new structures.As for an absolutely
stabletetragonalphase,it emergessimilarly to what hasbeendescribedabovefor k = 1. Note only
that in the approximationwe have employedfor k = 3 the energies of the tetragonal phase and
rhombic crystalR’ coincideboth in the meanfield theoryandwith fluctuationstakeninto account.
Apart from the tetragonal phase at 23 > 0.22 in the phasediagramthereemergesaquasicrystalline
phase Q6. described in subsection 3.2.

Abovewe haveconstructedphasediagramsonly for the simplestdependences2(0). As hasbeen
explainedin subsection3.2, for more sophisticateddependencesin the phasediagramstheremay
appearphases,missing in figs. 15 and 16. So, for instance,insteadof rhombic phasesat large
negativer quasicrystallinephasescanbe absolutelystable.Unfortunately,moregeneralcasesof the
dependence2(0) requiremore numericallybulky calculations.Thereforewe will confineourselves
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to a qualitative discussion of the structure of the phase diagram.
In the mean field theory all lines of phase equilibria on the plane r, p are parabolas ~ ~ p2.

Taking into account fluctuations leads to the fact that in the region of strong fluctuations (at small
p) all intermediate phases vanish and a direct first-order transition from the smectic-A phase into
a phase, stableat large negativer, takes place.

For the case of an isotropic vertex (i.e., at A = const.) the phasediagramis given in fig. 13.
The presence of anisotropy in the function 2(0) essentially alters the phase diagram. It is, as usual,
composed of threesectors,yet now the rhombic (tetragonal)or quasicrystallinephasecanserveas
the low-temperature phase. Besides, between this phaseand the smectic-Bphasetheremay be a
quasicrystal. In the mean field theory transitions of this kind occur irrespectiveof r and p upon a
variation of the parametersdescribingthe anisotropyof the function2(0). The dependenceof this
transitionpoint on r,p arisesif fluctuationsaretakeninto account.The said-abovealsoconcerns
the dependence 2(0), having deep minima at some non-zero angles. If these minima are absent, the
phasesremainqualitatively the sameas in the theorywith 1 = const.,althoughthetransitionlines,
naturally,becomeshifted.Remindthat all saidaboveis valid alsofor the simplecrystallizationof
a nematic.

3.4. Nematic—smectic-Ctransition

The nematic—smectic-C phase transition often takes place in a sequence of polymorphictrans-
formations in liquid crystals. This is a caseof one-dimensionalcrystallization.We havealready
consideredthe alternativescenarioof crystallizationof a nematicin the previoussubsections.The
difference is that in the examined case the fluctuations of the order parameter were “softened” near
the one circle in the reciprocalspacebut near the nematic—smectic-Ctransitionthe fluctuations
softenneartwo circlessymmetricwith respectto the planeperpendicularto the director.

It is clear that it is impossibleto constructa closed triangle from wave vectors lying nearthe
circles.Hencethe term of thethird order(and all odd terms) will be absentin the expansionof the
free energy in the order parameter. Therefore the phase transitionhasto be a second-orderphase
transition in the framework of mean field theory. But fluctuations of the order parameter make the
transition a first order one. The important role of fluctuations of the field cc at this transitionwas
noticed by Swift [1976]. In this subsection we will largely follow his work.

3.4.1. Main equations
As has already been noted, at the nematic—smectic-C transition the order parameter cc softens in

the vicinity of two circlesin the reciprocalspace.The secondorderterm in theLandaufunctional,
describingthis softening,canbe written as

~ = !fdr (4,rcc2 + a
11 [((~)2 ±q~)cc]

2+ ~ [(V3 ~q~)~]2”s~ (3.34)
8 q

1 q0 j

Here n is the director, V~= V

2 — (nV~2 In considering the phase transition, the gradient term
(3.34) should be analysed alongside with the terms (2.l6)—(2.18) of the Landau expansion.

Wemay neglect fluctuationsof the directorn at the nematic—smectic-C transitionandtherefore
assume that it = const. Below we will assume that the Z-axis is directed along the director.

The gradient energy (3.34) has a minimum for fluctuations with the wave vectors

q~= ±q
1, q1 = ~/q~+ q3 = q0. (3.35)
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These conditions define two circlesin the reciprocalspace.At the condensationof the field cc~i.e.,
at the phase transition under study, there emerges a harmonics of cc with a wave vector, obeying
the conditions (3.35). Thus, this wave vector provesto be tilted to the Z-axis. This condensate
corresponds to the smectic-C phase, where the director it is tilted to the normal I to the smectic
layers.

Using the quadratic part of the Landau functional (3.34), it is easy to find the bare expression
for the pair correlation function of the field cc (2.84), which in the Fourier representation reads

D(q) = T/[A +a±(Iq~I—qo)2+a
11(~qz~—q,)

2]. (3.36)

Here, as previously, the bare value of the gap A = r. In the derivationof eq. (3.36) we have

assumedthat the conditions
A<<a~

1q~,A~a~q~ (3.37)

are fulfilled. This makes it possible to confine oneself to the consideration of a narrow vicinity of
the circles (3.35) in the reciprocal space. In essence, the inequalities(3.37) are the applicability
conditionsfor the weakcrystallizationtheory for the given case.

Note that in the vicinity of the triple point “nematic—smectic-A—smectic-C”the inequality holds

a1q~<<a~1q,
2.

The Landau functional for this case was formulated in the work [Chen and Lubensky 1976]. There
it was demonstrated that this functional has a low critical dimensionality, equal to three. The
consequences of this fact were studied in the work [Gorodetskyand Podnek 1989]. In our opinion,
however,this questionrequiressomeadditionalinvestigation.In particular, the role of fluctuations
of the director, neglected by the authors of the above mentioned work, is quite obscure.

The inequalities (3.37) permit to confine oneself in the analysis of the phase transition to Fourier
components of the field cc with the wave vectors near the circles (3.35) in the reciprocal space.
These wave vectors cannot form a closed triangle. Hence it follows that at this phase transition the
cubic term (2.17) in the Landau expansion is irrelevant, since it vanishes in the integration over
the volume. The same assertion holds also for other terms, odd in the field cc.

The said-above means that in the mean field theory the transitions we are studyingare second-
order phase transitions. This assertion is valid both for the crystallizationof nematicsinto smectics-C
and for the transitions into phases of more complex symmetries (see below). Yet, due to fluctuations
of the field cc~this phase transitionbecomesa first-ordertransition.

To analyse the role of fluctuations of the field cc~it is necessary to employ the diagram technique,
developed in subsection 2.3. The inequalities (3.37) permit to confine oneself to the one-loop
approximation for the effective field h and the self-energyfunctionX. In the case under study the
problem is simplified due to the absence of the terms, cubic in the field cc~therefore in the diagram
equations,plottedin figs. 2 and 3 one can omit the terms with the triple vertex p.

As previously, alterations in the structureof thepair correlationfunction ((cccc)) due to fluctuations
reduce to the replacement of the bare value of the gap zl = r in eq. (3.36) with its renormalized
value. The equations for the gap A can be easily written out analytically in the case, when the
quartic vertex 2 = const. This equationreads

A =r+2A+fl’ln(4a.Lq~/A), (3.38)

where /3’ = AqoT/47r\,raJaj~.The quantity A here is defined by eq. (2.42). Recall that the first
term in the r.h.s. of eq. (3.38) is a bare contribution, the second a mean field contribution and the
last one is a fluctuation contribution.
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Fig. 17. Dependenceofthegap4 in thecorrelationfunction((~ço))on thevalueof theparameter~atthenematic—smectic-C
phasetransition.

Like in subsection3.3, the fluctuationcontributionto the gapis definedby the integral,logarith-
mically divergingin the upperlimit. The final resultsarenot sensitiveto the methodof cuttingoff
this integral. We haveperformedthis cuttingby analogywith subsection3.3. The resultingequation
(3.38) for the gap A is analogous to eqs. (3.17) and (3.20). Therefore the analysisrelevantto the
nematic—smectic-C transition largely repeats the one covered in subsection 3.3. We will give here
only the main results in brief.

3.4.2. Results
If the vertex 2 = const., the Landau expansion (2.16), (2.18), (3.34) gives rise a phase transition

at the variation of the parameter ‘r, associated with the formation of the condensate of the field cc
of the form

(cc(r)) = ~/~cos(qox+ q,z + ~), (3.39)

where b is an arbitrary phase. The density modulation (3.39) correspondsto the smectic-Cphase.
Let us discuss the main features of this transition.

The dependence of the gap AN on r in the nematic phase is determined by eq. (3.38) where one
should put A = 0. As in previous cases, there exists a solution of the equation for all values of
r. Therefore the energy of the nematic phase may serve as a referencepoint at computingof the
energiesof low-symmetryphases.

The dependenceof the gapASC on ~ in the smectic-Cphaseis determinedby eq. (3.38), where
the relation between the amplitude A and the gap AsC is determined by the condition h = 0.
The field h, conjugated to cc~is defined as in subsection2.3. At the transition point, the gap A
experiences a jump of the order

4—fl’. (3.40)

Thegap in the nematicandsmecticphaseshasthe sameorder nearthe transitionpoint. For the
theory to be correct, the quantity /3’ must satisfythe inequalities(3.37). The qualitative form of
the dependenceof the gap on the temperatures in depicted in fig: 17.

At the nematic—smectic-Cphasetransition point the thermodynamicpotentialsQ of the both
phases mustbe equalto eachother. The differenceof the potentials of the smectic and nematic
phases is given by

(Qsc—QN)/V = (4c +4,~,)/22+fl’(4sc—AN)/A. (3.41)
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Fig. 18. Configurationsof wavevectorsenteringin the equationfor the gap.

The equation Qsc = QN can be solved only numerically. The fluctuation contributioninto Q gives
rise to the fact that the transition under study is a first-orderphasetransitionwith the latentheat
of the transition of the order 42/2, where A is estimated from (3.40).

The conclusion from the theory that the nematic—smectic-Ctransition is a first-order phase
transition tallies with the experimental situation. The latent heat of this phase transition was
measured in the works of several authors (see the monograph by Anisimov [1992] and the
literature referred to therein). Note that the experimentally found value of the latent h~eat of this
transition proves to be rather small, which justifies the applicability of the weak crystallization
theory to this transition.

