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The Fundamental Physical 

Limits of Computation 


What constraints govern the physical process o f  computing? Is a 

minim um amount of  energy required, for example, per logic step? 

There seems to be no minimum, but some other questions are open 

by Charles H. Bennett and Rolf Landauer 

Acomputation, whether it is 
formed by electronic machin- 
ery, on an abacus or in a biolog- 

ical system such as the brain, is a physi- 
cal process. It is subject to the same 
questions that apply to other physical 
processes: How much energy must be 
expended to perform a particular com-
putation? How long must it take? How 
large must the computing device be? In 
other words, what are the physical lim- 
its of the process of computation? 

So far it has been easier to ask these 
questions than to answer them. To  the 
extent that we have found limits, they 
are terribly far away from the real lim-
its of modern technology. We cannot 
profess, therefore, to be guiding the 
technologist or the engineer. What we 
are doing is really more fundamental. 
We are looking for general laws that 
must govern all information process- 
ing, no  matter how it is accomplished. 
Any limits we find must be based sole- 
ly on fundamental physical principles, 
not on whatever technology we may 
currently be using. 

There are precedents for this kind 
of fundamental examination. In the 
1940's Claude E. Shannon of the Bell 
Telephone Laboratories found there 
are limits on the amount of informa- 
tion that can be transmitted through a 
noisy channel; these limits apply no 
matter how the message is encoded 
into a signal. Shannon's work repre- 
sents the birth of modern information 
science. Earlier, in the mid- and late 
19th century, physicists attempting to 
determine the fundamental limits on 
the efficiency of steam engines had cre- 
ated the science of thermodynamics. 
In about 1960 one of us (Landauer) 
and John at IBM began at-
tempting to apply the same type of 
analysis to the process of computing. 
Since the mid-1970's a growing num-

ber of other workers at  other institu-
tions have entered this field. 

In our analysis of the physical lim- 
its of computation we use the term "in-
formation" in the technical sense of 
information theory. In this sense infor-
mation is destroyed whenever two pre- 
viously distinct situations become in-
distinguishable. In physical systems 
without friction, information can nev- 
er be destroyed; whenever information 
is destroyed, some amount of ener-
gy must be dissipated (converted into 
heat). As an example, imagine two eas- 
ily distinguishable physical situations, 
such as a rubber ball held either one 
meter or two meters off the ground. If 
the ball is dropped, it will bounce. If 
there is no friction and the ball is per-
fectly elastic, an  observer will always 
be able to tell what state the ball start-
ed out in (that is, what its initial height 
was) because a ball dropped from two 
meters will bounce higher than a ball 
dropped from one meter. 

If there is friction, however, the ball 
will dissipate a small amount of ener-
gy with each bounce, until it eventual-
ly stops bouncing and comes to rest 
on the ground. It will then be impos-
sible to determine what the ball's ini- 
tial state was; a ball dropped from 
two meters will be identical with a ball 
dropped from one meter. Information 
will have been lost as a result of ener- 
gy dissipation. 

Here is another example of informa-
tion destruction: the expression 

2 + 2 contains more information than 
the expression =4. If all we know is 
that we have added two numbers to 
yield 4, then we do not know whether 
we have added 1 + 3, 2 + 2, + 4 or 
some other pair of numbers. Since the 
output is implicit in the input, no com-
putation ever generates information. 

In fact, computation as it is current-
ly carried out depends on many opera-
tions that destroy information. The so-
called and gate is a device with two 
input lines, each of which may be set at  
1 or 0, and one output, whose value 
depends on the value of the inputs. If 
both inputs are 1, the output will be 1. 
If one of the inputs is or if both are 0, 
the output will also be Any time the 
gate's output is a we lose informa-
tion, because we d o  not know which 
of three possible states the input lines 
were in and 1, 1 and 0, or and 0). 
In fact, any logic gate that has more in- 
put than output lines inevitably dis- 
cards information, because we cannot 
deduce the input from the output. 
Whenever we use such a "logically ir-
reversible" gate, we dissipate energy 
into the environment. Erasing a bit of 
memory, another operation that is fre- 
quently used in computing, is also fun- 
damentally dissipative; when we erase 
a bit, we lose all information about 
that bit's previous state. 

Are irreversible logic gates and era- 
sures essential to  computation? If they 
are, any computation we perform has 
to dissipate some minimum amount 
of energy. 

