Vivienne Sze

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Computing challenge for self-driving cars

SELF-DRIVING CARS USE CRAZY AMOUNTS OF POWER, AND IT'S **BECOMING A PROBLEM**

Shelley, a self-driving Audi TT developed by Stanford University, uses the brains in the trunk to speed around a racetrack autonomously.

NIKKI KAHN/THE WASHINGTON POST/GETTY IMAGES

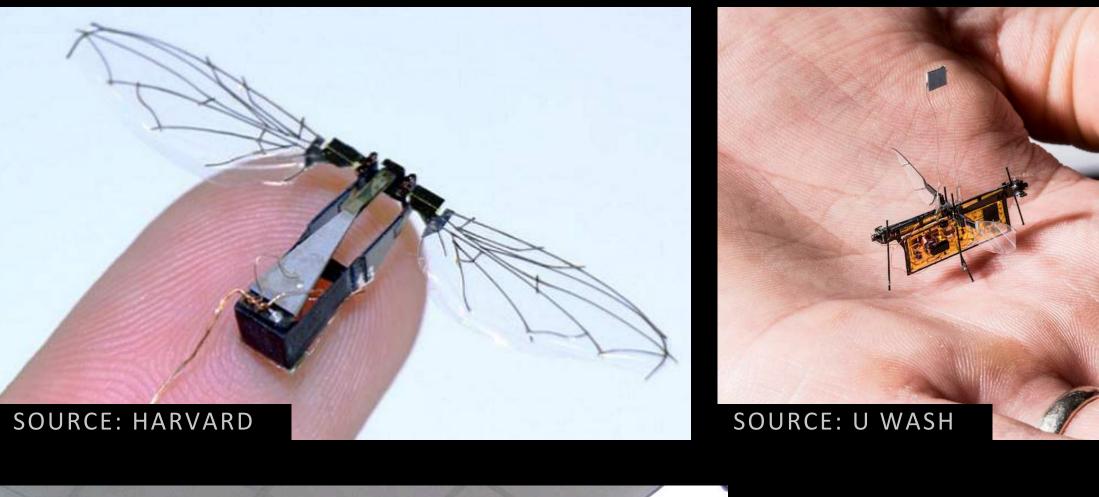
Cameras and radar generate ~6 gigabytes of data every 30 seconds

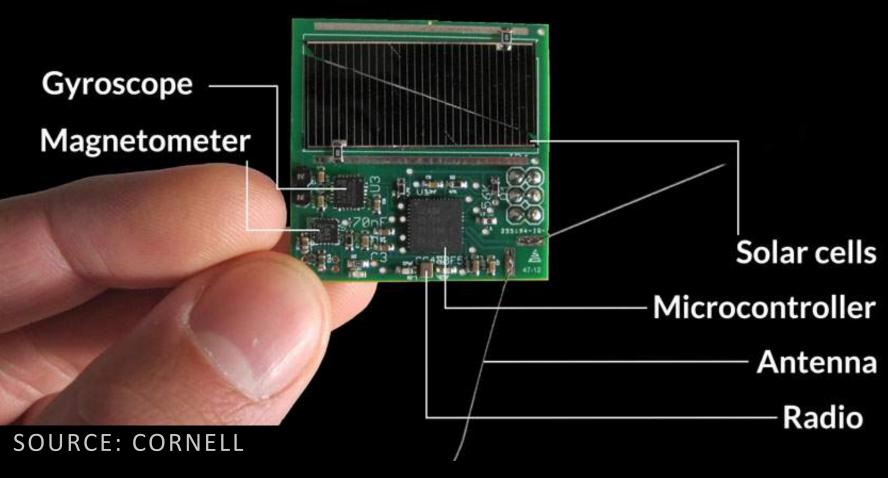
Self-driving car prototypes use approximately 2,500 Watts of computing power

Generates wasted heat and some prototypes need water-cooling

SOURCE: WIRED, FEB 2018

Robots consuming < 1 Watt for actuation



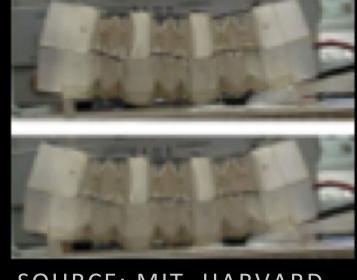


Low energy robotics

- Miniature aerial vehicles
- Lighter than air vehicles
- Miniature satellites
- Micro unmanned gliders

