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Simulation software

• Simulation programs:
+ Solve numerically physical equations
+ Emulate logical operation

• Under specific assumptions and simplifications
+ Physical laws
+ Algorithms
+ Initial states

• Only in limited finite number of points
+ In spatial coordinates
+ In temporal evolution
+ In logical states

• There are errors



Simulation software

• To reduce errors we can refine equations and grid
+ More accurate equations
+ More second order effects
+ Finer spatial grid
+ Finer temporal resolutions

• Computing time increases  

• In order to reduce computing time we make 
simplifications
+ Models



What to simulate

• Behavioral models Simulink, ADS
• Functional and System Level System Verilog, System C
• Logical and RTL VHDL, Verilog
• Electrical Circuits SPICE, Spectre
• Microelectronic Processes  Suprem, Dios
• Electronic devices Pisces, Medici, Atlas, Minimos
• Mechanical devices Ansys, Coventor
• Radiation behavior Geant4

• Computer sophistication: 
+ 1D, 2D, 3D
+ Static, transient



ASIC development flow



ASIC development flow



Available software

• TMA (TSUPREM4, MEDICI)
• ISE-TCAD

SENTAURUS

• SILVACO (ATHENA, ATLAS)



Available software

• TMA (TSUPREM4, MEDICI)
• ISE-TCAD

• SENTAURUS

• SILVACO (ATHENA, ATLAS)



Synopsis packages



Silvaco packages



SPICE
Electrical Circuit

Full Custom Analog Design



SPICE

• SPICE: developed at University of California-Berkeley. 
Most widely used computer program package for EEs.

• General purpose analog simulator, containing models 
for most circuit elements.

• Outstanding tool for precise simulations of complex, 
non-linear circuits.

• Main analyses: 
+ DC
+ Transient 
+ AC

• However: Only as good as the device models and 
parameter values used � “Garbage in, garbage out”



SPICE

• Purpose: Perform numerical circuit analysis
• Method:

+ Represent each circuit element by a mathematical model
+ Enforce Kirchoff’s laws at all nodes
+ Solve resulting set of equations of the type:

F: linear/nonlinear operator
x: unknown vector of circuit variables (current, voltage)

• DC analysis: Stationary equations– iteration/matrix method
• AC analysis: Linearize around the operating point
• Transient analysis: DC analyses and numerical integration

0),,( =txxF



SPICE

• Infinite varieties:
+ SPICE2/3
+ HSPICE
+ Spectre
+ Pspice

• Many models (>80)
+ MOSFET: (Level 1, 2, 3), BSIM3V3, BSIM4, EKV, Philips
+ BJT: VBIC, Mextram, UCSD-HBT, HICUM
+ JFET/MESFET
+ TFT
+ Diode
+ Resistors, capacitors, transmission lines, ...



SPICE Example

VIN 1 0 DC 0 + PULSE(-0.5 
+ 0.5 0.1u 1n 1n 0.3u 2u) AC 1
VCC 8 0 12
VEE 9 0 -12
Q1 4 2 6 QNL
Q2 5 3 6 QNL
RS1 1 2 1K
RS2 3 0 1K
RC1 4 8 10K
RC2 5 8 10K
Q3 6 7 9 QNL
Q4 7 7 9 QNL
RBIAS 7 8 20K
.MODEL QNL NPN(BF=80 RB=100 
+ CJS=2PF TF=0.3NS TR=6NS
+ CJE=3PF CJC=2PF VA=50)



SPICE Example



SPICE Models

• Diode Model 
Parameters



HSPICE

• Synopsis HSPICE specific features
+ Behavioral Modeling with Verilog-A
+ IC Cell Characterization
+ RF Analysis
+ Encrypted models
+ Optimization techniques

– Corner analysis
– Monte Carlo



Full simulation

• Sigma-delta modulators are hard to simulate
• Problem in two time scales

+ Modulation frequency 1 kHz
+ Internal clock 1 MHz

• Full simulation > 64 clock periods = 75ms with 1µs 
resolution

• Total simulation time with Spectre (spice) = 1 month
• Not practical for design optimization

Need for combination of simulators



Solution

• Use of MATLAB Simulink Macro Model

• Simulation time 50 sec
• Power scan = 50 points at different input power

+ Spice: 50 month
+ Simulink: 40 minutes



Process Simulation



Process Simulation

• Allow the simulation of different fabrication processes, as well as 
complete technologies