As one of us (Bennett) showed in 
1973, however, they are not essential. 
This conclusion has since been demon- 
strated in several models; the easiest of 
these to describe are based on so-called 
reversible logic elements such as the 
Fredkin gate, named for Edward 
kin of the Massachusetts Institute 
of Technology. The Fredkin gate has 
three input lines and three outputs. 
The input on one line, which is called 
the control channel, is fed unchanged 
through the gate. If the control channel 
is set a t  0, the input on the other two 
lines also passes through unchanged. If 
the control line is a 1, however, the 
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CONVENTIONAL COMPUTING DEVICES, the abacus and dissipative because of friction between its beads and rods. It could 
logic chip, both dissipate energy when they are operated. The not be built of frictionless components: if there were no static fric-
ic gates"central to the design of a chip expend energy because they tion, the positions would change under the influence of ran-
discard information. A chip consumes energy for a less fundamen- dom thermal motion. Static friction exerts a certain force 

reason as well: it employs circuits draw power even when no matter what the beads' velocity, and so there is some minium en-
they merely hold information and do  not process it. The abacus is ergy that the abacus requires no matter how slowly it is operated. 
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outputs of the other two lines are 
switched: the input of one line be-
comes the output of the other and vice 
versa. The Fredkin gate does not dis-
card any information; the input can al-
ways be deduced from the output. 

Fredkin has shown that any logic de-
vice required in a computer can be im-
plemented by an appropriate arrange-
ment of Fredkin gates. To make the 
computation work, certain input lines 
of some of the Fredkin gates must be 
preset at particular values [see lower il-
lustration below]. 

Fredkin gates have more output 
lines than the gates they are made to 
simulate. In the process of computing, 
what seem to be "garbage bits," bits of 
information that have no apparent use, 
are therefore generated. These bits 
must somehow be cleared out of the 
computer if we are to use it again, but 

AND GATE 
INPUT OUTPUT 

A 

if we erase them, it will cost us all 
the energy dissipation we have been 
trying to avoid. 

Actually these bits have a most im-
portant use. Once we have copied 
down the result of our computation, 
which will reside in the normal output 
bits, we simply run the computer in 
reverse. That is, we enter the "gar-
bage bits" and output bits that were 
produced by the computer's normal 
operation as "input" into the "back 
end"of the computer. This is possible 
because each of the logic gates in the 
computer is itself reversible. Running 
the computer in reverse discards no in-
formation, and so it need not dissipate 
any energy. Eventually the computer 
will be left exactly as it was before the 
computation began. Hence it is possi-
ble to complete a "computing cyclew-
to run a computer and then to return 
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it to its original state--without dissi-
pating any energy. 

So far we have discussed a set of log-
ic operations, not a physical device. 

It is not hard, however, to imagine 
a physical device that operates as a 
Fredkin gate. In this device the infor-
mation channels are represented by 
pipes. A bit of information is repre-
sented by the presence or absence of a 
ball in a particular section of pipe; the 
presence of a ball signifies a 1 and the 
absence of a ball signifies a 

The control line is represented by a 
narrow segment of pipe that is split 
lengthwise down the middle. When a 
ball enters the split segment of pipe, it 
pushes the two halves of the pipe 
apart, actuating a switching device. 
The switching device channels any in-
put balls that may be in the other two 
pipes: when a ball is present in the con-
trol line, any ball that enters an input 
pipe is automatically redirected to the 
other pipe. To ensure that the switch is 
closed when no control ball is present, 
there are springs that hold the two 
halves of the split pipe together. A ball B 
entering the split pipe must expend en-

CONVENTIONAL LOGIC GATES dissipate energy because they discard information. 
For example, if the output of an and gate is there is no way to deduce what the input was. 

REVERSIBLE 
GATE AND GATE 

INPUT OUTPUT 

A 

BIT 

REVERSIBLE LOGIC GATE need not dissipate energy; the input can always 
be deduced from the output. gate has a line, the value of which is not changed 
by gate. If the bit on the control line is a 0, the values of the other two lines are un-
touched; if it is a I, however, the input of line A becomes the output of line B and vice versa. 
Reversible gates can be arranged to implement any function performed by an irreversible 
gate. To implement the and operation (right) one input is preset to equal 0, and two output 
bits, called bits, are temporarily ignored. When the computation is complete, these 
bits are used to operate the gate in reverse, returning the computer to its original state. 

ergy when it compresses the springs, 
but this energy is not lost; it can be 
recovered when the control ball leaves 
the split pipe and the springs expand. 