SOURCE: CMU

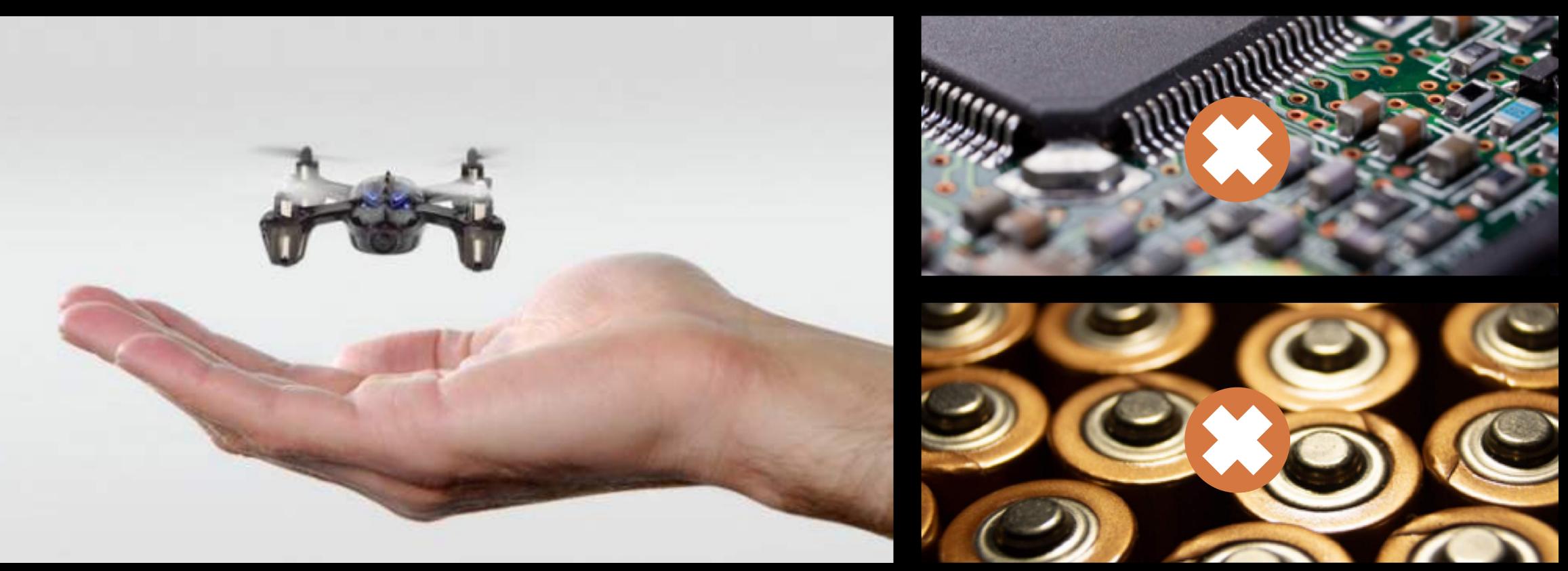
SOURCE: MIT, HARVARD



SOURCE: MIT, HARVARD

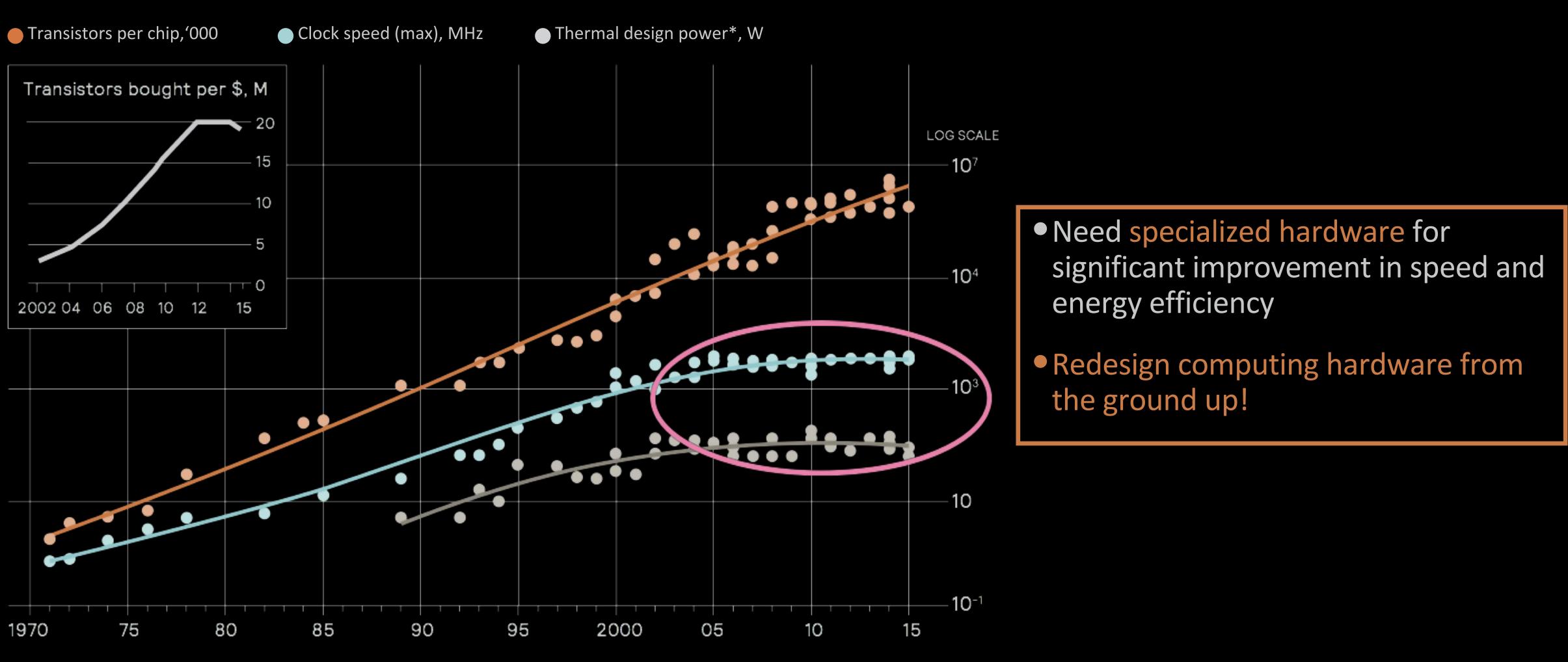
Existing processors consume too much power

< 1 Watt



> 10 Watt

Transistors are NOT getting more efficient



SOURCE: INTEL, PRESS REPORTS, BOB COLWELL, LINLEY GROUP, IB CONSULTING, THE ECONOMIST

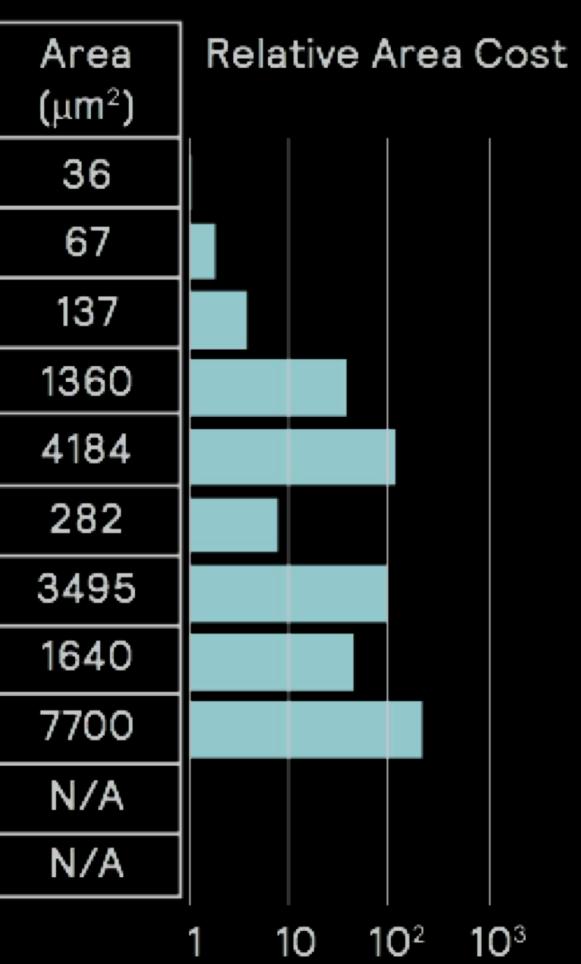
Slowdown of Moore's Law and Dennard Scaling General purpose microprocessors are not getting faster or more efficient

*MAXIMUM SAFE POWER CONSUMPTION

Power dominated by data movement

Operation:	Energy (pJ)	Relative Energy Cost
8b Add	0.03	
16b Add	0.05	
32b Add	0.1	
16b FP Add	0.4	
32b FP Add	0.9	
8b Mult	0.2	
32b Mult	3.1	
16b FP Mult	1.1	
32b FP Mult	3.7	
32b SRAM Read (8KB)	5	
32b DRAM Read	640	
		1 10 10 ² 10 ³ 10 ⁴

