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Phenomenologically assuming a sharp decrease of shear relaxation time for large wavevector k > kξ

density modes (where kξ is of order of inverse of several interatomic distances a), I develop a general
elasto-hydrodynamic theory describing the low-energy excitations of glassy and amorphous solids,
which are responsible for anomalous specific heat and thermal conductivity. The theory explains the
origin of collective two-level states and Boson peak. The ratio of the wavelength of the phonon, λ,
to its mean free path, l, - universal property of sound absorption in glasses - is derived in this theory
to be λ/l = (2/3)(ct/cl)

2(kξa)3, where ct and cl are transverse and longitudinal sound velocities
correspondingly.

PACS numbers:

Glasses at low temperatures (T < 1− 5 K) show a re-
markable almost universal sound absorption - “the ratio
of the phonon wavelength, λ, to the phonon mean free
path, l, has been found to lie between 10−3 and 10−2

in almost all cases, independent of chemical composition
and frequency (wavelength) of the elastic wave which var-
ied by more than nine orders of magnitude in the differ-
ent experiments”[1]. The so called Standard Tunneling
Model of glasses[2] assumes phenomenologically the ex-
istence of independent local tunneling two-level systems
(tunneling TLS’s) with wide distribution of tunneling
splittings and relaxation times. The Standard Model had
a lot of successes in describing many low-temperature
properties of glasses (specific heat, thermal conductivity,
etc.) (for a review, see [3]). The coherent and weakly
interacting nature of excitations was revealed by echo
and spectral diffusion experiments, while the tunneling
aspect of TLS’s (the low-energy states which are due to
quantum tunneling splitting of local potential minima
states of atoms (or group of atoms)) was never clearly
demonstrated experimentally[4]. Most importantly, the
understanding of universal sound absorption is beyond
the scope of the Standard Model, because the density
of tunneling TLS’s has to be assumed arbitrarily for this
model[5]. Moreover, the independence of tunneling TLS’s
implies large variation and non-uniqueness of density of
TLS’s in different materials in contradiction to experi-
mental observations[1].

In this Letter I construct a phenomenological visco-
elastic (or hydrodynamic) theory with a single assump-
tion that a structural shear modulus relaxation time
has a sharp threshold and becomes finite for large-
wavevector elastic perturbations(waves) of amorphous
structure (this assumption is reminiscent of Maxwell the-
ory of viscoelastic liquids with a difference that here
the relaxation time is assumed to become finite only for
short-wavelength perturbations). The low-energy states
of this theory (in addition to phonons), contributing
an almost linear-temperature specific heat, are collective
density modes with large wavevectors k and small fre-

quencies. The same assumption leads naturally to the
appearance (or rather redistribution) of additional den-
sity of states at high frequencies (so called Boson peak).
The universal dimensionless constant λ/l of amorphous
condensed matter physics is understood in this theory
due to the weak coupling between phonons (small q) and
relaxational collective (large q) modes.

There is more to be said about universality of λ/l ra-
tio in glassy and other types of materials. It appears
that at low temperatures only for good crystalline solids
and quantum liquids (He3 and He4) this universality is
not applicable (for few other exceptions see a review[1]),
while for a huge class of materials[1] - large number of
disordered crystals and polycrystals, some quasicrystals
and metallic glasses in addition to insulating glasses of
various types - the ratio of λ/l falls into the same range
10−3 to 10−2. Another insightful experimental observa-
tion is that the irradiation of crystalline silicon saturates
such a material ultimately with increasing dose of irradi-
ation to the same universality[6]. It is illogical to believe
that independent tunneling states are generated at a fixed
universal density. It seems more general assumption is re-
quired to understand this remarkable universality, since
neither amorphicity (lack of long-range order) nor glassi-
ness is a necessary condition for universality to appear.

