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In information processing, as in physics, our classical world view provides an incomplete approximation to an underlying quantum
reality. Quantum effects like interference and entanglement play no direct role in conventional information processing, but they
can—in principle now, but probably eventually in practice—be harnessed to break codes, create unbreakable codes, and speed
up otherwise intractable computations.

Information and computation theory have undergone a spurt of
new growth, and a renewal of their historic connection to basic
physics, as they have expanded to treat the intact transmission and
processing of quantum states, and the interaction of such ‘quantum
information’ with traditional forms of information. We may
wonder why this did not happen earlier, as quantum principles
have long been accepted as fundamental to all of physics. Perhaps
the founders of information and computation theory, such as
Shannon, Turing and von Neumann, were too accustomed to
thinking of information processing in macroscopic terms, not yet
having before them the powerful examples of the genetic code and
ever-shrinking microelectronics. Be that as it may, information until
recently has largely been thought of in classical terms, with quantum
mechanics playing a supporting role in the design of the equipment
to process it, and setting limits on the rate at which it could be sent
through certain channels. Now we know that a fully quantum
theory of information and information processing offers, among
other benefits, a brand of cryptography whose security rests on
fundamental physics, and a reasonable hope of constructing quan-
tum computers that could dramatically speed up the solution of
certain mathematical problems. These benefits depend on distinc-
tively quantum properties such as uncertainty, interference and
entanglement.

At a more fundamental level, it has become clear that an
information theory based on quantum principles extends and
completes classical information theory, just as complex numbers
extend and complete the reals. Besides quantum generalizations of
classical notions such as sources, channels and codes, the new theory
includes two complementary, quantifiable kinds of information—

classical information and quantum entanglement. Classical infor-
mation can be copied at will, but can only be transmitted forward in
time, to a receiver in the sender’s forward light cone. Entanglement
in contrast, cannot be copied, but can connect any two points in
space–time. Conventional data processing operations destroy
entanglement, but quantum operations can create it and use it for
various purposes, such as speeding up certain classical computa-
tions and assisting in the transmission of classical information or
intact quantum states. Part of the new quantum information theory
is the qualitative and quantitative study of entanglement, and its
interactions with classical information.

Any means, such as an optical fibre, of delivering quantum
systems more or less intact from one place to another, may be
viewed as a quantum channel. Unlike classical channels, which are
well characterized by a single capacity, quantum channels have
several distinct capacities, depending on what one is trying to use
them for, and what auxiliary resources are brought into play.

New effects involving quantum information continue to be
discovered, not only in the traditional areas of computation,
channel capacity, and cryptography, but in areas such as commu-
nication complexity and game theory.

Theory of quantum data and data processing
Quantum data. How, then, does quantum information, and the
operations that can be performed on it, differ from conventional
digital data and data-processing operations? A classical bit (such as a
memory element or a wire carrying a binary signal) is generally
a macroscopic system, and is described by one or more con-
tinuous parameters such as voltages. Within this parameter space

Table 1 Comparison of classical and quantum information processing

Property Classical Quantum
...................................................................................................................................................................................................................................................................................................................................................................

State representation String of bits x [ {0;1}n String of qubits w ¼ Sxcx jx〉
...................................................................................................................................................................................................................................................................................................................................................................

Computation primitives One- and two-bit boolean operations One- and two-qubit unitary transformations

Fault-tolerant computation By classical fault-tolerant gate arrays By quantum fault-tolerant gate arrays

Quantum computational speed-ups Factoring: exponential speed-up; search: quadratic speed-up; iteration,
parity: no speed-up; simulation of quantum systems: up to exponential
speed-up

...................................................................................................................................................................................................................................................................................................................................................................

Communication primitives Transmitting a classical bit Transmitting a classical bit; transmitting a qubit; sharing an EPR pair

Noiseless coding techniques Classical data compression Quantum data compression; entanglement concentration

Error-correction techniques Error-correcting codes Quantum error-correcting codes; entanglement distillation

Noisy-channel capacities Classical capacity C1 equals maximum mutual information
through a single channel use

Classical capacity C > C1; unassisted quantum capacity Q < C;
classically assisted quantum capacity Q2 > Q; entanglement-assisted
classical capacity CE > C

Entanglement assisted communication Superdense coding, quantum teleportation

Communication complexity Bit communication cost of distributed computation Qubit cost, or entanglement-assisted bit cost, can be less
...................................................................................................................................................................................................................................................................................................................................................................

Secret cryptographic key agreement Known protocols insecure against quantum computer Secure against general quantum attack and unlimited computing

Two-party bit commitment Known protocols insecure against quantum computer Insecure against attack by a quantum computer
...................................................................................................................................................................................................................................................................................................................................................................
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two well-separated regions are chosen by the designer to represent 0
and 1, and signals are periodically restored toward these standard
regions to prevent them from drifting away due to environmental
influences, crosstalk, and finite manufacturing tolerances. An n-bit
memory can exist in any of 2n logical states, labelled 000…0 to
111…1. Besides storing binary data, classical computers manipulate
it; a sequence of boolean operations (for example, NOT and AND)
acting on the bits one or two at a time is sufficient to realize any
deterministic transformation.

