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The crystal structure with icosahedral point-group symmetry and long-range orientational order
observed by Shechtman et al. in Mn-Al alloys can be explained as a multiple-q density-wave struc-
ture with only one length scale. Its existence and stability can be understood from a simple Landau
theory. The diffraction spots can be indexed by six- (or more-) dimensional space-group sym-
metries. Icosahedral incommensurate structures constitute natural extensions of smectic, rodlike,

and cubic crystal structures.

PACS numbers: 61.50.Em, 02.40.+m, 63.20.Dj

In an exciting experiment on Al-Mn alloys, Shecht-
man et al.' have observed a phase with long-range
orientational order and icosahedral point-group sym-
metry which is inconsistent with lattice translation in-
variance. In this paper it will be shown that the ex-
istence of such structures can be understood in a sim-
ple and natural way from a Landau-Ginzburg theory.
The icosahedral order arises as a natural extension of
smectic, rodlike, and cubic crystal order, in the sense
that all these structures are described by the same or-
der parameter, namely, a mass-density (or com-
positional-density) wave. The icosahedral structure is
a multi-q structure? formed by superposition of fifteen
density waves with wave vectors along the edgtes of an
icosahedron. The melting transition is predicted to be

first order in agreement with experiment. The diffrac-
tion spots are given by linear combinations of these
vectors and can be indexed to a higher-dimensional
space group, as is the case for other incommensurate
(““quasiperiodic®) structures. Penrose lattices® can be
represented in a similar way as ‘‘quintuple-q’’ struc-
tures. The phonon spectrum has three acoustic pho-
non modes and three acoustic phason modes
representing a total of six continuous symmetries.

We start from a high-temperature disordered iso-
tropic liquid phase; possible Landau order parameters
are mass-density waves Py labeled by the wave vector

q. Because of the rotational symmetry, the free energy
depends only on the magnitude |q| and not on the
direction. The expansion of the free energy in terms
of these order parameters takes the form

F=rpp_;+ulpp_)*+... +vipipp3d(q+qy+q;) +coc.

+vsp1pop3pspsd (i + Q@+ q3+qs+qs) +ec+. .,

where I have explicitly included higher-order terms
with wave vectors adding up to 0. Several different or-
dered structures can be formed by this order parame-
ter. For instance, a single p; represents a smectic or-
dering,

p(r)=p,exp(iq; 1) +c.c.

The third-order term favors multi-q structures with
wave vectors forming equilateral triangles [Fig. 1(b)].
A ‘“triple-qQ”’” structure, with higher harmonics,
represents a two-dimensional (2D) hexagonal phase or
a three-dimensional (3D) rodlike phase. However, it
was pointed out by Alexander and McTague* that the
free energy can often be lowered further by combining
density waves with eight vectors forming an octa-
hedron (Fig. 1) or six vectors forming a tetrahedron,
representing the reciprocal lattices of bcc and fcc struc-
tures, respectively.

In two dimensions, the fifth-order term favors a
structure formed by superimposing five density waves
with vectors forming an equilateral pentagon (Fig. 1).
If we write the order parameter as p;= A4 exp(if,), the
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FIG. 1. Wave-vector combinations representing (a) smec-
tic structures, (b) rodlike structures, (c) bcc structures, (d)
2D Penrose structure or 3D rodlike lyotropic structure, and
(e) icosahedral incommensurate structure.
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fifth-order terms becomes

F5=v5A5COS(91+92+93+94+05), (2)
which can be made negative for suitable choices of
01, ...,0s. The resulting structure,

5
p(r)= 2 A cos(q; ‘r+6;) + higher harmonics,
i=1

Py

225 (15 ) 172 6 pentagons
With the assumption of no conflict between the signs
of v3 and vs, minimization of the free energy gives rise
to nine constraints of the fifteen phases, and the
resulting energy becomes

Fy+ Fs= —2p%/75(15)Y2—2p3v,/3(15) /2,

which, for small enough vs/vs, can become favorable
compared with the energy of the bcc structure with

Fpee = —2p30,/3(6) V2,

F3+F5=

The resulting structure p(r)=3/2,4 cos(q;-r) has
precisely the symmetry of the diffraction spectrum ob-
served by Shechtman et al. This is my suggested ex-
planation for the fivefold symmetry. All the spots can
be indexed by the proper linear combination of the fif-
teen basic reciprocal-lattice vectors. Of course, not all
these vectors are linearly independent, but to preserve
the symmetry it is useful to use an overcomplete set,
in a way perfectly analogous to the indexing of hexago-
nal structures where four indices are commonly used.
For instance, considering the diffraction spectrum in a
plane containing one of the pentagons spanned by
qi, . . ., Qqs (or the Penrose lattices), the point 4 in Fig.
2 can be indexed as (10000), the point B as (11000),
and the point C as (11010). Note that the length of
the vector C is related to the basic vectors by the
golden-mean ration (+/5-1)/2. The golden mean thus
enters in a simple geometrical way unrelated to the
choice of building blocks used to form the structure.
There is only one length scale involved.