SOURCE: HOROWITZ, ISSCC 2014

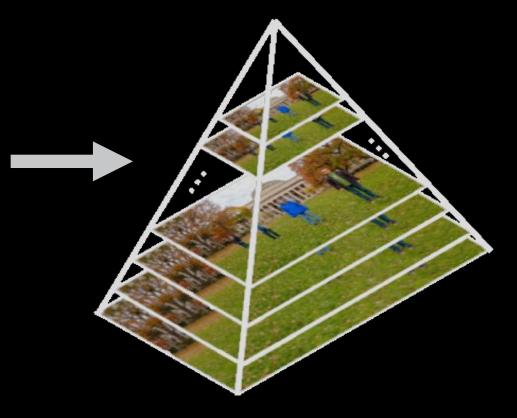


Memory access is orders of magnitude higher energy than compute

Autonomous navigation uses a lot of data

Semantic Understanding

- High frame rate
- Large resolutions
- Data expansion



2 MILLION PIXELS

 $10 \times -100 \times MORE PIXELS$

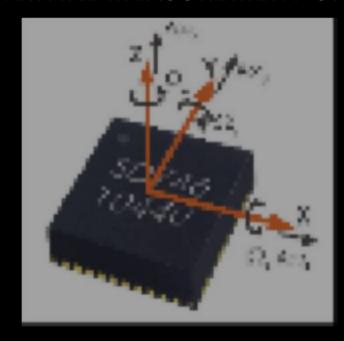
Geometric Understanding

Growing map size

Visual-inertial localization

Image sequence

IMU INERTIAL MEASUREMENT UNIT

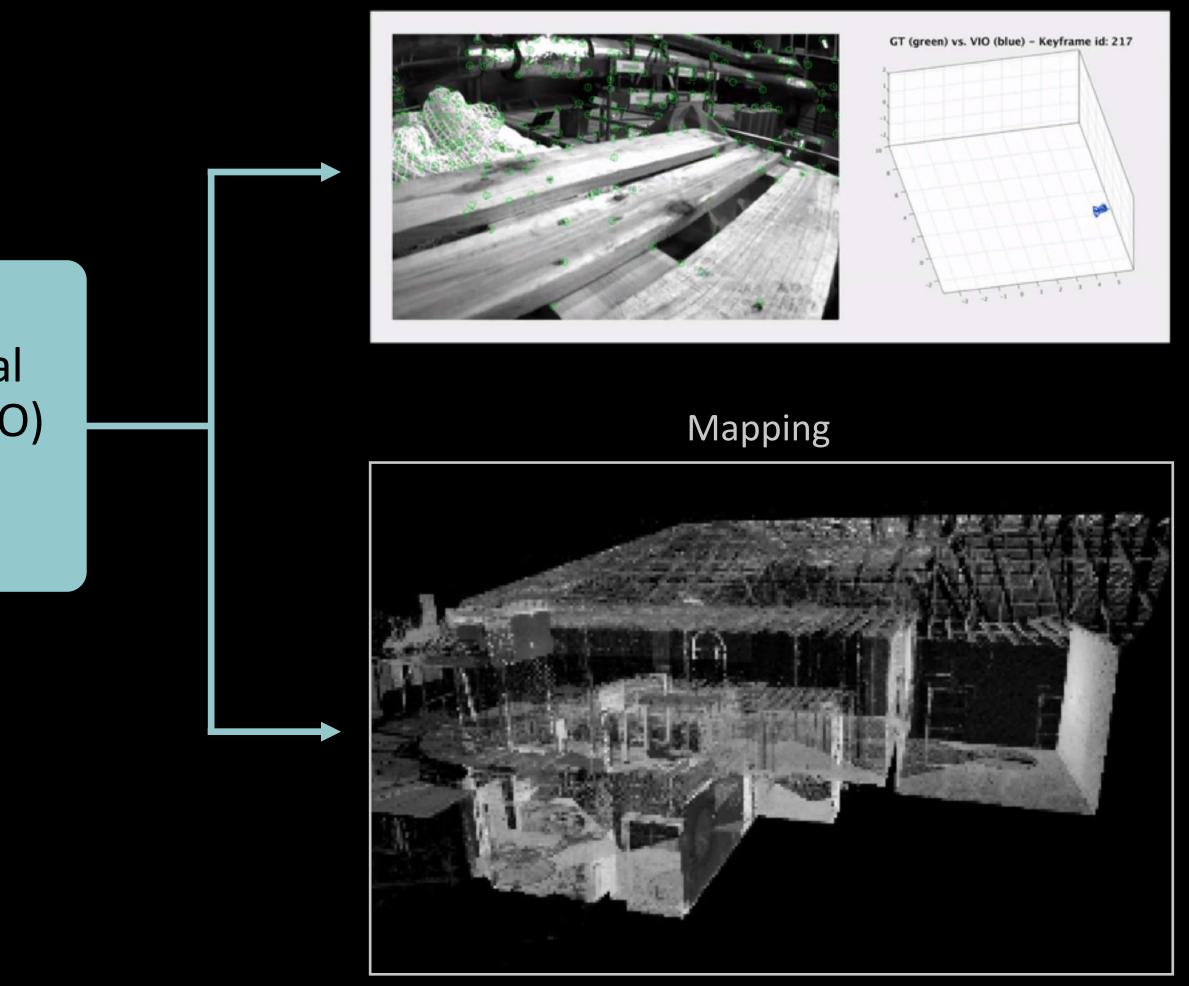


*SUBSET OF SLAM ALGORITHM (SIMULTANEOUS LOCALIZATION AND MAPPING)

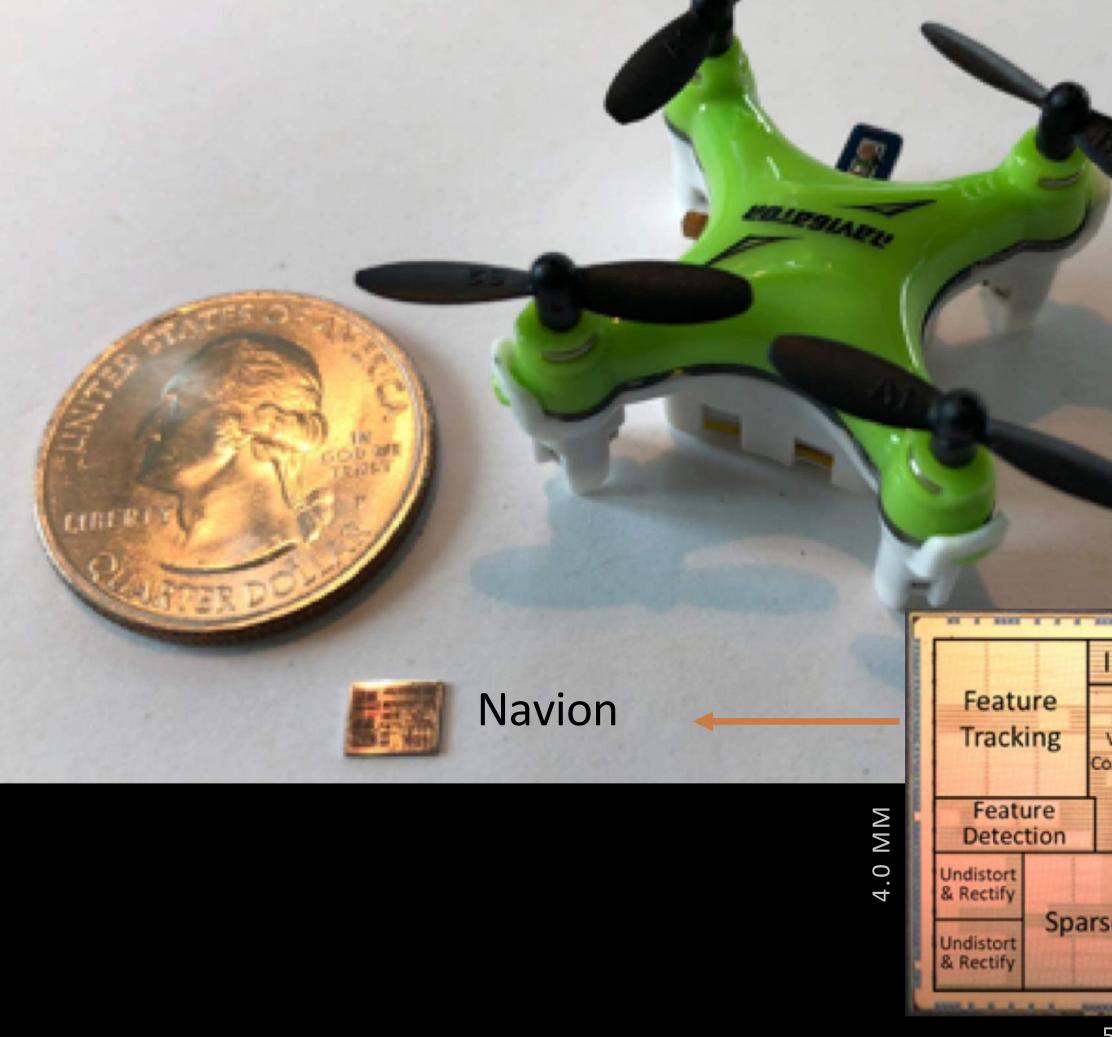
Visual-Inertial Odometry (VIO)