A quantum bit or ‘qubit’ in contrast, is typically a microscopic
system, such as an atom or nuclear spin or photon. The boolean
states 0 and 1 are represented by a fixed pair of reliably distinguish-
able states of the qubit (for example, horizontal and vertical photon
polarizations: j0〉 ¼ ↔, j1〉 ¼ ↕). A qubit can also exist in a con-
tinuum of intermediate states or ‘superpositions’, represented
mathematically as complex linear combinations of the basis states
|0〉 and |1〉. For photons, these states correspond to other polariza-
tions, for example ↔ ¼ Î 1

2
ðj0〉 þ j1〉Þ, ↔ ¼ Î 1

2
ðj0〉 þ j1〉Þ and

| ¼ Î 1
2
ðj0〉 þ ij1〉Þ (right circular polarization). Unlike the inter-

mediate states of a classical bit (such as voltages between the
standard 0 and 1 values), these intermediate states cannot be reliably
distinguished, even in principle, from the basis states. With regard
to any measurement, the superposition aj0〉 þ bj1〉 behaves like |0〉
with probability |a|2 and like |1〉 with probability |b|2. More
generally two quantum states are reliably distinguishable if and
only if their vector representations are orthogonal; thus ↔ and ↕ are
reliably distinguishable by one type of measurement, and ↔ and ↔
by another, but no measurement can reliably distinguish ↔ from ↔.

A pair of qubits (for example, two photons in different locations)
is capable of existing in four boolean states, |00〉, |01〉, |10〉 and |11〉,
as well as all possible superpositions of them. These include states
such as ��

1
2

q
ðj00〉 þ j01〉Þ ¼ j0〉 #

��
1
2

q
ðj0〉 þ j1〉Þ ¼ ↔ ↔ ð1Þ

which is describable as a tensor product of states of the individual
photons, as well as states such as

��
1
2

p
ðj00〉 þ j11〉Þ which admit no

such description. Such ‘entangled’ states correspond to a situation
in which neither photon by itself has a definite state, even though
the pair together does.

More generally, where a string of n classical bits could exist in any
of 2n boolean states x ¼ 000…0 through 111…1, a string of n qubits
can exist in any state of the form

W ¼ ^
11…1

x¼00…0

cxjx〉 ð2Þ

where the cx are complex numbers such that Sxjcxj
2 ¼ 1. In other

words, a quantum state of n qubits is represented by a complex
vector W of unit length in a space (‘Hilbert space’) of 2n dimensions,
one for each possible classical state. The exponentially large dimen-
sionality of this space distinguishes quantum computers from
classical analogue computers, whose state is described by a
number of parameters that grows only linearly with the size of the
system. This is because classical systems, whether digital or analo-
gue, can be completely described by separately describing the state
of each part. The vast majority of quantum states, by contrast, are
entangled, and admit no such description. The ability to preserve
and manipulate entangled states is the distinguishing feature of
quantum computers, responsible both for their power and for the
difficulty of building them.

An isolated quantum system evolves in such a way as to preserve
superpositions and distinguishability; such evolution, called ‘uni-
tary’, is the Hilbert-space analogue of rigid rotation in real space,
and is another important difference between quantum and analo-
gue systems. Unitary evolution and superposition are the central
principles of quantum mechanics.

Logical operations. Just as any classical computation can be
expressed as a sequence of one- and two-bit operations (for
example, NOT and AND gates), any quantum computation can
be expressed as a sequence of one- and two-qubit quantum gates,
that is, unitary operations acting on one or two qubits at a time1

(compare with Fig. 1). The most general one-qubit gate is described
by a 2 3 2 unitary matrix (a

g
b
d) mapping |0〉 to aj0〉 þ bj1〉 and |1〉 to

gj0〉 þ dj1〉. One-qubit gates can easily be implemented physically,
for example, by quarter- and half-wave plates acting on polarized
photons, or by radio-frequency tipping pulses acting on nuclear
spins in a magnetic field.

The standard two-qubit gate is the controlled-NOTor XOR gate,
which flips its second (or ‘target’) input if its first (‘control’) input is
|1〉 and does nothing if the first input is |0〉. In other words it
interchanges |10〉 and |11〉 while leaving |00〉 and |01〉 unchanged.
Unlike one-qubit gates, two-qubit gates are difficult to realize in the
laboratory, because they require two separated quantum informa-
tion carriers to be brought into strong and controlled interaction.

The XOR gate is a prototype interaction between two quantum
systems, and illustrates several key features of quantum informa-
tion, in particular the impossibility of cloning an unknown quan-
tum state, and the way interaction produces entanglement. If the
XOR is applied to boolean data in which the second qubit is 0 and
the first is 0 or 1, the effect is to leave the first qubit unchanged while
the second becomes a copy of it: UXORjx; 0〉 ¼ jx; x〉 for x ¼ 0 or 1.
One might suppose that the XOR operation could also be used to
copy superpositions, such as jw〉 ¼ aj0〉 þ bj1〉, so that UXOR|w,0〉
would yield |w,w〉, but this is not so. The unitarity of quantum
evolution requires that a superposition of input states evolve to a
corresponding superposition of outputs. Thus the result of applying
UXOR to |w,0〉 must be aj0; 0〉 þ bj1; 1〉, an entangled state in which
neither output qubit alone has a definite state. If one of the
entangled output qubits is lost (for example, discarded, or allowed
to escape into the environment), the other thenceforth behaves as if
it had acquired a random classical value 0 (with probability |a|2) or
1 (with probability |b|2). Unless the lost output is brought back into
play, all record of the original superposition |w〉 will have been lost.
This behaviour is characteristic not only of the XOR gate but of
unitary interactions generally: their typical effect is to map most
unentangled initial states of the interacting systems into entangled
final states, which from the viewpoint of either system alone causes
an unpredictable disturbance.
Environmental interactions. Since quantum physics underlies
classical, there should be a way to represent classical data and
operations within the quantum formalism. If a classical bit is a
qubit having the value |0〉 or |1〉, a classical wire should be a wire that
conducts |0〉 and |1〉 reliably, but not superpositions. This can be
implemented using the XOR gate as described above, with an initial
|0〉 in the target position which is later discarded. In other words,
from the viewpoint of quantum information, classical communica-
tion is an irreversible process in which the signal interacts en route
with an environment in such a way that boolean signals pass
through undisturbed, but other states suffer entanglement with
the environment. If the environment is lost or discarded, the
surviving signal behaves as if it had been irreversibly forced to
choose one of the boolean states. Not only a classical wire, but any
classical data processing, can be realized similarly by quantum
processing supplemented by interaction with a quantum environ-
ment that is later discarded.