• Started with unidimensional Suprem from Stanford University
+ Implant profiles
+ Thermal diffusion and oxidation
+ Layer deposition
+ Etching

• Still there are simple unidimensional programs (Silvaco
SSUPREM3, ICECREM)



Process Simulation

• Simulators evolve to 2D with very accurate models
• Initially it was different programs for different topics:

+ Implant and thermal process
+ Deposition
+ Photolithography
+ Optics

• 2D and 3D separate programs
• Today all process are integrated in the same program, except 

specialized features
+ Deep submicron lithography
+ Parasitic extraction

• Today 1D, 2D and 3D are integrated in the same program



Process Simulation Benefits

• Design state of the art devices, from big power transistors to sub-
micron devices

• Predict 1, 2 and 3 dimensional device structure characteristics 
• Evaluate and refine conventional and novel isolation technologies, 

such as LOCOS, SWAMI, deep trench and shallow trench isolation
• Analyze stress history in all layers as a result of thermal oxidation, 

silicidation, thermal mismatch, etching, deposition, and stress 
relaxation at high temperatures

• Determine basic electrical device characteristics, such as sheet
resistance, threshold voltage and C-V curve (including quantum-
mechanical correction)

• Link process structures for two-and three-dimensional device 
analysis using Avant!’s with device simulators



MESH

• The key for an accurate 
simulation is to use a good 
mesh of the area of interest

• There are automatic mesh 
generation 

• Tools for local mesh 
refinement

• Structure and mesh editors

• It is important to keep mesh 
nodes at a minimum to avoid 
extreme (months) processing 
times



Mesh generation example

go athena
#TITLE: Oxide Profile Evolution Example
# Substrate mesh definition
line y loc=0    spac=0.05
line y loc=0.6  spac=0.2
line y loc=1       
line x loc=-1   spac=0.2
line x loc=-0.2 spac=0.05
line x loc=0    spac=0.05
line x loc=1    spac=0.2
init orient=100



Process Models

• Accurate models are also crucial.
• Models depend on equipment manufacturer
• Software vendors distribute library models for most 

equipments in the market
• Many second order effects incorporated in last soft 

versions

• Nevertheless, process simulation is not a 
straightforward task, and requires deep technology 
knowledge.
+ There are hundreds of models to choose
+ There are thousands of parameters to choose



Example: Bird beak's LOCOS evolution



Example: Implant models

# Gauss (symmetrical) implant
# (parameters are in std_tables)
moments std_tables
implant phos dose=1e14 energy=40 

gauss 

implant phos dose=1e14 energy=40 
pearson print.mom

#Use SVDP method (default)
moments svdp_tables 
implant phos dose=1e14 energy=40 

print.mom

Comparison of Gauss, Pearson and SVDP methods



Technology Simulation: Diode

•go athena
•
•line x loc=0.00 spac=150
•line x loc=599.7 spac=150
•line x loc=600.3 spac=0.1
•line x loc=600.6 spac=0.05
•line x loc=600.9 spac=0.1
•line x loc=601.0 spac=50
•line x loc=800.0 spac=150
•#
•line y loc=0.0  spac=0.5
•line y loc=0.5  spac=0.5
•line y loc=0.7  spac=0.1
•line y loc=0.8  spac=0.05
•line y loc=1.3  spac=0.05
•line y loc=1.5  spac=0.1
•line y loc=1.7  spac=0.5 
•line y loc=280   spac=50



Technology Simulation: Diode

•init silicon c.phosphor=1e12 orientation=100 two.d

•# Field Oxidation
•#include ohc-10000.ss3
•diffus temp=800 time=10 f.n2=6.0
•diffus temp=800 time=60 f.n2=6.0 t.final=1100
•diffus temp=1100 time=2 f.n2=6.0
•diffus temp=1100 time=1 f.o2=6.0
•diffus temp=1100 time=10 f.o2=6.0
•diffus temp=1100 time=145 f.h2=5.0 f.o2=3.5
•diffus temp=1100 time=10 f.o2=6.0
•diffus temp=1100 time=65 f.n2=6.0 f.o2=1.0 t.final=800
•diffus temp=800 time=2 f.n2=6.0 f.o2=1.0
•diffus temp=800 time=10 f.n2=6.0
•#
•extract name="field oxide" thickness material="SiO2" mat.occno=1 /  x.val=100
datafile="invdiodo.final“

