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Long-Range Icosahedral Orientational Order and Quasicrystals
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It is shown that a quartic orientational free energy leads to long-range icosahedral bond-orien-
tational order which, through a coupling with a translational order parameter, stabilizes the
icosahedral quasicrystalline phase. The bond-orientational order selects the wave vectors which
point into vertices or faces of an icosahedron.
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The recent discovery by Shechtman et al. ' of
aluminum-manganese alloys which exhibit diffraction
patterns with both sharp peaks and with an icosahedral
symmetry has generated an outburst of activity among
theorists. The first task was to reconcile these two
seemingly inconsistent facts. The resolution came al-
most simultaneously with the experimental discovery:
Levine and Steinhardt2 showed that "quasiperiodic"
lattices, generalizations of the Penrose tiles, produce
sharp diffraction peaks and have icosahedral sym-
metry. Thus the second task for the theorists became
proving (or disproving) stability of the icosahedral
quasicrystalline structure. This task was undertaken in
several recent investigations.

Steinhardt found in direct simulations that a two-
dimensional, two-component Lennard-Jones gas has
an at least quasistable equilibrium state corresponding
to a Penrose lattice. s A more phenomenological ap-
proach was taken by Bak, 6 Mermin and Troian, 7 and
Kalugin, Kitaev, and Levitov, who based their inves-
tigations on the Landau theory of solidification as for-
mulated by Alexander and McTague. 9 In order to
bypass the original conclusion9 that a body-centered-
cubic crystalline structure should generally be favored,
they either included higher-order terms in the Landau
expansion, 6 or they introduced an additional com-
ponent to the density.

These approaches, based exclusively on an analysis
of the translational ordering, explain stability of the
icosahedral quasicrystalline ordering by requiring care-
ful balance between infinitely many couplings.
Although this could be justified on phenomenological
grounds, I feel a need for a different approach. The
main idea of the present approach is to include into a
theory an orientational order parameter which stabi-
lizes the quasicrystalline phase. This does not seem
unnatural when one recalls the well-known fact that
many supercooled liquids and metallic glasses show a
short-range icosahedral bond-orientational order'o and
that crystal structures of many alloys contain charac-
teristic (nearly) icosahedral clusters. It is perhaps not
an accident that many crystalline Al-Mn alloys contain
such clusters. I shall, therefore, adopt a view of solidi-
fication as an interplay between orientational and
translational order parameters. "

The main result of the present approach is that the
icosahedral quasicrystalline order is stabilized and, in
fact, triggered by the long-range icosahedral bond-
orientational order. Moreover, it is a direct result of
the theory that the fundamental icosahedral wave vec-
tors point in the directions of the twelve vertices of an
icosahedron or in the directions of its twenty faces.
This is in agreement with the experimental observa-
tions which definitely rule out the edge model and
seem to be best fitted by the vertex model. '2 More
generally, I find that, while the translational ordering
always triggers an orientational ordering, the reverse
does not hold: A transition into an intermediate phase
with long-range orientational order but with no transla-
tional order may precede the complete ordering.

These results were obtained within the context of
the Landau theory, which will be described below. I
shall first summarize and highlight some important
results and features of the Alexander-McTague Lan-
dau theory of translational ordering. Then we shall
construct the full quartic Landau free energy for the
orientational order parameter, and we shall determine
all stable phases at the translation from the disordered
isotropic phase. [The solution of this problem is
relevant to many areas of physics, such as studies of
convection in spherical symmetry, in which bifurca-
tions from an SO(3) symmetrical state are important. ]
We shaH find that the transition is first order and that
the icosahedral liquid-crystal phase occupies a large
portion of the phase diagram. Next, we shall introduce
the lowest-order, interaction free energy which has to
be linear in the orientational order parameter and qua-
dratic in the translational order parameter. Thus I
shall show that the onset of the translational ordering
will always trigger simultaneous onset of the orienta-
tional ordering, whereas the onset of the orientational
ordering may (because the transition is first order!)
but need not trigger a simultaneous onset of the
translational ordering. Finally, the results shall be
summarized and put in a broader perspective.