Paradoxically, entangling interactions with the environment are
thought to be the main reason why the macroscopic world seems to
behave classically and not quantum-mechanically2. Macroscopically
different states, for example, the different charge states representing
0 and 1 in a VLSI (very large scale integration) memory cell, interact
so strongly with their environment that information rapidly leaks
out as to which state the cell is in. Therefore, even if it were possible
to prepare the cell in a superposition of 0 and 1, the superposition
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would rapidly evolve into a complex entangled state involving the
environment, which from the viewpoint of the memory cell would
appear as a statistical mixture, rather than a superposition, of the
two classical values. The spontaneous decay of superpositions into
mixtures is known as decoherence.

Entanglement with the environment is thus a major obstacle to
quantum computation. To avoid having a quantum computation
decohere into a probabilistic classical computation (which could
just as well be done on a classical computer) it is necessary, while
creating and maintaining entanglement among the computational
degrees of freedom, to avoid entanglement between them and the
environment. Until recently it appeared that the feasible number of
steps in a coherent quantum computation would necessarily be less
than the ratio td/ts of decoherence time to switching time char-
acteristic of the elementary quantum systems used in the hardware.
Even if all other problems in the design of a practical quantum
computer could be overcome, currently attainable values of td/ts are
not high enough to make quantum computers competitive with
classical ones; also, the search for systems with ever-higher td/ts

might ultimately be blocked by fundamental properties of available
atoms and nuclei. Apart from decoherence, it also appeared that
individual gate operations would have to be made more and more
precise the longer the computation.

This pessimism has largely been dispelled by the discovery of
quantum fault-tolerant computation3 (QFTC), the quantum ana-
logue of von Neumann’s discovery that unreliable classical gates can

be used to perform arbitrarily long classical computations reliably,
provided the error probability per gate is less than some constant
threshold. Because of QFTC, it appears that experimentalists need
‘only’ build quantum hardware with a per-gate decoherence that is
below some finite threshold (variously estimated at 10−6 to 10−2,
with a similar precision for individual gate rotations) in order for
quantum computers to do arbitrarily complex computations.

With this background we survey some of the main parallels and
differences between quantum and classical information processing.
Quantum speed-up of classical computation. This is potentially
the most important application of quantum data processing. By
using quantum gates and wires, with entangled states flowing
through them in the intermediate stages of a computation, certain
computations mapping classical inputs x to classical outputs f(x)
can be done in far fewer steps than by any known sequence of
classical gate operations. Most famously, a quantum computer can
factor large integers in time that is polynomial in the logarithm of
the best classical time4,5, thereby threatening the security of crypto-
systems based on the presumed difficulty of factoring. This expo-
nential speed-up depends on the quantum computer’s ability to
vastly parallelize the performance of a fast Fourier transform, using
destructive interference among a number of parallel computation
paths that increases exponentially with the number of physical
qubits involved in the computation. Another class of problems for
which quantum computers seem to provide exponential speed-up is
the simulation of many-particle quantum systems6,7. In contrast to
these rather specialized problems, a much broader class of problems
can be speeded up quadratically, that is, solved in a time propor-
tional to the square root of the time that a classical computer would
require. These include search and optimization problems (for
example, given an algorithm for computing a function F, find an
input s where FðsÞ ¼ 0, or an input s where F(s) is a minimum)8,9.
For some other problems there is no quantum speed-up. These
include iterated function evaluation10,11 (for example, given an
algorithm for computing F, compute the nth iterate
FðnÞ ¼ FðFðF…ð:ÞÞ…ÞÞ for large n) and computing the parity of a
random set12,13.
Quantum information theory. This generalizes the classical
notions of source and channel, and the related techniques of
source and channel coding, as well as introducing a new resource,
entanglement, which interacts with classical and quantum informa-
tion in a variety of ways that have no classical parallel.

As mentioned earlier, quantum channels have several distinct
capacities, depending on what one is trying to use them for, and
what auxiliary resources are brought into play. These include the
following:
Classical capacity, C, equal to the maximum rate at which classical
bits can be transmitted reliably through the channel;
Quantum capacity, Q, the maximum rate at which intact qubits can
be transmitted reliably through the channel;
Classically-assisted quantum capacity, Q2, defined as the maximum
rate at which qubits can be transmitted reliably through the channel,
with the help of unlimited two-way classical communication
between sender and receiver; and
Entanglement-assisted classical capacity, CE, defined as the max-
imum rate for sending classical bits through the channel, with the
help of unlimited prior entanglement between sender and receiver.
These capacities obey the relation Q < Q2 < C < CE for all known
channels, but otherwise appear to vary rather independently, and
are not easy to calculate from the quantum channel parameters,
again, unlike the single capacity of classical channels.
Quantum data compression and error correction. The two central
techniques of classical information theory, source and channel
coding, have direct quantum analogues; a quantum source is an
entity that emits quantum states wi with probabilities pi, and a
channel is an entity, such as an optical fibre, that transmits quantum
states more or less reliably from a sender to a receiver.
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Figure 1 Quantum logical operations. a, Any unitary operation U on quantum data can be
synthesized from the two-qubit XOR or controlled-NOT gate, and one-qubit unitary
operations U. b, The XOR acts as a classical cloner on boolean valued inputs, but if one
attempts to clone intermediate values, the cloning fails and an entangled state (blue)
results instead. c, A classical wire (thick line) conducts 0 and 1 faithfully but not
superpositions or entangled states. It may be defined as a quantum wire that interacts (via
an XOR) with an ancillary 0 qubit which is then discarded. d, The most general treatment,
or superoperator, Q that can be applied to quantum data is a unitary interaction with one
or more 0 qubits, followed by discarding some of the qubits. Superoperators are typically
irreversible.
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The von Neumann entropy of a quantum source, S ¼
2 Trrlog2r, where r ¼ Sipijwi〉〈wij, determines the minimum
asymptotic number of qubits into which its signals can be com-
pressed by a quantum encoder and still be faithfully recovered by a
quantum decoder. This is the analogue of classical data compression
or source coding, by which redundant classical data is compressed
and faithfully regenerated, but quantum data compression14 differs
in that it can be applied to non-orthogonal states (for example,
equally probable horizontal and diagonal photons, as shown in
Fig. 2a) which would be spoiled if one tried to compress them
classically. Also, because the states are non-orthogonal, the encoder
cannot retain a copy of them, or indeed any memory of them, if they
are to be faithfully reconstructed at the receiving end. A quantum
encoder is like a discreet telegrapher, who transmits messages
without remembering them.