•field oxide=10271.4 angstroms (1.02714 um)  X.val=100



Technology Simulation: Diode

•etch oxide left p1.x=600

•# Gate Oxidation (36.5 nm)
•#include oxptaaa.ss3
•#
•diffus temp=800 time=10 f.o2=6.0
•diffus temp=800 time=30 f.o2=6.0 t.final=950
•diffus temp=950 time=2 f.o2=6.0
•diffus temp=950 time=45 f.o2=6.0 f.hcl=.12
•diffus temp=950 time=5 f.o2=6.0
•diffus temp=950 time=30 f.n2=6.0
•diffus temp=950 time=35 f.n2=6.0 t.final=800
•diffus temp=800 time=12 f.n2=6.0
•#
•extract name="gate oxide" thickness min.v=10 max.v=1000 material="SiO~2" \
• mat.occno=1 x.val=100 datafile="invdiodo.final"

•gate oxide=384.608 angstroms (0.0384608 um)  X.val=100



Technology Simulation: Diode

•#Implantacion Bor
•implant boron dose=1e15 energy=50 pearson tilt=7

•# Drive-in inert ambient
•diffus temp=800 time=10 f.n2=6.0
•diffus temp=800 time=10 f.n2=6.0
•diffus temp=800 time=30 f.n2=6.0 t.final=950
•diffus temp=950 time=2 f.n2=6.0 
•diffus temp=950 time=30 f.n2=6.0
•diffus temp=950 time=35 f.n2=6.0 t.final=800
•diffus temp=800 time=2 f.n2=6.0 
•diffus temp=800 time=10 f.n2=6.0

•extract name="gate oxide2"  thickness
material="SiO~2"  mat.occno=1 x.val=100
datafile="invdiodo.final"

•extract name="wdif" xj material="Silicon" 
mat.occno=1 junc.occno=1 x.val=100
datafile="invdiodo.final"

•etch oxide left p1.x=590
•#etch oxide all
•#
•deposit alum thickness=0.2 div=3
•etch alum right p1.x=580
•#
•structure outf=invdiodo.str

•+ gate oxide2=384.608 angstroms
•(0.0384608 um)  X.val=100
•+ wdif=0.746732 um from top of
•first Silicon layer X.val=100



Technology Simulation: Diode



3D simulation

• Models can be used in 3D
• Mesh is more complicated
• Some effects can only be simulated 

with 3D process simulation, for 
example: 
+ Narrow width effect. 
+ Complex implant shadowing. 
+ Non-rectangular gate shape after 

OPC effects. 
+ FinFET. 



Conclusions

• If it is possible, first try to simulate the critical steps on 
the route between theoretical design and practical 
realization of the device

• Process Simulator is needed: by going through all 
process steps you can better understand and predict 
final performance of the device.

• Device Simulator helps to draw final conclusions about 
the device performance

• Is the previous step to accurate device simulation



Device Simulation



Device simulator

• Device simulation tools predict electrical, thermal and optical 
characteristics of semiconductor devices.

• A wide variety of devices can be modelled in one, two or three 
dimensions including MOSFETs, BJTs, HBTs, power devices, 
IGBTs, HEMTs, CCDs, photodetectors and LEDs.

• The most advanced physical models are commercially available, 
these tools allow device designs to be optimized for best 
performance without fabrication, eliminating the need for costly
experiments.



Device simulation benefits

• Analyze electrical, thermal and optical characteristics of your 
devices through simulation without having to manufacture the 
actual device.

• Determine static and transient terminal currents and voltages 
under all operating conditions of interest.

• Understand internal device operation through potential, electric
field, carrier, current density, recombination and generation rate 
distributions.

• Optimize device designs without fabrication and find ideal 
structural parameters.

• Investigate breakdown and failure mechanisms, such as leakage 
paths and hot carrier effects.

• Generate data for compact model generation to allow analysis of 
circuit designs before processing.



Simulation features

• Simulation of arbitrarily shaped 1D, 2D and 3D structures.
• Consistently solves Poisson’s equation, the electron and hole 

current continuity equations, the electron and hole energy balance 
equations, and the lattice heat equation.

• Steady state, transient and AC-small signal analysis with 
automatic I-V curve tracing and time-step algorithms.

• Ray tracing to simulate transmission, reflection and refraction 
across interfaces, as well as absorption and emission.

