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We stand at a crossroads.

In the last decade, Artificial Intelligence has gone from a sci-fi
fantasy to touching almost every aspect of our lives.

In many tasks requiring complex multi-period planning in the
presence of uncertainty (e.g. backgammon, driving, chess,
Jeopardy, Atari, the ancient Chinese game of Go, etc.) agents
are superior to the top humans.

In all of the examples just mentioned, the agents were trained
using a machine learning technique known as reinforcement
learning.
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What is Intelligence?

Many intelligent actions are deemed “intelligent” precisely
because they are optimal interactions with an environment.

An algorithm plays a computer game intelligently if it can
optimize the score.

A robot navigates intelligently if it finds a shortest path with
no collisions: minimizing a function which entails path length
with a large negative penalty for collision.

Learning is learning how to choose your actions wisely to
optimize your interaction with your environment, in such a
way to maximize rewards received over time.

A gazelle is born not knowing how to walk. Its brain learns
how to send signals to its leg muscles so as to optimize
interactions with its environment (standing, walking, running).

3 / 56



In many of these examples, the learning happens through
experience, in a process roughly described as “trial and error.”
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General Framework for Decision Making

An interacting system: agent interacts with environment.

The “environment” is the part of the system outside of the
agent’s direct control.

At each time step t, the agent observes the current state of
the environment st ∈ S, and chooses an action at ∈ A.

This choice influences both the transition to the next state, as
well as the reward the agent receives.
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The agent’s goal is to maximize the expected cumulative
reward, denoted by

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . (1.1)

where γ is necessary for the infinite sum to be defined.

A policy π is an algorithm for choosing the next action, based
on the state you are in.

Reinforcement learning is the search for policies which
maximize

E[Gt ] = E[Rt+1 + γRt+2 + γ2Rt+3 + . . . ]
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According to Sutton and Barto (1998), “the key idea of
reinforcement learning generally, is the use of value functions
to organize and structure the search for good policies.”

Assuming I start in state s, take action a, and then follow
some fixed policy π from then on, what is my expected
cumulative reward over time? The answer is the action-value
function:

qπ(s, a) := E[Gt ] starting from s, taking a, then following π

If we knew the q-function corresponding to the optimal policy,
say q∗, we would know the optimal policy itself:

choose a ∈ A to maximize q∗(st , a)

This is called following the greedy policy.

Hence we can reduce the problem to finding q∗, or producing
a sequence of iterates that converges to q∗.
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Worthwhile Questions

Can an artificial intelligence discover an optimal dynamic
trading strategy (with transaction costs), without being told
what kind of strategy to look for?

In other words, what are the various financial analogues of
AlphaGo Zero, a system which learned to play with “zero”
human guidance, merely being told the rules of the game and
playing against a simulator?

What does the term “optimal” mean exactly? Is it subjective
or can we quantify the kind of strategy that any rational
decision-maker would employ?
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In finance, optimal means that the strategy optimizes
expected utility of final wealth, and final wealth is the sum of
a number of wealth increments over shorter time periods:

maximize: E[u(wT )] = E[u(w0 +
T∑
t=1

δwt)] (1.2)

where δwt := wt − wt−1.
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Utility theory
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In 1947, John von Neumann and Oskar Morgenstern proved
that if a decision-maker

(a) is faced with risky (probabilistic) outcomes of different choices,
and

(b) has preferences satisfying four axioms of “rational behavior”

then that decision-maker will behave as if they are maximizing
the expected value of some function, u, called the utility
function, defined over the potential outcomes.

When applied to trading of financial assets, the outcomes are
typically various levels of wealth wT at some future time T ,
and rational agents maximize

E[u(wT )]

(not E[wT ], since this leads to paradoxes, and ignoring risk is
ill-advised).

11 / 56



Under certain assumptions, maximizing E[u(wT )] is equivalent to
maximizing a mean-variance form of that problem. Let us clarify
those assumptions.
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Discreteness Trading occurs at discrete times t = 1, . . . ,T
and final wealth is given by

wT = w0 +
T∑
t=1

δwt , δwt := wt − wt−1.

Portfolios There exist a set of portfolios h0, . . . , hT−1
known at t = 0 such that δwt = ht−1 · rt where
rt is the random vector of asset returns over the
period [t − 1, t].

Independence If t 6= s, then rt and rs are independent random
vectors.

Ellipticality For each t, the multivariate distribution of rt is
elliptical (iso-probability contours are
multi-dimensional ellipses).

Utility The utility function is increasing, concave, and
has continuous derivatives up to second order.
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We will make the above assumptions in this talk.