Determines location/orientation of robot from images and IMU

Localization



Localization at under 25 mW



JOINT WORK WITH SERTAC KARAMAN

First chip that performs complete Visual-**Inertial Odometry**

Front-End for Camera (Feature detection, tracking, and outlier elimination)

Front-End for IMU (Pre-integration of accelerometer and gyroscope data)

Back-End Optimization of Pose Graph

Consumes 684× and 1582× less energy than mobile and desktop CPUs, respectively

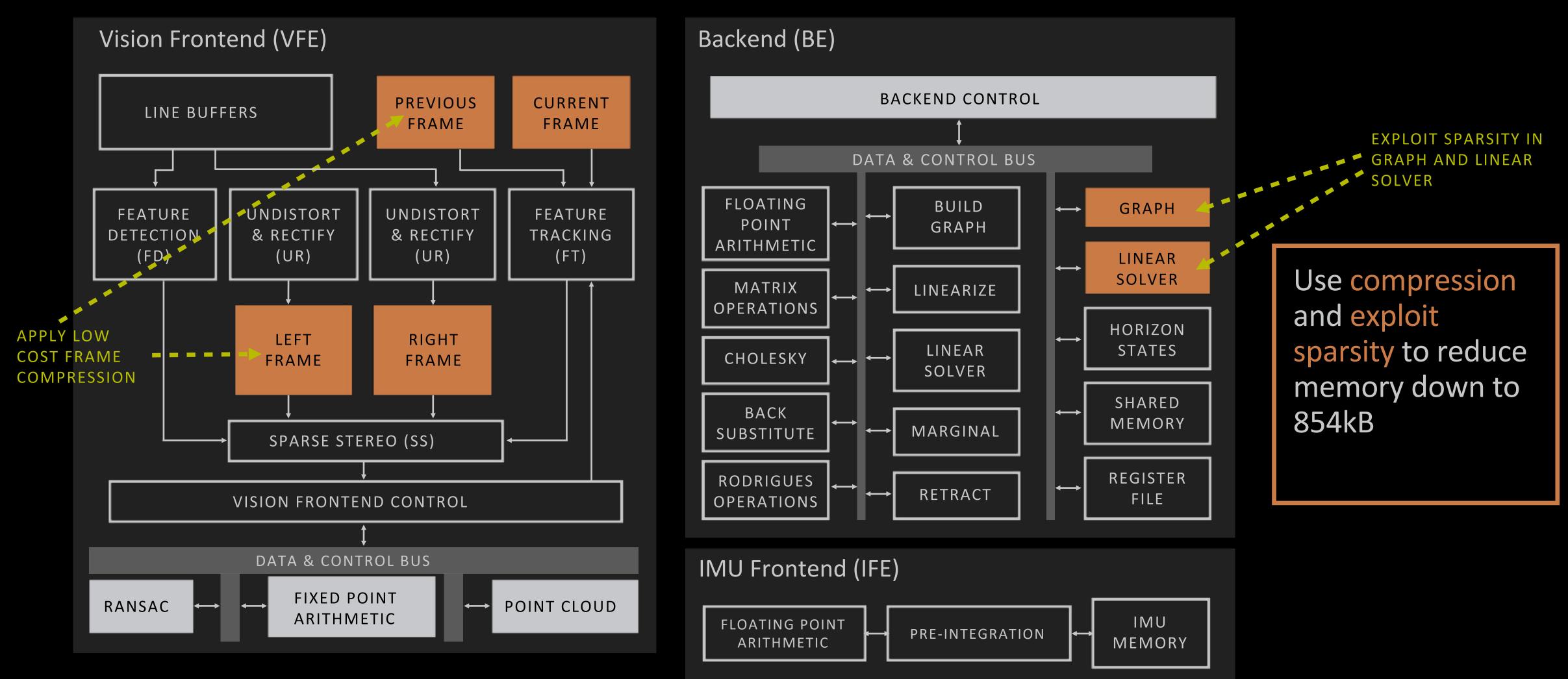
FE			
/FE ntrol	Shared Memory	Graph	
	Marginal	Horizon States	
e Stereo		Linear Solver	

5.0 MM

Technology	65nm CMOS	Supply	1 V
Chip area (mm²)	4.0 × 5.0	Resolution	752 × 480
Core area (mm²)	3.54 × 4.54	Camera Rate	28 – 171 fp
Logic Gates	2,043 kgates	Keyframe Rate	16 – 90 fps
SRAM	854KB	Average Power	24 mW
VFE Frequency	62.5 MHz	GOPS	10.5 – 59.1
BE Frequency	83.3 MHz	GFLOPS	1 – 5.7

