

Use of simulation software in microelectronics

Manuel Lozano

Salvador Hidalgo, Lluis Terés, José Antonio Plaza, Paco Serra, and many other contributors

Simulation software

• Simulation programs:

- + Solve numerically physical equations
- + Emulate logical operation

Under specific assumptions and simplifications

- + Physical laws
- + Algorithms
- + Initial states

Only in limited finite number of points

- + In spatial coordinates
- + In temporal evolution
- + In logical states
- There are errors

Simulation software

• To reduce errors we can refine equations and grid

- + More accurate equations
- + More second order effects
- + Finer spatial grid
- + Finer temporal resolutions
- Computing time increases
- In order to reduce computing time we make simplifications
 - + Models

What to simulate

- Behavioral models
 → Simulink, ADS
- Functional and System → Level System Verilog, System C
- Logical and RTL → VHDL, Verilog
- Electrical Circuits → SPICE, Spectre
- Microelectronic Processes → Suprem, Dios
- Electronic devices → Pisces, Medici, Atlas, Minimos
- Mechanical devices → Ansys, Coventor
- Radiation behavior -> Geant4
- Computer sophistication:
 - + 1D, 2D, 3D
 - + Static, transient

ASIC development flow

ASIC development flow

GUU

Available software

- TMA (TSUPREM4, MEDICI)
- ISE-TCAD

• SILVACO (ATHENA, ATLAS)

Available software

• SILVACO (ATHENA, ATLAS)

Synopsis packages

Silvaco packages

SPICE Electrical Circuit Full Custom Analog Design

SPICE

- SPICE: developed at University of California-Berkeley. Most widely used computer program package for EEs.
- General purpose analog simulator, containing models for most circuit elements.
- Outstanding tool for precise simulations of complex, non-linear circuits.
- Main analyses:
 - + **DC**
 - + Transient
 - + **AC**
- However: Only as good as the device models and parameter values used "Garbage in, garbage out"

SPICE

- Purpose: Perform numerical circuit analysis
- Method:
 - + Represent each circuit element by a mathematical model
 - + Enforce Kirchoff's laws at all nodes
 - + Solve resulting set of equations of the type:

$$F(x, \dot{x}, t) = 0$$

F: linear/nonlinear operator

x: unknown vector of circuit variables (current, voltage)

- DC analysis: Stationary equations- iteration/matrix method
- AC analysis: Linearize around the operating point
- Transient analysis: DC analyses and numerical integration

SPICE

- Infinite varieties:
 - + SPICE2/3
 - + HSPICE
 - + Spectre
 - + Pspice
- Many models (>80)
 - + MOSFET: (Level 1, 2, 3), BSIM3V3, BSIM4, EKV, Philips
 - + BJT: VBIC, Mextram, UCSD-HBT, HICUM
 - + JFET/MESFET
 - + TFT
 - + Diode
 - + Resistors, capacitors, transmission lines, ...

SPICE Example


```
VIN 1 0 DC 0 + PULSE(-0.5
+ 0.5 0.1u 1n 1n 0.3u 2u) AC 1
VCC 8 0 12
VEE 9 0 -12
Q1 4 2 6 QNL
Q2 5 3 6 QNL
RS1 1 2 1K
RS2 3 0 1K
RC1 4 8 10K
RC2 5 8 10K
Q3 6 7 9 QNL
Q4 7 7 9 QNL
RBIAS 7 8 20K
.MODEL QNL NPN(BF=80 RB=100
+ CJS=2PF TF=0.3NS TR=6NS
+ CJE=3PF CJC=2PF VA=50)
```