We now discuss the influence of the angular dependence of the quartic vertex 2 on the phase
transition.This dependencefor the case we are studying will be somewhat more complicated than
in subsections 3.2 and 3.3. The component q~of the wave vector of the field cc is non-zero,it is
close either to + q, or —q,. Although the dependence of 2 on absolute values of the Z-components
of the wave vectors can, as previously, be omitted, the dependence of 2 on their signs must be
retained. Therefore 2 can be treated as a function of the transversalcomponentsof thewavevectors
(lying in the smecticlayer plane) andthe signs of q (labelledby the subscripts+ and —).

The gap A now becomesa function of the wave vectors,one of which hasthe subscript+ and
the other hasthe subscript—. It is clearthatthe equationfor the gap involvesasum of the values
of thevertexA for the configurationsof thewavevectors,depictedin fig. 18. This sumis afunction
of the angle0 of the rhombusandpossessesall symmetryproperties(3.5). Thus,with the angular
dependenceof A takeninto account,the problemreducesto the one analysedin subsections3.2
and 3.3. That is why onecan reformulatethe resultsof thesesubsections,bearingin mindthat the
componentsof the emergingcondensatehavethe wavevectorswith q~� 0 andregardingthe triple
vertex p = 0. Recall that althoughthe analysisof subsections3.2 and 3.3 is basedon a concrete
form of the angulardependenceof the vertex2(0), theconclusionsof this analysisare moreor less
general.

Repeatingthe considerationsof subsection3.3, we concludethatatthe crystallizationof nematics
a monoclinic (M) or quasicrystalline (Q) phasescan arise.The monoclinic phaseis a genuine
crystallinephasewith theC2 axisalongthe director.Thequasicrystallinephasepossessesa crystalline
orderalongthe directorandaquasicrystallineorderin theorthogonalplane.Thefollowing sequences
of phasetransitionsarepossible:

M-N, Q-N, M—SC-N, Q-SC-N.

All thesephasetransitionsarefirst-ordertransitionswith the characteristiclatentheatsof the order
of 4

2/A wherethe gap4 is estimatedfrom eq. (3.40).
The possibility of transitions,where the symmetry z —~ —z is broken is not excluded. This

possibility is in needof aspecialanalysisandwill not be discussedhere.
Theperformedanalysisof the crystallizationof nematicsis alsoapplicableto the crystallizationof

smectics-Afor thecasewhenthe softeningof thefield cc occursnearthe two circlesin the reciprocal
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Fig. 19. Diffraction patternsfor the threesmecticphases:(a) smecticA1 phasewith the quasi-Braggpeakat q = ke and
two diffusion spotsat ~ = q0, Iq~I = q,, (b) smectic-A phasewith quasi-Braggpeaksat ke~andk1,k2,k,~= k2~,(c)
smectic-Cphasewith quasi-Braggpeaksat kez,k,,k2,k1~~ k~thesumk1 + k2 = 0.

space. All above formulated conclusions hold also for the crystallizationof smectics-A,if then there
occurs a period along the Z-axis, incommensurate with the initial density modulationperiod in
smectics-A. This weak crystallization model is qualitativelyconsistentwith the experimentaldata
[Ema et al. 1 989b]. If at the transition the period increasestwice (threeor four times) as much,

this strongly complicates the theoreticalinvestigation.We will not considerthis situationhere.

3.5. Smectic-A—smectic-A, smectic-A—smectic-C phase transitions

Here we will study the weak crystallization of smectics-A for the case when the order parameter

cc softens in the vicinity of two circles in the reciprocal space whose centres are lying roughly
in the middle between the origin and the boundaries of the Brillouin zone. In this case effects of
commensurability become important,inducingtheappearanceof suchunusualphasesas smectics-A,
smectics-C.

These phases emerge in the phase diagram of substancesconsistingof polarmolecules.Suchphase
diagram, as a rule, gives a few different smectic-A phases. Following the conventional notation, we
will call the smectic-Aphasewhich at the crystallizationgeneratesthe A andC phases,smectic-A,.
The X-ray patterns for the smectic-A,, -A, -C phases are given in fig. 19. In the smectic-A,phase
there is one quasi-Bragg peak with the wave vector q = k = kez~This peak corresponds to the
original density modulation with the period, close to the length of the molecule. Near the phase
transitions,investigatedhere,apartfrom this peak,therealsoemergediffusion spots near the circles
qjj = qo, q~I= q,, whereq1, q~are components of the wave vector q, orthogonal and parallel to
e~( q0, q, are positive constants).

The appearance of these spots shows that in the vicinity of thephasetransitiondensityfluctuations
with the wave vectors near the spots “soften down”. At decreasing temperature the intensity of
fluctuations increases and in the phase transition point in the “soft” regions there emerge two new
quasi-Bragg peaks with the_wave vectors k, andk2. If 1k, I = Ik2I, the new phase is smectic-A, if
Ik,I � Ik2I, this is smectic-C.

In the mean field theory the A,—A, A,—C, A—Ctransitions are second-order phase transitions
[Prost 1984]. However due to fluctuation effects, the A,—A, A,—C transitions become first-order
phase transitions, as was noted in the work [Wangand Lubensky 1984]. The description of these
phase transitions is very close to that of the nematic— mectic-C transition, studied in subsection
3.4. Yet, the presence of the original density modulation in smectics-A, brings about a number of
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peculiarities,distinguishingthe A, —A, A, —~ transitionsfrom the nematic—smectic-Ctransition.
A few words about the experimental situation. Safinya et a!. [1986] noticed that the structure

factor of the A, phasenearthe A, —A transitionexhibitsasophisticatedbehaviour.The measure-
mentsof the heatcapacityshowthat the A, — A transitionis a weak first-ordertransition [seeEma
et a!. 1 989a].This result is confirmedalsoby the recentX-ray studieson 7CBAAB [Ostrovskyand
Said-Achmetov 1990].

In thissubsectionwe will constructtheweakcrystallizationtheory for theA, —A, A, —C transitions,
incorporatingthe influenceof fluctuations.We will find thephasediagramandanalysethe behaviour
of the physical quantities near these phase transitions. Our analysis will follow the work by Lebedev
andMuratov [1991].

3.5.1. Landau expansion
As previously,we will describethe densitymodulation,emergingat the A, —A, A1 —C transitions,

by means of the order parameter cc (r), characterizingthe valueof the densitymodulationwith the
wave vectors in the “soft” regions. The mean value of the field cc is zero in the high-temperature
phase,i.e., in smectics-A1,and is non-zeroin the low-temperaturephase,i.e., in smectics-Aor
smectics-C. We will consider only components of the field cc with the wave vectors close to the
mentionedtwo circles in the reciprocalspace.In this case,as for the nematic—smectic-Cphase
transition,all odd termsof the Landauexpansionof the free energyof the systemin the order
parametercc (r) are zero. That is why the A,—A, A,—C phasetransitionsin the meanfield theory
are second-orderphasetransitions.

We stressthat thethusdefinedorderparameterdescribesthe so-calledbilayerdensitymodulation.
Alongsidewith it, in the phaseswe arestudying,thereis alsoa monolayerdensitymodulationwhich
is assumedto beratherinsensitiveto the emergenceof thebilayer densitymodulation.Peculiarities
of thesetransitionsareaccountedfor by the interactionof thesetwo typesof modulation.

In this situationthe leadingtermsof the expansionof the free energyF in the orderparameter
can be represented as

(3.42)

Here the first term is defined by eqs. (2.18) and (3.34), and the secondterm describesthe
interactionof the densitymodulation,emergingat the phasetransition,with the original monolayer
density modulation in smectics-A,. In conformity with the experimental situation we believe that

1k! is close to 2q,. Then in the Landau expansion one should take into account a cross term of the
form

F,_2 = —~ofdr cos(kz+ ~o) cc
2(r). (3.43)

Here~ is the coefficient,proportionalto the densitymodulationamplitude in the smectic-A,and
cP~is an arbitrary phase.This phasecan be madezero by an appropriatechoiceof the origin of
the referencesystem,this choicewill be assumed henceforth.

Let us discussthe applicability regionsof our model. We are interestedin the narrow vicinity of
the A

1—A, A,—Cphase transitions where fluctuations are important. Thus, we study only a small
part of thephasediagram,whichwas analysedin themeanfield approximationin the works [Prost
1979, Barois, Coulon andProst 1981, Wangand Lubensky 1984]. We will assume also that the
fluctuation region we are analysingis far from other phasetransition lines, in particular, from
the nematic—smectic-A, phase transition line. In this case one can treat all parameters appearing
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in the Landau expansion as temperature-independent. In particular, we will regard the quantities,
determining the position of the “soft” regions in the reciprocal space as constant.

3.5.2. Main relations
The A, —A, A, —Cphase transitions occur upon a variation of the parameters r and Cc’, entering

the Landauexpansion.Consequently,we must study the phasediagram of the system on the
plane (r, c~).At ~o= 0 we come back to the situation discussed by Swift [1976], devoted to the
nematic—smectic-C transition (see the previous subsection).

In the original smectic-A, phasethe meanvalue of the bilayer order parameterçp is zero. At
decreasingparameterr therearisesanon-zerocondensateof the field cc. In smectics-Cit reads

(ç(r)) = 2a, cos(k1 . r) + 2a2 cos(k2. r). (3.44)

In eq. (3.44) a, and a2 are density modulation amplitudes. The wave vectors k1 andk2 obey the
relation

k, + k2 = keg.

This conditionensuresthe presenceof a non-zerocontributionto the interactionenergy(3.43) of
thefield cc with the monolayerdensitymodulation.For the smectic-Aphasethe condensateof the
field cc also has the form of (3.44), where now

a, = a2, k,~= k2~= k/2. (3.45)

From theseconditions,the smectic-A phasehasthe second-ordersymmetryaxis, which makesit
macroscopicallydistinct from the smectic-Cphase.