SOURCE: ZHANG, RSS 2017; SULEIMAN, VLSI 2018

Key methods to reduce data size



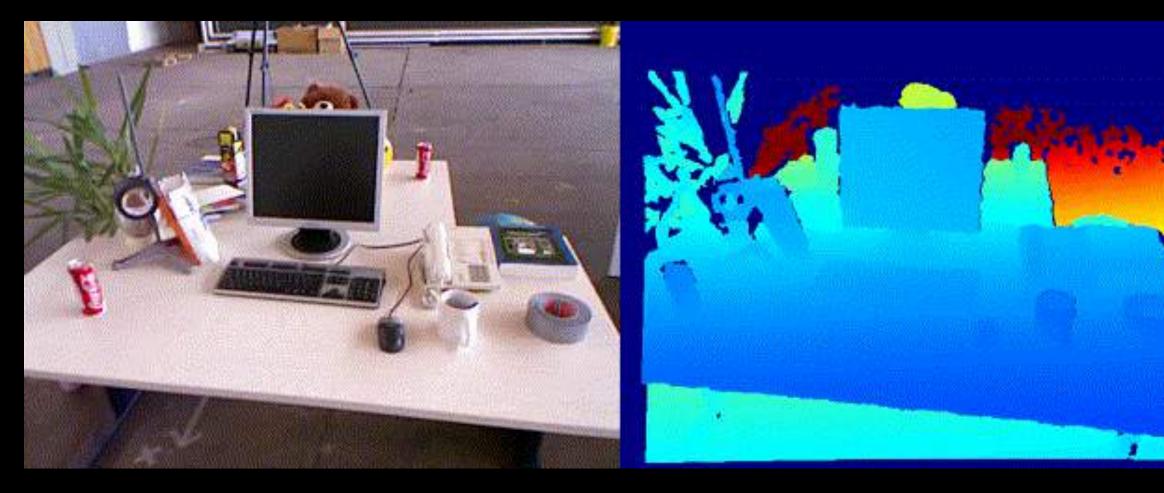
JOINT WORK WITH SERTAC KARAMAN

Navion: Fully integrated system — no off-chip processing or storage

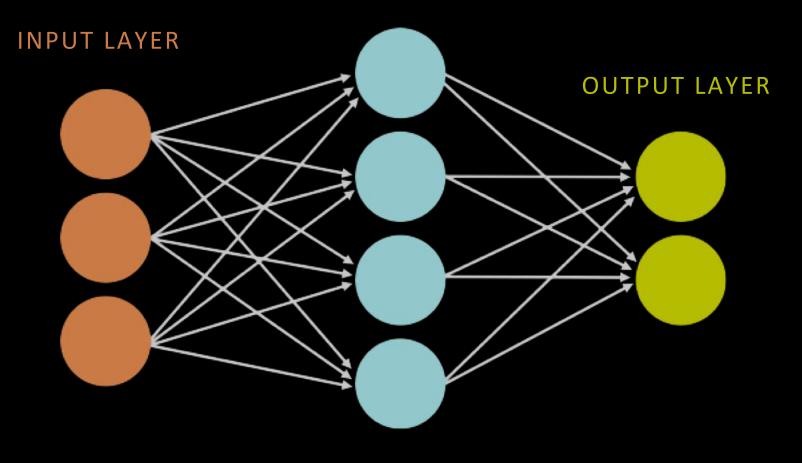
SOURCE: SULEIMAN, VLSI 2018

Understanding the environment

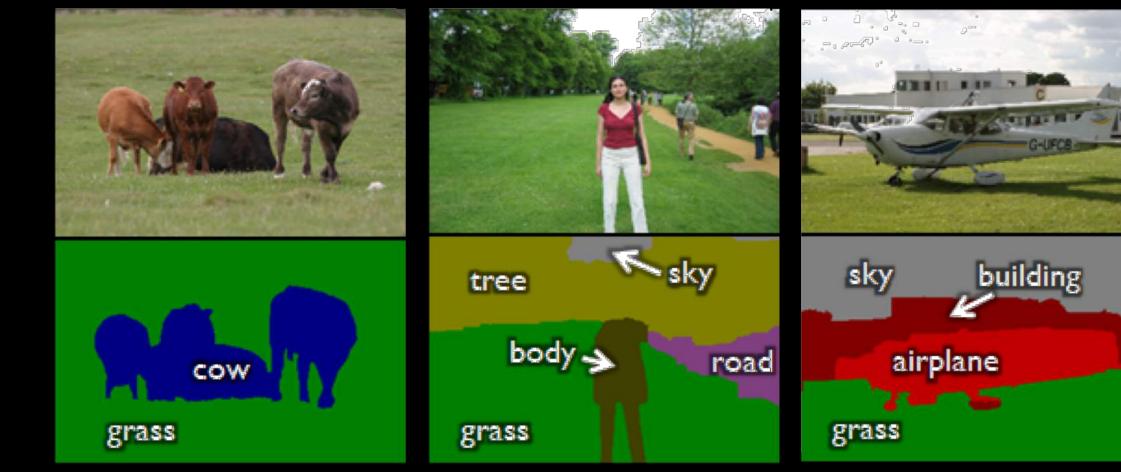
Depth Estimation



HIDDEN LAYER

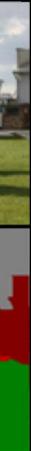


Semantic Segmentation

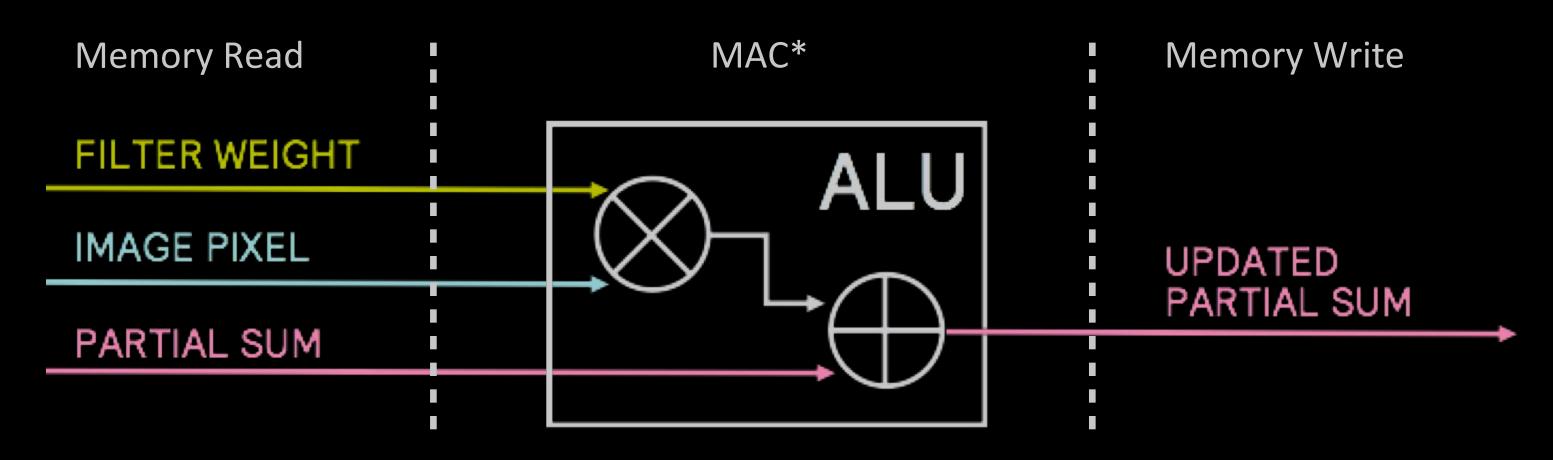


State-of-the-art approaches use Deep Neural Networks which require up to several hundred millions of operations and weights to compute!