Source coding removes redundancy, allowing data to be sent
more efficiently through a noiseless channel. Error-correction or
channel coding, in contrast, introduces redundancy to enable data
to withstand transmission through a noisy channel. The simplest
classical error-correcting code is the triple repetition code 0 → 000,
1 → 111, which permits the encoded bit to be faithfully recovered
after up to one transmission error in the three-bit codeword.
Analogous error-correcting codes exist for quantum data, but
they require more redundancy because they need to protect not
only boolean states, but also arbitrary superpositions of them15–20.
Thus the simplest single-error-correcting quantum code (Fig. 2b)
encodes an arbitrary input qubit |w〉 into an entangled state of five
qubits, in such a way that if any one is corrupted en route, the
decoder can funnel the effects of the error into the four ancillary qubits,
while restoring the first qubit to its original state. Analogously to
classical capacity, the quantum capacity Q of a noisy channel can be
defined as the limiting ratio of faithfully transmitted qubits per
noisy-channel use that is achievable by quantum error-correcting
codes. This quantum capacity is usually less, and can never be
greater, than the same channel’s capacity C for transmitting classical
bits. The inequality Q < C holds for all channels because if a
channel can faithfully transmit a general qubit, then it can certainly
transmit the particular qubits |0〉 and |1〉.

The discovery of quantum error-correcting codes in 1995 came as
a great surprise, probably because people were used to thinking of
classical error correction in language unsuited to quantum generali-
zation. For example, triple repetition, if it is taken to mean making
three copies of the input qubit (w → w # w # w), flies in the face of
the well-known impossibility of exactly copying (‘cloning’) an
unknown quantum state. In retrospect, the natural quantum gen-
eralization of triple repetition can be seen instead to be the mapping
aj0〉 þ bj1〉 → aj000〉 þ bj111〉, which does not violate any quan-
tum principle and indeed suffices to correct single qubit errors in
any boolean input. As noted above, two more bits of redundancy are
needed to extend the protection to non-boolean inputs. Although
analogous in structure to classical discrete error-correcting codes,
quantum error-correcting codes have the remarkable ability to
protect a continuum of inputs from a continuum of errors. For
example, in Fig. 2b, the input qubit might be a photon of any
polarization state, and the error (red) might be a rotation of one of
the five channel qubits’ polarizations by an arbitrary amount;
nevertheless, the error would be corrected. This is a beneficial side
effect of the linearity of quantum mechanics: if a quantum error-
correcting code protects a sufficiently rich discrete set of inputs
from a sufficiently rich discrete set of error processes, then it will
also protect any superposition of those inputs from any super-
position of those errors. Besides the simple capacities C and Q,
quantum channels have assisted capacities Q2 and CE mentioned
above, which will be discussed later.

The oldest branch of quantum information theory21–23 concerns
the use of quantum channels to transmit classical information. Even
the seemingly pedestrian classical capacity C is not easy to calculate

for quantum channels, because it may depend on using a quantum
encoder to prepare inputs entangled over multiple uses of the
channel, and/or a quantum decoder to perform coherent measure-
ments on multiple channel outputs. Unlike any classical channel,
some quantum channels are superadditive, in the sense that more
classical information can be sent through n parallel uses of the
channel than n times the amount that can be sent through one use of
the channel24–28.
Entanglement-assisted communication. Two forms of quantum
information transmission that have no classical counterpart, but are
closely related to each other, are quantum teleportation29 (Fig. 3a)
and quantum superdense coding30 (Fig. 3b). These involve an initial
stage in which a pair of particles in a maximally-entangled state such
as

��
1
2

p
ðj00〉 þ j11〉Þ (often called an Einstein–Podolsky–Rosen or

EPR pair) is shared between two parties, followed by a second stage
in which this shared entanglement is used to achieve, respectively,
transmission of a qubit via two classical bits, or transmission of two
classical bits via one qubit. Quantum teleportation illustrates the
fact that transmission of intact quantum states requires two quali-
tatively different resources: a quantum resource that cannot be
cloned, and a directed resource that cannot travel faster than light.
In direct transmission of a qubit, these two functions are performed
by the same particle. In teleportation the former function is
provided by the shared EPR pair, the latter by the two classical
bits. This situation may be summarized by saying that classical
information theory involves one species of information, and one
kind of noiseless communication primitive (transmission of a bit),
whereas quantum information theory involves two species (classical
information and entanglement), and three primitives (transmitting
a bit, transmitting a qubit, and sharing an EPR pair) which are
related through superdense coding and teleportation.