Under these assumptions, there exists some constant κ > 0,
which depends on initial wealth w0 and the investor’s utility
function, such that maximizing E[u(wT )] is equivalent to
maximizing

E[wT ]− 1

2
κV[wT ]
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So we focus on

maximize :
{
E[wT ]− κ

2
V[wT ]

}
(1.3)

Suppose we could invent some definition of “reward” Rt so
that

E[wT ]− κ

2
V[wT ] ≈

T∑
t=1

Rt (1.4)

Then (1.3) looks like a “cumulative reward over time”
problem.

Reinforcement learning is the search for policies which
maximize

E[Gt ] = E[Rt+1 + γRt+2 + γ2Rt+3 + . . . ]

which by (1.4) would then maximize expected utility as long
as γ ≈ 1.
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Consider the reward function

Rt := δwt −
κ

2
(δwt − µ̂)2 (1.5)

where µ̂ is an estimate of a parameter representing the mean
wealth increment over one period, µ := E[δwt ].

Then

1

T

T∑
t=1

Rt =
1

T

T∑
t=1

δwt︸ ︷︷ ︸
→E[δwt ]

−κ
2

1

T

T∑
t=1

(δwt − µ̂)2︸ ︷︷ ︸
→V[δwt ]

and for large T , the two terms on the right hand side approach
the sample mean and the sample variance, respectively.

Thus with this one special choice of the reward function (1.5),
if the agent learns to maximize cumulative reward, it should
also approximately maximize the mean-variance form of utility.
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In trading problems, what are the state space,
action space, and reward?
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The state variable st is a data structure which, simply put,
must contain everything the agent needs to make a trading
decision, and nothing else.

Variables that are good candidates to include in the state:

1. the current position or holding in the asset

2. the values of any signals which are believed to be predictive

3. the current state of the market, including current price and
any relevant microstructure / limit-order book details

4. If options are involved, how long until they expire?

18 / 56



In trading problems, the most obvious choice for an action is
the number of shares to trade, δnt . This choice identifies the
action space A ⊂ Z.

If the agent’s interaction with the market microstructure is
important then there will typically be more choices to make,
and hence a larger action space.

For example, the agent could decide which execution
algorithm to use, whether to cross the spread or be passive,
target participation rate, etc.

If one of the assets is an option, there may be additional
actions available, such as early exercise.
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The Ornstein-Uhlenbeck Process
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For this example, assume that there exists a tradable security
with a strictly positive price process pt > 0. (This “security”
could itself be a portfolio of other securities, such as an ETF
or a hedged relative-value trade.)

Further suppose that there is some “equilibrium price” pe
such that xt = log(pt/pe) has dynamics

dxt = −λxt + σ ξt (2.1)

where ξt ∼ N(0, 1) and ξt , ξs are independent when t 6= s.

This means that pt tends to revert to its long-run equilibrium
level pe with mean-reversion rate λ.

These assumptions imply something similar to an arbitrage!
Positions taken in the appropriate direction while very far from
equilibrium have very small probability of loss and extremely
asymmetric loss-gain profiles.

21 / 56



We do not allow the agent, initially, to know anything about
the dynamics.

Hence, the agent does not know λ, σ, or even that some
dynamics of the form (2.1) are valid.
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The agent also does not know the trading cost.

We charge a spread cost of one tick size for any trade.

If the bid-offer spread were equal to two ticks, then this fixed
cost would correspond to the slippage incurred by an
aggressive fill which crosses the spread to execute.

If the spread is only one tick, then our choice is overly
conservative.

Hence
SpreadCost(δn) = TickSize · |δn| (2.2)
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We also assume that there is permanent price impact which
has a linear functional form: each round lot traded is assumed
to move the price one tick, hence leading to a dollar cost
|δnt | × TickSize/LotSize per share traded, for a total dollar
cost for all shares

ImpactCost(δn) = (δn)2 × TickSize/LotSize. (2.3)

The total cost is taken to be

cost(δn) = multiplier× (SpreadCost(δn) + ImpactCost(δn))
(2.4)

This functional form matches Almgren–Chriss, and some
other accounts in the literature.

The multiplier allows us to quickly and easily test the
reinforcement learning agent in regimes of more or less
liquidity.
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The state of the environment

st = (pt , nt−1)

will contain the security prices pt , and the agent’s position, in
shares, coming into the period: nt−1.
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We first train a tabular Q-learner with ntrain = 107 training
steps, and then evaluate the system on 5,000 new samples of
the stochastic process.

0e+00

1e+06

2e+06

3e+06

0 1000 2000 3000 4000 5000

time periods

P
/L

Simulated net P/L over 5000 out−of−sample periods

Figure: Cumulative simulated out-of-sample P/L of trained model.
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The initial results are encouraging. We constructed a system
wherein we know there is an arbitrage, analogous to a game
where it’s actually possible to win.

