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 Logistic Regression: Keeping the basics basic

* It's a probability ... Probably

* Frank Knight's great distinction: Risk vs Uncertainty
* Risky business: Prediction Intervals.

* But wait! There's more! ... Backtesting!!

* What's important?: Model management

* The fine print. Details, Details, Details...

 CODA: Play it again Sam! Summary and Conclusions.



Logistic Regression:
Keeping the basics basic

Start with Good old linear regression.

Remember the OLS assumptions?*

Remember confidence intervals vs prediction intervals?

We need to do the same thing with categorical predicions!

*

Linearity
Constant Error Variance
Normally Distributed Errors

Mean O Errors




Steps to Logistic Regression™

Step 1: Get the estimates onto the real line.
Step 2: Set regressors to the real line values.
Step 3: Postulate a model to solve for the coefficients

* “Logical-regression” get it??? Haaaa!



Step 1: Get the estimates onto the real line.

* v € {no default, default}
*y €10, 1}

*p€[0, 1]

* p/(1-p) € [0, inf)

* In(p/(1-p)) € (-inf, inf)



Step 2: Set regressors to the real line values.

* In(p/(1-p)) € (-inf, inf)

* LogOdds(p) € (-inf, inf)

* LogOdds(p) = XP3

* LogOdds*(LogOdds(p)) = LogOdds*(X]3)
* p = LogOdds?(X[3)



Step 3: Postulate a Model to Solve

* p =Sigmoid(X[3)
* argmax(pB) [T (p¥ * (1-p)*)




't's a probability ... Probably.

 What would it take to truly get a probability?
* Span the domain of possible loan qualities.

* Have even proportionality throughout the sample.

* How would we know?
* Backtesting

* And what if we don’t know?
* Then, we’re just rank ordering.



't's a probability ... Probably.

* The Receiver Operator Characteristic

* Birdie?

e or Bomberl!l??




it's a probability ... Probably.
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Frank Knight’s Great Distinction:
Risk vs Uncertainty

e Risk: You know the distribution

* Uncertainty: You don’t know anything




Backtesting

* High Risk: wide confidence intervals and successful backtest.
* Low Risk: narrow confidence intervals and successful backtest.
e Uncertainty: unsuccessful backtest.



Pop Quiz!!!

* Wide confidence intervals and successful backtest equals???
* Bet onit! /@
4

* Narrow confidence intervals and successful backtest equals???
e Bet on it according to your risk tolerance! cAunomI

* Unsuccessful backtest equals???
* Don’t bet on it! Consider mitigating or transferring. @

* Narrow confidence intervals and unsuccessful backtest equals???
* Alien / Zombie / Nuclear Apocalypse




Risky business:
Prediction Intervals

* Linear regression models population variance

cy=Xp+e¢

e Can we get a prediction interval for Logistic regression?
e Short answer: No!!
* Long answer: Yes!! (Denial always works. (Always!))




Note: Confidence Intervals do not Help
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LCeci nest nos une Interval!



Making Our Prediction Interval

* Step 1: Get the variance of the expected estimates
» Step 2: Get the variance of the point estimates



Step 1: Get the variance of the estimates

e Simulate beta’s with multivariate normal
* u=Dbeta’s
e 5 =cov(beta’s)

* Bootstrapping
* This could take a while.
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Step 2: Get the variance of point estimates

* Segment your population of data into cohorts.
* Each cohort c has a member count n_

* Use the variance of beta to simulate a probability of default
* pi=X" *N(W, 2)

* Simulate the number of defaults for that point
* d.=B(n_, p)

* Divide d; by n_ to model the observed default rate



The Knobs We Turn

* Alpha

* Number of Cohorts

* Cohort Feature Space
e Out of Sample Size




A Feel-Good Version

Predicted vs Observed Default Rates
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Predicted vs Observed Default Rates
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|[dentifying Cohorts from Feature Space
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But wait! There's more! ... Backtesting!!

* Keep the interval methodology constant and backtest.

* Track Risk and Uncertainty measures for cohorts.
* Error bound width
* Proportion of exceptions




The fine print. Details, Details, Details...

 Data

* Data set should be made up of closed loans.
* Maybe: Open loans can be added with an indicator variable.

e Cohorts

* Cluster analysis can pick the cohorts.
* You can use a scree plot to determine clusters.
* |In practice, you’ll need enough clusters for performance to stabilize.

* Regularization
* Regularized coefficients will be even harder to interpret.



What's important: Model management

* Know where you predict poorly.

* If data is scarce and the environment is changing, refit periodically.

e At each refit:

* Hold the data model and observe difference in predictions as function of data change.
* Hold the data constant and observe difference in predictions as function of model change.

» Keep a baseline data set to offer absolute point of reference.
* Keep a simple transparent model running alongside a black box model.



CODA: Play it again Sam!
Summary and Conclusions

e Estimated probabilities might be nothing more than rank ordering.

* Failed probability estimation leads to failed expected loss calculation.
* You can use the Risk vs Uncertainty distinction for clarity of mind.
 Know where your model predicts poorly.

* Be mindful of closed vs open loans in your data set.



Appendix: Logistic Regression in context of GLM’s
aka 'ruining the simplicity’

* Link function (logodds)
* Inverse link function (sigmoid)
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