> 100× more complex than video compression



Properties we can leverage



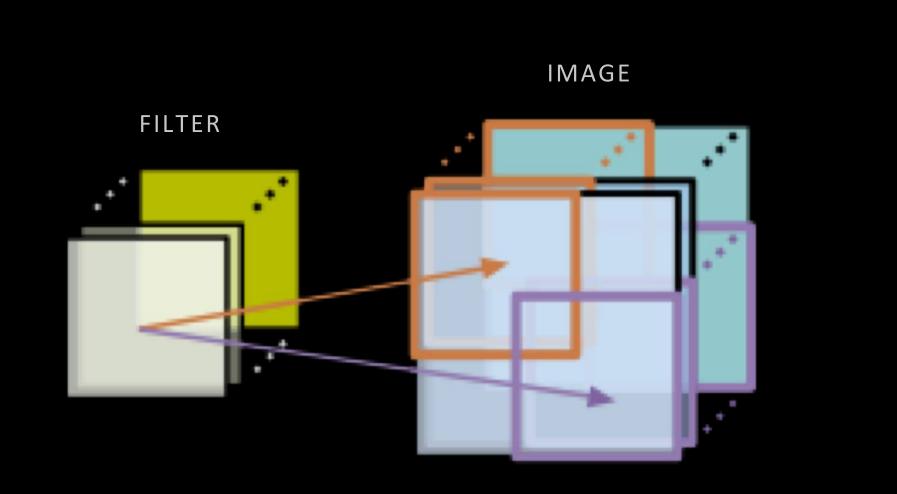
Operations exhibit high parallelism \rightarrow high throughput possible

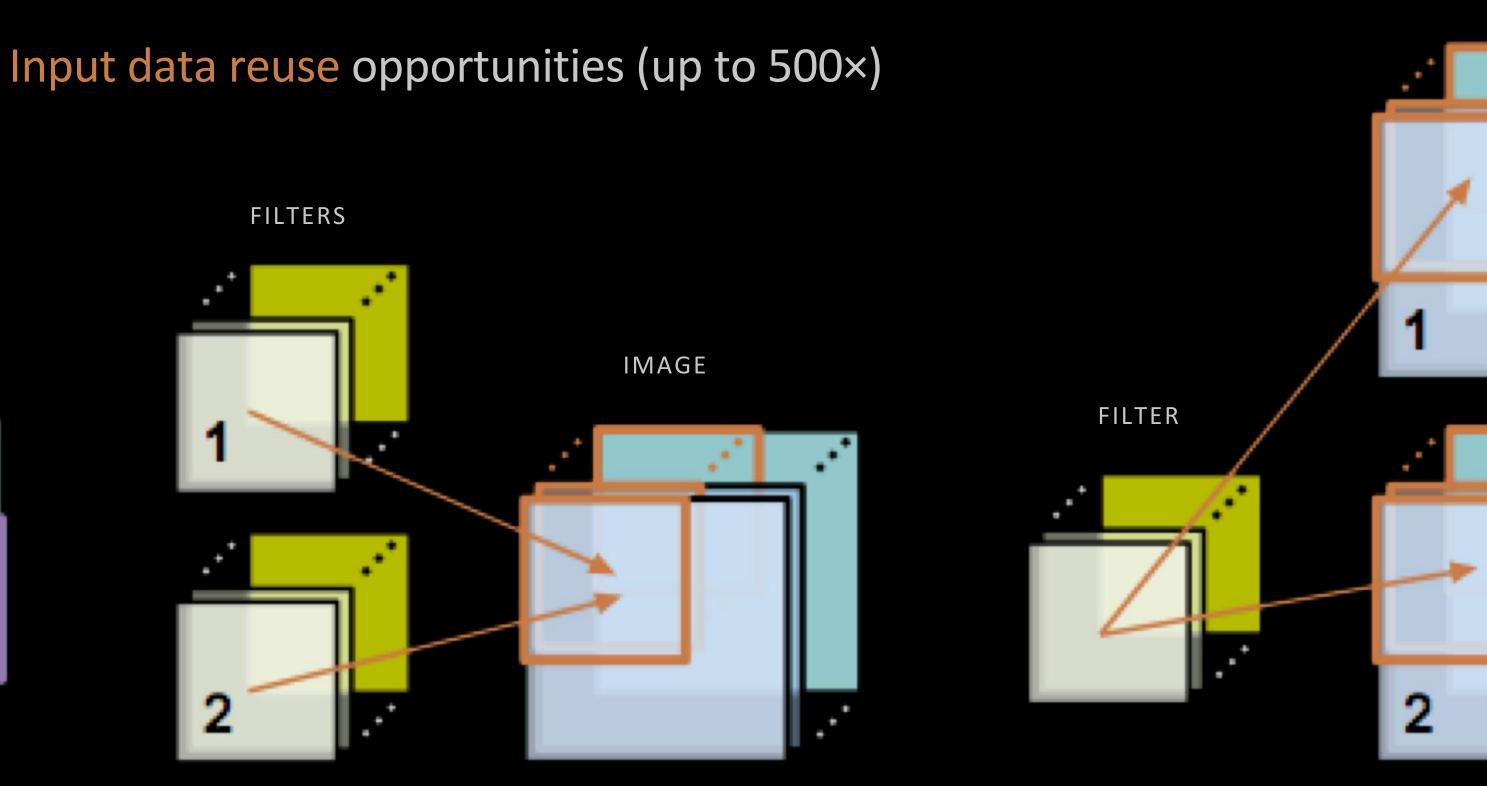
Memory Access is the Bottleneck

* MULTIPLY-AND-ACCUMULATE

- Worst Case: all memory R/W are DRAM accesses
 - Example: AlexNet has 724M MACs → 2896M DRAM accesses required

Properties we can leverage





CONVOLUTIONAL REUSE (PIXELS, WEIGHTS)

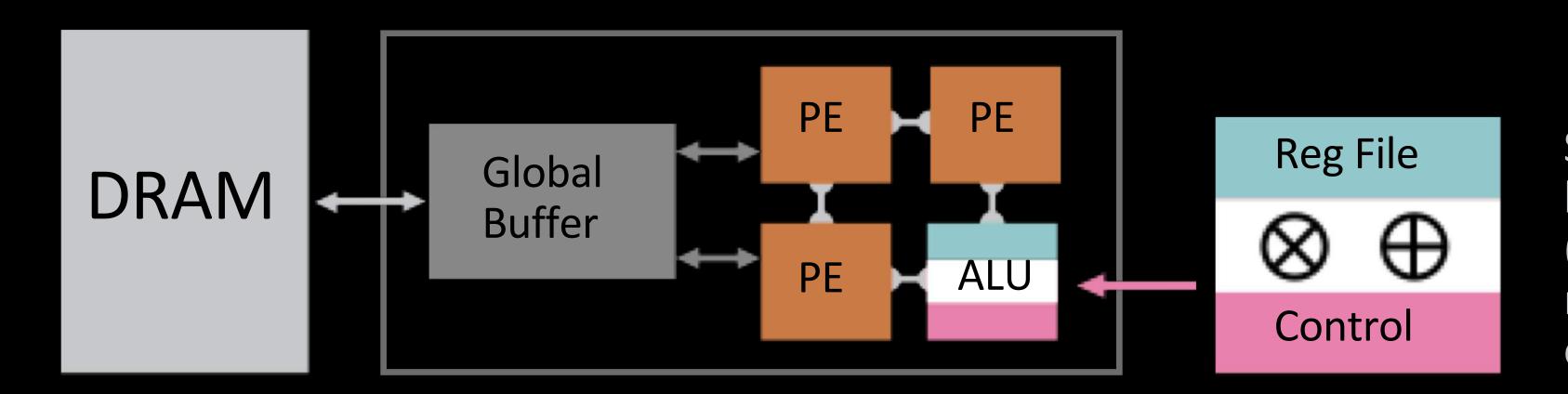
Operations exhibit high parallelism → high throughput possible