The machine then learns to play this game and learns a
reasonable strategy.

But how good is its value function, really? Let’s take a look...
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Figure: Value function p → q̂((0, p), a), where q̂ is estimated by the
tabular method.
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The tabular method estimates each element q̂(s, a)
individually, with no “nearest neighbor” effects or tendency
towards continuity.
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In this example, the optimal action choice has a natural
monotonicity, which we now describe intuitively.

Suppose that our current holding is h = 0.

Suppose that for some price p < pe , the optimal action, given
h = 0, is to buy 100 shares;

Then for any price p′ < p, the optimal action must be to buy
at least 100 shares.
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For large price values, the tabular value function seems to
oscillate between several possible decisions, contradicting the
monotonicity property.

This is simply an aspect of estimation error and the fact that
the tabular method hasn’t fully converged even after millions
of iterations.

The tabular value function also collapses to a trivial function
in the left tail region, presumably due to those states not
being visited very often.
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All of these problems are related to the same underlying
problem: we have used a finite state space.

Ultimately, methods which assume a finite state space are
doomed to break down. What if we had 10 variables we
wanted to use in the state vector, each with 100 possible
values? There would be billions of parameters to estimate.

We strongly advocate for the use of continuous state spaces in
reinforcement learning.
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Figure: Value function p → q̂((0, p), a) for various actions a, where q̂ is
estimated by using continuous state-space methods. For details, see the
preprint on my Courant website.
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The relevant decision at each price level (assuming zero initial
position) is the maximum of the various piecewise-linear
functions shown in the figure.

There is a no-trade region in the center, where the green line
is the maximum.

There are then small regions on either side of the no-trade
zone where a trade n = ±100 is optimal, while the maximum
trade of ±200 is being chosen for all points sufficiently far
from equilibrium.
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Our testing indicates that the continuous-state-space method
not only produces a value-function estimate that is
piecewise-continuous, but also outperforms the tabular
method in the performance metric.

Running each policy out of sample for 500,000 steps, we
estimate Sharpe ratio of 2.78 for Tabular QL, and 3.03 for
continuous-state-space.

The latter is better able to generalize to conditions unlike
those it has already seen, as evidenced by the left-tails in
Figs. 2.2–2.3.
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Optimal Hedging for Derivatives
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Let’s explore applying the above to another problem of
interest to traders: hedging an option position.
We look at the simplest possible example: A European call
option with strike price K and expiry T on a
non-dividend-paying stock.

We take the strike and maturity as fixed, exogenously-given
constants. For simplicity, we assume the risk-free rate is zero.

The agent we train will learn to hedge this specific option
with this strike and maturity. It is not being trained to hedge
any option with any possible strike/maturity.
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In any successful application of RL, the state must contain all
of the information that is relevant for making the optimal
decision.

Information that is not relevant to the task at hand, or which
can be derived directly from other variables of the state, does
not need to be included.
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For European options, the state must minimally contain the
current price St of the underlying, and the time

τ := T − t > 0

still remaining to expiry, as well as our current position of n
shares.

The state is thus naturally an element of

S := R2
+ × Z = {(S , τ, n) | S > 0, τ > 0, n ∈ Z}.

The state does not need to contain the option Greeks,
because they are (nonlinear) functions of the variables the
agent has access to via the state.

We expect agents to learn such nonlinear functions on their
own as needed.

This has the advantage of not requiring any special,
model-specific calculations that may not extend beyond BSM
models.
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We first consider a “frictionless” world without trading costs
and answer the question of whether it is possible for a
machine to learn what we teach students in their first
semester of business school: Formation of the dynamic
replicating portfolio strategy.

Unlike our students, the machine can only learn by observing
and interacting with simulations.
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The RL agent is at a disadvantage, initially. Recall that it
does not know any of the following pertinent pieces of
information:

1 the strike price K ,
2 the fact that the stock price process is a GBM,
3 the volatilty of the price process,
4 the BSM formula,
5 the payoff function (S − K )+ at maturity,
6 any of the Greeks.

It must infer the relevant information from these variables,
insofar as it affects the value function, by interacting with a
simulated environment.

The results are depicted in Figure 3.1.
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Figure: Out-of-sample simulation of a trained agent. We depict
cumulative stock, option, and total P&L; RL agent’s position in shares
(stock.pos.shares), and −100 ·∆ (delta.hedge.shares). Observe that (a)
cumulative stock and options P&L roughly cancel one another to give the
(relatively low variance) total P&L, and (b) the RL agent’s position
tracks the delta position even though they were not provided with it.
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A second example for Figure 3.1.
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A key strength of the RL approach is that it does not make
any assumptions about the form of the cost function (2.4).