SPICE Example

SPICE Models

Diode Model
 Parameters

SPICE	SPICE parameter	Units	SPICE	Chapter 1
parameter	name		default	notation
IS	Saturation current	Α	1.0e-14	Is
RS	Series resistance	Ω	0	R 5
N	Ideality factor	-	1	η
TT	Transit time	5	0	-
CIO	Zero bias capacitance	F	0	-
Λì	Built-in voltage potential	v	1	-
М	Grading coefficient	-	0.5	-
EG	Energy gap	eV	1.11	-
XTI	Saturation current temperature exponent	-	3.0	-
KF	Flicker noise coefficient	-	0	-
AF	Flicker noise exponent	-	1	-
FC	Coefficient for forward-bias depletion capacitance		0.5	-
BV	Reverse breakdown voltage	v	infinite	-
IBV	Current at breakdown	А	10-3	-
TNOM	Temperature at which parameters are specified	°C	27	T (K) (T=TNOM+ 273)

HSPICE

• Synopsis HSPICE specific features

- + Behavioral Modeling with Verilog-A
- + IC Cell Characterization
- + RF Analysis
- + Encrypted models
- + Optimization techniques
 - Corner analysis
 - Monte Carlo

Full simulation

- Sigma-delta modulators are hard to simulate
- Problem in two time scales
 - + Modulation frequency 1 kHz
 - + Internal clock 1 MHz
- Full simulation > 64 clock periods = 75ms with 1µs resolution
- Total simulation time with Spectre (spice) = 1 month
- Not practical for design optimization

Need for combination of simulators

Solution

Use of MATLAB Simulink Macro Model

- Simulation time 50 sec
- Power scan = 50 points at different input power
 - + Spice: 50 month
 - + Simulink: 40 minutes

Process Simulation

Process Simulation

- Allow the simulation of different fabrication processes, as well as complete technologies
- Started with unidimensional Suprem from Stanford University
 - + Implant profiles
 - + Thermal diffusion and oxidation
 - + Layer deposition
 - + Etching
- Still there are simple unidimensional programs (Silvaco SSUPREM3, ICECREM)

Process Simulation

- Simulators evolve to 2D with very accurate models
- Initially it was different programs for different topics:
 - + Implant and thermal process
 - + **Deposition**
 - + Photolithography
 - + Optics
- 2D and 3D separate programs
- Today all process are integrated in the same program, except specialized features
 - + Deep submicron lithography
 - + Parasitic extraction
- Today 1D, 2D and 3D are integrated in the same program

Process Simulation Benefits

- Design state of the art devices, from big power transistors to submicron devices
- Predict 1, 2 and 3 dimensional device structure characteristics
- Evaluate and refine conventional and novel isolation technologies, such as LOCOS, SWAMI, deep trench and shallow trench isolation
- Analyze stress history in all layers as a result of thermal oxidation, silicidation, thermal mismatch, etching, deposition, and stress relaxation at high temperatures
- Determine basic electrical device characteristics, such as sheet resistance, threshold voltage and C-V curve (including quantum-mechanical correction)
- Link process structures for two-and three-dimensional device analysis using Avant!'s with device simulators

MESH

- The key for an accurate simulation is to use a good mesh of the area of interest
- There are automatic mesh generation
- Tools for local mesh refinement
- Structure and mesh editors
- It is important to keep mesh nodes at a minimum to avoid extreme (months) processing times

Mesh generation example

Microm Loading file /tep_set/ioshp10/hose/alevegi/Files/Simulations_UT/Bird's Fask Evol/DFE_1,s: # SILWED International 2000

Process Models

- Accurate models are also crucial.
- Models depend on equipment manufacturer
- Software vendors distribute library models for most equipments in the market
- Many second order effects incorporated in last soft versions
- Nevertheless, process simulation is not a straightforward task, and requires deep technology knowledge.
 - + There are hundreds of models to choose
 - + There are thousands of parameters to choose

Example: Bird beak's LOCOS evolution

Example: Implant models

Comparison of Gauss, Pearson and SVDP methods

```
# Gauss (symmetrical) implant
# (parameters are in std_tables)
moments std_tables
implant phos dose=1e14 energy=40
gauss
```

```
implant phos dose=1e14 energy=40
    pearson print.mom
```

```
#Use SVDP method (default)
moments svdp_tables
implant phos dose=1e14 energy=40
print.mom
```


datafile="invdiodo.final"