Considerthe structureof the pair correlationfunction ((cccc)). Above we have taken into account
only the average((cc (q) cc (—q))). Yet, in the situationwe areinvestigatingnow, dueto the presence
of the monolayer density modulation, the average of the form ((cc (q ) cc (—q ±k))) should be taken
into account.Sincewe haveassumedthat 2q1 ~ k, i.e., that the diffusion spots in the smectic-A
phase are almost in the middle between q = 0 and the peak of the monolayer modulation, then
both the vectorsq and —q ±k may lie in the vicinity of the circles Iq..,j = q0, IqzI = q,. We will
takeinto accountthe average((cc(q ) cc (—q ±k))) only underthis condition.

Let the vector q lie in the vicinity of a circle with q~= q,. Thenwe mustconsiderthe correlation
functions

D~~(q)= ((cc(q)ç,(—q))), D__(q) = ((~(q—k)~(k—q))),

D~_(q)= ((q~(q)cc(k—q))),D.÷(q)= ((~(q)cc(q—k). (3.46)

Naturally, the function D_ can be obtained from D.,.+ by means of complex conjugation, the
sameis valid for thepair D_+, D~—. The technique,exploitingcorrelationfunctionsof the type of
(3.46), is close to the technique, proposed by Nambu [1960] in the superconductivity theory [see
alsoWangandLubensky 1984].

The final expressionsfor the correlationfunctions (3.46) canbe written as

(D~÷(q)D~_(q)\— (A+b(q) —~ \‘ 347
~D÷(q) D~(q)) — ~ -~ A+b(k-q))
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Fig. 20. (a) Main mean field correction to the gap 4 Fig. 21. Phasediagram for the SA1—SA—S~transitions,
in the correlationfunction ((g~’)). (b) Main fluctuation obtainedin the Landauapproximation.All transitionsare
correctionto thegap4. second-ordertransitions.

Here the function b(q) equals
I,I \ , ~2 ,u~qj =a~q1—q0) +a1j~qz—q,,

and 4 and ~ are new parameters. The bare values of these quantities are, respectively, equal to ‘r
and ~. Note that in the dependenceon the values of the parametersin the r.h.s. of eq. (3.48),
the determinant of the matrix in the r.h.s. can have minima either on two or on four circles in the
reciprocalspace.It meansthat the maximaof the pair correlationfunctioncanbe achievedeither
on two or four circles in the q-space.

The parameters A and ~ in the smectic-A1 phaseare distinct from their bare values due to
fluctuation effects. In orderedphasesthereemergeadditional terms, associatedwith the presence
of the condensate (3.44). The main contribution of this type is given by the diagram in fig. 20a.
The main fluctuationcontributionto A and~ is representedin fig. 20b, wherethe solid line stands
for the correlationfunction (3.47).

The weakcrystallizationtheory is applicablefor thecaseunder studyif the conditions

A,~<< a±q~,a11q,
2 (3.49)

are fulfilled. In this casefluctuationsof the field cc are concentrated in a narrow vicinity of the
circles I~±!= q

0, I ciz I = q,. Recall that for the mean value of the order parameter the estimate
(cc) ~/2i7iholds. The fulfillment of the conditions (3.49) thus ensuresthe small value of the
densitymodulationarisingat the phasetransitionandvalidatesour approach.

3.5.3. Phase diagram
First considerthe phasetransition in the meanfield approximation.Inserting the condensate

(3.44) into the Landaufunctional (3.42), we get the expressionfor the potentialQ

Q/V = Ar+~oAx+cs1p(k/2—q,)
2Ax2+AA2(l +x2/2)/4. (3.50)

Here A = a~+ a~,x = 2a,a
2/A. The parameter A varies from zero up to +oc, and the parameter

x from —1 up to 1. In deriving eq. (3.50) we have made use of the expressions for the wave vectors
of the condensate k,, k2

k,~= q, + (k—2q,)a~/A,k2~= q, + (k—2q,)a~/A. (3.51)
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These expressions can be derived as the result of the procedure of energy minimization over all
independentparameters.Fromeq. (3.51) it follows that in the smectic-Cphase,wherekiz � k2~,
also a, ~ a2.

To find the values of A and x, it is necessary to minimize the expression for the potential Q,
defined in eq. (3.50). The value A = 0 correspondsto the smectic-A, phase,the values A � 0,
x = I to the A phase and the values A ~ 0, x < I to the C phase. The finally obtained phase
diagramis depictedin fig. 21. The boundariesbetweenthe phasesare determinedby

r(A,—A) I~oI—cx11(k/2—q,)
2, r(A,—~) =

r(A—C) = —214oI + 5tj
1(k/2—q,)

2. (3.52)

The triple point hasthe coordinates

ICoI = 2c~
1~(k/2—q,)

2, r = cs~~(k/2—q,)2. (3.53)

In the meanfield theoryall A
1 —A, A, —C, A—~transitions are second-orderphasetransitions.

Now considerthe role of fluctuationsnearthe phasetransitions.Assumethat the influenceof
fluctuationsis much strongerthat theinfluenceof commensurability,i.e., that the condition

/3’>> a11(k/2—q,)
2 (3.54)

is fulfilled. Herethe parameter/3’ is definedby eq. (3.38). In this case one can put k = 2q,.

The equationsfor the parametersA and~ arederivedas it hasbeendescribedabove.They read

A =r+Aa~+2a~+~fl’ln[A2/(A2—c2)],

~=Co+2a,a2+ ~f3’ln[(A—C)/(A +0]. (3.55)

Here A is the upper cutoff, determined by the limits of applicability of eq. (3.48). The variation
of A is equivalent to a redefinition of the parameter r —~ r + const.Thereforewe mayput I = /3’,
which is a convenient choice.

The thermodynamicpotential Q is now a function of the parametersA, ~, a,, a2. The relation
betweena,, a

2 andA, ç~is found from the conditions h, = 0, h2 = 0 where

h1 = OQ/t9a,, h2 = OQ/0a2. (3.56)

Using eqs. (3.55) onecanwrite the expressionsfor thefields as

h, = a,(A —2a~/2—2a~)+ Coa2,

h2 = a2 (A — Aa~/2— Aa?) + ~oa,. (3.57)

From eqs. (3.55) andfrom the conditionsh, = 0, h2 = 0 by means of numerical calculations one
can find the dependence of the quantities A, ~, a1, a2 on ‘r and Cc~

To constructthe phasediagramwe needto calculatethermodynamicpotentialsfor different
phases.The differenceof the thermodynamicpotentialsQ for two given phasesis theintegral

Vf(hidai +h2da2). (3.58)
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Fig. 22. Phasediagram for the SA1—SA—S~transitions, Fig. 23. Dependenceof theparameters4, C on r.
obtainedwith fluctuationstakeninto account.The SA1—SA,
SA1 -SC transitionsarefirst-ordertransitions,the SA—SC
transition is a second-ordertransition.

The limits in this integralare determinedby the valuesof the parametersa,, a2 in thesephases.
The fields h,, h2 are relatedto the parametersa~and a2 via (3.57).

The integral in (3.58) can be calculatedanalytically. As a result, the differenceof free energies
of alow-temperaturephaseandthe smectic-A, phasecanbe representedin the form

(~—Q~1)/V= 2_h[(A2_A?)/2+ ~2_~+ fl’(A—A1)—A
2A2(2+x2)/8]. (3.59)

The quantitiesA and x have beendefined above (see (3.50)). The phasetransition lines are
determinedby the conditions

QA—QAI =0, £k—QA

1 =0, (QA—QA,)—(Q~—QA1) =0. (3.60)

It is easyto derivethe equationfor the phasetransitionline betweenthe A and~ phases,

r = —2l~oIfl’ln[fl’/(~fl’1n3+ KoI)1. (3.61)

The position of othertransitionlines can be found only numerically. The numericallycalculated
phasediagramis depictedin fig. 22. It involvesthe threephasesA1, A andC. Note that the A, —A,
A,—C transitions,with fluctuationstakeninto account,becomefirst-orderphasetransitionswhereas
the A—C transitionremainscontinuouslike in the meanfield theory. At the A—C transition the
second-ordersymmetryaxis is broken.Such type of symmetrybreakingleadsto the second-order
phasetransition.A similar situationtakesplaceat the smectic-A—smectic-Ctransition.

The renormalizedquantitiesA and ~ are nontrivial functions of the variables r and ~o.The
typical form of the dependenceof A and ~ on x at a fixed ~ is given in fig. 23. In the A 1—A,
A1 —C phasetransitionpointsthe quantitiesA andç~experiencejumps of the order /3’. In the A—C
phasetransitionpoint the quantitiesA, ~, a~,a2 vary continuously.At ~ —~ 0 we have a2 —* 0 and,
consequently,we comebackto the situationdescribedby Swift [1976].

In the smectic-C phase, the value of the wave vector of the condensate kfr, as follows from the
relation (3.51), dependson r. It variesfrom k/2 on the smectic-A—smectic-Cphasetransitionline
up to q, at ‘~o = 0.

3.5.4. Discussion
We now analysethe dependenceof the heatcapacityon the temperaturein the vicinity of the

phasetransitionswe arestudying.Sincethe parameter‘r is proportionalto T — T*, the singularpart
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Fig. 24. Dependenceof the heatcapacityon r in thevicinity of theSA1-.SA—S~phasetransitions.

of the heat capacity is proportional to a
2Q/8r2,whereQ is the singularpart of the thermodynamic

potentialQ. Calculatingthis derivativeandusingtheexpressionsforthederivativesofthe quantities
A and~‘ over r, ensuingfrom eqs. (3.55), we get

Csing(A
1) x T/3’(24 + fl’)/2[(24 + fl’)(A + /3’) —2~~],

C A TS+
8~+2flA3P

sing( ~ A[6(42_~2) +8PF~_flhA_3P~2]

C ~ T 4(A2~(2)~4fl’A+$’2 362

sing( )~c 2[2(A2—~2—3fl’A +I3~2] ‘ (
An exampleof the dependenceof the heat capacityon r at a fixed ~ is depictedin fig. 24, where
the heat capacity is measured in arbitrary units. The singular part of the heat capacity in the
low-symmetryA andC phasesis largerthanin the smectic-A, phasedueto the contributionof the
condensate.

