Morgan Stanley

AI/ML in Finance: Applications, Cases and Research

2nd Machine Learning & Al in Quantitative Finance Conference Marcelo Labre 15 November 2018

Disclaimer: Views presented are those of the speaker and not Morgan Stanley

Morgan Stanley

Applications

Is AI a hype? Is AI useful at all in finance?

Report: Al Is More Hype Than Reality

Venture Capitalist: A.I. Hype Still "Has a Ways to Go Up"

Have We Reached The Peak Of AI's Hype?

What Happens if Al Doesn't Live Up to the Hype?

Al is already doing this!

And this!

It Was a Big Year for A.I.

By CHRISTINA BONNINGTON

DEC 28, 2017

https://slate.com/technology/2017/12/year-in-artificial-intelligence-most-impressive-ai-andmachine-learning-accomplishments.html

- A.I. Spotted An Eight-Planet Solar System
- Beat The World Champion Go Player
- Bested Poker Pros at No-Limit Texas Hold'Em
- Taught Itself To Program

59 impressive things artificial intelligence can do today

https://www.businessinsider.com/artificial-intelligence-ai-most-impressive-achievements-2017-3

AI Skills Demand

Performance of AI/ML Funds

Chart 2: AI/Machine Learning Hedge Funds Index vs. Quants and Traditional Hedge Funds

Source: Eurekahedge

Well Known Applications in Finance

- Portfolio Management
 - Robo-advisor, calibration of investment portfolios to goals and risk tolerance
- Algorithmic Trading
 - Hedge fund strategies, High Frequency Trading (HFT)
- Financial Crimes
 - AML
- Underwriting
 - Loans, insurance

Less Known Applications in Finance

- Automation
 - Chat bots, management of accounts, digital assistants
- Cyber Security
 - One of the biggest items in the agenda of financial institutions
- Sentiment Analysis
 - Predicting trends and market reversals
- Sales
 - Recommendation of financial products to customers
- Risk Management
 - Various applications from hedging books to risk measurement

Morgan Stanley

Use Cases

Overview

- Case 1: Equity Macro Hedging
- Case 2: Term Deposits Rolling
- Case 3: Implied Ratings
- Case 4: Corporate Credit Loss Distribution Cohorting
- Case 5: AML Alerts

Background

Need for effective macro hedging of equities portfolios

Typical Approaches

- Non-predictive mean-variance optimization (Markowitz), theoretical
- Questionable subject matter expertise

Solution

Machine learning predictive model for predicting equities performance on a certain horizon

Random forest model performance (ROC/AUC)

Case 2: Term Deposits Rolling

Background

- Prediction of renewal (roll) of term deposit accounts
- Implications for assets-liabilities management as well as potential regulatory capital impact
- Typical Approach
 - Historical Simulation
- Solution
 - Decision tree model for predicting and interpreting term deposit renewals

Case 2: Term Deposits Rolling

- Highly interpretable model, 75% out of sample accuracy
- Attributes: interest paid on balance, outstanding balance, account term, number of times account has previously rolled, client segment, etc

Background

 Rating proxy of corporate credit not rated by rating agencies (Moody's, Standard & Poors', Fitch)

Typical Approaches

- Conservative, arbitrary rating (e.g., B to all no-rated issuers)
- Proxy by average of region/sector
- Tedious and costly replication of rating agencies methodologies

Solution

AI/ML predictive model for replicating the rating behavior or rating agencies

- Random forest model
- Training performance (1,100 issuers)
 - 72% average 12-month accuracy on exact rating

Convolutional Neural Networks

Convolutional Neural Networks - convolution

Convolutional Neural Networks – filters

Convolutional Neural Networks – filters

Deep learning model

Case 4: Corporate Credit Loss Distribution Cohorting

Background

 Corporate credit cohorts must be established for capital models, issuer/issue risk proxying, generic credit curves, etc

Typical Approach

 Arbitrary proxying of cohorts (rating, industry, region, etc) given insufficient cohort data (e.g., BB)

Solution

 Assumption-free entropy optimization model with parameters learned and cost function minimized through deep learning tools (TensorFlow)

Case 4: Corporate Credit Loss Distribution Cohorting

Case 5: AML Alerts

Background

Alerts generated and evaluated for decision of whether to file AML case

Typical Approach

Hard-coded scenarios generating high number of false positives

Solution

 Deep neural networks for predicting case escalation and reducing false positives

Case 5: AML Alerts

AML Flow

https://www.ayasdi.com/blog/aml/longer-lever-aml-intelligent-alerts-typologies-segmentation/

Convolutional neural networks again?

- Applying of fully connected networks has been reported in the industry
- CNNs appear to be conceptually suitable

Morgan Stanley

Research