All the balls are linked together and 
pushed forward by one mechanism, so 
that they move in synchrony; other-
wise we could not ensure that the vari-
ous input and controlling balls would 
arrive at a logic gate together. In a 
sense the forward progress of the com-
putation is really along a sin-
gle degree of freedom, the motion 
of two wheels rigidly attached to one 
axle. Once the computation is done we 
push all the balls backward, undoing 
all the operations and returning the 
computer to its initial state. 

If the entire assembly is immersed in 
an ideal viscous fluid, then the friction-
al forces that act on the balls will be 
proportional to velocity; there 
will be no static friction. The frictional 
force will therefore be very weak if we 
are content to move the balls slowly. In 
any mechanical system the energy that 
must be expended to work against fric-
tion is equal to the product of the fric-
tional force and the distance through 
which the system travels. (Hence the 
faster a swimmer travels between 
points, the more energy he or she will 
expend, although the distance traveled 
is the same whether the swimmer is 
fast or slow.) If we move the balls 
through the Fredkin gates at a low 
speed, then the energy expended (the 
product of force and distance) will be 
very small, because the frictional force 
depends directly on the balls' speed. In 
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IDEALIZED PHYSICAL REALIZATION of a Fredkin gate sub- control channel closed when no ball is in it. This gate does not need 
pipes for wires and the presence or absence of a ball for a static friction in order to operate; it could be immersed in a viscous 

1 or A narrow, split segment of pipe represents the control fluid, and the frictional forces could be made to depend only on 
When a ball passes through it, the pipe spreads apart, operating the balls' velocity. Then the energy dissipation could be as small as 

a switching mechanism; the mechanism in turn switches any input the user wished: to lower the amount of energy dissipated, it would 
ball from line A to line B and vice versa. A pair of springs keeps the only be necessary to drive the balls through the device more slowly. 

fact, we can expend as little energy as 
we wish, simply by taking a long time 
to carry the operation. There is 
thus no minimum amount of energy 
that must be expended in order to per-
form any given computation. 

The energy lost to  friction in this 
model will be very small if the ma-

chine is operated very slowly. Is it pos-
sible to design a more idealized ma-
chine that could compute without any 
friction? Or is friction essential to the 
computing process? Fredkin, together 
with Toffoli and others at 
M.I.T., has shown that it is not. 

They demonstrated that it is possible 
to do computation by firing ideal, fric-
tionless billiard balls a t  one another. In 
the billiard-ball model perfect reflect-
ing "mirrors," surfaces that redirect 
the balls' motion, are arranged in such 
a way that the movement of the balls 
across a table emulates the movement 
of bits of information through logic 
gates [see illustration on next page]. As 
before, the presence of a ball in a par-
ticular part of the computer signifies a 
1, whereas the absence of a ball signi-
fies a If two balls arrive simulta-
neously at a logic gate, they will collide 
and their paths will change; their new 
paths represent the output of the gate. 
Fredkin, Toffoli and others have de-

scribed arrangements of mirrors that 
correspond to different types of logic 
gate, and they have shown that 
ball models can be built to simulate 
any logic element that is necessary for 
computing. 

T o  start the computation we fire a 
billiard ball into the computer wherev-
er we wish to input a 1. The balls must 
enter the machine simultaneously. 
Since they are perfectly elastic, they 
do not lose energy when they collide; 
they will emerge from the computer 
with the same amount of kinetic ener-
gy we gave them at the beginning. 

In operation a billiard-ball comput-
er produces "garbage bits," just as a 
computer built of Fredkin gates does. 
After the computer has reached an an-
swer we reflect the billiard balls back 
into it, undoing the computation. They 
will come out of the exactly 
where we sent them in, and at  the same 
speed. The mechanism that launched 
them into the computer can then be 
used to absorb their kinetic energy. 
Once again we will have performed a 
computation and returned the com-
puter to its initial state without dissi-
pating energy. 

The billiard-ball computer has one 
major flaw: it is extremely sensitive to 
slight errors. If a ball is aimed slightly 
incorrectly or if a mirror is tilted at  a 

slightly wrong angle, the balls' trajec-
tories will go astray. One or more balls 
will deviate from their intended paths, 
and in due course errors will combine 
to invalidate the entire computation. 
Even if perfectly elastic and friction-
less billiard balls could be manufac-
tured, the small amount of random 
thermal motion in the molecules they 
are of would be enough to 
errors after a few dozen collisions. 