•field oxide=10271.4 angstroms (1.02714 um) X.val=100


```
etch oxide left p1.x=600
# Gate Oxidation (36.5 nm)
#include oxptaaa.ss3
#
diffus temp=800 time=10 f.o2=6.0
diffus temp=800 time=30 f.o2=6.0 t.final=950
diffus temp=950 time=2 f.o2=6.0
diffus temp=950 time=5 f.o2=6.0
diffus temp=950 time=30 f.n2=6.0
diffus temp=950 time=35 f.n2=6.0 t.final=800
diffus temp=800 time=12 f.n2=6.0
#
```

•extract name="gate oxide" thickness min.v=10 max.v=1000 material="SiO~2" \

mat.occno=1 x.val=100 datafile="invdiodo.final"

•gate oxide=384.608 angstroms (0.0384608 um) X.val=100

•#Implantacion Bor •implant boron dose=1e15 energy=50 pearson tilt=7

Drive-in inert ambient
diffus temp=800 time=10 f.n2=6.0
diffus temp=800 time=10 f.n2=6.0
diffus temp=800 time=30 f.n2=6.0 t.final=950
diffus temp=950 time=2 f.n2=6.0
diffus temp=950 time=35 f.n2=6.0 t.final=800
diffus temp=800 time=2 f.n2=6.0
diffus temp=800 time=2 f.n2=6.0
diffus temp=800 time=10 f.n2=6.0

•extract name="gate oxide2" thickness material="SiO~2" mat.occno=1 x.val=100 datafile="invdiodo.final"

•extract name="wdif" xj material="Silicon" mat.occno=1 junc.occno=1 x.val=100 datafile="invdiodo.final" etch oxide left p1.x=590
#etch oxide all
#
deposit alum thickness=0.2 div=3
etch alum right p1.x=580
#
structure outf=invdiodo.str

+ gate oxide2=384.608 angstroms
(0.0384608 um) X.val=100
+ wdif=0.746732 um from top of
• first Silicon layer X.val=100

3D simulation

- Models can be used in 3D
- Mesh is more complicated
- Some effects can only be simulated with 3D process simulation, for example:
 - + Narrow width effect.
 - + Complex implant shadowing.
 - + Non-rectangular gate shape after OPC effects.
 - + FinFET.

Conclusions

- If it is possible, first try to simulate the critical steps on the route between theoretical design and practical realization of the device
- Process Simulator is needed: by going through all process steps you can better understand and predict final performance of the device.
- Device Simulator helps to draw final conclusions about the device performance
- Is the previous step to accurate device simulation

Device Simulation

Device simulator

- Device simulation tools predict electrical, thermal and optical characteristics of semiconductor devices.
- A wide variety of devices can be modelled in one, two or three dimensions including MOSFETs, BJTs, HBTs, power devices, IGBTs, HEMTs, CCDs, photodetectors and LEDs.
- The most advanced physical models are commercially available, these tools allow device designs to be optimized for best performance without fabrication, eliminating the need for costly experiments.

Device simulation benefits

- Analyze electrical, thermal and optical characteristics of your devices through simulation without having to manufacture the actual device.
- Determine static and transient terminal currents and voltages under all operating conditions of interest.
- Understand internal device operation through potential, electric field, carrier, current density, recombination and generation rate distributions.
- Optimize device designs without fabrication and find ideal structural parameters.
- Investigate breakdown and failure mechanisms, such as leakage paths and hot carrier effects.
- Generate data for compact model generation to allow analysis of circuit designs before processing.

Simulation features

- Simulation of arbitrarily shaped 1D, 2D and 3D structures.
- Consistently solves Poisson's equation, the electron and hole current continuity equations, the electron and hole energy balance equations, and the lattice heat equation.
- Steady state, transient and AC-small signal analysis with automatic I-V curve tracing and time-step algorithms.
- Ray tracing to simulate transmission, reflection and refraction across interfaces, as well as absorption and emission.
- Advanced adaptive mesh generation, which provides optimal grids with excellent solution and structure resolution using a minimum number of mesh points.
- Arbitrary doping from analytic functions, tables and process simulation.