The experimental observation of the diffraction pat-
tern is consistent with the idea of a three-dimensional
incommensurate structure. The high-order diffraction
spots represent higher harmonics of the basic density
waves, needed to form the actual electronic density.
The intensities depend on an effective structure factor,
and there is no reason that the intensity pattern of the
spectrum be self-similar, and there is no reason that
the structure factor decompose into a product of one-
dimensional structure factors as in a model proposed
by Levine and Steinhardt.’ In fact, it is observed ex-
perimentally that the intensities of the spot decay rap-
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cos(9;+6;+6,+6,+6,)—

has precisely the symmetry of Penrose lattices.> How-
ever, in analogy with the Alexander-McTague argu-
ments one can often, in three dimensions, do better by
choosing fifteen pairs of vectors forming the edges of a
dodecahedron, or a regular icosahedron. In the latter
case [Fig. 1(e)] one can take advantage of both the
third-order term and the fifth-order term since ten
pairs of triangles and six pairs of pentagons can be
formed by the vectors. With the choice 4;=p/(15)2
the third- and fifth-order terms become

2

riangles

3
p V3

—_— cos(9,+6;+86,).
15(15)Y2 5, STk

(3)

[

idly with the order of the spots, showing a relatively
small content of higher harmonics. As with all other
3D incommensurate structures, there are diffraction
spots arbitrarily close to any given point in reciprocal
space.

What are the acoustic ¢ — 0 phonon modes of the
icosahedral structure? Consider first the Penrose lat-
tice. The fifth-order term fixes the sum of five
phases, and so there are four continuous symmetries
left. Two of these represent phonon modes, and the
two remaining modes are phason modes describing
continuous internal rearrangements. In the icosa-
hedral case there are nine linearly independent con-
straints on the fifteen phases, leading to six acoustic
modes. The continuous translational symmetries,
6,— 6,+q,d, define three normal acoustic phonon
modes, and the remaining three modes are phason
modes. The phason modes might in principle be gap-
less, but could be overdamped or pinned, in which
case a gap will appear. The phason modes can be
characterized and measured as described by Axe and
Bak® for mercury chain compounds, etc.

FIG. 2. Diffraction spectrum in fivefold plane of
icosahedral structure, or of the Penrose structure. The spots
can be indexed by five ‘“Miller indices™ (ny, ..., ns). The
point 4 is (10000), the point B (11000), the point C
(11010).
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Incommensurate structures (by definition) are not
translationally invariant so that there is no reason that
they obey 3D space-group symmetries. If one insists
on applying space-group arguments, this can be done
in an elegant way discovered by Janner and Janssen.’
Consider again the ‘‘quintuple-q’’ Penrose structure.
The phases 6, . . . , 05 define a five-dimensional space.
A discrete shift §,— 0;+ 2pw leaves the structure in-
variant, and so the system has a 5D Bravais lattice
symmetry. The fivefold axis in 3D space corresponds
to a fivefold axis along (11111) in 5D space which per-
mutes the q vectors, or phases, 6;— 0,— 03
— 04— 65— 6,. In addition there are five three-
dimensional reflection planes, 0, —80,, 9,
— —0, 63— —0s etc.,, and inversion symmetry.
The 5D space group has ‘‘pentagonal’’ symmetry. The
four phonon modes can be formed by two different
two-dimensional representations of the 5D point group
“Csm3.” The most general electronic density with
this symmetry can be written

p(q 1, @1, Q3°1, Q4°T, Qs5° 1),

where p(8,,0,,03,04,05) is invariant under the space-
group transformations defined above. In analogy with
these considerations, the symmetries of the
icosahedral structure can be represented by a fifteen-
dimensional space group, if one so desires. Since
there are only six independent vectors, represented by
the vertices of the icosahedron, the space group can be
reduced to six dimensions, the spot can be indexed by
six Miller indices, and the phonons and phasons have
the symmetry of two three-dimensional irreducible
representations.?

The melting transition is first order because the or-
der parameter and the Landau expansion are precisely
the same as for normal 3D melting,? with third-order
invariants. In fact, fluctuations would cause the transi-
tion to be first order in any case because of the rota-
tional symmetry.10

Superficially, it seems that the construction above
can be generalized to produce crystalline structure with
arbitrary rotational symmetry and only one length
scale. This is not the case, however. This is related to
the fact that there is only a finite number of regular
polyhedra, which have already been exhausted here.
A seventh-order term can produce only a rodlike
structure, or a uniaxial structure with two length
scales, since it is not possible to combine regular hep-
tagons to form a ‘‘cubic’’ structure, and so the story
ends here.

Then, are we dealing with a fundamentally new
‘““state of matter’”” as speculated by Levine and

Steinhardt®? I am afraid not! The structure should be
classified simply as an incommensurate structure with
one length scale.!! For simplicity, consider the two-
dimensional ‘‘quintuple-q’’ case, and define arbitrarily
two of the vectors to define a basic lattice. Because of
the different directions of the three remaining vectors,
they cannot be measured in terms of rational fractions
of the first two vectors, and they are thus incommen-
surate. Thus, in higher than one dimension, it is per-
fectly possible to have incommensurate vectors with
the same length. To reduce confusion one might use
the term ‘‘incommensurate’’ to describe all spatially
incommensurable structures and leave the term quasi-
periodic to describe systems with temporally incom-
mensurable periods.
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