IMAGE REUSE (PIXELS)

FILTER REUSE (WEIGHTS)

IMAGES

Exploit data reuse at low-cost memories



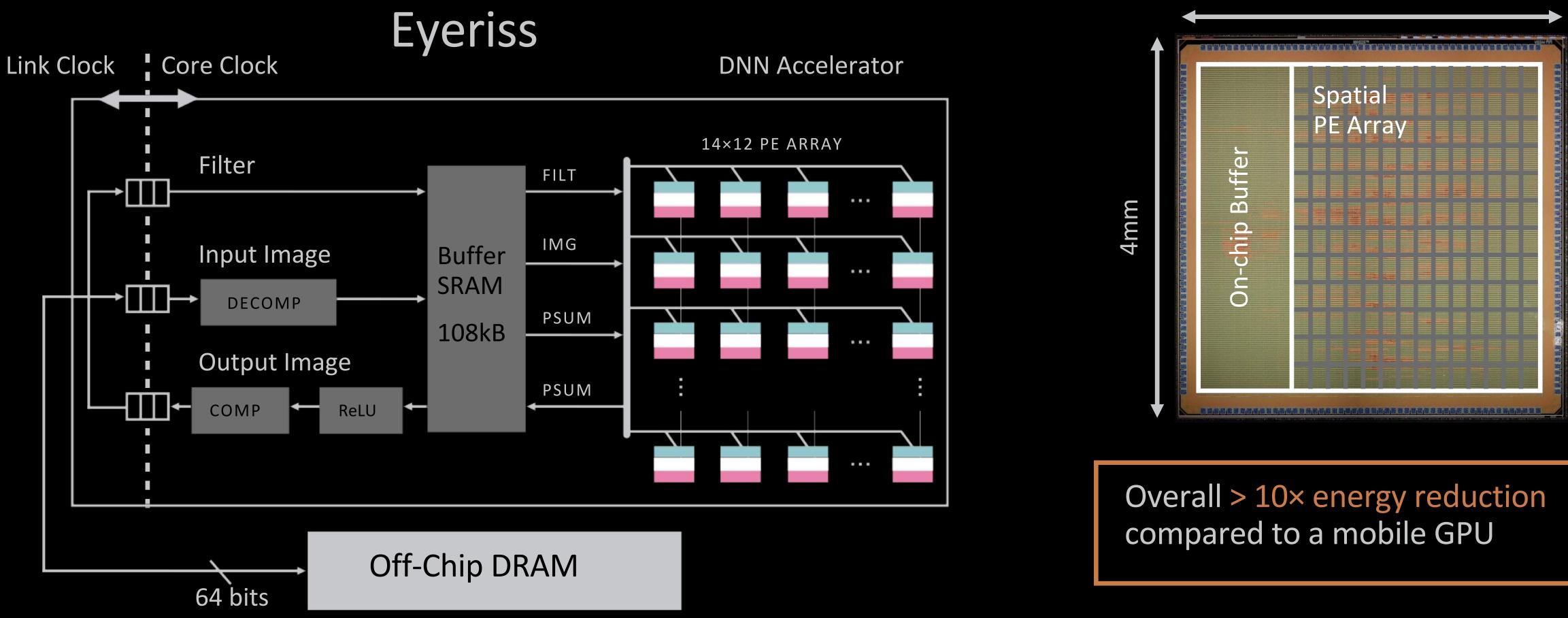
*MEASURED FROM A COMMERCIAL 65nm PROCESS

Specialized hardware with small (< 1kB) low cost memory near compute

Normalized Energy Cost*

Farther and larger memories consume more power

Deep neural networks at under 0.3 W

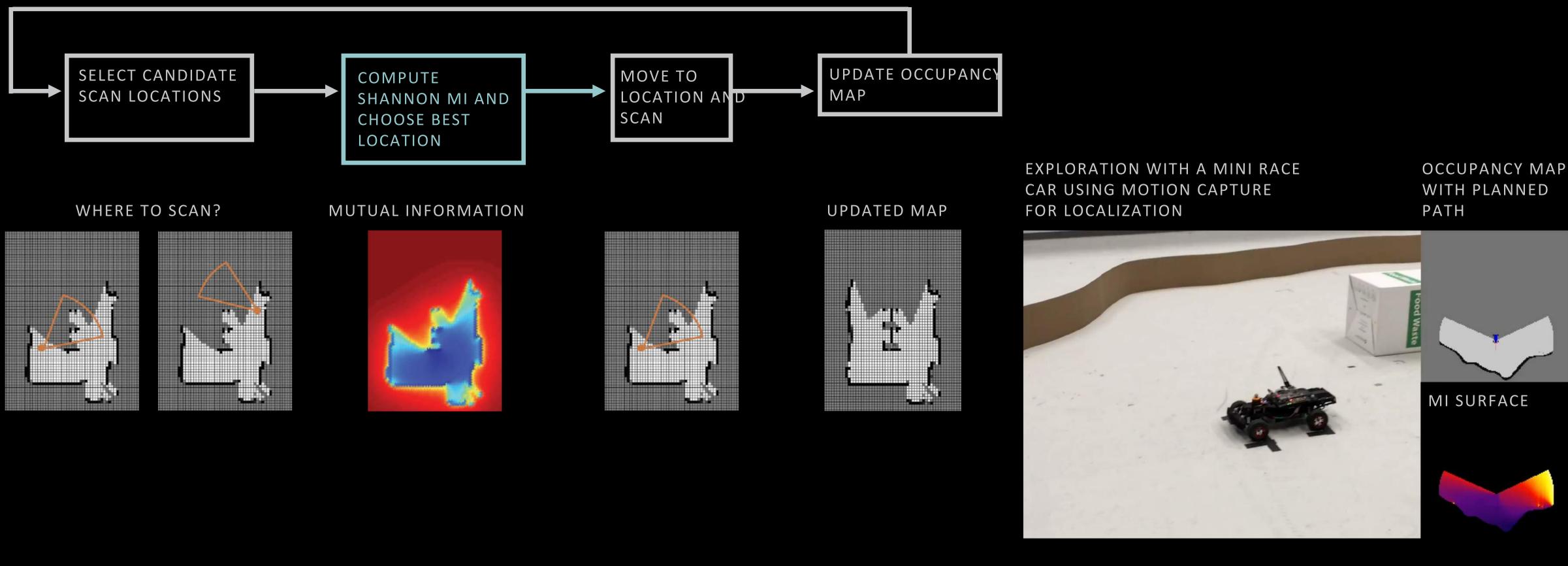


Exploits data reuse for 100× reduction in memory accesses from global buffer and 1400× reduction in memory accesses from off-chip DRAM

