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Introduction



LOTS OF BIG DATA

Big data is big news!
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TRUMPS TRUMP

Almost twice as popular as “President Trump”!

Although I guess that’s not so surprising...
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FAKE NEWS

But big data analysis doesn’t mean better data analysis
I More variables

I More outliers

I More noise

I More spurious results

Conclusion?
I Data needs to be cleaned

We will discuss data anomalies and methods for cleaning data
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Symptoms



THE DATA

We worked with credit default swap (CDS) spread data
I Spread = cost (in bp) of insuring against default of a given company

for a given time period

I Quoted for 6 month, 1 year, 2 year, 3 year, 5 year, 7 year and 10
year horizons

I Quoted for 1,000s of different individual companies

I Quoted both for senior and subordinated debt

I Consider market close data
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EXAMPLE
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DATA ISSUES

General data quality issues
I Missing values

I Bad values

Clean for a purpose
I Relative valuation

I Mark to market

I Trading strategy development

I Risk analysis

Risk
I Missing data points

I Problematic return calculations
I Problematic covariance calculations

I Bad values
I Bad returns
I Bad variances
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CDS DATA ISSUES

CDS data specific characteristics:
I 6 month point missing for first 2.5 years

I Often large range of values

I High volatility makes detecting bad values difficult

I Data used for risk analysis
I Deleting outliers reduces risk measures
I Leaving anomalies inflates risk measures
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TYPICAL APPROACHES

Hole filling
I Regression

I Interpolation

I Flat filling

Anomaly detection
I Comparison to trailing volatility

I Cluster analysis

I Neural networks

I Statistics-sensitive Non-linear Iterative Peak (SNIP) clipping
algorithm
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Hole filling



OVERVIEW

Hole filling Overview
I Use Multi-channel Singular Spectrum Analysis (MSSA) hole filling

algorithm
I Variant of Singular Spectrum Analysis (SSA) used simultaneously on

multiple time series
I Decomposes each time series into a sum of components, one for

each principal component

I Borrowed from geophysical data analysis

I Makes use of both space relationships (covariance) and time
relationships (autocovariance and cross-autocovariance)
I Eigenvector decomposition of the auto-cross covariance matrix
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SSA
Uses:
I Inspect eigenvectors and components to extract specific features of

data
I Smooth data by throwing away small eigenvalues
I Helpful for stabilizing correlation calculations (smooth data then

compute)

References:
I A beginner’s guide to SSA, Claessen and Groth, [CG]
I Singular spectrum analysis, Wikipedia, [Wik16]
I Analysis of Time Series Structure: SSA and Related

Techniques, Golyandina, Nekrutkin, and Zhigljavsky, [GNZ01]
I A review on singular spectrum analysis for economic and

financial time series, Hassani and Thomakos, [HT10]
I SSA, Random Matrix Theory, and Noise-Reduced Correlations,

Dash et al., [Das+16a]
I Stable Reduced-Noise ’Macro’ SSA–Based Correlations for

Long-Term Counterparty Risk Management, Dash et al.,
[Das+16b]
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MSSA

Multi-channel Singular Spectrum Analysis (MSSA):
I Applies SSA algorithm to a set of time series simultaneously

Uses:
I Same as SSA, but takes relationships between different time series

into account

I Used for forecasting

References:
I Multivariate singular spectrum analysis for forecasting

revisions to real-time data, Patterson et al., [Pat+11]

I Multivariate singular spectrum analysis: A general view and
new vector forecasting approach, Hassani and Mahmoudvand,
[HM13]

I Advanced spectral methods for climatic time series, Ghil et al.,
[Ghi+02]
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MSSA BASED HOLE FILLING

MSSA hole filling algorithm:
I Nominally fill holes (e.g. via interpolation):

I Iteratively refine hole filling approximation
I Run MSSA algorithm
I Replace holes with MSSA reconstruction using l biggest singular

values
I Repeat until convergence

I Increment l by one and repeat until adding singular values doesn’t
have much impact and used enough singular values