Superdense coding (Fig. 3b) is an example of entanglement-
assisted classical communication, and shows that CE ¼ 2 for the
noiseless qubit channel, while C ¼ Q ¼ 1. Surprisingly, the ratio
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Figure 2 Quantum data compression and error correction. a, In quantum data
compression, inputs from a redundant source (here, an unknown sequence of horizontal
and diagonal photons) are unitarily transformed into an entangled state (blue) in which
almost all the information has been concentrated into some of the photons, allowing the
others to be discarded. At the receiving end of the channel the discarded photons are
replaced by standard (horizontal) photons and the unitary transformation is undone,
resulting in a close approximation to the original state. b, A quantum error-correcting code
with unitary encoder and decoder. An arbitrary input qubit |w〉 is entangled with four
standard |0〉 qubits in such a way that if any one of the five qubits is spoiled, the decoder
can still restore the original state exactly.
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CE/C typically increases with increasing noise, and indeed can attain
arbitrarily large values for channels so noisy that their quantum
capacities Q and Q2 both vanish31. Thus, unlike most quantum
effects, entanglement enhancement of a quantum channel’s classical
capacity does not disappear in the limit of large noise. In this respect
it resembles the ability of bulk nuclear magnetic resonance systems
to carry out nontrivial quantum computations while remaining
close to thermal equilibrium.

Superdense coding and teleportation have received much labora-
tory attention recently. The first work was by the Innsbruck group32,
which implemented a version of superdense coding in which three
distinguishable states (rather than the theoretical maximum of
four) are created by manipulating one member of an EPR pair of
polarization-entangled photons. Teleportation using these photon
states was more recently achieved by the same group33; by using
these techniques several other protocols involving entanglement,
for example, the creation of three-particle entanglement, has
become possible. An experimentally different approach in which
another attribute of one of the EPR photons (such as its position) is
teleported has been implemented in Rome34. This experiment is
easier in that it involves two rather than three photons. A very recent
experiment35 has followed more directly a version of a teleportation
scheme due to Vaidman36, in which continuous quantum degrees of
freedom are teleported. This work demonstrates that an arbitrary
quantum state of one optical mode can be teleported with good
fidelity; taking into account limitations on the intensity of the
mode, one finds that roughly a one-million-state quantum system is
involved, in contrast to the two-state systems used in the earlier
work. Finally, the operations necessary to teleport a nuclear spin
state have been performed using nuclear magnetic resonance37,
although the range of teleportation is only the distance across a
single molecule.

Although entanglement by itself cannot be used to transmit a
classical message, it can reduce the amount of classical commu-
nication required to perform a distributed computation13,38,39.
Classically, ‘communication complexity’ refers to the amount of
communication needed to evaluate a function of several inputs in
remote locations. For example, if Alice and Bob each have appoint-
ment calendars with n time slots, O(n) bits of communication are
required to determine if there is a time when they are both free. If
they are allowed to share prior entanglement, or if they are allowed
to communicate using qubits rather than bits, the communication
complexity of this problem is reduced from O(n) to Oð

���
n

p
log nÞ.

Quantifying and distilling entanglement. Because of its usefulness
in protocols such as teleportation, it is important to have quanti-

tative measures of entanglement, and to know whether all entangled
states (those not expressible as products of states of their parts, or
probabilistic mixtures of such products) can be converted into EPR
pairs, and if so, how efficiently. In the case of bipartite pure states,
entanglement is naturally measured by the state’s entropy of
entanglement, the von Neumann entropy of either subsystem
considered alone. For such states40–42 the entropy of entanglement
E(W) is equal both to the state’s entanglement of formation—the
number of EPR pairs asymptotically required to prepare one
instance of the state by classical communication and local opera-
tions—and its distillable entanglement—the number of pure EPR
pairs that can be asymptotically prepared from one instance of the
state by classical communication and local operations.

For mixed states, and states of three or more parties, the situation
is more complicated, and there are several non-equivalent kinds of
entanglement. Multipartite states, pure and mixed, have been
studied43–45. Mixed states generally have a distillable entanglement
that is less than their entanglement of formation, reflecting the
irreversibility of the mixing process. An extreme form of this
phenomenon is the existence of so-called ‘‘bound’’ entangled
states46—mixed states which are entangled, but from which no
pure entanglement can be distilled.