Near the isotropic phase, the Landau expansion of
the translational free energy into the Fourier com-
ponents of the density p (q) is9

+ F„+F)4+
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The quadratic term has the form
rF„= d'q A (q) p(q) p( —q),

which is dictated by translational and rotational invari-
ance. Near the transition into a translationally ordered
state, the minimum of A (q) selects the magnitude of
the fundamental wave vectors. Which particular set of
directions { +q, ) will be chosen depends on the third-
and fourth-order terms (we assume here that the fifth-
and higher-order terms can be neglected near the tran-
sition). The discrete version of these terms, for a
fixed q, is

+t3= & Xp(q )p«')p(qk) qi+ q, + qk

and

F4=/ C(q; q, , q, qk)p(q;)p(q, )p(qk)p(qi),

q;+q, +qk+qI=O.

The rotational and translational symmetries are fully
implemented in these expressions.

In particular, while the rotational invariance leaves
only one independent cubic coupling constant 8, the
number of quartic coupling constants C is restricted to
a two-dimensional continuum. '3 As pointed out by
Alexander and McTague, 9 because of these degrees of
freedom, F4 can depend on specific features, such as
bond angles, packing considerations, and bond struc-
ture, so that very little can be said regarding the
universal trends in solidification. Namely, two (ine-
quivalent) sets of fundamental wave vectors will gen-
erally give rise to nonzero terms with different cou-
plings and, consequently, either set could be made to
have lower energy (if these different couplings are
suitably chosen). A simple illustration of this fact is
offered by a comparison between the cubic face, edge,
and vertex models. There are two relevant coupling
constants for the face model, C (1, —1) and C(0, 0),
four coupling constants for the edge model,
C(1, —1), C(0, 0), C( —,', ——,'), and C(0, ——,

' ), and
three coupling constants for the vertex model
C(1, —1), C( —,', ——,

' ), and C( ——,', ——,
' ).

This difficulty is amplified as one includes into the
expansion (1) higher and higher terms. In fact, since
p(q) spans the regular representation of SO(3), one
can show rigorously that if the degree of the expansion
is not limited, then for every symmetry in SO(3) there
will exist a set I + q, ) of that particular symmetry and a
set of coupling constants such that {p( +q;)) minim-
izes the free energy.

Therefore, different specific assumptions will lead to
different, nonuniversal conclusions. The assumption
made by Alexander and McTague is that the isotropic
(in p space) component of C typically dominates the
quartic term. That is, the dominant term is Carpi,
where C is the average C(x, —x) coupling and

Ip I
= g p(ql) p( —q;). In this case, the free energy F,

is minimized by a set {p( +q;)) which maximizes
IFg31/Ip I . Alexander and McTague considered {+ q, )
parallel to the edges of a triangle, an octahedron
(tetrahedron), and an icosahedron. We can add to this
list a tetrahedral bipyramid and an idealized pentagonal
bipyramid (assumed to be formed of five ideal tetrahe-
dra). These choices correspond to two-dimensional
(2D) hexagonal lattice, bcc, icosahedral edge model,
3D hexagonal lattice, and idealized closed packing of
tetrahedra, respectively. The result is FP & F3D"'"
& F,'d"' & F, "'"& F,"~'. Therefore, the bcc crystal-

line order is the most favored, while the icosahedral-
edge-model quasicrystalline ordering is the least likely.

In order to stabilize the icosahedral structure, Bak6
extended previous assumptions by adding a fifth-
degree term to the expansion. He then considered
only a contribution arising from those q; which form a
regular pentagon. There are no such q; for the bcc set,
but they exist in the icosahedral set. Therefore, this
fifth-order coupling can be chosen to make F,"q'
& Fb" (provided that the free energy is stabilized with

an isotropic positive sixth-degree term). In fact, al-
ready at the fourth degree F,"q' can be made smaller
than F~' since it contains terms with C(r/2 —1, ——,

' )
which are not present in Ft~' (~ is the golden mean).

Mermin and Troian7 stabilized the icosahedral trans-
lational ordering in another way. They assumed that C
is constant over its entire domain and they introduced
a second component (order parameter) p(k) which
selects another wave-vector magnitude such that
0 & k & 2q. They also assumed that the ordering
of p(k) is induced by the ordering of p(q) and they
effectively integrated out the p(k) component. In this
way they arrived at a theory which is equivalent to a
theory with a single-component q and with the quartic
coupling sharply peaked around C (k2/q2 —1, —1)
= C ( + 1/ J5, —1) which favors icosahedral ordering.