Let us to mention that in the general case we have to take into acount the role of two factors —

fluctuationsand effects of an incommensurability.If the incommensurabilityeffects are small we
mayneglectthem. In the opposite limit we may neglect fluctuationsof the orderparameter.The
simultaneous consideration of both effects can be done only numerically. However using the explicit
expressionsfor thesetwo limit cases,onecan considerthe generalcaseas acertaininterpolation.

Thus, the useof theweakcrystallizationtheory for the analysisof phasetransitionsbetweenthe
smectic-A,, A and C phases permits to obtain the phase diagram, to determine the order of the
transitionsandto investigatethe temperaturedependenceof the structuralfactorandheatcapacity.
The thenobtainedresultsare in qualitativeagreementwith the experimentaldata. A quantitative
comparisonwith experiment,apparently,requiresacertaingeneralizationof the model.

In our phasediagramthereareonly threesmectic-A,,A andC phases.To include into the weak
crystallization scheme other smectic phases, also present, for instance, in the global phase diagram
[seeProst1984],we haveto give up someinequalities,formulatedabove.The phasediagramwill
also be modified if the dependence of the vertex A on the wave vectors is taken into account.
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3.6. Macroscopic effects

At the end of this section we will discuss macroscopic and, in particular, dynamic manifestations
of the studied types of weak crystallization of nematics and smectics-A. Actually this study is a
repetition of the analysis, performed in subsection2.4 for the isotropic liquid, therefore here we
will cover only the results.

Like in subsection 2.4, in studying the macroscopiceffects, associatedwith the field cc~in the
expansion of the free energy, one should incorporate the terms, describing the interactionof the
field cc with the long-wavelength degrees of freedom. In smectics-A these degrees of freedom are
described by the mass density p, specific entropy a, velocity v and the smectic layer displacement
u along the Z-axis. In the weak crystallization transition point the mass density, specific entropy
as well as V~u,i.e., interlayer spacing, experiencea jump. This jump is small in virtue of the fact
that this first-order phase transition is close to asecond-ordertransition.

Apart from this trivial effect, the interaction of cc with the long-wavelengthdegreesof freedom
induces a fluctuational softening of the system. So, fluctuationsof the field cc bring about the
decrease of the smectic layer compressibility modulus B and of the quantity c2 (OP/Op)~ (P is
the pressure), which is inversely proportional to the compressibility.This meansthat fluctuation
contributions to the quantitiesB’, c2 arise. These contributionsareof the order

q~T/41rAck. (3.63)

A similarcontributionemergesalsointo the quantityC~,where Cp is the specific heat at constant
pressure.

Let us give some relations, valid for the simple crystallization of smectics-A. The energy (3.1)
explicitly depends on the vector of the normal to the layers, which for smectics coincides with the
director n. Expanding (3.1) in deviationsof is from the equilibrium value and taking into account
that n, = VaU (where c~= x,y), we get

= —a~iV~49V,,ccV~,u+ a
11 V,,uvpuVaccvpcc/2. (3.64)

This energy describes the interaction of the field cc with the smectic layer displacement u. At
the condensation of the field cc due to the second term of (3.64), in the energy there emerges a
contribution, associated with the shear elasticity. In the smectic-B phase this contribution implies
the presence of the shear modulus,

C44 = ~11q~A. (3.65)

The presence of the interaction energy (3.64) gives rise to various fluctuationeffects,in particular,

induces the emergence of the following fluctuation contribution to the energy density,
Kfl(V~u)

2/2. (3.66)

The fluctuation contribution appearing in eq. (3.66), to the Frank constants equals

K~= (3/32ir)~,/~j~q~TJA. (3.67)

Thus, fluctuations of cc generate an anomalous contribution to the only smectic Frank constant K.
To investigate how fluctuations of cc influence the long-wavelengthdynamicsof the system,we

must take into account the interaction with all long-wavelengthdegreesof freedom.This procedure
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is described in subsection 2.4. It is not difficult to make sure that all static effects, associated with
the field cc~are also reproduced in dynamic equations. In particular, it implies the appearance of
anomalous contributions, defined in eq. (3.63), to cj2 and cr2, where c, and c

2 are velocities of
the first and second sound in the smectic phase or velocities of the respectiveacousticmodesin
the crystalline phase. Thus, these modes soften near the transition point.

Besides,fluctuations of the field cc induce a purely dynamical effect, i.e., increase of the viscosity
coefficientsof the systemnearthe transitionpoint. In subsection2.4, it hasbeenshownthatat the
weakcrystallizationof isotropicliquidsin the main approximationthereis only a contributionto the
coefficient of the so-called second viscosity.Thiscontributionin thevicinity of thetransitionbehaves
as A 5/2W At the weak crystallizationof smectics,the situationis somewhatmore complex. The
dissipative stress tensor in smectics is characterized by five viscosity coefficientsand fluctuations
corrections arise to all the five coefficients. Omitting fairly cumbersomecalculations [seeKats,
Lebedev and Muratov 1989], we will give only the results.

It proves that the bulk viscosity coefficients, determining the sound absorption, ‘i,, ?7~,~s (we
are employing the notation of Martin et al. [19721) grow most of all. The fluctuation contributions
to these coefficients are proportional to

q0T/FA
2~/~j~. (3.68)

Here 1’ is the kinetic coefficient, describing the relaxation of cc. Fluctuation corrections to the shear
viscosity coefficients 12, ?73 have a less pronounced singular character, by the order of magnitude
they are equal to

qgTv’~/PA~/~j~. (3.69)

The existent experimental data do not permit to carry out a quantitativecomparisonwith our
results. Nevertheless there is, no doubt, qualitative agreement. For instance, in the works [Calder
et a!. 1980, Oswald 19861 a considerable growth of the sound absorption was observed at the
smectic-A—crystalline smectic-B transition, whereas the anomalies in the velocity of sound and the
shear viscosity coefficients are less marked. This fact agrees with our results, since the softening
of the velocity of sound and the increase of the shear viscosity coefficients are determinedby a
weakerdependenceon the smallparameterof thetheoryA than the main contribution to the bulk
viscosity coefficients, proportional to j_2, determining the sound absorption.

All predictions concerning macroscopic manifestations of fluctuations of the order parameter cc at
the simple weak crystallization of smectics-A are qualitativelyvalid for all other weak crystallization
transitions, discussed in this section, in particular, for the nematic—columnar phase and nematic—
smectic-C, as well as smectic-A

1—smectic-A,smectic-A,—smectic-Ctransitions.

4. Weakly anisotropic nematics andsmectics-C

Here we will construct the crystallization theory of weakly anisotropic systems. By “weakly
anisotropicsystems” we will denote substances which possess a high-temperature phase with weakly
broken rotational or uniaxial symmetry. The softening of the order parameter in the weakly
anisotropic systems also occurs in the vicinity of a sphere or of a circle (or circles) in the
reciprocal space but the angular distribution of fluctuations will not be isotropic even in the high-
temperature phase. Neverthelessthe phasevolume of fluctuationsin weakly anisotropicsystems
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will, as previously, be large and the scenario of a weak crystallization transition in such substances
will be similar to the one considered in the previous two sections.

It is useful to compare weakly anisotropic systems with systems with a strong anisotropy where
the softening of the order parameter takes place in the vicinity of isolated points in the reciprocal
space. The crystallization of such a system is as usual acontinuoustransitionandmaybe considered
in the framework of the conventional theory of second-order phase transitions.

Weconsider the following examples of weakly anisotropic systems. The crystallization of weakly
anisotropic nematics is analysed in subsections 4.1 and 4.2 and in subsection 4.3 the crystallization
of smectics-C is studied. Whereas weakly anisotropic nematics are largely model systems, the
smectics-C in reality possess weakly anisotropic layers.

The first attempt to investigate theoretically the crystallization of nematics was made by Gorodet-
sky and Podnek [1985]. They made use of the mean field theory. However, as it has been proved in
sections 2 and 3, fluctuations of the order parameter play an essential role in the weak crystallization
theory. Fluctuation effects for the crystallization of nematics and smectics-C were studied in the
works [Kats and Muratov 1988, Kats, Lebedev and Muratov 19891 which we will stick to in what
follows.

4.1. Nematics.The meanfield theory

In this and following subsections we will consider the case of weakly anisotropic nematics. The
weak crystallization of such a system is close to the case of isotropic liquids, but its consideration
reveals some peculiaritiesdueto the presenceof anisotropy.

For weakly anisotropic nematics the Landau functional, describing both the orientational and
crystallization transitions, can be written as the sum

F=F,+FN-i-F1~t. (4.1)

Here F, is the isotropic crystallization energy, associatedwith the short-wavelengthfield cc~EN is
the orientational energy, associatedwith the nematicorderparameter,F1~, is the interaction energy,
containing the cross terms in both order parameters. The energy F, is defined by eq. (2.10).

4.1.1. Characterof anisotropy
As it is well known, a nematic is a phase with spontaneouslybrokenrotationalsymmetry.In the

simplest case of uniaxial nematics the anisotropy of the system is described by director is, which
is a unit vector oriented along the preferred direction. All physical characteristicsof the nematic
are invariant with respect to the transformation is —~ —is. In the genera! case the nematic order
parameter is a symmetric traceless 2-rank tensor Q1k. It can be representedas

Qk = Qo{ (fink — ok!
3) — Y(m,mk — [n x m] ~[nx m] k)/’2}. (4.2)

Here Q~,Y are scalar parameters, is, m, [n x m] is a triad of unit mutually orthogonal vectors, the
unit vector is is the director.

The parameter Qo in eq. (4.2) characterizes the degree of ordering of the long axes of the
molecules. At Y = 0, eq. (4.2) describesthe conventionaluniaxial nematicorder, the parameter
Y characterizes the biaxiality of the system. To avoid confusion, let us mention that the value
of Y = ±i/~Qoalso corresponds to uniaxial phases but with the director, coinciding with m or
[is x m]. Henceforth we will take only a uniaxial phase with Y = 0. The nematic part of the
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Landau functional FN contains only even powers of the expansion in Y. This is a consequence of
the invariance of the order parameter (4.2) with respect to the transformation

Y-+-Y, m—~[nxm]. (4.3)

Due to this, the function EN is invariant with respect to the transformation Y —~ — Y, i.e., this
function must be even with respect to Y.