References:
I Spatio-temporal filling of missing points in geophysical data

sets, Kondrashov and Ghil, [KG06]
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MIXED RESULTS

Unfortunately, it doesn’t always work:
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OBSERVATIONS

Observations:
I Sometimes MSSA doesn’t line up with actual data

I Sometimes MSSA bottoms out

I Using too few singular values will smooth the data

Solutions:
I Anchoring – patch in data in a more consistent fashion

I Reparameterization – working in log space

I Adjusting MSSA parameters

I Avoid filling large gaps
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ANCHORING

Holes are replaced with MSSA partial reconstruction

I Can yield bias if remaining components shift results

Instead
I Patch in differences relative to endpoints

I Can be additive or multiplicative

I One-sided holes need special treatment
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REPARAMETERIZATION

MSSA hole filling is like a fixed point algorithm
I Trying to find points which match reconstruction

I Similar to constrained optimization

Apply classic optimization techniques
I Transform problem to eliminate constraints

I Work in log space if values must be positive

I Log space also helps to handle changes in magnitude

Fast drop-off of eigenvalues is evidence that working in log space is
the right thing
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ADJUSTING MSSA
PARAMETERS

Many parameters to adjust
I Lag

I Max/Min number of EVs

I Max/Min percentage of sum of EVs

I Measure of convergence

Smoothing caused by fast drop-off of EVs
I Max/Min percentage ineffective

I Can add more EVs, but leads to instability
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NEW RESULTS

After adjustments NAB:
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Bad data detection



BAD DATA

How to handle bad data?
I Detect it

I Remove it

I In our case, replace it
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BAD DATA DETECTION

Many algorithms
I Statistical – compare to statistical properties (like trailing SD)

I Data science – clustering

I Neural networks

References
I Outlier Detection Techniques, Kriegel, Kröger, and Zimek, [KKZ10]

I Detecting Local Outliers in Financial Time Series, Verhoevena and
McAleer, [VM]

I Outlier analysis, Aggarwal, [Agg13]

I Algorithms for Mining Distance-Based Outliers in Large Datasets,
Knorr and Ng, [KN98]

I Outlier detection, Ben-Gal, [BG05]

I An online spike detection and spike classification algorithm capable of
instantaneous resolution of overlapping spikes, Franke et al., [Fra+10]

I A survey of outlier detection methodologies, Hodge and Austin,
[HA04]
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DIFFICULTIES

Regime changes and changing volatility
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HYBRID APPROACH

Data science approach – Cluster analysis
I Angle-based

I Distance-based

Hybrid approach
I Run clustering on a windowed basis (in a neighborhood of each

point)

I Combine MSSA with clustering

I Remove points using analysis, then put them back if MSSA
reconstructs them close enough

Conservative approach
I Do both angle and distance-based combined with MSSA

I If both algorithms agree, then it’s really an anomaly
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DISTANCE-BASED EXAMPLE
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ANGLE-BASED EXAMPLE
Angle-based, no outlier:
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ANGLE-BASED EXAMPLE
Angle-based outlier:
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RESULTS

Filling of large holes

01/09 03/09 05/09 07/09 09/09 11/09 01/10
-20

0

20

40

60

80

100

120

140

160
COP Senior USD: Hybrid Angle/Distance

6mo

1yr

2yr

3yr

4yr

5yr

7yr

10yr

29



RESULTS
Ignoring regime changes
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RESULTS

Detecting and correcting bad data
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RESULTS

Even works on CMO OASs!
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Summary



SUMMARY

Moral of the story
1. Know your data!

I Bad data = bad results
I Big data increases need for data cleaning
I Look at your data!

2. Know its usage!
I Cleaning must respect usage of data

3. Algorithms will often not work as advertised!
I Your data can be different
I Your data usage can be different

4. Expect substantial work modifying and adjusting algorithms
I Tuning
I Modifying algorithms
I Combining algorithms
I Performance must be inspected
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Thank you!

Harvey J. Stein

hjstein@bloomberg.net

© 2018 Bloomberg Finance L.P. All rights reserved.
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