Glassy and amorphous solids are solids in the sense
that shear and compressional moduluses are finite at low
frequencies. The transverse and longitudinal phonons
with long wavelengths are well-defined excitations, since
the phonon mean free path is much longer than its wave-
length, l ∼ 102λ. As the wavelength of phonon becomes
comparable to the correlation length of frozen disorder[7],
the anharmonicity cannot be neglected and amorphous
structure can relax under shear strain. Such a qualita-
tive argument indicates a physical reason why a shear
relaxation time can become finite for short wavelength
perturbations (rigorous justification of the assumption is
the subject of microscopic theory and beyond the scope
of this Letter). To be precise, the main phenomeno-

logical assumption (to be referred to PA) is the fol-
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lowing statement: structural shear relaxation time de-
creases sharply as a function of the wavevector k from
infinity at small wavevectors (k < kξ ≡ 1/ξ, where ξ
is the typical correlation length of disorder in glasses of
order of several interatomic or intermolecular (or any
elementary unit of structure) distances) to a finite relax-
ational time smaller than inverse phonon frequency for
wavevectors k > kξ. Naturally, excitations for k > 1/ξ
cannot be described as well defined excitations. Another
way to substantiate the assumption is to compare various
phonon scattering mechanisms. Elastic Rayleigh scat-
tering of phonons by disorder has strong dependence on
the wavelength λ of phonon, at most λ/l = 4π2(ξ/λ)3,
where ξ3 is the “correlation volume” of disorder. Anhar-
monic three-phonon processes, being proportional to the
phonon density of states (of high frequency or thermal
phonon involved), become also more relevant at higher
frequencies (or shorter wavelengths). A combined effect
of disorder and anharmonicity can conspire to the sharp
threshold and drop to the finite shear relaxation time,
describing the slow rearrangement of atoms. The main
idea of the paper is to construct a minimal phenomeno-
logical hydrodynamic theory based only on macroscopic
conservation laws and the phenomenological assumption.

To derive the spectrum of density modes it is sufficient
to use macroscopic conservation laws and constitutive re-
lation for the stress tensor[8, 9]. The conservation of the
mass density ρ and the conservation of momentum den-
sity momentum ρvi are in a linearized approximation

∂tρ + ρ0div~v = 0, (1)

ρ0∂tvi −∇jσij = −n0∇iδVext, (2)

where vi and σij are local values of velocity and stress
tensor fields, n0 = ρ0/m is an equilibrium number den-
sity. The constitutive relation between the stress tensor
σij and the strain tensor uij is assumed to be

σij =
2µ

1 + i/(ωτs(k))
uij + Λullδij , (3)

where Λ and µ are Lame coefficients[9], and τs(k) is the
shear relaxation time, dependent on the wavevector k
of the periodic modulation. Notice that if ωτs(k) ≫ 1,
the constitutive relation describes a solid body with
a finite shear modulus. While for ωτs(k) ≪ 1, the
constitutive relation describes a liquid with frequency-
and wavevector-dependent viscosity ηk(ω) = µτs(k)/(1−
iωτs(k)). Coupling between thermal variables (e.g. gra-
dients of temperature) and mechanical variables is ne-
glected here. A particular functional dependence of τs(k)
is not considered here. This dependence may vary among
various materials and can be used as a fitting parameter.
The only requirement is that τs(k) drops sufficiently fast
for k ∼ kξ, and for larger k ≫ kξ the modes are relax-
ational so that clkτs(k) ≪ 1, where cl is the longitu-
dinal sound velocity. Substituting Eqns.(1) and (3) into

Eqn.(2), the longitudinal density correlation function can
be calculated:

χρ(k, ω) =
n0k

2/m

ω2 − k2(c2
∞

− (c2
∞

− c2

0
)/(1 − iωτs(k)))

, (4)

with c2

∞
≡ c2

l = (Λ+2µ)/ρ0 and c2

0
= Λ/ρ0. The longitu-

dinal density fluctuation spectrum is given by Imχρ(q, ω)
and has long low-frequency (ω ≪ clk) tails, which can be
approximately written as (assuming clkτs(k) ≪ 1):

