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Is Al a hype? Is Al useful at all in finance?

Report: Al Is More Hype Than
Reality

Venture Capitalist: A.l. Hype
Still “Has a Ways to Go Up”

Have We Reached The Peak Of Al's
Hype?

What Happens if Al Doesn’t Live Up to the
Hype?
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Al is already doing this!

Bostendlynamics

https://towardsdatascience.com/self-learning-ai-agents-part-ii-deep-g-learning-b5ac60c3f47 4



https://towardsdatascience.com/self-learning-ai-agents-part-ii-deep-q-learning-b5ac60c3f47

Morgan Stanley

And this!



https://towardsdatascience.com/self-learning-ai-agents-part-ii-deep-q-learning-b5ac60c3f47
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It Was a Big Year for A.l

By CHRISTINA BONNINGTON DEC 28, 2017

A.l. Spotted An Eight-Planet Solar System

Beat The World Champion Go Player

Bested Poker Pros at No-Limit Texas Hold’Em

Taught Itself To Program

59 impressive things artificial intelligence can
do today



https://slate.com/technology/2017/12/year-in-artificial-intelligence-most-impressive-ai-and-machine-learning-accomplishments.html
https://www.businessinsider.com/artificial-intelligence-ai-most-impressive-achievements-2017-3
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Al Skills Demand

SHARE OF JOBS REQUIRING AI SKILLS
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https://towardsdatascience.com/machine-learning-in-finance-why-what-how-d524a2357b56



https://towardsdatascience.com/machine-learning-in-finance-why-what-how-d524a2357b56
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Performance of AI/ML Funds

Chart 2: Al/Machine Learning Hedge Funds Index vs. Quants and Traditional Hedge Funds
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https://www.toptal.com/finance/market-research-analysts/artificial-intelligence-in-finance
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Well Known Applications in Finance

= Portfolio Management

= Robo-advisor, calibration of investment portfolios to goals and risk tolerance

= Algorithmic Trading
= Hedge fund strategies, High Frequency Trading (HFT)

= Financial Crimes

= AML

= Underwriting

= L oans, insurance
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Less Known Applications in Finance

Automation

= Chat bots, management of accounts, digital assistants

Cyber Security

= One of the biggest items in the agenda of financial institutions

Sentiment Analysis

= Predicting trends and market reversals

Sales

= Recommendation of financial products to customers

Risk Management

= Various applications from hedging books to risk measurement
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Use Cases
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Overview

= Case 1: Equity Macro Hedging

Case 2: Term Deposits Rolling

Case 3. Implied Ratings

Case 4. Corporate Credit Loss Distribution Cohorting

Case 5: AML Alerts
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Case 1. Equity Macro Hedging

= Background

= Need for effective macro hedging of equities portfolios

= Typical Approaches
= Non-predictive mean-variance optimization (Markowitz), theoretical

= Questionable subject matter expertise

= Solution

= Machine learning predictive model for predicting equities performance on a
certain horizon
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Case 1. Equity Macro Hedging

= Random forest model performance (ROC/AUC)
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Case 1. Equity Macro Hedging
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Case 1. Equity Macro Hedging
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Case 1. Equity Macro Hedging
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Case 2: Term Deposits Rolling
= Background

= Prediction of renewal (roll) of term deposit accounts

= |Implications for assets-liabilities management as well as potential regulatory
capital impact
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Case 2: Term Deposits Rolling

= Highly interpretable model, 75% out of sample accuracy

= Attributes: interest paid on balance, outstanding balance, account term,
number of times account has previously rolled, client segment, etc
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Case 3: Implied Ratings

= Background

= Rating proxy of corporate credit not rated by rating agencies (Moody’s,
Standard & Poors’, Fitch)

= Typical Approaches
= Conservative, arbitrary rating (e.g., B to all no-rated issuers)
= Proxy by average of region/sector

= Tedious and costly replication of rating agencies methodologies

= Solution

= AI/ML predictive model for replicating the rating behavior or rating agencies
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Case 3: Implied Ratings

= Random forest model

= Training performance (1,100 issuers)

« 72% average 12-month accuracy on exact rating

* 97% average 12-month

accuracy on +/- 1 notch rating

= Backtesting performance
87% accuracy
on exact rating
*  98% accuracy

on +/- 1 notch rating
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Case 3: Implied Ratings

= Convolutional Neural Networks

Input Conv Pool Conv Pool FC  FC Softmax

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134cle2 22



https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
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Case 3: Implied Ratings

= Convolutional Neural Networks - convolution
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https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050



https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050
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Case 3: Implied Ratings

= Convolutional Neural Networks — filters

~

oonvl pl nl conv2 p2 nZ conv3 conv4 convid pi fe6 fo7

http://yosinski.com/deepvis

fwd convl_44 | Back: off | Boost: 0/1



https://www.youtube.com/watch?v=AgkfIQ4IGaM

Morgan Stanley

Case 3: Implied Ratings

= Convolutional Neural Networks — filters

} convl pl nl conv2 p2 n2 conv3d conv4 oeomv8 pi o6 fo7

http://yosinski.com/deepvis
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https://www.youtube.com/watch?v=AgkfIQ4IGaM
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Case 3: Implied Ratings

= Deep learning model

Issue
Atributes
(PD, time to
maturity,
subordination,
etc)

Issuer
Atributes
(Industry,

country,
financial
statements,
etc)
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Case 4: Corporate Credit Loss Distribution Cohorting

= Background

= Corporate credit cohorts must be established for capital models,
Issuer/issue risk proxying, generic credit curves, etc

= Typical Approach

= Arbitrary proxying of cohorts (rating, industry, region, etc) given insufficient
cohort data (e.g., BB)

= Solution

= Assumption-free entropy optimization model with parameters learned and
cost function minimized through deep learning tools (TensorFlow)
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Case 4: Corporate Credit Loss Distribution Cohorting
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Case 5: AML Alerts

= Background

= Alerts generated and evaluated for decision of whether to file AML case

= Typical Approach

= Hard-coded scenarios generating high number of false positives

= Solution

= Deep neural networks for predicting case escalation and reducing false
positives
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Case 5: AML Alerts
= AML Flow

Transactions
True SAR
; Positives
Client Profiles %}C‘.’.‘:‘.’ Reggflijttlgon > T“;'E:)n”?g)cfg:?; " Inve):tliegr;tion
olo
(CDD, KYC, etc.) fIF System False
Positive

Sanctions/ Data
PEP/Watch transformation

Lists

https://www.ayasdi.com/blog/aml/longer-lever-aml-intelligent-alerts-typologies-segmentation/

= Convolutional neural networks again?

= Applying of fully connected networks has been reported in the industry

= CNNs appear to be conceptually suitable
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https://www.ayasdi.com/blog/aml/longer-lever-aml-intelligent-alerts-typologies-segmentation/
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Research