Henceforth we will assume that the original nematic phase is uniaxial, i.e., in this phase Y = 0.
The quantity Y may become non-zero under crystallization, that is, the low-temperature phases
may be biaxial. Wewill also assume the nematic phase to be weakly anisotropic, i.e., the parameter
Qo to be small. Therefore the problem we are studying has a model character, nevertheless it has an
undoubted methodical significance. Besides, most results, obtained for weakly anisotropic nematics,
can be generalized to the case of a weak anisotropy of smectics-C (see subsection 4.3), whose
smectic layers are always weakly anisotropic.

In the main approximation in the small parameter Qtk the interaction term ‘~nt can be written
out as

= ~fdrgoQtkViccVkcc. (4.4)

Equation (4.4) is the first non-vanishing term of the expansion of F, in Qk. Since the field Q,k
in eq. (4.4) is a long-wavelengthfield, F~1reduces to the sum of the products of the Fourier
components of the field cc with the opposite wave vectors. In this situation the dependence of g0
on the direction of this wave vector is absent and the coefficient g0 in (4.4) can be regarded as
constant.

Here our analysis is carried on in the framework of the mean field theory. In this case the
effects, associated with fluctuations of the order parameters cc~Qek are neglected. The mean value
of the nematic order parameter Q’k, in contrast to cc~is homogeneous.Therefore,henceforthall
parameters, entering in (4.4) will be treated as constants, independent of the radius vector.

Rewrite the interaction term (4.4), using the representation (2.19) for the condensate cc and eq.
(4.2) for Qik,

= ~g>[(net)
2 — 1/3 + Y(([n x m]e,)2 — (mej)2)]IajI2. (4.5)

The summation here is performed over the componentsof the expansionof the condensateof the

field cc~e = q~/~q~is a unit vector in the direction of the respectivewavevectorand the quantity

g = —g
0qgQ0/3 (4.6)

has the meaning of the interaction constant. In the derivation of eq. (4.5), we have taken advantage
of the fact that due to the weak anisotropy of the system the absolute values of the wave vectors
q~are close to q0.

Nowwe can formulate the criterion for the weak anisotropy of the system. The criterion is that
for the interactionconstantg, definedabove,thereis the estimate

I~I � rchar. (4.7)

Here
Tchar is the characteristic value of the parameter t, determining the crystallization transi-

tion points. Recalling that the inequality (2.99) is the condition of applicability for the weak
crystallization theory, we conclude that

gI/aq~<< 1. (4.8)
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This inequality, in particular, ensures that the absolute value of q~is close to q0.
Note that the inequality, opposite to (4.7), corresponds to the case of a strongly anisotropic

nematic, described in section 3.

4.1.2. Influenceofanisotropy
At crystallization transitions under the condition (4.7) the interaction term (4.5) induces the

mutual orientation of the nematic andcrystalline order parameters. Besides, this term changes the
value of the energy of the respective phases in comparison with the isotropic case. Let us analyse
these effects, having in mind that the result depends on the sign of g in eq. (4.5).

Take a sniectic phase whose condensate hasthe form of (2.48). If g <0, the density modulation
wave vector will be oriented along the director is, which corresponds to the smectic-A phase. In
this case the interaction energy (4.5) equals 2gA, where the value of the parameter A is defined
by eq. (2.42). In other words, the distinction from the isotropic case reduces to the replacement
r —~ x + 2g in the expression for the energy of the smectic-A phase, derived for the isotropic system.

If g > 0, the wave vector of the one-dimensional density modulation proves to be oriented
orthogonally to the director. It is natural to call this structure the smectic-C phase. In this case
the interaction energy (4.5) has the value —gA, which leads to the replacement r —* r — g in the
expression for the energy of the smeçtic-A phase, derived for the isotropic case. Besides, for g> 0,
the nematic order parameter becomes biaxial with Y gA. We may neglect the corresponding
contribution to the energy of the smectic-C phase since it is proportional to the squared small
interaction constant g.

Now consider the hexagonal columnar phase Dh, whose condensate is determined by the three
wave vectors, forming a perfect triangle (see subsection 2.2). At g > 0, the wave vectors of the
condensate cc are orthogonal to the director is. Then the amplitudes of density waves remain equal
to each other, and the interaction energy Fjnt = —gA. Thus, to take into account the interaction
energy Fj~~oneshould replacet —* r — g in the expression for the energy of the Dh phase for the
isotropic case. Note that in this case the orientational order parameter does not become biaxial.

The case g <0 is more intricate. Then the director proves to be orthogonal to columns, i.e., it
is lying in the same plane as the wave vectors of the density modulation.Thereare two options;
either the director is is parallel to one of the crystallization directions q,, or is orthogonal to it. The
first phase with is II q1 will be denoted by D,, the second phase with is ±q, by D2. In these phases
the density wave amplitudes are not identical by value, that is why the columnar phases will have
the rhombic symmetry.

We now calculate the energies of these phases under the condition I = const. Designate a2 =

a3 = a, then A = 2a
2 + a~.Like in section 2, it is convenient to represent the energy of the phase

in the form of (2.41). Then we will include the contribution,associatedwith 1~nt to the function
f. For the rhombic phases we get

fD

1 = —I((A —a~)
2+ 2a~5/8 — I~uIa,(A—a~) + g(9a~—A)/4,

fo
2 = —2((A—a~)

2+2a~)/8—IpIa,(A—a~) +g(5A—9a~)/4. (4.9)

The energy of the D,, D
2 phases can be obtained by the minimization of eqs. (4.9) over a1, and

then by the minimization of the sum F + f over A. A numerical analysis reveals that the energy
of the D, phase is lower than that of the D2 phase. Therefore at I = const. the D, phase may arise
in the phase diagram of the system.

Nowwe analyse how the anisotropy affects the cubic BCCphase. In virtue of the high symmetry
of this phase, the interaction of the crystalline and nematic order parameters is very weak (see
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below) thereforethe presenceof Qk doesnot practically affect the structureof the condensatecc.
This phaseapparentlycorrespondsto the crystallinesmectic-Dphase,andwe will denoteit as SD.

The insertioninto eq. (4.5) of the condensatecc~correspondingto the cubicBCC1 phase,yields
a zero value for ~ It means that both the orientationof the nematic order parameterQjk
with respectto the crystal axes and the variation of the energyof this phaseas comparedto the
isotropic caseare determinedby quadraticeffects, which are small in the parameter(4.8). Note
that theseeffects cannotbe correctlyanalysedin the frameworkof our approach,sincethe term of
the expansionof the crystallineenergy,quadraticin Qk, omitted by us in eq. (4.4), brings about
effectsof the sameorder.

4.1.3.Phasediagram
Herewe describethe phasediagramof the system.At very small g the nematicandcrystalline

order parameters behave independently. Therefore we may construct the sequence of phases basing
on previous results. At I = const. and g> 0 we have the cascade of transitions

SC—Dh—SD—N. (4.10)

At 1 = const. and g <0 this sequence is

SA—D1—SD—N. (4.11)

At the increaseof the interactionconstantg the smectic-Dphasedisappearsfrom the cascade
(4.10). At negative g with increasing absolute value of g the smectic-D phase in (4.11) is replaced
by the smectic-A and then the D1 phase vanishes in such a way that there is only one direct second
order transitionSA.-N. All otherphasetransitionsare weak first-order transitions,exceptfor the
SA—D1 transition,which in acertainrangeof valuesof g canbe continuous.The phasediagram,
constructedin the framework of the meanfield approximation,is depictedin fig. 25.

The analysisof the phasediagramgiven aboveconcernsthe caseI = const.If the quarticvertex
1 sufficiently strongly dependson the anglesbetweenthe wave vectorsq, then in the sequenceof
phases(4.10), (4.11)only the phase,stableat largenegativevaluesof r, maychange.Insteadof the
smectic-Cand -A phaseswith the one-dimensionaldensitymodulation,columnarrhombicphases
or quasicrystals can be stable. For g> 0 in the main approximation the latter phases are not tilted
since the symmetry of the lattice is high enough for the interaction energy (4.4) to become zero.
The value of the constantg thendoesnot affect the sequenceof transitionswith the exception
of the disappearanceof the smectic-Dphase.At largenegativevaluesof g the smectic-Abecomes
stableinsteadof columnarrhombicandquasicrystallinephases.

4.2. Nematics.Fluctuation effects

Here we will analysethe role of fluctuationsof the order parametercc at the crystallization
of weakly anisotropicnematics.A simple analysisrevealsthat fluctuationsof the nematicorder
parameterQk canbe neglectedin consideringweakcrystallizationtransitions.This meansthat Qk
can be treated, as previously, as a homogeneous quantity.

Thus, when one includes the nematicorder parameterinto the theory, the anisotropicterm
(4.5), quadraticin cc~emergesin the Landauexpansion.Recall that it is our assumptionthat the
original nematicphaseis uniaxial. As hasbeenshownin subsection4.1, the crystallizationmakes
the emergenceof biaxiality possible.The mechanismof the emergenceof biaxiality is not affected
by fluctuationsof cc~that is why the conclusionsof subsection4.1 hold also if fluctuationsare
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Fig. 25. Phasedigram of crystallizationof nematics,obtainedin the Landauapproximation.

takeninto account.The influenceof the biaxial contributioninto Qik on the form of the Landau
expansionin cc manifestsitself only in the secondorder in the interactionconstantand it canbe
discardedwhenfluctuationsof cc are studied. Therefore in this section we will assume Y = 0.

4.2.1. Equationfor the gap
As hasbeenexplainedabove,the only modificationof the theory,in comparisonwith the isotropic

case,is the replacement

r—’r + g(3cos
2O—1).

Here 0 is the anglebetweenthe director is and the wave vector of the field cc. In other words,
the parameterr in eq. (2.12) becomesanisotropic.Yet, from the relations(4.7) and (4.8), the
softeningof the componentsof the field cc~as usual, occursin the vicinity of the sphereIq I = qo
in the reciprocalspace.Thereforethe procedure,developedin subsection2.1 to investigatethe role
of fluctuations of cc canalmostwithout anychangesbe generalizedto the caseof crystallizationof
weakly anisotropicnematics.Thereforewe will in brief give the main elementsof this procedure,
dwelling in detail only on the distinctive featuresof the crystallizationof nematics.