Entanglement distillation is important not only for quantifying
entanglement but as a distinctively quantum kind of error correc-
tion, complementary to the use of quantum error-correcting
codes20,47,48. Suppose Alice and Bob can communicate classically,
and in addition have access to a noisy quantum channel. Now Alice
wants to send an unknown qubit reliably to Bob. If the quantum
channel is not too noisy, she can encode the input qubit into several
qubits using a quantum error-correcting code as in Fig. 2b, send
these through the noisy channel, and have Bob decode them.
However for very noisy channels, such as a 50% depolarizing
channel, this will not work, because such channels have zero
quantum capacity Q ¼ 0. In this case the best known strategy is
for Alice not to send the input qubit through the channel at all, but
instead prepare a number of pure EPR pairs, and share them
through the noisy channel with Bob (resulting in noisy EPR
pairs). Then, using their ability to communicate classically, Alice
and Bob distill a smaller number of good EPR pairs from the larger
supply of noisy ones. Finally, Alice uses one of the good EPR pairs,
and additional classical communication, to teleport the input qubit
safely to Bob. The ability of entanglement distillation to salvage such
noisy EPR pairs gives rise to a fact noted earlier, that for many
channels the classically-assisted quantum capacity Q2 exceeds the
direct quantum capacity Q. (However, this advantage depends on
two-way classical communication between Alice and Bob—if they
are limited to one-way communication, distillation is no more
efficient than quantum error-correcting codes.) As a function of
increasing noise, a typical quantum channel passes through two
thresholds; a noise level beyond which Q vanishes but Q2 and C
remain positive; and a threshold beyond which Q2 vanishes but C
remains positive.
Quantum fault-tolerant computation. QFTC is both an expansion
of research in the theory of quantum information processing and a
practical necessity for implementing non-trivial quantum compu-
tation in the laboratory. Modern QFTC has been well reviewed (see
ref. 3 and references therein); some of the basic ideas are sketched in
Fig. 4. To avoid irrecoverable damage from a single error, an
appropriate quantum error-correcting code is used to spread the
logical state |wL 〉 being stored or processed over several physical
qubits, carried by a bundle of parallel wires. Periodically the bundle
passes through a restorative gate array R, where it interacts with
clean ancilla qubits from the environment, in order to correct the
errors by funnelling them into the ancillas, which are then dis-
carded. Additional errors may occur during the restoration process
itself, but if these are not too numerous they will be corrected by a
subsequent restoration step (Fig. 4a). Such a regimen of active
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Figure 3 Quantum information transmission between a sender (Alice) and a receiver
(Bob). a, In quantum teleportation, prior sharing of an EPR pair, and transmission of a two-
bit classical message from Alice to Bob suffice to transmit an unknown quantum state
even when no direct quantum channel from Alice to Bob is available. b, In quantum dense
coding, prior sharing of an EPR pair, and transmission of a single qubit from Bob to Alice,
suffice to transmit an arbitrary two-bit classical message (x,y).
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restoration can be used to implement a fault-tolerant quantum
memory, able to hold quantum states reliably for much longer than
the natural decoherence times of the hardware of which the array is
built. Apart from the fact that it operates on quantum rather than
classical data, this is entirely analogous to devices such as the
dynamic random access memory (DRAM) used in today’s compu-
ters, in which periodic signal restoration serves to delay the decay of
the stored data almost indefinitely. To perform quantum computa-
tion fault-tolerantly, it is also necessary, besides storing the data, to
perform gate operations on it without decoding it from its protected
form. For some gates, such as the XOR, this can be done in a
straightforward fashion, by applying the gate operation successively
to wires in a bundle (Fig. 4b). Other gate operations, including some
necessary single-qubit rotations, must be implemented in a more
complex fashion, involving preparation and testing of special
entangled states of a set of ancilla qubits, which are then brought
into interaction with the encoded data to perform the desired logical
transformation3.

The promise of quantum computation lies in the fact that, to
perform a t-step computation fault-tolerantly, the number of gates
and wires need only be multiplied by a factor polynomial in log t.
Therefore, for computations with a significant quantum speed-up, a
quantum computer would still vastly outperform any classical
computer on sufficiently large inputs.
Quantum cryptography. This is the art of applying the unique
properties of quantum systems to cryptographic goals, that is, the
protection of classical information from tampering or unauthorized
disclosure in a multi-party setting where not all the parties trust one
another. This adversarial element distinguishes it from the kinds of
quantum information processing considered earlier.

One important quantum cryptographic task, quantum key dis-
tribution has as its goal the sharing of a secret random bit string K,
called a cryptographic key, between the two protagonists Alice and
Bob, who have at their disposal an insecure quantum channel and a
public classical channel. (Purely classical protocols for key agree-
ment exist and are in widespread use, but these result in a key that is
not informationally secure—an adversary with sufficient comput-
ing power could infer it from the public messages exchanged
between Alice and Bob. In particular, the most widely used classical
key agreement protocols could be easily broken by a quantum
computer, if one were available.) In quantum key distribution, an
eavesdropper (‘Eve’) is allowed to interact with the quantum
information carriers (for example, photons) en route from Alice
to Bob—at the risk of disturbing them—and can also passively
listen to all classical communication between Alice and Bob, but she
cannot alter or suppress the classical messages. Sometimes (for
example, if Eve jams or interacts strongly with the quantum signals)
Alice and Bob will detect the excessive eavesdropping and abort the
protocol; but, for every eavesdropping strategy, Eve’s probability of
remaining undetected and obtaining significant information on the
key should be negligible.

The practical implementation of quantum key distribution is
much farther advanced than other kinds of quantum information
processing, owing to the fact that the standard quantum key
distribution protocols require no two-qubit interactions, only
preparation and measurement of simple quantum states, along
with classical communication and computations. Optical proto-
types working over tens of kilometres of fibre, or even through a
kilometre of open air at night, have been built and tested. In
principle, however, a quantum key distribution protocol could
involve quantum computations by Alice and Bob; and to be sure
of its security, one ought to allow Eve the full power of a quantum
computer, even though Alice and Bob do not need one for the
standard protocols.

Various proofs of security of quantum key distribution protocols,
especially the four-state ‘‘BB84’’ protocol of ref. 49, have been
offered. A complete security proof should encompass all attacks

allowed by the laws of quantum mechanics, and should also be able
to cope with noise under the realistic assumption that it arises not
only from eavesdropping but also from noisy channels and detec-
tors. Finally, it should provide a way of calculating a safe rate of key
generation as a function of the noise level observed by Alice and
Bob. Recent proofs50,51 building on a long history of previous
security proofs against more limited attacks48,49,52,53, have largely
met these criteria, the main remaining problems being to simplify
the proofs, improve the error thresholds, and to extend them to
cover realistic sources, which do not emit exact single-photon states
or exact EPR pairs, and in extreme cases may even have been
sabotaged by Eve.