Imχρ(k, ω) ∼=
n0

m

c2

∞
− c2

0

c4

0

ωτs(k)

1 + (ωτs(k))2(c∞/c0)4
. (5)

Therefore, due to shear stress relaxation, collective den-
sity modes at large k > kξ have a linear “bosonic” den-
sity of states at low frequencies. These modes of low fre-
quency and short wavelength describe correlated in space
local rearrangements of atoms due to shear relaxation,
and thus some aspects of the microscopic nature of these
modes are not very different from the Standard Model.
Such atomic rearrangements are strongly inhibited in a
crystalline solid due to the presence of short and long
range order.

These modes contribute almost linear specific heat
CV (T ). The entropy of interacting boson modes can be
written as following[10]:

S(T ) ≃
1

π

∫

∞

0

dω
eβω

(eβω − 1)2
ω

T 2

∑

k

[

Imln

(

χρ(k, ω)

n0/(mc2

l )

)

+

+
(c2

∞
− c2

0
)k2ωτs(k)

1 + (ωτs(k))2
Re

(

χρ(k, ω)

n0/(mc2

l )

)]

. (6)

For the purpose of approximate estimates, the specific
heat CV (T ) after integrating over the range of wavevec-
tors kξ < k < ku (ku is upper cutoff) with some typical
relaxation time τs,typ is

CV (T ) ∼ A(kBTτs,typ)
k3

u

3π2

c2
∞

− c2
0

c2

0

, (7)

where A is a numerical factor. A crude estimate
(h̄/τs,typ ∼ h̄ΩBP ≡ kBTBP , kBTBP = 50 K, ku ∼

107cm−1, and a last factor as 0.3) gives the density of
states ∼ 1033(ergcm3)−1, which is consistent with exper-
iment. We eschew numerical factors and details, depen-
dent on certain latitude of the dependence of τs(k) in at-
tempt to focus on the essential consequences. The essen-
tial result for the linear specific heat can be already seen
from the linear frequency density of states for bosonic
modes(Eqn.5), since the sum over k at low frequencies
for the second term in Eqn.(6) is approximately equal to
∑

k Imχρ(k, ω) from Eqn.(5).
Phenomenological assumption implies straightfor-

wardly accumulation of additional density of states
around frequency ΩBP ≃ c0kξ, since τs(k) drops sharply
to a finite value around kξ. This is so called Boson peak
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observed in neutron and Raman scattering[15]. First, no-
tice that the maximum of the spectrum Imχρ(k, ω) as a
function of frequency ω is shifted downward from c∞k if
ωτs ≫ 1 toward c0k if ωτs ≪ 1. Since it happens for the
range of wavevectors k, large additional weight from the
range of k-wavevectors will be redistributed from high
frequencies to the frequency around Boson peak. Sec-
ond, the shape of the intensity Imχρ(k, ω) is asymmetric
with larger weight above the maximum. All these fac-
tors contribute to the additional density of states around
ΩBP : ν(ω) ∼

∑

k Imχρ(k, ω ∼ c0kξ). The intensity of
Boson peak would vary depending on a detailed depen-
dence of τs(k), and, indeed, experimentally intensity of
Boson peak varies significantly among various glasses.

The calculation of sound attenuation[11] needs to take
into account a wide distribution of relaxation times pos-
tulated by PA. We are interested in the attenuation of
low-frequency phonon with frequency ω by slow relax-
ational density modes such that ωτs(k) ≪ 1, and there-
fore hydrodynamic description of attenuation is applica-
ble. The simplest way to calculate the sound absorption
is to use a classical expression for absorption due to finite
viscosity[9]:

γl =
ω2

2ρc3

l

(4/3)Reηk(ω). (8)

The low-frequency phonon will be absorbed by all collec-
tive modes with various large wavevectors k and corre-
sponding relaxation times τs(k), therefore it is necessary
to integrate over all k at a given frequency ω:

γl =
2ωµ

3ρc3

l

∑

k

ωτs(k)