The calculationof thebarepair correlationfunction (2.89)of thefield cc in this caseis completely
analogousto that of the isotropic case.In the Fourier representationfor this correlationfunction
we have an expression, similar to (2.89)

D(q) = T/[A + c~(q—q
0)

2 + 3g12]. (4.12)

Here we haveintroducedthe notation t = cos 0, where 0 is the angle between the director is and
the wave vector q. In the nematic phase the bare value of the gap equals A = — g, in phases



E.I. Katzet aL, Weakcrystallizationtheory 79

with the brokentranslationalsymmetryin A thereappearsan additional term, associatedwith the
condensateof the field cc.

If fluctuationsare taken into account, in the main approximationthe irreducible correlation
function ((cccc)) has the same structure as (4.12), only the gap A proves to be renormalized.
Correctionsto A are determined by the diagrams, given in fig. 3. Like in the isotropic case, it
is possible to confineoneselfto thesediagramsif A <<ctq~.This inequality is equivalentto the
applicability condition (4.8) of the weakcrystallizationtheory sincewith (4.7) takeninto account,
in the vicinity of the transition point A ~

Let us explicitly write out the equationfor the gap A, defined by these diagrams, assuming
A = const.In this casethe quantity A remains isotropic, however, the correlation function (4.12)
is anisotropic,which leadsto a modification of eq. (2.102),

A = — g + AA + /3 fdt (A + 3gt2Y”2

— Jr— g + IA + fl(3IgI)1”2arcsin~/3IgI/A), g <0, (4 13)

— ~t_g + AA + fl(3IgI)’/2ln[(~A + 3g + ~ g >0.

The quantity A, figuring in eq. (4.13), is introducedby eq. (2.42), and the parameter/3 equals
/3 = ITq~/4ir~/~i.

To get a closed system, one should add to eq. (4.12) another equation, relating A and A.
This equation ensues from the condition h = 0, where h is the field, conjugated to cc. In our
approximationthe field ça is determinedby the diagrams,plottedin fig. 2. Equatingit to zero,one
can derive the relations

A
8 + 3g0(—g) = AA5/2, AD = IAD/6 + LaI(AD/3)’

12. (4.14)

Here 0(x) is a stepfunction, the subscriptS implies that the respectiveexpressionconcernsthe
smectic phase, and the subscript D the hexagonal columnar phase. The second equation in (4.14)
is valid only at g > 0.

Insertingeqs. (4.14) into (4.13),weget closedequationsfor the gapA. For the original nematic
phasetheyresultfrom eqs. (4.13) at thereplacementA = 0. Wewill also give the explicit form of
these equations for the gap for the smectic phases:

A~+ r + 5g + fl(3IgI)’12arcsin(~/3jgI/As)= 0, g <0, (4.15)

A
8 + r— g + fl(3gY’/

2ln[(~/As+ 3g + ~~1~)/v’~1= 0, g>0. (4.16)

For g > 0, the described procedure can be easily generalized to the case of the hexagonal columnar
phase. At g < 0, when the appearing columnar phase possesses the rhombic symmetry, the situation
becomes more complicated (see below).

4.2.2. Phasediagram
The calculation of the energiesof inhomogeneousphasesis performedsimilarly to the one

performedin section2. It is convenientto write the thermodynamicpotentialof the systemin the
form of a sum of two terms

Q/V=F+f. (4.17)
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The secondterm in eq. (4.17) dependson the structureof the emergingphaseand is definedby
eq. (2.43).For the smecticandcolumnarphasesthe functionf is equalto

fs = —IA~/4, fD —14/12 — 2I,uI(A.o/3)3”2. (4.18)

To calculatethe first term in eq. (4.17), employthe relation

dF/dA = A + 3g0(—g), (4.19)

which is obtained in the same way as in section 2. Integrating eq. (4.19) over the parameter A
from zero up to the equilibrium value in the inhomogeneousphase,foundfrom eqs. (4.14). In
integratinglet us makeuseof the relation (4.13). As a result,we get

42—A2 /3
F—FN= ~ forg>0,

— P~/ui~T{arctan(~t.~!)— arctan (AN+3~)] for g <0. (4.20)

Using eqs. (4.17), (4.18), (4.20), (4.14) and the analogousformulas for the smectic-Dphase,
identically coinciding with the onesderived in section 2, for the BCC, phaseonecan calculate
the phasediagram of the system.Figure 26 gives the phasediagramof the systemfor the value
g = p2/21. This figure illustrates the fact that the increase of fluctuations makes the intermediate
columnarphasedisappearanddiminishesthe phasetransitiontemperature.The smectic-Dphase,
having thecubicsymmetry,at this valueof g is metastable.

Forg < 0, we haveto takeinto considerationthe rhombiccolumnarphasesD
1 andD2 discussed

in the previoussubsection.For thesephasesthe relationbetweenA and A following from h = 0
becomescomplicatedin comparisonwith (4.14)sincethe field h depends not only on A but also on
a1 (the amplitude of the preferred harmonics). The energy of the rhombic columnar phases D1 and
D2 canbe found only numerically.Comparingtheenergiesof differentphaseswe can find a phase
diagram of the system. All phase transitions between the phases are weak first-order transitions. The
phasediagramfor the value g = ~j~

2/2Ais given in fig. 27. Note thatwith decreasingparameterr
after the D, phase again there arises a smectic-A phase in the diagram.

As previously fluctuations stabilize a high-symmetryphase (nematic in our case)but not at
arbitrary valuesof parametersg, r. It maybe checkedthat for g < 0 at decreasing r eq. (4.15)
loses its solution at a certainvalue of r which meansthat the nematicphasebecomesabsolutely
unstable.This instability revealsitself at the valuer =

= —2g — ,rfl(l2IgIy’/2. (4.21)

It is clearfrom this formula thatonly atg ~—* 0 the value r~—# —oo. The line of the nematicphase
stability loss is picturedby the dashedline.in fig. 27. Let us stressthat the crystallizationwhich is
the transition from the nematic into SA or D, phase occurs before the nematic loses its stability
what justifies our consideration of these transitions. The investigation of the phase diagram in the
region where the nematic phase is absolutely unstable is based upon the relation (4.20) where
insteadof the nematicgapAN the smecticgap4~should be used.
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Fig. 26. Phasediagram of crystallization of nematics, Fig. 27. Phasediagram of crystallization of nematics,
obtainedwith fluctuations taken into accountfor g = obtainedwith fluctuations taken into account for g =

O.l65It2/)~. —0.l65~t2/A.

The effects, inducedby the dependenceof the vertex A on the anglesbetweenwave vectors,
havebeenqualitativelydiscussedin subsection4.1 in the framework of the meanfield theory.The
incorporationof fluctuationsin this casemayleadto the fact thatat increasinganisotropyof A the
smecticphasewill not be simply replacedby a rhombiccolumnaror quasicrystallinestructure,but
will be oustedfrom the phasediagramgradually,starting from large negative r (cf. the resultsof
section 3).

So,atincreasingfluctuationsthesequencesof phasesget simplifiedsincethe smecticandcolumnar
phasesdisappear.

4.3. Weakcrystallizationtheory ofsmectics-C

In section3 of this survey the weak crystallizationof smectics-Ahasbeenelucidated.Here we
will discuss peculiarities of the weak crystallization of smectics-C. Smectics-C are characterized
by the fact that the molecules, packed into smectic layers, are arranged not along the normal to
the layers, like in smectics-A,but at acertainangleto the normal.This generatesanisotropyin a
smecticlayer. Since the tilt angle,as a rule, is small, the anisotropyis also small. That is why we
are studying the crystallization theory of smectics-C in this section.

To describethe anisotropyof a smectic layer in smectics-C,it is convenientto usethe order
parameter s, definedby the relation

s= [lxis], (4.22)

where I is the normal to smectic layers, and is is the director. The vector s lies in the smectic
layerplane. In smectics-Athereis (s) = 0, in smectics-C (s) is non zero. In all known smectics-C
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I(s)I << I, which meansthat the valueof the tilt anglebetweenthe moleculesandthe normal to the
smecticlayersis small. In otherwords,real smectics-Carecloseto the smectic-Aphase.Henceforth
we will bear this case in mind.

To describe the crystallization of smectics-C, introduce also, like it has been done in section 3,
a short-wavelength field cc~characterizing the density modulation in a smectic layer. In smectics

(cc) = 0, in crystals (cc) is non zero. This averagehas harmonicswith wave vectors lying in the
smecticlayerplaneandhavingavalueof the orderof the mutualmoleculardistance.

4.3.1. Freeenergy
It is convenientto representthe energyof smectics-C,like for weakly anisotropicnematics,as

the sum

F=F,+F~+F1~1. (4.23)

In eq. (4.23) F, is definedby theLandauexpansion(2.16)—(2.18)and (3.1). The secondterm F~
is the energy, associated with the tilt of the molecules to the smectic layer. Having in mind that the
value of s is small, it is sufficient to confineoneselfin this energyto the first nonvanishingterms
of the expansionin s. In virtue of the invarianceof the energywith respectto the replacement
s —~ —s, in F~there are only terms, even in s

F~= r~s
2/2+ A~s~/24. (4.24)

In eq. (4.24) I~is the quartic vertex of the self-interactionof the field s. At a variation of the
parameterr

5 thereoccursa transitionfrom the A to the C phase:at positiver~the average(s) = 0,
which corresponds to smectics-A, and at negative ;, (s) ~ 0, which correspondsto smectics-C.