• Advanced adaptive mesh generation, which provides optimal grids 
with excellent solution and structure resolution using a minimum
number of mesh points.

• Arbitrary doping from analytic functions, tables and process 
simulation.



Simulation features

• Supports multiple materials such as Si, Ge, GaAs, SiGe, AlGaAs, 
InP, InGaAs, InGaAsP and SiC, as well as arbitrary user-defined 
materials (CdTe, CdZnTe).

• Optional physical model and equation interface, which allows a 
user to define and solve new physical models and partial 
differential equations.



Device Models

• Complete set of device simulation models, including SRH and 
Auger recombination models, bandgap narrowing, Fermi-Dirac and 
Boltzman statistics and gate current. 

• Extensive choice of mobility models including the Philips Unified, 
Lombardi Surface, Shirahata, Lucent, Inversion and Accumulation 
layer and composite-specific mobility models. 

• Mobility dependencies on impurity concentration, lattice 
temperature, carrier concentration, carrier energy, parallel and
perpendicular electric fields and mole fraction.

• Fowler-Nordheim, hot-carrier, band-to-band and direct tunneling 
models.

• Complete set of breakdown models, including stress dependent 
leakage current and carrier temperature dependent impact 
ionization.



Device Models

• Quantum mechanical models including the van Dort model, the 
modified local density approximation (MLDA) and a Schrodinger
equation solver.

• One or several physically modeled devices can be connected in a 
circuit with passive components and active devices with compact 
models (Hspice, BSIM3).



Device Simulation: Diode

•go atlas
•mesh INF=invdiodo.str cylindrical

•#Polarización del Diodo
•#polarizado a la difusion
•electrode name=anode number=1 top
•electrode name=cathode number=2
bottom

•models consrh conmob auger fldmob
bbt.std
•#models bipolar bbt.std print
•impact

•method newton climit=1e-4

•solve init

•log outf=invdiodo.log
•solve vcathode=0.1 vstep=1
vfinal=10 name=cathode
•solve vstep=50 vfinal=1800
name=cathode

•curvetrace curr.cont end.val=0.02 /
•contr.name=cathode mincur=1e-12 
/
•nextst.ratio=1.1 step.init=0.1
•solve curvetrace

•quit



Device Simulation: Diode



Optical interactions

• Light refraction/reflection
• Light-matter interaction
• e-h pair generation



3D transient simulation

• Example: charge collection after 
x-ray interaction



3D transient simulation



Example: Technology development

• A process variation with respect to MPI proposal
+ First: oxidation, photolitograpy p-stop regions, partial wet 

oxide etching, photoresist striping 
+ At this point there are two different oxide thicknesses

– thin oxide in the p-stop area and a thicker oxide on the rest of the 
silicon surface (“p-spray area”)

+ P-implant (Energy 50 keV, dose 1013 cm-2)
+ Finish with the usual fabrication process



Example: Simulated doping profiles



Example: Simulated breakdown voltage



Example: Doping profile comparison
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Example: Electric field comparison
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Simulation of irradiated devices

• Irradiated silicon behaves differently than standard one.
• As the microscopic mechanisms are not well 

understood, it is difficult to properly simulate irradiated 
devices.

• Two main effects:
+ Oxide (or dielectric in general) charge build up

– Very fast effect, seem to saturate, relatively easy to incorporate to 
simulator

+ Bulk damage
– Incorporation of new levels in the bandgap
– Not clear values
– Peruggia people (G.U.Pignatel, M.Petasseca) are developing 

different models
+ Annealing effects still pending



Simulation of irradiated devices

• Damage modelling
+ Deep levels: Et, σn and σp

+ SRH statistics
+ Uniform density of defect concentration

• Radiation damage effects to simulate:
+ The increasing of the Leakage Current
+ The increasing of the Full Depletion Voltage
+ The decreasing of  the Charge Collection Efficiency



Radiation effects in Sentaurus

• Sentaurus Device can simulate the degradation of semiconductor 
devices due to received radiation. 

• For now, this degradation is modeled as a change of trapped 
charge, which may cause a shift in device characteristics. 

• Usually, degradation is important in insulators (for example, oxide) 
and users should define these insulators as wide band-gap 
semiconductors so that the appropriate transient trap equations 
can be solved inside these regions.