1 + (ωτs(k))2
. (9)

Finally, the ratio of the wavelength λω to the mean free
path lω is a remarkably simple answer:

α ≡
λω

lω
=

2

3
F

c2

t

c2

l

, (10)

F ≡
2π

n0

∫

d3k

(2π)3
ωτs(k)

1 + (ωτs(k))2
≃ (kξa)3, (11)

where n0 = 1/a3, and ct =
√

µ/ρ0 is the transverse
sound velocity. The small numerical factor F is a con-
stant, independent of frequency, since the integrand in the
integral is essentially δ-function because of the sharp de-
pendence of τs(k) from k. The constant F is very weakly
dependent on the detailed functional form of τs(k) and
other parameters. The simplicity of the main result -
Eqn.(10)- for the universal ratio gives insight into the
origin of universality. This ratio depends only on the
squared ratio of transverse and longitudinal sound veloc-
ities and the third power of the ratio of typical interpar-
ticle distance a to the scale of correlated disorder ξ. This
result is equally correct for longitudinal and transverse
phonons at low frequencies, because the damping is due

to the coupling to short-wavelength density modes in in-
homogeneous media. A more systematic calculation, us-
ing kinetic equation formalism[9], gives the same result.
The starting point for such a calculation is that the low-
frequency phonon of frequency ω causes the variation of
the density δρk(ω) at this frequency, for all modes with
various k’s, and this, in turn, changes the phonon fre-
quency δω = ω(γkδρk)/ρ0, where γk is a Gruneisen pa-
rameter. Again, it is necessary to account for all modes
with various τs(k) disturbed and contributing relaxation-
ally, since ωτs(k) ≪ 1.

Straightforwardly, the thermal conductivity is κ(T ) ≃
Cv,ph(T )c0l(T ) ∼ T 2, where Cv,ph(T ) ∼ T 3 is the
phonon-only specific heat, and for thermal phonons
(h̄ω ∼ kT ) the mean free path is l(T ) = λω/α ∼ 1/T .

The density spectrum of Eqn.(4) is essentially given
by a linearized spectrum of Navier-Stokes equation with
visco-elastic moduluses. Various non-linear terms (e.g.
of the type vj∇jvi, due to the ρvivj part of momentum
density tensor) should be added to Eqn.(2)[9] to treat
non-linear effects. Such non-linearities will modify the
harmonic spectrum of slow relaxational modes, so that
higher energy levels will be inhomogeneously shifted. But
the lowest energy levels, given by the linear response,
can be paired together for any given frequency with dis-
tribution of relaxation times (corresponding to different
wavevectors k), and, naturally, these lowest energy levels
can be associated with commonly discussed two-level sys-
tems (but not local tunneling two-level systems!). Non-
linearities are a weak effect in a first approximation if and
since the sound attenuation is weak. The calculation of
the sound attenuation, which considers coupling between
collective modes-sound waves, and collective relaxational
modes-two-level systems, illustrates this point that the
interaction between modes is given by the small parame-
ter α. The same parameter α describes both, weak inter-
action between TLS’s and the sound attenuation, since
in the theory presented here TLS’s are slow relaxational
harmonics of the sound. This consequence of the theory
is consistent with experiments showing weak interaction
between TLS’s[12]. Note that echoes were observed on
extended collective modes in inhomogeneous media, ex-
amples are plasma and ferrites[13]. Thus various non-
linear effects observed in glasses (saturation, echoes and
spectral diffusion) are not inconsistent with the picture of
collective modes. Non-linear effects as well as long-time
logarithmic specific heat (due to the bulk viscosity) will
be addressed in the future.