Given the success of quantum key distribution, there was high
hope that quantum techniques could help with another task, two-
party oblivious function evaluation, a better name for which might
be ‘‘discreet decision-making’’. This is the task, which arises fre-
quently in commerce and diplomacy, of enabling two mutually
distrustful parties to cooperate in evaluating a publicly agreed
function of private data held separately by each party, without
compromising the private data any more than it would have been
compromised had they assigned the job of evaluating the function
to a trusted intermediary. Initially Alice knows data x and Bob
knows data y; when the protocol is finished, Alice and Bob should
each also know f(x,y), but neither party should know any more
about the other party’s private input than can logically be inferred
from a knowledge of their own data and the common function value
f(x,y). Classical protocols for oblivious function evaluation exist,
but, like classical key agreement protocols, they are not informa-
tionally secure and could be broken by a quantum computer. Hopes
for finding a quantum basis for absolutely secure oblivious function
evaluation were dashed by the discovery that a fundamental build-
ing block of all known oblivious function evaluation protocols,
called bit commitment, is insecure in principle against quantum
attacks54,55. Bit commitment is the idealization of a protocol in
which Alice sends Bob a locked box containing a bit 0 or 1 of her
choosing, written on a piece of paper, then later, at a time of her
choosing, sends him the key so that he can open the box and then
read the bit. Quantum bit commitment is insecure because of a
fundamental property of entangled states, namely that if two pure
states of the Alice–Bob system are indistinguishable to Bob, they
must be interconvertible by a local action of Alice; thus there is in
principle no way of implementing a locked box containing a bit
value that is both unmodifiable by Alice and unobservable by Bob.

The similarities and differences between classical and quantum
information are summarized in Table 1.

Experimental studies of quantum information
The continuing maturation of the theory of quantum information
and quantum computation has stimulated experimental work in a
great variety of disciplines, in optics and quantum optics, in single-
atom and single-ion research, and in several areas of precision
spectroscopy. We will touch on some of the progress along these
lines here. We will not mention here the very interesting prospects of
using solid-state quantum technology—quantum dots, semicon-
ductor microcavities, ultrasmall Josephson junctions, and so
forth—to achieve quantum gate operation, which apparently lie
several years further into the future.

‘Flying qubits’ will be needed to implement many of the quantum
processing protocols described above. Because of developments in
quantum cryptography, high-quality flying qubits in the form of
photons travelling on optical fibres are now produced routinely in
several laboratories. An important innovation, introduced by the
Gisin group at the University of Geneva56, helps to make reliable
photon transmission through unreliable fibres a possibility. It
involves the use of a Faraday mirror, which reflects any light that
strikes it into an orthogonal polarization. In their scheme a strong
coherent-state double pulse of light is sent from Bob to Alice on an
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optical fibre; Alice attenuates it to one-photon intensity, sets the
relative phase of the two pulses to obtain one of four quantum states
of the photon, and finally Faraday-reflects this photon back to Bob.
The Faraday reflection ensures that any distortions or variations of
the propagating light mode due to birefringence (anisotropy of the
index of refraction) in the photon transmission from Bob to Alice
are undone in the return transmission. With this invention a
remarkable interferometric stability is attained: the fringe visibility
of their 23-km transmission system used as an interferometer has
reached 99.98%, implying that the phase of the photon is reliable to
0.03 radians. This means that high-purity quantum states of light
are being successfully transmitted in this system.

Their ability to store and process qubits with ‘standing qubits’ can
greatly augment the capabilities of ‘flying qubits’ for the processing
of quantum information. For example, the ability to do quantum
computation in conjunction with quantum communication would
qualitatively enhance the ability to do quantum cryptography,
permitting the use of quantum repeater elements and opening up
new techniques for defeating eavesdropping, as well as permitting
cryptography over indefinitely long distances57,58. With this in mind,
workers have proposed a marriage of techniques from photon-fibre
systems and trapped-atom (or ion) systems. In these schemes60,61, a
‘standing qubit’ encoded in a state of the atom is mapped by an
appropriate laser pulse59 into the same qubit state of the photon
state of a surrounding electromagnetic cavity, and can from there
become a ‘flying qubit’ by leaking out into a propagating mode in
free space or in an optical fibre. The unexpected feature of this
procedure is the next step, in which the propagating photon then
impinges on a replica of the sending system. If the photon wave
packet has been tailored properly, this cavity–atom system can be
made to recapture the photon into the atomic state by a suitable
time-reverse of the sending procedure.

Although extensions of the original two-bit gate demonstration
in cavity quantum electrodynamics62 have brought us closer to this
goal of marrying flying and standing qubits we do not yet have an

elementary functioning prototype. Optical quantum electrody-
namics (QED) experiments have not succeeded in entangling the
states of two ‘standing qubits’, but such entanglement has been
achieved in experiments in related areas, in microwave cavity QED
(ref. 63) and in ion-trap studies64.

Unfortunately, the controllable creation of entanglement with
two-qubit quantum gates is only one of a formidable checklist of
ingredients that a physical experiment must have if it is to realize a
quantum computer. There are at least four other milestones which
must be achieved66: (1) The system should be extendible to a large
number of qubits. (2) It must be possible to place the qubits reliably
in the ‘‘0’’ or cleared state at the outset. (3) The decoherence rate
must, as explained above, be very low (that is, below some suitable
threshold). (4) It must be possible to do single-quantum sensitivity
measurements (if only one copy of the quantum computer is
available) or an accurate ensemble measurement in a qubit-specific
fashion (if many copies of the quantum computer are available).