The third term in eq. (4.24) is the energyof interactionof the fields cc and s. In the main
approximationover s, it is describedby the expression

= yos
2cc2/24+ yi(sVcc)2/24q~. (4.25)

Here Yo and y~are the interactionconstants,q
0 is the absolutevalue of the wave vector, figuring

in F,. Note that the secondterm in (4.25) is anisotropicin the smecticlayerplane. We will be
interestedin sufficiently small values of the constantsr, r~.The applicability condition for the
weak crystallization theory is (3.2). For the valueof the tilt angleof the director to the normal to
the smectic layers to be small in smectics-C, it is necessary that the condition IrsI <<As be fulfilled.
Besides, on the constants y~andy~one must impose the following constraint:

y yo + yiO(—yi) > ~ (4.26)

where 0(x) is the step function. If (4.26) is violated, the form, quadratic in ~2 and cc
2~introduced

in eq. (4.25), will not be positively defined.

4.3.2. Phase diagram
We will analysethe structureof the phasediagram in the coordinates-r and r~at different

values of Yo and ~ Let us focus ourselves on the case 1 = const. It is easy to construct the phase
diagram, obtained in the mean field theory for small Yo and y~. In the result the sequence of phases
SAmSBSA,obtained in section 3 for the crystallization of smectics-A, at r~< 0 transforms into
the sequence of tilted phases SCm-..SBc—SC. Smectics-C,~ differ from the above described smectics-C
by the presenceof the one-dimensionaldensitymodulationin the smectic layer. The smectic-B~
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Fig. 28. Meanfield phasediagramof crystallizationof smectics-Aand-C for small valuesof theparameters?o andYi.

phaseis a hexagonallayeredcrystal,wherethe moleculesaretilted to the smecticlayerplane.Recall
also that smectics-Barehexagonallayeredcrystals,wherethe moleculesareorthogonalto the layer,
and SAmdiffers from smectics-A by the presence of the one-dimensional density modulation in the
layer. Note that from the symmetryviewpoint the Am and Cmphases are equivalent,andfrom the
viewpoint of the dimensionality of their lattice, belongto columnarphasesbut not to smectics.

The interaction term (4.25) for smallvaluesof y~andy~leads to the mutualorientationof the
vector s and crystallizationdirections. For ~ < 0. the densitymodulationin the smectic-Cphase
is oriented along the vector s, and for y~> 0 in the direction orthogonal to s. Likewise, in the
tilted smectic-B~ phase for y~<0 oneof the vectorsq is parallelto s, andfor y~> 0 orthogonal to
it. The phasediagramfor the casewhenthe interaction (4.25) is small, is given in fig. 28. Recall
that in obtainingthis diagramwe haveassumedthat the vertexI is constantand fluctuationsare
neglected.

Now considerthe questionhow the phasediagramis modified for the casewhenthe interaction
term (4.25) is not small. To illustrate this case, first analyse the phase diagram in the range of
values of the parameters -r andr~,defined by the inequality

rI >> ,i2/A, Ir~I>> l22A~IyI.

In this region onecan ignore the contributionof the term ,tcc3 into the energy F,. Then it is
sufficient to studythe competitionof the four phases:SA, SC, SAm, SCm.For;> 0 we comeback
to the problemof the crystallizationof smectics-A,discussedin section3. The sequenceof phases
at increasing hasthe form: SAm.-SB—SA.

At ;> 0, in the region understudy therearethreephases:SC, SAm, SCm.The boundariesof the
stability regions of these phases are given by the relations

r(SC—SCm) = yr~/2l
5, r(SAm—SCm) = 3r~l/y. (4.27)

With increasing parameter y, defined by eq. (4.26), the stability region of SCm diminishes,andat
y> 61/2 this phase vanishes from the phase diagram. As a result, the latter acquiresthe form
depicted in fig. 29.

The complete calculation of the phase diagram with the cubic term in F, can be performed
only numerically. Figure 30 gives the diagramsof states,obtainedfor the valuesof theparameters
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Fig. 29. Mean field phasediagramof crystallizationof smectics-Aand-c for the value of theparametery>

SC SA

SB ~2,~I/2

~A/p
2

Fig. 30. Meanfield phasediagramsof crystallizationof smectics-Aand-C for the following valuesof theparametersy: (a)
Yo = 0, y~= —v’~~/4,(b) ‘o = 0, ~ =
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Yo = 0, Yi = —~/~It/4 (fig. 30a), and Yo = 0, y~= ‘v’~tt/4 (fig. 30b). In these diagrams there
are crystalline rhombic phases R0 and R1, characterized by the condensate of the field cc~having in
the main approximationthe form

(cc) = 2[a1cos(q1r) + a2cos(q2r)+ a2cos(q3r)] (4.28)

Herethe vectorsq1, q2, q3, lie in the smecticlayerplaneand form aequilateraltrianglewith the
sideq0. In theR0 phase the vector s is parallel to q1, then a1 <a2, in the R1 phase the vector s is
orthogonal to q1, then al > a2. Since the values of a1 and a2 are different, the R0 and R1 phases
are rhombicbut not hexagonal.

The phase diagrams, given in fig. 30, reflect a number of common features, inherent in weakly
anisotropic systems. The tilted smectic-Cm phase exhibits a re-entrant behaviour. In the interval
between the stability regions of this phase there emerge tilted rhombic structures: R0 at y~<0 and
R1 at Yi > 0. Note that an analogous behaviour is observed at the crystallization of nematics. This
analogy, however, is existent only for Yi <0 and,correspondingly,for g <0.

At small values of the parameter y~, the amplitudes a1 and a2 in eq. (4.28) are only slightly
different, therefore in X-ray difractionpatternsthe phasesR0 and R1 can hardly be distinguished
from hexagonal. At the same time in these phases the director is is tilted to the normal I to the
smectic layers. Such phases are traditionally termed as tilted smectics-B (SB~), as we actually did
in considering small values of y. In the framework of the meanfield theory the SA—SC, SAm~
SCm, SCSCmphase transitions are continuous.All the other transitionsat ~u� 0 are first-order
transitions.

4.3.3. InfluenceoffluctuationsandanisotropyofA
We now discussthe influenceof fluctuationsof the field cco Thesefluctuationsare concentrated

near the circle ‘il = q0, I . q = 0 in the reciprocal space. The theory, incorporating these fluctuations,
can also be constructed, as it has been done in subsection 4.2 for nematic liquid crystals.

A slight distinction is in the form of gradient terms in the energy expansion. If the applicability
conditions (3.2) for the weak crystallization theory are fulfilled, in calculating corrections to the
correlation function ((cccc))~suffice it to confine oneself to the self-energy correctionsof the form,
given in subsection 2.4. The correlation function ((cccc)) then reads

((cccc)) = T/[4 +c~1(Iq)
2+a(q—qo)2+~y

1(q(s))
2]. (4.29)

Here A is the gap in the fluctuation spectrum. In the mean field theory the gap is determined by
the sum -r + yo(s)2/ 12, in the crystalline phases one should add another term, associated with the
condensate of the field (cc), into this expression. The fluctuations of cc generate a contribution to
A, pictured in the diagram of fig. 20b.

Quantitatively the relative strength of fluctuations is characterized by the dimensionless parameter

Pf = IqoT/l0A~/~~. (4.30)

The fluctuations should be taken into account at Pf 1. The account of fluctuations leads to a
number of qualitative effects as compared with the mean field approximation. The influence of
fluctuations at the crystallization of smectics-A, i.e., at ; > 0, has been elucidated in section 3. At
negative; fluctuations may transform the continuous (in the mean field approximation) SC—SCm
transition into a first-order transitionat sufficiently small I -r~.Thus, on the equilibrium SC—SCm
line there appears a tricritical point whose coordinate r~is estimated as

~ (4.31)
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As long as the parameter Pf is growing, the intermediate SB and SB~(R0 and R1) phases tend
to vanishfrom the phasediagram.In the long run at a sufficient intensity of fluctuations in the
phasediagramthereare only four phasesleft, namely: SA, SC, SAm, SCm. The SASAm, SCSCm
transitions then become weak first-order transitions.

So far we have treated the interaction vertex A in F, as constant. As soon as the dependence of
the vertexon the anglebetweenthe wavevectorsappears,newphasesmayalsoemergein the phase
diagram.At asufficiently stronganisotropyinsteadof smecticphasesrhombic or quasicrystalline
phasescan becomestable.The absolutestability of thesephaseswill now dependnot only on the
form of thedependence1(0) but alsoon thevalueof the parameterYi. The influenceof fluctuations
on the phase diagram in the case when the vertex I is angle-dependent, as in the case I = const.,
reduces to the fact that as long as Pf is growing, the intermediaterhombicphasesvanish,andthe
valueof the parametert at which the transitions take place, diminishes.

The abovegiven analysishasbeenqualitative.The describedphenomenologicaltheory involves
manyunknownparameters,which makesit possibleto describealargenumberof phasediagrams
but makesit hard to formulatethe conclusionsquantitatively.Nevertheless,this analysispermits
to makethe following conclusionabout the structureof the phasediagram of the crystallization
of smectics-C.We will confineourselvesto the case-r~< 0, sinceat -r5,> 0 we comebackto the
situation,discussedin section3.

The sequenceof phases,observedat decreasing-r, consists,as a rule, of threephases.The first
oneis theoriginal smectic-C.At decreasingz a transitioninto the phasewith a rhombiccrystalline
structurein the smectic layer plane may occur. This phasecan in experimentbe identified as
the tilted smectic-B~.The latter, low-temperaturephaseis smectic-Cm.Fora certainanisotropyof
I it may be replaced by a rhombic or quasicrystalline phase. The increase of the smectic layer
anisotropy, i.e., the decreaseof r~,gives rise to the fact that the latter phasearises betweenthe
smectic-Cand tilted smectic-B~.At a sufficiently stronganisotropythe tilted smectic-B~(i.e., R0
or R1) vanishes, and there is only one direct SCm—SCtransition left. In the mean field theory
this transition is continuous. With fluctuations takeninto account,this transitionbecomesa weak
first-order transition.

Nowa few words about fluctuations of the long-wavelength field s. Theyare, in principle,relevant
in the whole region understudysincewe haveassumedthe condition r~I<<Is to be fulfilled, i.e.,
in essencewe assumedthat the systemis close to the line of the continuousSA—SCtransition.At
the same time the fluctuations of s inducing the renormalization of the parameters of the theory
do not qualitatively affect the structureof the phasediagram.For this reasonwe will not examine
the role of the fluctuationsof s all the morebecauseit is abulky procedure.