In this paragraph, I compare briefly the elasto-
hydrodynamic theory with theories and proposals sug-
gested in the literature. The main difference between the
Standard Model[2] and the elasto-hydrodynamic theory
is that for the former low-energy excitations are inde-
pendent tunneling systems, while for the latter these ex-
citations are collective modes of short-wavelength mod-
ulation of the density. But the similarity between both
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theories is that the local rearrangements of atoms are
assumed to exist. The shortcomings of the Standard
Model were discussed convincingly, and the long-range
dipolar interaction between local defects (e.g. TLS’s)
was suggested to lead to universality[5]. In the elasto-
hydrodynamic theory, the long-range interaction between
disordered regions (not two-level systems of any sort) is
due to elasticity fields. The collective nature of TLS’s of
the present theory is indeed similar in spirit to the earlier
proposal[5]. A density spectrum, Eqn.(4), was considered
before[10], but with a very different assumption about re-
laxation time τs. It was assumed to be independent of
wavevector k and dependent on temperature. Such an
assumption does not lead to linear frequency damping of
low-frequency phonons (for ω ≪ ΩBP , see Eqn.(10)) and
does not explain the existence of the Boson peak.

There are several directions how to test experimen-
tally the proposed theory. Direct observation of collec-
tive modes by inelastic neutron and X-ray scattering at
large momentum k and small energies ω ≪ ΩBP would
be a most direct test. The theory predicts also a weak
logarithmic in frequency downward dispersion of sound
waves up to the Boson peak. Another consequence, which
follows from Eqn.(4), is the broadening of sound waves
close to the Boson peak, Γk ≃ ((c∞−c0)/c∞)(c0k)2τs(k),
proportional to k2, which, it seems, was already observed
experimentally[15], and further stronger broadening due
to mode-mode coupling. Inelastic X-ray scattering[15]
provides a direct support for the PA in vitreous silica, for
the strong phonon scattering occurs from the lengthscale
2π/qco ∼ 30Å (to be associated with ξ), which is much
longer than the size of “elementary structural unit”, SiO4

tetrahedra. Since the low-frequency collective modes ap-
pear as a result of the relaxation of modes around ΩBP ,
it would be interesting to test such a connection. Experi-
ments with non-linear coupling of spectral diffusion type
between the Boson peak modes and two-level systems
(collective modes with large k and small ω) would be de-
sirable. Echo experiments in their functional relationship
to pulse amplitudes and time intervals can differentiate
between local and collective modes[13].

It is interesting to inquire further into the origin of uni-
versality. Eqn.(10) shows that the small universal num-
ber α is given essentially by the cube of the ratio a/ξ.
Therefore the universality of a/ξ ratio and the sharp
onset of shear relaxation are further important ques-
tions for the investigation. The smallness of the ratio
a/ξ arises due to the presence of short-range correlation
among atoms, which can be called medium-range struc-
tural order[14]. Note that the notion of medium-range
order does not necessarily mean explicit persistent clus-
ters of atoms. It seems that the value ξ/a ∼ 6 (to be
consistent with α ∼ 10−2 − 10−3) may be related with
the average number of configurational neighbors. Fur-
thermore, entropic arguments would relate the ratio a/ξ
to some fractional power of the ratio of the glass (or

melting) temperature and interatomic bonding energy.
A close analogy of the problem considered here is the
problem of a small number associated with melting tran-
sitions. Namely, Lindemann criterion number and small
1/rs ratio for the melting of electron Wigner crystal (1/rs

is the ratio of kinetic energy to the Coulomb energy in the
many-body electron problem) are small numbers closely
related to the ratio a/ξ and describing in all of these cases
short-range coordination (or entropy) in the formation of
a crystal or a glass.

In conclusion, from a general assumption of liquid-
like properties of glasses on lengthscales smaller than
a certain length ξ, the collective low-frequency excita-
tions are derived with linear-frequency density of states
Imχρ(k, ω) (corresponding to the constant thermody-
namic density of states P0 ≃ Imχρ(k, ω)/ω of two-level
systems, two lowest energy levels of the harmonic excita-
tions, which are perturbed by non-linear mode-coupling).
The universality of the sound attenuation ratio λ/l is re-
lated to the cube of small ratio a/ξ of average interatomic
distance a to the medium-range order length ξ.
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