4mm

SOURCE: CHEN, ISSCC 2016

Where to go next: planning and mapping

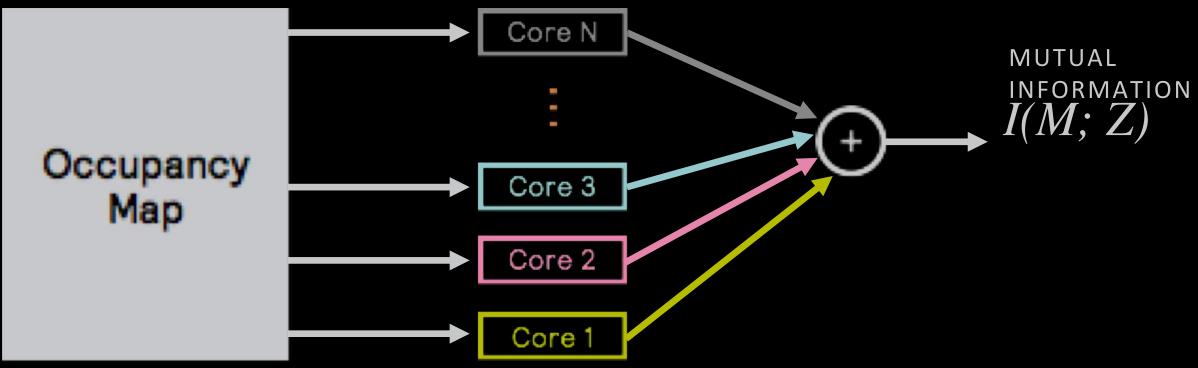


Robot Exploration: decide where to go by computing Shannon Mutual Information

Challenge is data delivery to all cores

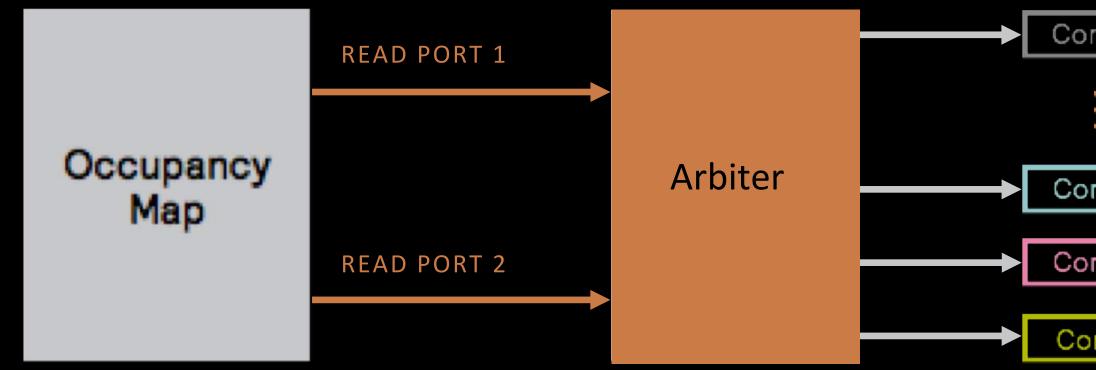
Process multiple beams in parallel





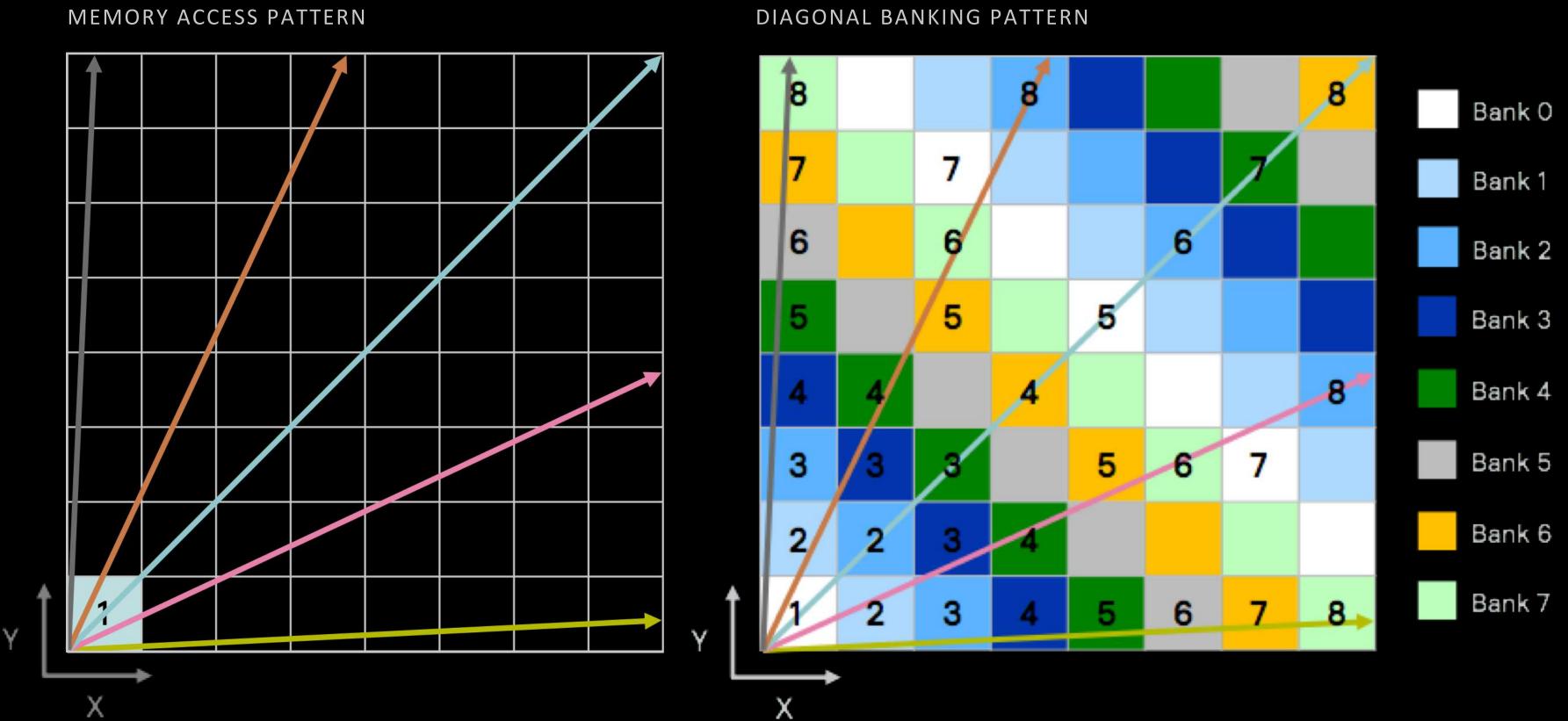
JOINT WORK WITH SERTAC KARAMAN

Data delivery from memory is limited



re	Ν	
re	3	
re	2	
re	1	

Specialized memory architecture



Break up map into separate memory banks and use a novel storage pattern to minimize read conflicts when processing different beams in parallel

Compute the mutual information for an entire map of 20m × 20m at 0.1m resolution in under a second \rightarrow a 100× speed up versus CPU at 1/10th of the power

Summary

Efficient computing is critical for advancing the progress of autonomous robots, particularly at the smaller scales → Critical step to making autonomy ubiquitous!

In order to meet computing demands in terms of power and speed, need to redesign computing hardware from the ground up → Focus on data movement!

Algorithms

Specialized hardware opens up new opportunities for the codesign of algorithms and hardware → Innovation opportunities for the future of robotics!