A full-scale experiment of any type to realize all of these criteria
simultaneously is still a long way off. In the area of ion-trap research,
concerted efforts are being undertaken by a number of experimental
groups to realize the original Cirac and Zoller proposal67 for ion-
trap quantum computing, which created great excitement and
interest five years ago. The proposal of these authors was nothing
less than a scheme for realizing all of the requirements for quantum
computation mentioned above: qubits are to be represented by the
internal (spin) states of individual ions held in the electromagnetic
trap; extending the number of qubits is to be achieved by adding
more atoms to the trap. The techniques of laser cooling would serve
to put the system in the ‘‘0’’ state. Coupling to the environment in
the ion trap is low, and thus qubits with acceptable decoherence
properties are known. The technique known as quantum-jump
spectroscopy provides for the possibility of virtually single-quan-
tum measurements of almost 100% efficiency. The heart of the
proposal is a detailed scheme for the realization of two-qubit
quantum operations: their procedure involves a coupling of the
internal ion state with the quantum state of vibration of the ions in
the trap. Because these oscillations involve collective modes of all the
ions, entanglement of the internal ion states becomes possible.
Unfortunately, one feature of the Cirac–Zoller computer—cooling
to the ground state of motion of the trap—has proved to be very
difficult to achieve, and this essential step has only been accom-
plished reliably by one group for one65 or two64 ions.

While it is clear that the trap ideas are on a steady track of
progress, naturally workers in other fields hope that their techniques
will enable them to leapfrog the atomic physicists and get ahead in
the ‘quantum computer race’. The proponents of nuclear magnetic
resonance spectroscopy (NMR), as practised in organic chemistry,
have made a bold move in this direction. NMR spectroscopy has
many useful features for application to quantum computation: in a
well-understood limit of rapidly tumbling molecules in solution,
the hamiltonian of the nuclear spins of the molecule assumes a very
simple form:

H ¼
î

qij
i
z þ

î;j

J ijj
i
zj

j
z ð3Þ

(Here jz is the angular momentum operator of the spins, q is the
Zeeman splitting, and J is the exchange interaction parameter.) This
depends only on the z-component of the nuclear spins (labelled i
and j here). A system with this hamiltonian is well adapted to
quantum computing68,69: as it commutes with all ji

z operators, every
computational basis state is an eigenstate. Thus, the state of the
system only changes when a resonance pulse is applied, so that the
dynamics of the system is entirely under external control. By
appropriate frequency and time selectivity, an external pulse can
perform a very finely tailored operation, for example, flipping one
particular spin i if another specific spin j is up; this is the essence of
the fundamental two-qubit XOR gate for quantum computing. In
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Figure 4 Fault-tolerant computation. a, Fault-tolerant error-correction circuit with cold
ancillas coming in and corrupted ones being discarded. b, Performing the XOR operation
on encoded data without decoding it.
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addition, the pulse operations can be done much faster than the
decoherence time of 1–10 seconds in a well-chosen molecule.
Finally, in a situation in which many identical copies of the quantum
computer are available (the many identical molecules in solution),
the readout of the final result can be accomplished by an ensemble
measurement of the transverse magnetization, a standard operation
in NMR.

After the initial proposals of refs 70 and 71, there has been a flood
of work on few-qubit systems, so numerous that we will just
enumerate the accomplishments in this area briefly here: the
action of two- and three-bit quantum gates has been demonstrated
in the protons in 2,3-dibromothiophene and in 1-chloro-2-
nitrobenzene72, the Deutsch–Jozsa algorithm73 and the Grover
algorithm74 have been demonstrated using the H and 13C spins in
chloroform, the three H and C spins in trichlorethylene have been
used to simulate the synthesis of Greenberger–Horne–Zeilinger
states75, to perform teleportation37 (see above), and to simulate the
action of the three-qubit quantum error-correcting code76 (the three
C spins in alanine were also used in this last study), protons in
cytosine have been used to implement the original Deutsch
algorithm77 as well as the quantum counting algorithm78, and 2,3-
dibromopropanoic acid has been used for some simple three-qubit
gate arrays79.

The NMR practitioners are pressing on to implement more
quantum information processing in molecules with larger numbers
of spins. However, there are a couple of large obstacles to immedi-
ately going on to large-scale quantum computation; probably these
are not insuperable, but they may serve to make the progress of
NMR quantum computing no faster than that in atomic physics or
in other areas. One problem is just that the frequency-domain
addressing which is used, in which each qubit has a distinct chemical
shift qi, becomes difficult when the number of qubits grows large. A
second problem (this will probably be the more immediate reason
that the NMR technique will have to be radically modified to do
quantum computation at a scale much greater than about 10 qubits)
has to do with state preparation: the spin states of the molecules in
the solution at room temperature are almost perfectly random, with
a slight bias e for the zero qubit state (typically e, proportional to kBT
divided by the nuclear Zeeman energy, is of the order of 10−6). The
number of molecules in the solution starting in the correct state,
rather than the completely random state, scales with e2−n, where n is
the number of spins in the molecule. The signal strength thus
becomes exponentially small in the number of qubits, and all
advantage gained from doing quantum computation is lost. This
problem can be solved if e can be increased to nearly one; there are
innovative techniques in optical pumping which hold out the hope
of doing this. While there is reason for optimism in these areas, we
think that it will require many years of concerted effort.

We recall59 the incident at a quantum computation meeting in
Torino in 1995, when Shor offered a bet that the first factoring of a
500-digit number would be accomplished by a quantum and not a
classical computer. There were no takers on the other side, but some
commented that they would prefer to bet on a third possibility, that
the Sun would burn up first. Although these sceptics have not been
entirely silenced, on balance we are more in agreement with Shor
than we were then. We think the odds in favour of the quantum
computer have improved and will continue to increase slowly as
more years of steady progress are made. M
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