• SEU effects due to alpha and heavy ions are also incorprated
natively in Sentaurus Device



Type Defect Energy σn σp η

Acceptor
Acceptor

Donor

V2 Ec-0.42 2.2e-15** 1.2e-14 13
V2O ? Ec-0.50 4e-15** 3.5e-14 0.08**
CiOi Ev+0.36 2e-18** 2.5e-15** 1.1**

*D. Passeri, P. Ciampolini, G. Bilei and F. Moscatelli, IEEE Trans. Nucl. Sci., vol. 48, pp. 1688-1693, 2001.

** M. Moll, Ph.D. Thesis, Hamburg University, 1999, DESY-THESIS-1999-040, ISSN-1435-8085

N-type 3-Levels Radiation Damage Model

• N-type silicon is more or less understood, and a three level model
works fine



P-type 2-Levels Radiation Damage Model

• (**) Levels selected from:  
+ M. Ahmed, et al., Nuc. Instr. And Meth A 457 (2001) 588-594
+ S.Pirolo et al., Nuc. Instr. And Meth. A 426 (1996) 126-130

• Two levels model is able to reproduce static characteristics 
(current and depletion voltage) of irradiated diodes

• This model is unable to reproduce the experimental Charge 
Collection Efficiency (CCE) of irradiated devices

• Hole cross section values are a best fit rather than physical
+ One or two order of magnitude bigger than measurements

Level** Ass. σn [cm-2] *σp [cm-2] η [cm-1]
VV(-/0) 1.6

Ec-0.46eV VVV(-/0) 5·10-15 5·10-14 0.9
Ec-0.42eV 2·10-15 2·10-14



P-type 3-Levels Radiation Damage Model

• Introduction of a donor level very important for Charge Collection 
(CC) simulations

• the donor defect level allows to reproduce the experimetal data.

• no changes for the Vdep and Leakage Current due to the donor 
defect level: 
+ α (simulated)= 3.8·10-17 A/cm
+ β (simulated) =(4.0 ±0.1) ·10-3 cm-1

Level Ass.
σn

[cm-2]
σp

[cm-2]
η

[cm-1]
VV(-/0) 1.613

Ec-0.46eV VVV(-/0) 5·10-15 *5·10-14 0.9
Ev+0.36eV ? CiOi? 2.5·10-14 (exp) 2.5·10-15 (exp) 0.9

Ec-0.42eV 2·10-15 *2·10-14



Other tools: Structure editor

• Allows device structure 
description without the need 
of process simulator 

• Different operational modes:
+ 2D structure editing, 3D 

structure editing, and 3D 
process emulation. Geometric 
and process emulation 
operations can be mixed 
freely,

• Powerful visualization.
+ Structures are displayed as 

they are created and view 
filters make it possible to 
select a subset of regions and 
to make regions transparent.



Other tools: Process emulator

• Three-Dimensional Process Emulator
• Part of structure editor
• Process emulation Editor translates processing steps, such as 

etching and deposition, patterning, fill and polish, into geometric 
operations. 

• Support forvarious options such as isotropic and anisotropic 
etching and deposition, rounding, and blending to account for 
specific processing effects.

• External layout files in CIF or GDSII format can be imported into 
the Editor

• Use of analytical models instead of process simulator reduces 
development time at the expense of accuracy



Other tools: Interconnect Analysis

• Collection of 2D and 3D field solvers 
and interfaces for interconnect 
analysis and modeling designed to 
simulate the electrical and thermal 
effects of complex on-chip 
interconnect. 

• The performance of DSM  
technologies is dominated by 
parasitic capacitance, resistance, and 
inductance of the interconnect 
structures. 

• Critical design issues –timing, power, 
noise and reliability– require accurate 
and robust interconnect models. 

• Simulation and extraction of 
interconnect capacitance, 
resistance, and inductance using 
field solvers and interfaces.