It will learn to optimize expected utility, under whatever cost
function you provide.

As we need a baseline, we define πDH to be the policy which
always trades to hedge delta to zero according to the
Black–Scholes model, rounded to the nearest integer number
of shares.

πDH(st) = πDH(pt , τ, nt) := −100·round(∆(pt , τ))−nt (3.1)
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Previously we had taken multiplier = 0 in the function cost(n)
representing no frictions.

We now take multipler = 5, representing a high level of
friction.

Our intuition is that in high-trading-cost environments (which
would always be the case if the position being hedged were a
very large position relative to the typical volume in the
market), then the simple policy πDH trades too much.

One could perhaps save a great deal of cost in exchange for a
slight increase in variance.
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Given that we are using a reward signal that converges to the
mean-variance form of the utility function,

E[wT ]− 1

2
κV[wT ],

we naturally expect RL to learn the trade-off between variance
and cost.

In other words, we expect it to realize lower cost than πDH ,
possibly coming at the expense of higher variance, when
averaged across a sufficiently large number of out-of-sample
simulations (i.e. simulations that were not used during the
training phase in any way).

After training we ran N = 10, 000 out of sample simulations.
Using the out-of-sample simulations we ran a horse race
between the baseline agent who just uses delta-hedging and
ignores cost, and the RL trained agent who trades cost for
realized volatility.
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Figure 3.2 shows one representative out-of-sample path of the
baseline agent. We see that the baseline agent is over-trading
and paying too much cost.

Figure 3.3 shows the RL agent – we see that, while
maintaining a hedge, the agent is trading in a cost-conscious
way.

The curves in Figure 3.2, representing the agent’s position
(stock.pos.shares), are much smoother than the value of
−100 ·∆ (called delta.hedge.shares in Figure 3.2), which
naturally fluctuates along with the GBM process.
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Figure: Out-of-sample simulation of a baseline agent who uses policy
“delta” or πDH , defined in (3.1). We show cumulative stock P&L and
option P&L, which roughly cancel one another to give the (relatively low
variance) total P&L. We show the position, in shares, of the agent
(stock.pos.shares). The agent trades so that the position in the next
period will be the quantity −100 ·∆ rounded to shares.

48 / 56



−200

−100

0

100

0 10 20 30 40 50

timestep (D*T)

va
lu

e
 (

d
o
lla

rs
 o

r 
s
h
a
re

s
)

cost.pnl

delta.hedge.shares

option.pnl

stock.pnl

stock.pos.shares

total.pnl

Another example of the baseline agent: policy “delta” or πDH .
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Figure: Out-of-sample simulation of our trained RL agent. The curve
representing the agent’s position (stock.pos.shares), controls trading
costs and is hence much smoother than the value of −100 ·∆ (called
delta.hedge.shares), which naturally fluctuates along with the GBM
process.
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Another example of the trained RL agent.
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Above we could only show a few representative runs taken
from an out-of-sample set of N = 10, 000 paths. To
summarize all paths, we compute

for i = 1, 2, . . . ,N :

costi = sum(total.costi ,t : t = 1 . . . ,T )

voli = sdev(total.pnli ,t : t = 1 . . . ,T )

We then plot kernel density estimates (basically, smoothed
histograms) of costi and of voli , each a vector of length N.

The difference in average cost is highly statistically significant,
with a t-statistic of −143.22. The difference in vols, on the
other hand, was not statistically significant at the 99% level.
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Figure: Kernel density estimates for total cost (left panel) and volatility
of total P&L (right panel) from N = 10, 000 out-of-sample simulations.
Policy “delta” is πDH , while policy “reinf” is the greedy policy of an
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volatility of total P&L.
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To summarize, it does seem that machines can find arbitrage
opportunities in data, when they exist, and can become
long-term greedy in the presence of costs.

The subject is in its infancy, and we are a long way from the
“Skynet” of trading. We share a few things we have learned
by trial-and-error :̂ ).

It is generally most useful to work in continuous state space.

Most (optimal) value functions in finance are continuous
functions of the state, and some have monotonicity properties
dictated by economics. Some are even smooth or
piecewise-smooth.

Paying careful attention to the actual
nonlinear-function-approximation (aka supervised learning)
that is used to approximate the value function, and using a
prior that encourages the desired properties, is quite useful.
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The same methods can be used effectively to hedge
derivatives in illiquid markets where trading costs are an
extremely important contribution to wealth.

Reinforcement learning agents can learn to price and hedge
derivatives in markets where perfect replication would be
impossible, or when perfect replication would be too costly.

It can do this with just a good simulator, no other “help”
from humans.
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