Of course we could install some kind 
of corrective device that would return 
any errant billiard ball to its desired 
path, but then we would be obliterat-
ing information about the ball's ear-

history. For example, we might 
be discarding information about the 
extent to a mirror is tilted incor-
rectly. Discarding information, even 
to correct an error, can be done only in 
a system in which there is friction and 
loss of energy. Any correctional device 
must therefore dissipate some energy. 

Many of the difficulties inherent in 
the billiard-ball computer can be made 
less extreme if microscopic or submi-
croscopic particles, such as electrons, 
are used in place of billiard balls. As 

H. Zurek, who is now at the 
Los Alamos National Laboratory, has 
pointed out, quantum laws, which can 
restrict particles to a few states of mo-
tion, could eliminate the possibility 
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that a particle might go astray by a 
small amount. 

Although the discussion so far has 
been based primarily on classical dy-
namics, several investigators have pro-
posed other reversible computers that 
are based on quantum-mechanical 
principles. Such computers, first pro-
posed by Paul Benioff of the Argonne 
National Laboratory and refined by 
others, notably Richard P. Feynman 
of the California Institute of Technol-
ogy, have so far been described only in 
the most abstract terms. Essentially 
the particles in these computers would 
be arranged so that the quantum-me-
chanical rules governing their interac-
tion would be precisely analogous to 
the rules describing the predicted out-
puts of various reversible logic gates. 
For example, suppose a particle's spin 
can have only two possible values: up 

AND NOT A 

AND NOT B 

A AND B 

(corresponding to a binary and down 
(corresponding to a The interac-
tions between particle spins can be pre-
scribed in such a way that the value of 
one particle's spin changes depending 
on the spin of nearby particles; the spin 
of the particle would correspond to 
one of the outputs of a logic gate. 

So far this discussion has concentrat-
ed on information processing. A 

computer must store information as 
well as process it. The interaction be-
tween storage and processing is best 
described in terms of a device called a 
Turing machine, for Alan M. Turing, 
who first proposed such a machine 
in 1936. A Turing machine can per-
form any computation that can be per-
formed by a modern computer. One of 
us (Bennett) has shown that it is possi-
ble to build a reversible Turing ma-

chine: a Turing machine that does not 
discard information and can therefore 
be run with as small an expenditure of 
energy as the user wishes. 

A Turing machine has several com-
ponents. There is a tape, divided into 
discrete frames or segments, each of 
which is marked with a or a 1; these 
bits represent the input. A 
head" moves along the tape. The head 
has several functions. It can read one 
bit of the tape at a time, it can print one 
bit onto the tape and it can shift its 
position by one segment to the left or 
right. In order to remember from one 
cycle to the next what it is doing, the 
head mechanism has a number 
tinct "states"; each state constitutes a 
slightly different configuration of the 
head's internal parts. 

In each cycle the head reads the bit 
on the segment it currently occupies; 

BILLIARD-BALL COMPUTER employs the movement of function of any logic chip. For example, a billiard-ball computer 
balls on a table to simulate the movement of bits through logic could be made to test whether a number is prime. One such comput-

gates. In billiard-ball logic gates (left) the paths are er accepts input any number this case 01101, 
by collisions with one another or with reflecting addi- or 13) and the input sequence 01. Like a gate, a bil-
tion to their role in gates, mirrors can deflect a ball's path (a), liard-ball computer typically returns more output bits than its user 
the pathsideways the withoutchangingits final needs. In the case shown, the computer the original input 
direction or position or allow two to crass (d). It  is possible number itself (which is the output), and an "answer" se-
to arrange mirrors so that the resulting implements the quence: 10 if input number is prime and 01 if it is composite. 
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then it prints a new bit onto the tape, 
changes its internal state and moves 
one segment to the left or right. The bit 
it prints, the state it changes into and 
the direction in which it moves are de-
termined by a fixed set of transition 
rules. Each rule specifies a particular 
set of actions. Which rule the machine 
follows is determined by the state of 
the head and the value of the bit that it 
reads from the tape. For example, one 
rule might be: "If the head is in state A 
and is sitting on a segment of tape that 
is printed with a it should change 
that bit to a 1, change its state to state B 
and move one segment to the right." It 
may happen that the transition rule in-
structs the machine not to change its 
internal state, not to print a new bit 
onto the tape or to halt its operation. 
Not all Turing machines are revers-
ible, but a reversible Turing machine 
can be built to perform any possible 
computation. 