In a related approach, Kalugin, Kitaev, and Levitov8
argued that the k components which are second har-
monics of the q components must be included into the
analysis since, in contrast to the ordinary crystals, for
the icosahedral vertex model k /q2 = 1, and the
minimum of A (q) need not differentiate k and q.
They also concluded that an icosahedral structure is
stabilized.

Several years ago Nelson and Toner" studied cubic
bond-orientational order, while more recently
Steinhardt, Nelson, and Ronchetti investigated the
short-range icosahedral bond-orientational order. '0

Penrose lattices4 and the experimentally observed
quasicrystals' both exhibit long-range icosahedral
bond-orientational order which coexists with long-
range icosahedral translational order. The pure bond-
orientational order (at q =0) can be characterized by
an order parameter Q(n) which gives the density of
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bonds in the direction n. It is convenient to expand
Q(n) into spherical harmonics YL (n) and to consider
the expansion coefficients QL as the order parameter.
The quadratic term of the corresponding orientational
free energy has the form gt aL g~ l QL l dictated by
the rotational invariance. Generally, if the transition is
continuous or nearly continuous, QL associated with
a single L can be taken as a primary order parameter.
Since we want to model the icosahedral ordering and
since six is the lowest degree of a nontrivial
icosahedral invariant polynomial'4 in n, we shall take

Q6 as the primary order parameter.
The Landau free-energy expansion for Q6 has been

constructed up to third-order terms. ' However, as
pointed out by Mermin and Stare'5 in the context of
BCS pairing with L&0 it is generally necessary to in-
clude the fourth-order terms in the expansion. From
the Molien generating function calculated'6 for
L =6, M(t) =1+ t2+ t +3t4+ . . . , we conclude
that there are two nontrivial linearly independent quar-
tic invariants in Q6 . Therefore, the orientational free
energy has the form

Q""= —'(0 ti7 0 0 0 0 i» 0 0 0 0 tJ7 0). (7)

The lowest-order interaction between Q and p is
given by the rotationally and translationally invariant
energy

r

r,„,=~ dq Xn, (q)
L,m

ing these exact and numerical techniques we were able
to determine all the stable phases which are separated
by a first-order transition surface from the isotropic
SO(3) phase. '9 These phases are D, Y, 0, and D6.
However, the icosahedral phase occupies the largest
portion of the [act/b, acerb, co/(ct + c2 ) t ] phase
diagram. o The icosahedral phase even persists in a
large portion of the phase diagram when the transition
is continuous (b =0). The order parameter is given in

the icosahedral phase by'

bI (Qicos)Qicos
ICOS

2[c + c I (Qicos) + c I (Qicos) ]

where, in a given orientation of Y,

I', = ~ IQI'+ bI3(Q) + colQI + ciI4i(Q)

+ c2I42(Q). (5)

&& d'q QL, YL', (q) p(q) p( —q). (8)

The cubic invariant and the two quartic invariants
can be expressed in terms of (the contractions of)
Wigner's 3-j symbols ( 6 6 6 ) shown graphically in

m ( lPf2Nl3

Fig. 1.
One can now use group-theoretical methods to show

that the only possible low symmetries are the isotropy
groups for the representation of SO(3) spanned by the
order parameter. Thus the possible low-symmetry
phases for L =6 are D, Y, 0, D6, D5, D4, T, D3,
D2, C3 C2 and Ct. ' If the degree of I', is suffi-
ciently large, one could always choose the couplings in
such a way as to stabilize any of these phases.

In order to decide which of the above listed phases
can be stabilized with the quartic free energy we must
minimize Eq. (5). This is a very complex problem
which requires the solution of thirteen cubic equations
in thirteen unknowns and with three free parameters.
Fortunately, over the last ten years group-theoretical
techniques have been developed for minimizing
Landau-Higgs potentials of such complexity. '8 By us-

/
/

hi

FIG. 1. The cubic and the two quartic invariants for
I =6. Each vertex represents a 3-j symbo1, each bond a
contraction, and each free bond end a single 0. See Ref. 19.