Simulation features

- Supports multiple materials such as Si, Ge, GaAs, SiGe, AlGaAs, InP, InGaAs, InGaAsP and SiC, as well as arbitrary user-defined materials (CdTe, CdZnTe).
- Optional physical model and equation interface, which allows a user to define and solve new physical models and partial differential equations.

Device Models

- Complete set of device simulation models, including SRH and Auger recombination models, bandgap narrowing, Fermi-Dirac and Boltzman statistics and gate current.
- Extensive choice of mobility models including the Philips Unified, Lombardi Surface, Shirahata, Lucent, Inversion and Accumulation layer and composite-specific mobility models.
- Mobility dependencies on impurity concentration, lattice temperature, carrier concentration, carrier energy, parallel and perpendicular electric fields and mole fraction.
- Fowler-Nordheim, hot-carrier, band-to-band and direct tunneling models.
- Complete set of breakdown models, including stress dependent leakage current and carrier temperature dependent impact ionization.

Device Models

- Quantum mechanical models including the van Dort model, the modified local density approximation (MLDA) and a Schrodinger equation solver.
- One or several physically modeled devices can be connected in a circuit with passive components and active devices with compact models (Hspice, BSIM3).

Device Simulation: Diode

•go atlas •mesh INF=invdiodo.str cylindrical

#Polarización del Diodo
#polarizado a la difusion
electrode name=anode number=1 top
electrode name=cathode number=2 bottom

models consrh conmob auger fldmob bbt.std
#models bipolar bbt.std print
impact

•method newton climit=1e-4

solve init

log outf=invdiodo.log
solve vcathode=0.1 vstep=1 vfinal=10 name=cathode
solve vstep=50 vfinal=1800 name=cathode

curvetrace curr.cont end.val=0.02 /
contr.name=cathode mincur=1e-12 /

•nextst.ratio=1.1 step.init=0.1•solve curvetrace

•quit

Device Simulation: Diode

Optical interactions

- Light refraction/reflection
- Light-matter interaction
- e-h pair generation

3D transient simulation

3D transient simulation

Example: Technology development

- A process variation with respect to MPI proposal
 - + First: oxidation, photolitograpy p-stop regions, partial wet oxide etching, photoresist striping
 - + At this point there are two different oxide thicknesses
 - thin oxide in the p-stop area and a thicker oxide on the rest of the silicon surface ("p-spray area")
 - + P-implant (Energy 50 keV, dose 10¹³ cm⁻²)
 - + Finish with the usual fabrication process

Example: Simulated doping profiles

Example: Simulated breakdown voltage

Example: Doping profile comparison

Example: Electric field comparison

Simulation of irradiated devices

- Irradiated silicon behaves differently than standard one.
- As the microscopic mechanisms are not well understood, it is difficult to properly simulate irradiated devices.
- Two main effects:
 - + Oxide (or dielectric in general) charge build up
 - Very fast effect, seem to saturate, relatively easy to incorporate to simulator
 - + Bulk damage
 - Incorporation of new levels in the bandgap
 - Not clear values
 - Peruggia people (G.U.Pignatel, M.Petasseca) are developing different models
 - + Annealing effects still pending

Simulation of irradiated devices

Damage modelling

- + Deep levels: E_t , σ_n and σ_p
- + SRH statistics
- + Uniform density of defect concentration
- Radiation damage effects to simulate:
 - + The increasing of the Leakage Current
 - + The increasing of the Full Depletion Voltage
 - + The decreasing of the Charge Collection Efficiency