The reversible Turing-machine 
models have an advantage over such 
machines as the frictionless 
ball computer. In the billiard-ball 
computer random thermal motion 
causes unavoidable errors. Reversible 
Turing-machine models actually ex-
ploit random thermal motion: they 
are constructed in such a way that ther-
mal motion itself, with the assistance 
of a very weak driving force, moves 
the machine from one state to the 
next. The progress of the computa-
tion resembles the motion of an ion (a 
charged particle) suspended in a solu-
tion that is held in a weak electric field. 
The ion's motion, as seen over a short 
period of time, appears to be random; 
it is nearly as likely to move in one 
direction as in another. The applied 
force of the electric field, however, 
gives the net motion a preferred direc-
tion: the ion is a little likelier to move 
in one direction than in the other. 

It may a t  first seem inconceivable 
that a purposeful sequence of opera-
tions, such as a computation, could be 
achieved in an apparatus whose direc-
tion of motion at  any one time is near-
ly random. This style of operation is 
quite common, however, in the micro-
scopic world of chemical reactions. 
There the trial-and-error action of 
Brownian motion, or random thermal 
motion, suffices to bring reactant mol-
ecules into contact, to orient and bend 
them into the specific conformation re-
quired for them to react, and to sepa-
rate the product molecules after the 
reaction. All chemical reactions are in 
principle reversible: the same Brown-
ian motion that accomplishes the for-
ward reaction sometimes brings prod-
uct molecules together and pushes 
them backward through the transition. 

TAPE 

TURING MACHINE can be constructed in such a way that it can perform any computa-
tion a computer can. An infinitely long tape is divided into discrete segments, each of which 
bears either a or a A head," which can be in any of several internal states 
(here there are only two states, A and B), moves along the tape. Each cycle begins as the 
head reads one bit from a segment of the tape. Then, in accordance with a set of transi-
tion rules, it writesa bit onto that segment, changes its own internalstate and moves one seg-
ment to the left or right. This Turing machine, because it has only two head states, can do 
only trivial computations; more complicated machines with more head states are capable 
of simulating any computer, even one much more complicated than themselves. To do so  
they store a representation of the larger machine's complete logical state on the unlimited 
tape and break down each complex cycle into a large number of simple steps. The ma-
chine shown is logically reversible: it is always possible to deduce machine's previous 
configuration. Other Turing machines, with different transition rules, are not reversible 

In a state of equilibrium a backward 
reaction is just as likely to occur as a 
forward one. 

In order to keep a reaction moving in 
the forward direction, we must supply 
reactant molecules and remove prod-
uct molecules; in effect, we must pro-
vide a small driving force. When the 
driving force is very small, the reaction 
will take nearly as many backward 
steps as forward ones, but on the aver-
age it will move forward. In order to 
provide the driving force we must ex-
pend energy, but as in our ball-and-
pipe realization of the Fredkin gate 
the total amount of energy can be as 
small as we wish; if we are willing to 
allow a long time for an operation, 
there is no minimum amount of ener-
gy that must be expended. The reason 
is that the total energy dissipated de-
pends on the number of forward steps 
divided by the number of backward 
steps. (It is actually proportional to the 
logarithm of this ratio, but as the ratio 
increases or decreases so does its loga-
rithm.) The slower the reaction moves 
forward, the smaller the ratio will be. 
(The apalogy of the faster and slower 
swimmers is valid once again: it re-
quires less total energy to go the same 
net number of reaction steps ,forward 
if moves slowly.) 

We can see how a Brownian Turing 
machine might work by examin-

ing a Brownian tape-copying machine 
that already exists in nature: RNA 
polymerase, the enzyme that helps to 
construct RNA copies of the DNA 

constituting a gene. A single strand of 
DNA is much like the tape of a Turing 
machine. At each position along the 
strand there is one of four "bases": 
adenine, guanine, cytosine or thymine 
(abbreviated A, C and T). RNA is 
a similar chainlike molecule whose 
four bases, adenine, guanine, cytosine 
and uracil (A, G, C and U) bind to 
"complementary" DNA bases. 