• SPICE netlist generation



Other tools: Workbench

• Software vendors provide with 
graphic interface for creating, 
managing, executing and analyzing 
process and device simulations

• Allow parameterization, repeating 
the  simulations for different values

• Automatic parameter optimization
• Batch and queuing control
• Link to visualization tools

• Use of process 
recipe libraries

• Automatic Design-
of-Experiment (DoE) 
generation and 
analysis (Response 
Surface Modelling)



Synopsis Sentaurus

• From Synopsis
• Merge of 

+ TMA
+ ISE-TCAD

• Suppose to be the 
best of both worlds



Synopsis Sentaurus



Silvaco TCAD



Silvaco packages



ANSYS

MEMS
Packaging



MEMS

• MEMS are Micro Electro Mechanical Systems
• Are system that incorporate in the same device 

electrical and mechanical features
• Are fabricated using silicon micromechanization
• Usually they have mobile parts
• They present new simulation needs

+ Mechanical, mobile parts, resonance
+ Electrical
+ Thermal
+ Fluidics
+ Physics
+ Coupled features (electro-mechanical for example)



Acelerómetro piezorresistivo triaxial simulación FEM
1g en z 1g en y

fn= 679Hz

Triaxial Sen[mV/(V*g)] Z [µm/g] Frec. [Hz]
z 0.855 0.647 679
y 0.097 0.099 1016
x 0.159 0.48 1419

1g en x

TRIAXIALTRIAXIAL

Puentes 
exteriores

Silicio

Vidrio

Sistema de 
protección 
de choques

Puentes 
centrales

1g en x

Design and simulation



Subdivisión en elementos:

Elementos:

Finite Element Modelization (FEM)



The ANSYS Multiphysics MEMS Initiative

Dr. Paul Lethbridge - Multiphysics Product Manager ANSYS MEMS 8.0 10/22/03



The ANSYS Family of Products

Educational/Non Educational/Non 
Commercial Use Commercial Use 

ProductsProducts

Ease of use &Ease of use &
Entry level capabilityEntry level capability

Powerful tools Powerful tools 
for the physics for the physics specialistspecialist

High performance High performance 
mechanical & Thermalmechanical & Thermal

Extreme functionalityExtreme functionality
The whole enchilada!The whole enchilada!ANANSYSSYS MultiphysicsMultiphysics

ANANSYSSYS MechanicalMechanical

ANANSYSSYS UniversityUniversity

ANANSYSSYS FLOTRANFLOTRAN

ANANSYSSYS EmagEmag

ANANSYSSYS ProfessionalProfessional
ANANSYSSYS StructuralStructural

ANANSYS SYS MCAD & ECAD Connection productsMCAD & ECAD Connection products



What is ANSYS Multiphysics? 

Structural

Fluid Thermal

Electrostatic

Electrical

Magnetic
Electro-

magnetic

A general purpose analysis tool allowing a user to to combine the 
effects of two or more different, yet interrelated physics, within one, 
unified simulation environment.



Benefits of Multiphysics 

• No other analysis tool provides as many physics under one roof!
• Greatest breadth and technical depth of physics.
• Fully parametric models across physics, geometry, materials, loads.
• Perform Design Optimization across physics, geometry, materials and 

loads.
• Seamless integration with ANSYS Probabilistic Design System (PDS).
• Extremely sophisticated analysis capability.
• Bottom line benefits:

+ Analysis closely match reality – bringing reality to the desktop
+ Reduced assumptions that question certainty and compromise accuracy.
+ Lower cost: Fewer analysis software tools to purchase,learn & manage.
+ Lower cost: R&D process compression



ANSYS Multiphysics 
MEMS Device Applications

• Inertial Devices

• Comb & thermal Actuators

• Pressure Transducers 

• RF Filters – Resonators

• Lab-on-a-chip

• Ink Jet printer technology

• Micromirror technology 

Structural

Fluid 

Thermal

Electrostatic

Electrical

Electromagnetic



SEM picture
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Example: Piezoresistive accelerometer



• Simulation• Idea

• Design

1 μm/g

Fibras ópticas

Masa

Guías de ondaAceleración

MarcoMarco

Example: Optical accelerometer



Package Thermal Strain Reduction

Images courtesy of Allen Miller, Nortel Networks



Radiation behavior
GEANT4



What is GEANT

• A Monte Carlo software toolkit to simulate the passage 
of particles through matter.

• It is for detector simulation of research in
+ High energy physics
+ Nuclear physics
+ Cosmic ray physics

• It is also for application in
+ Space science
+ Radiological science
+ Radiation background calculation
+ etc



How GEANT works

• General characteristics of a 
particle detector simulation 
program:
+ We specify the geometry of a 

detector.
+ Then the program automatically 

transports the particle injected to 
the detector by simulating the 
particle interactions in matter 
based on the Monte Carlo 
method.

• The heart of the simulation
+ The Monte Carlo method to 

simulate the particle interactions 
in matter
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