Radiation effects in Sentaurus

- Sentaurus Device can simulate the degradation of semiconductor devices due to received radiation.
- For now, this degradation is modeled as a change of trapped charge, which may cause a shift in device characteristics.
- Usually, degradation is important in insulators (for example, oxide) and users should define these insulators as wide band-gap semiconductors so that the appropriate transient trap equations can be solved inside these regions.
- SEU effects due to alpha and heavy ions are also incorprated natively in Sentaurus Device

N-type 3-Levels Radiation Damage Model

 N-type silicon is more or less understood, and a three level model works fine

Туре	Defect	Energy	σ _n	σ _p	η
Acceptor	V2	E _c -0.42	2.2e-15**	1.2e-14	13
Acceptor	V2O ?	E _c -0.50	4e-15**	3.5e-14	0.08**
Donor	C _i O _i	E _v +0.36	2e-18**	2.5e-15**	1.1**

*D. Passeri, P. Ciampolini, G. Bilei and F. Moscatelli, IEEE Trans. Nucl. Sci., vol. 48, pp. 1688-1693, 2001. ** M. Moll, Ph.D. Thesis, Hamburg University, 1999, DESY-THESIS-1999-040, ISSN-1435-8085

P-type 2-Levels Radiation Damage Model

Level**	Ass.	σ _n [cm ⁻²]	*σ _p [cm ⁻²]	η [cm⁻¹]
E _c -0.42eV	VV ^(-/0)	2·10 ⁻¹⁵	2·10 ⁻¹⁴	1.6
E _c -0.46eV	VVV (-/0)	5·10 ⁻¹⁵	5·10 ⁻¹⁴	0.9

- (**) Levels selected from:
 - + M. Ahmed, et al., Nuc. Instr. And Meth A 457 (2001) 588-594
 - + S.Pirolo et al., Nuc. Instr. And Meth. A 426 (1996) 126-130
- Two levels model is able to reproduce static characteristics (current and depletion voltage) of irradiated diodes
- This model is unable to reproduce the experimental Charge Collection Efficiency (CCE) of irradiated devices
- Hole cross section values are a best fit rather than physical
 - + One or two order of magnitude bigger than measurements

P-type 3-Levels Radiation Damage Model

- Introduction of a donor level very important for Charge Collection (CC) simulations
- the donor defect level allows to reproduce the experimetal data.

Level	Ass.	σ _n [cm ⁻²]	σ _p [cm ⁻²]	η [cm ⁻¹]
E _c -0.42eV	VV ^(-/0)	2·10 ⁻¹⁵	*2·10 ⁻¹⁴	1.613
E _c -0.46eV	VVV (-/0)	5·10 ⁻¹⁵	*5·10 ⁻¹⁴	0.9
E _v +0.36eV	? C _i O _i ?	2.5·10 ⁻¹⁴ (exp)	2.5·10 ⁻¹⁵ (exp)	0.9

- no changes for the Vdep and Leakage Current due to the donor defect level:
 - + α (simulated)= 3.8·10-17 A/cm
 - + β (simulated) =(4.0 ±0.1) ·10-3 cm-1

Other tools: Structure editor

- Allows device structure description without the need of process simulator
- Different operational modes:
 - + 2D structure editing, 3D structure editing, and 3D process emulation. Geometric and process emulation operations can be mixed freely,
- Powerful visualization.
 - + Structures are displayed as they are created and view filters make it possible to select a subset of regions and to make regions transparent.

Figure 1. Main graphical user interface of Sentaurus Structure Editor.

Other tools: Process emulator

- Three-Dimensional Process Emulator
- Part of structure editor
- Process emulation Editor translates processing steps, such as etching and deposition, patterning, fill and polish, into geometric operations.
- Support forvarious options such as isotropic and anisotropic etching and deposition, rounding, and blending to account for specific processing effects.
- External layout files in CIF or GDSII format can be imported into the Editor
- Use of analytical models instead of process simulator reduces development time at the expense of accuracy

Other tools: Interconnect Analysis

- Collection of 2D and 3D field solvers and interfaces for interconnect analysis and modeling designed to simulate the electrical and thermal effects of complex on-chip interconnect.
- The performance of DSM technologies is dominated by parasitic capacitance, resistance, and inductance of the interconnect structures.
- Critical design issues –timing, power, noise and reliability– require accurate and robust interconnect models.