The RNA polymerase catalyzes this 
pairing reaction. The DNA helix is 
normally surrounded by a solution 
containing a large number of 
side triphosphate molecules, each con-
sisting of an RNA base linked to a 
sugar and a tail of three phosphate 
groups. The RNA-polymerase enzyme 
selects from the solution a single RNA 
base that is complementary to the base 
about to be copied on the DNA strand. 
It then attaches the new base to the end 
of the growing RNA strand and releas-
es two of the phosphates into the sur-
rounding solution as a free 
phate ion. Then the enzyme shifts for-
ward one notch along the strand of 
DNA in preparation for attaching the 
next RNA base. The result is a strand 
of RNA that is complementary to the 
template strand of DNA. Without 
RNA polymerase this set of reactions 
would occur very slowly, and there 
would be little guarantee that the RNA 
and DNA molecules would be com-
plementary. 

The reactions are reversible: some-
times the enzyme takes up a free 
phosphate ion, combines it with the 
last base on the RNA strand and 
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leases the resulting nucleoside 
phate molecule into the surrounding 
solution, meanwhile backing up one 
notch along the DNA strand. At equi-
librium, forward and backward steps 
would occur with equal frequency; 
normally other metabolic processes 
drive the reaction forward by remov-
ing pyrophosphate and supplying the 
four kinds of nucleoside triphosphate. 
In the laboratory the speed with which 
RNA polymerase acts can be varied by 
adjusting the concentrations of the re-
actants (as Judith and Michael 
J. Chamberlin of the University of 
California at Berkeley have shown). 
As the concentrations are brought 
closer to equilibrium the enzyme 
works more slowly and dissipates less 
energy to copy a given section of 
DNA, because the ratio of forward to 
backward steps is smaller. 

lthough RNA polymerase merely 
copies information without 

essing it, it is relatively easy to imagine 
how a hypothetical chemical Turing 
machine might work. The tape is a sin-
gle long backbone molecule to which 
two types of base, representing the bi-
nary and 1, attach at periodic sites. A 
small additional molecule is attached 
to the or 1 group at one site along the 
chain. The position of this additional 
molecule represents the position of 

the Turing machine's head. There are 
several different types of "head mole-
cule," each type representing a differ-
ent machine state. 

The machine's transition rules are 
represented by enzymes. Each enzyme 
is capable of catalyzing one particular 
reaction. The way these enzymes work 
is best demonstrated by an example. 

Suppose the head molecule is type 
A (indicating that the machine is in 
state A) and is attached to a base. 
Also suppose the following transition 
rule applies: "When the head is in state 
A and reads a change the to a 1, 
change state to B and move to the 
right." A molecule of the enzyme rep-
resenting this rule has a site that fits a 
type-A head molecule attached to a 1 
base. It also has one site that fits a 
base and one site that fits a B head [see 
illustration on opposite page]. 

To achieve the transition, the en-
zyme molecule first approaches the 
tape molecule at a location just to the 
right of the base on which the A head 
resides. Then it detaches from the tape 
both the head molecule and the base 
to which the head was attached, put-
ting in their place a 1 base. Next it 
attaches a B head to the base that is to 
the right of the 1 base it has just added 
to the tape. At this point the transition 
is complete. The head's original site is 
changed from a to a 1, the head 

cule is now a type B, and it is attached 
to the base that is one notch to the right 
of the previous head position. 

During the operation of a Brownian 
Turing machine the tape would have 
to be immersed in a solution contain-
ing many enzyme molecules, as well 
as extra O's, l's, A's and B's. T o  drive 
the reaction forward there would have 
to be some other reaction that cleaned 
the enzyme molecules of detached 
heads and bases. The concentrations 
of the reactants that clean the enzyme 
molecules represent the force that 
drives the Turing machine forward. 
Again we can expend as little energy 
as we wish simply by driving the ma-
chine forward very slowly. 

The enzymatic Turing machine 
would not be error-free. Occasionally 
a reaction that is not catalyzed by any 
enzyme might occur; for example, a 
base could spontaneously detach itself 
from the backbone molecule and a 1 
base could be attached in its place. 
Similar errors do indeed occur during 
RNA synthesis. 

In principle it would be possible to 
eliminate errors by building a Brown-
ian Turing machine out of rigid, fric- 
tionless clockwork. The clockwork 
Turing machine involves less idealiza-
tion than the billiard-ball computer 
but more than the enzymatic Turing 
machine. On the one hand, its parts 
need not be manufactured to perfect 
tolerances, as the billiard balls would 
have to be; the parts fit loosely togeth-
er, and the machine can operate even 
in the presence of a large amount of 
thermal noise. Still, its parts must be 
perfectly rigid and free of static fric-
tion, properties not found in any mac-
roscopic body. 