4.4. Macroscopicconsequences

In fact, all what hasbeensaidin sections2 and 3 about the influence of the order parameter
fluctuationson macroscopicpropertiesof the system,also holdsfor the caseof weaklyanisotropic
systems,investigatedin this section.The main characteristic,describingfluctuationsof the field cc~
is the gapA, whichis small in the vicinity of the transitionpointas longas the transitionis a weak
first-order transition.

For the caseof weakly anisotropicnematicswe have studied, the field cc softenson the sphere
in the reciprocalspace.The distinction from the isotropiccaseis the fact that the “depth” of this
softeningis differentin differentpointsof the sphere.Howeverthe gapA, figuring in the correlation
function, remainsisotropic in the main approximation,thereforeall the physicalconclusionsof
section2 concerningthe influenceof the orderparameterfluctuationson macroscopicproperties,
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arealsovalid for the crystallizationof weaklyanisotropicnematics.It is naturalthat all formulasof
section2 mustbe modified in termsof the symmetryof structures resulting from the crystallization.
As hasbeenshownin subsection4.1, the modification reducesto theredefinition, e.g.,r —+ r + 2g
for the transition into the smectic-A phase, and to some analogous redefinitions for other types of
low-symmetry phases.

Therefore, for the weak crystallizationof slightly anisotropicnematics,as well as for all other
systemsstudiedin our review,via the gap4 we expressthe contributions,associatedwith theorder
parameterfluctuations,into the physicalcharacteristicsof the system.Thesecontributionsbehave
anomalouslynearthe transitionpoints. The contributionto such characteristicsas the densityor
entropyprovesto be 4_1 f2~ The contributionto the heatcapacityor compressibilityis A _3/2~ The
coefficientsof thebulk viscosity,associatedwith the soundabsorption,exhibit themostpronounced
singularbehaviournearthe phasetransition.The anomalouscontribution into thesecoefficientsis
A512.

A similar behaviouris observedatthe crystallizationof weakly anisotropicsmectics-C.The inter-
actionof theorderparameterfluctuationswith the long-wavelengthdegreesof freedombringsabout
the softeningof the systemnearthe phasetransition.This softeningis, for instance,characterized
by the contributions, proportional to A~,to cj2 and cr2, wherec

1 and c2 are the velocities of
the first and second sound in the smectic-C phase. Thus, these modes soften down near the phase
transitionpoint, i.e., therespectivevelocities or elasticitymodulesdecrease.Fluctuationsalsolead
to the growth of the bulk viscosity coefficientsas~ 2 andshearviscositycoefficientsas4

A detailedcomparisonof the theoreticalresults, derivedin this section,with the experimental
data is hard at present.Firstly, our schemeinvolves a large numberof unknown parameters.
Secondly,the experimentalstudiesof the vicinity of the crystallizationtransitionsin liquid crystals
are not numerous and scattered. Nevertheless, within the framework of our approach it is easy to
qualitativelydescribeall observedsequencesof phasetransitionsin liquid crystals.It is alsoeasyto
verify on the qualitativelevelall our predictionsof the fluctuationsofteningnearthe crystallization
phasetransitionpoints and of the increaseof the viscosity coefficients. Note also that thereare
groundsto believe (seethe concludingpart of the work [Brazovsky,DzyaloshinskyandMuratov
19871) that the generalconclusionsof the model concerningthe influence of fluctuationsdo not
dependon its simplifying assumptions.

5. Conclusion

We havecometo the endof our survey of the weak crystallizationtheory.Let us summarize:
Weak crystallizationis associatedwith asofteningof the orderparametercc~describingthe short-
wavelengthdensity modulation.This softeningcan occur in the vicinity of certainpoints or of
certainlinesor surfacesin the reciprocalspace.The first casecan be describedin the framework
of the conventionalphasetransitiontheoryand is beyondthe scopeof our research.The softening
of cc in the vicinity of a line or asurfacein the reciprocalspaceinducesanumberof characteristic
peculiaritiesof the transitionthe studyof which is actuallythe subjectof the weak crystallization
theory.

The main characteristicof the systemin the vicinity of such atransitionis the valueof thegap
4, figuring in the expressionfor the pair correlation function ((cccc)). In the weak crystallization
theory it is assumedthat the valueof A nearthe phasetransitionis small, i.e., much smallerthan
the characteristicvaluesof 4 far from the phasetransition.This smallvalueactuallyexpressesthe
“softening” of the field cc nearthe transitionpoint.
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In the weakcrystallizationtheory the Landauexpansionof the energyof the systemin cc has,as
a rule,acubic term.It meansthat the phasetransitionover cc is afirst-orderphasetransition.The
valueof this cubic term in the weakcrystallizationtheory is assumedto be small enough,or else
nearthe phasetransitionthe softeningof cc is not observed.There arealso caseswhenthe cubic
term in the Landauexpansionis equalto zero. In both casesthe weak crystallizationtransition
appearsto be afirst-orderphasetransition,close to a continuousone. This situationis realizedin
most crystallizationphasetransitionsin liquid crystals.

Althoughthe descriptionofweakcrystallizationphasetransitionsis similar to thatof conventional
second-orderphasetransitions there is a rather important distinction. At conventionalphase
transitions(e.g., in magnets)the orderparameteris amacroscopiclong-wavelengthvariable (e.g.,
magnetization).At weak crystallizationphasetransitionsthe orderparameteris ashort-wavelength
variable,whichevenin the meanfield approximationdeterminesawholeseriesof specificproperties
of thesetransitions,in particular,diversityof phasediagramswith variousorderedphases.

A peculiarityof theweakcrystallizationtheoryis the importantrole of fluctuationsof cc~accounted
for by the large phasevolume of fluctuationsoccurring in the vicinity of the mentionedline or
surfacein the reciprocalspace.Fluctuation effects are strong due to the small value of A and
generateanumberof qualitativeeffects. For instance,fluctuationsmakethe crystallizationphase
transitiona first-order transitionevenin the absencein the Landauexpansionof the term cubic
in cc. Fluctuationsalsogive rise to a fairly nontrivial behaviourof the gapA in the vicinity of the
phasetransition.

The phasediagramof the systemin the weak crystallizationtheory is ratherversatile.In this
diagram there ariseboth crystalline phasesof different symmetry as well as smectic, columnar
and evenquasicrystallinephases.At decreasingtemperaturethere may occur a cascadeof phase
transitions.Typical sequencesof transitionsfor the crystallization of varioushigh-temperature
phasesaregivenin thetext of the survey.Note only that the low-temperaturephaseof this cascade,
asarule, is a low-symmetryphase(e.g., for the crystallizationof a liquid this is the smectic-A).

At decreasingtemperaturethe behaviourof the gap A is quite universal. The gapA diminishes
in the high-temperaturephase,achievingits minimum in thepoint of transitioninto aconsecutive
phase.In this point A experiencesa jump and at a further decreaseof the temperature,grows
experiencingpositivejumps in all the pointsof consecutivefirst-orderphasetransitions.

The dynamicsof theparametercc is purely relaxational.The respectivekineticcoefficient proves
to be insensitive to the phasetransition, thereforethe relaxation time of cc is proportionalto
A~andachievesits maximumnearthe phasetransitionfrom the disorderedphase.All physical
characteristicsof the systemin somedegreedependon how close it is to the crystallizationphase
transition. The contributions,associatedwith the parameterç, to physicalcharacteristicsof the
system,which exhibit an anomalousbehaviourin the vicinity of the crystallizationtransition,are
expressedvia the gap4. The most markedsingularbehaviournearthe phasetransitionis inherent
in the viscositycoefficients,associatedwith the attenuationof acousticmodes.

In the weak crystallization theory it is possible to explain the amazingdiversity of liquid-
crystallinephases,emergingin a relatively narrowtemperaturerangein real substances.Apart from
this, aconsequenceof the theory is the anomalousbehaviourof variousphysicalcharacteristics,
and,in the first place,the large valuesof the viscositycoefficients,which are one of the principal
experimentalcharacteristicsof liquid crystals.Unfortunately,astraightforwardcomparisonoftheory
andexperimentis not easy.

Firstly, concretepeculiaritiesof phasetransitionsin the framework of the weak crystallization
theory dependon anumberof parameters.Among themoneshould mentionparameters,charac-
terizing the intensityof fluctuationsof cc and the angulardependenceof the quartic interaction
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constantI. Most of the results,cited in this survey, are obtainedfor the caseA = const.; some
particularcasesof theangulardependenceofI arealsoanalyzed.A still largernumberof parameters
arisein the theorywhenoneconsidersphasetransitions,associated,for instance,with variationof
the smectic densitymodulationperiod.A quantitativecomparisonof the theorywith experiment
requiresa detailedknowledgeof all theseparameters.

Secondly, the phase transition picture in real liquid crystals is more complicated than the one
givenhere.Alongsidewith crystallizationtransitions,thereoccuralsoorientationalphasetransitions
in them (e.g., smectic-A—smectic-Cor smectic-A—hexatic).At decreasingtemperaturedifferenttypes
of crystallizationtransitionsmaycompete.Sincetheliquid-crystallinestateis realizedin a relatively
narrow temperaturerange, all thesephasetransitionsinfluenceeachother. An attemptto study
the mutual influence of the orientationaland crystallizationphasetransitionshas beenmadein
subsection4.3. Besides,the sequencesof phases,given in the main text of this survey can be
violateddue to the transitionof a liquid crystal into a solid molecularcrystal, which, as a rule, is
a strongfirst-order transition.

Despitethe difficulties of comparingtheorywith experiment,anumberof concretepredictionsof
the theory (e.g., concerningthe behaviourof the elasticitycoefficientsor viscosity) canbe directly
comparedwith experimentaldata. Besides,the theory makesit possible to connectthe resultsof
various (calorimetric, dynamic and X-ray) experiments.Near the weak crystallizationpoint all
quantities,measuredin theseexperimentsare expressedvia the fundamentalcharacteristicsof the
transition,i.e., the valueof the gapA in the fluctuationspectrum.

Ultimately, we would like to stressthat the presentedtheory reveals a numberof universal
peculiaritiesdeterminingthe qualitativepictureof the weakcrystallization.
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