- Simulation and extraction of interconnect capacitance, resistance, and inductance using field solvers and interfaces.
- SPICE netlist generation

Other tools: Workbench

- Software vendors provide with graphic interface for creating, managing, executing and analyzing process and device simulations
- Allow parameterization, repeating the simulations for different values
- Use of process recipe libraries
- Automatic Designof-Experiment (DoE) generation and analysis (Response Surface Modelling)

- Automatic parameter optimization
- Batch and queuing control
- Link to visualization tools

Synopsis Sentaurus

- From Synopsis
- Merge of
 - + TMA
 - + ISE-TCAD
- Suppose to be the best of both worlds

Synopsis Sentaurus

SYNOPSYS°

TCAD Sentaurus

Framework	Process Simulation	Device Creation	Device Simulation	Reference Material
Sentaurus Workbench	Sentaurus Process	Sentaurus Structure Editor	Sentaurus Device	Sentaurus Applications Library
Calibration Kit Inspect Ligament Optimizer Sentaurus Data Explorer Tecplot SV Utilities	Advanced Calibration	DIP Mesh Noffset3D	Compact Models Sentaurus Device EMW Sentaurus Device Monte Carlo Solvers TED	Dios Mdraw SXtract

Version X-2005.10

Silvaco TCAD

Silvaco packages

MEMS Packaging

MEMS

- MEMS are Micro Electro Mechanical Systems
- Are system that incorporate in the same device electrical and mechanical features
- Are fabricated using silicon micromechanization
- Usually they have mobile parts
- They present new simulation needs
 - + Mechanical, mobile parts, resonance
 - + Electrical
 - + Thermal
 - + Fluidics
 - + Physics
 - + Coupled features (electro-mechanical for example)

Design and simulation

Acelerómetro piezorresistivo triaxial simulación FEM

Finite Element Modelization (FEM)

The ANSYS Multiphysics MEMS Initiative

ANSYS MEMS 8.0 10/22/03

Dr. Paul Lethbridge - Multiphysics Product Manager
The ANSYS Family of Products

What is ANSYS Multiphysics?

A general purpose analysis tool allowing a user to to combine the effects of two or more different, yet interrelated physics, within one, <u>unified</u> simulation environment.

Benefits of Multiphysics

- No other analysis tool provides as many physics under one roof!
- Greatest breadth and technical depth of physics.
- Fully parametric models across physics, geometry, materials, loads.
- Perform Design Optimization across physics, geometry, materials and loads.
- Seamless integration with ANSYS Probabilistic Design System (PDS).
- Extremely sophisticated analysis capability.
- Bottom line benefits:
 - + Analysis closely match reality bringing reality to the desktop
 - + Reduced assumptions that question certainty and compromise accuracy.
 - + Lower cost: Fewer analysis software tools to purchase, learn & manage.
 - + Lower cost: R&D process compression

ANSYS Multiphysics MEMS Device Applications

Example: Piezoresistive accelerometer

Demostrador

Example: Optical accelerometer

Package Thermal Strain Reduction

Images courtesy of Allen Miller, Nortel Networks

Radiation behavior GEANT4

What is **GEANT**

- A Monte Carlo software toolkit to simulate the passage of particles through matter.
- It is for detector simulation of research in
 - + High energy physics
 - + Nuclear physics
 - + Cosmic ray physics
- It is also for application in
 - + Space science
 - + Radiological science
 - + Radiation background calculation
 - + etc

How GEANT works

- General characteristics of a particle detector simulation program:
 - + We specify the geometry of a detector.
 - + Then the program automatically transports the particle injected to the detector by simulating the particle interactions in matter based on the Monte Carlo method.
- The heart of the simulation
 - + The Monte Carlo method to simulate the particle interactions in matter