Because the machine's parts fit to-
gether loosely, they are held in place 
not by friction but by grooves or 
notches in neighboring parts [see illus-
tration on page Although each part 
of the machine is free to jiggle a lit-
tle, like the pieces of a well-worn 
wood puzzle, the machine as a whole 
can only follow one "computational 
path." That is, the machine's parts in-
terlock in such a way that at any time 
the machine can make only two kinds 
of large-scale motion: the motion cor-
responding to a forward computation-
al step and that corresponding to a 
backward step. 

The computer makes such transi-
tions only as the accidental result of 
the random thermal motion of its parts 
biased by the weak external force. It is 
nearly as likely to proceed backward 
along the computational path, undoing 
the most recent transition, as it is to 
proceed forward. A small force, pro-
vided externally, drives the computa-
tion forward. This force can again be 

RNA POLYMERASE 

RNA POLYMERASE, an enzyme, acts as a reversible tape-copying machine; it catalyzes 
the reaction that constructs RNA copies of segments of DNA. As the enzyme moves along 
a strand of DNA, it selects from the surrounding solution a nucleoside mole-
cule (an RNA base bound to a sugar and a "tail" of three phosphate groups) that is comple-
mentary to the DNA base about to be copied. It then attaches the new base to the end of the 
RNA strand and releases a free pyrophosphaie ion consisting of two phosphates. The reac-
tion is reversible: sometimes the enzyme takes the last link of RNA, attaches it to a 
phosphate ion and returns the resulting molecule to the solution, backing up a notch on the 
DNA strand. When the reaction is close to chemical equilibrium, the enzyme takes almost 
as many backward as forward steps and the total energy needed to copy any segment of 
DNA is very small. The reaction can be made less dissipative by being run more slowly; 
there is no minimum amount of energy that must be expended to copy a segment of DNA. 
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as small as we wish, and so there is no 
minimum amount of energy that must 
be expended in order to run a Brown-
ian clockwork Turing machine. 

ccording toclassical thermodynam-
ics, then, there is no minimum 

amount of energy required in order to 
perform a computation. Is the classi-
cal thermodynamical analysis in con-
flict with quantum theory? After all, 
the quantum-mechanical uncertainty 
principle states there must be an in-
verse relation between our uncertain-
ty about how long a process takes and 
our uncertainty about how much ener-
gy the process involves. Some investi-
gators have suggested that any switch-
ing process occurring in a short period 
of time must involve a 
penditure of energy. 

In fact the uncertainty principle 
does not require any minimum energy 
expenditure for a fast switching event. 
The uncertainty principle would be ap-
plicable only if we attempted to meas-
ure the precise time at which the event 
took place. Even in quantum mechan-
ics extremely fast events can take 
place without any loss of energy. Our 
confidence that quantum mechanics 
allows computing without any mini-
mum expenditure is bolstered when 
we remember that Benioff and oth-
ers have developed models of reversi-
ble quantum-mechanical computers, 
which dissipate no energy and obey 
the laws of quantum mechanics. 

Thus the uncertainty principle does 
not seem to a fundamental limit 
on the of computation; neither 
does classical thermodynamics. Does 
this mean there are no limita-
tions to computing? Far from it. The 
real limitations are associated with 
questions that are much harder to an-
swer than those we have asked in this 
article. For example, do elementary 
logic operations require some mini-
mum amount of time? What is the 
smallest possible gadgetry that could 
accomplish such operations? Because 
scales of size and time are connected 
by the velocity of light, it is likely that 
these two questions have related an-
swers. We may not be able to find these 
answers, however, until it is deter-
mined whether or not there 
ultimate graininess in the universal 
scales of time and length. 