We note that, to lowest order, p does not couple
linearly to Q. Consequently the equilibrium p need
not have the symmetry of the equilibrium Q even
though the structure factor must have this symmetry.
This is precisely the case for the Penrose tiles.

If the translational ordering temperature T, is
greater than the orientational ordering temperature T,
then, because the interaction (8) is linear in Q, the or-
dering of p at T, will necessarily induce an ordering in

Q. On the other hand, if T, & T, then, since (8) is
quadratic in p, the ordering of Q at T, will have the ef-
fect of renormalizing the quadratic coupling A(q)
without necessarily inducing an ordering of p. Howev-
er, if the transition at T, is discontinuous, like in the
case of the icosahedral orientational ordering, A (q)
might be sufficiently renormalized for p to order.
Indeed, the renormalized coupling is

A'(q) =A (q)+n6(q) X Q6"'Y6 (q). (9)

On the other hand, using Eq. (7) and Ref. 14, one
finds that the absolute minimum and maximum of
g Q6"O' Y6 (q) are —(143/4'�) tt /9 & 0 and (143/
4m )'~2/5 & 0 and that they occur in the directions of
icosahedral faces or vertices, respectively. Thus
minA'(q) & minA (q), and if the coupling n6(q) is
sufficiently strong, p might order at T, or at some in-
termediate temperature. Moreover, depending on the
sign and magnitude of minn6(q) and maxn6(q), the
minimum of A'(q) will correspond to q 's pointing ei-
ther at the vertices or the faces of an icosahedron.
The ordering at an intermediate temperature would, in
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principle, be continuous since there are no icosahedral
vertex or face invariants of third degree in p. Note
that in the case of the icosahedral-face orientational
ordering, the corresponding translational ordering
would compete with a cubic vertex model (fcc lattice)
since the face vectors of an icosahedron can be identi-
fied with the vertex vectors of five cubes inscribed in-
side the icosahedron.

Once the fundamental order parameters set in, they
will generate in the usual manner the "higher harmon-
ics." In particular, through a linear coupling with p,
the orientational order parameter will develop Fourier
components at the wave vectors (+q;) and their har-
Alonlcs.

In an analysis similar to the analysis of cubic liquid
crystals" we were able to demonstrate that the
icosahedral orientational ordering can induce and sta-
bilize the icosahedral quasicrystalline phase. Although
we propose a mechanism which is different from some
other recent proposals, some of the general con-
clusions remain the same. For example, the analysis
of elasticity and dislocations in icosahedral quasicrys-
tals2' is independent of this mechanism and remains
valid. Similarly, the conclusion that a transition from
isotropic to icosahedral quasicrystalline phase remains
first order even when the inclusion of fluctuations is
also still valid. 22 However, the effect of fluctuations
on a possible transition between an icosahedral-liquid-
crystal phase (Qe0, p=0), and between this phase
and a (quasi)crystalline phase, remains to be investi-
gated. Hydrodynamics of icosahedral liquid crystals
will also have to be investigated.

The conclusion that the icosahedral edge model is
not favored compared to the face or vertex models is
in good agreement with the experimental evidence.
However, direct experimental evidence in support of a
specific mechanism for quasicrystalline ordering is not
available at present. It seems plausible to look in fu-
ture experiments for signs of the icosahedral-liquid-
crystalline ordering by analyzing the structure function
in the melt just before the formation of the quasicrys-
tals or in the rapidly quenched glass state.

I am grateful to the condensed matter theory group
at Harvard University for their hospitality during the
initial stages of this work, and to D. Nelson for intro-
ducing me to these problems and for sharing his in-
sights and information. I also acknowledge several
valuable discussions with B. Halperin, M. Kardar,
S. Sachdev, P. Steinhardt, and M. Widom.

Rote added. —Recent experiments suggest that the

quenched Al-Mn quasicrystal "may best be described
as the icosahedral analog of a hexatic phase" which is
precisely the icosahedral-liquid-crystal phase predicted
in this Letter.

~'~On leave from the Department of Physics, North Dako-
ta State University, Fargo, N. D. 58105.
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