At the other extreme, how large can 
we make a computer memory? How 
many particles in the universe can we 
bring and keep together for that pur-
pose? The maximum possible size of a 
computer memory limits the precision 
with which we can calculate. It will 
limit, for example, the number of deci-
mal places to which we can calculate 
pi. The inevitable deterioration 

HYPOTHETICAL ENZYMATIC TURING MACHINE could perform a computation 
with no minimum expenditure of energy. Molecules representing and 1 bits are attached 
at periodic intervals to a backbone molecule. A small additional molecule, representing the 
Turing machine's head, is attached to the or 1 group at one site on the chain (I).There 
are several types of- head molecule, each type representing a different internal machine 
state. Transition rules are represented by enzymes. In each cycle an enzyme attaches itself 
to the head molecule and the bit molecule to which the head is attached (2); then it detaches 
them from the chain, putting in their place the appropriate bit molecule (3). As it does so it 
rotates, so that it attaches the appropriate head molecule to the bit that occupies the site one 
notch to the right or left of the hit it has just changed. Now the cycle is complete (4): the 
value of a bit has been changed, and the head has changed state and shifted its position. 

kind of enzyme to catalyze one such set of reactions. As in the case of RNA 
synthesis, these reactions can be made to dissipate an small amount of energy. 
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esses that occur in real computers pose are there certain calculations that can- mately be based, are themselves ex- 
another, perhaps related, question: not be completed before the comput- pressed in terms of such mathematical 
Can deterioration, at least in principle, er's hardware decays into uselessness? operations. Thus we are asking about 
be reduced to any desired degree, or Such questions really concern limi- the ultimate form in which the laws of 
does it impose a limit on the maximum on the physical execution of physics can be applied, given the con- 
length of time we shall be able to de- mathematical operations. Physical straints imposed by the universe that 
vote to any one calculation? That is, laws, on which the answers must ulti- the laws themselves describe. 

MASTER CAMSHAFT 

OBSTRUCTIVEREAD 

BROWNIAN CLOCKWORK TURING MACHINE, made out 
of rigid, frictionless parts, relies on random jiggling of its loosely 
fitted parts to change from state to state. When a part is held in 
place, it is not by friction by grooves or notches in neighboring 
parts. Parts interlock in such a way that they can follow only one 
"computational patb"; although are free to jiggle a little, the 
only large-scale motions they can make correspond to forward or 
backward computational steps. The operation of machine is 
driven slowly forward by a very weak force; a t  any instant the ma-
chine is almost as likely to move backward as forward. On the aver-
age, however, the machine will move forward and the computation 
will eventually end. The machine can be made to dissipate as small 
an  amount of energy as the user wishes, simply by employing a 
force of the correct weakness. Segments of tape are represented by 
grooved disks; bits are represented by E-shaped blocks, which are 
locked onto the disks in either the up (1)or the down (0) position. 
The head consists of a rigid framework and a complicated mecha-
nism (most of which is not shown) from which are suspended a read-
er, a manipulator and a screwdriver-shaped rod. The machine's 
operation is controlled by a grooved "master camshaft," which re-
sembles a phonograph record (top left and far right); different 
grooves correspond to different head states. At the beginning of a 
cycle the head is positioned above one of the disks and a is 
in the "read"segment of the groove in the master camshaft that cor-
responds to the machine's current head state. During the 
part of the cycle the reader determines whether the disk's "bit* 
block is up or down by a process called an obstructive read (center 

right). In an obstructive read the reader moves past the block, fol-
lowing a high or a low path; one of the paths be obstructed by 
the knob on the end of the block, and so there will be only one 
for the reader to follow. At the point on the master camshaft that 
corresponds to this "decision" the grooves branch; each groove 
splits into two, and the stylus is guided into the groove that corre-
sponds to the bit's value (2). Then the master camshaft until 
the stylus is in the "write"segment (3). In this segment each groove 
contains a different set of "instructions" for the machine to  follow; 
the instructions are transmitted by a complex linkage between the 
stylus and the rest of the mechanim. If the instructions call for the 
bit's value to change, the manipulator moves over and grasps the 
knob; the screwdriver rotates the disk until the block is free to 
move, the manipulator moves the block up or down and the screw-
driver rotates the disk again to hold block in place. After the 
stylus passes through the segment of the master camshaft it 
enters the "shift"segment (4). Each groove in this segment contains 
instructions to move the head one segment to  the left or right. Then 
the stylus enters the "change state" segment of the camshaft 

grooves merge in such a way that the stylus falls into the 
groove representing the next head state. The cycle is now complete 
(6). Disks adjacent to the one being read are held in place by the 
head's framework. Disks that are farther away are held by "locking 
tabs." The locking tab on each disk is coupled to a special bit, called 
the Q bit, on an adjacent disk. The linkages between Q bits and 
locking tabs are constructed so that disk currently being read 
is free to move, while disks far to the right or left are held still. 




