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What’s in a Language Model?

“The diversity of tasks the model is able to perform
in a zero-shot setting suggests that high-capacity
models trained to maximize the likelihood of a
suDciently varied text corpus begin to learn how to
perform a surprising amount of tasks without the
need for explicit supervision”

This is an excerpt from the paper accompanying GPT-2. GPT-3 is taking

another step in this avenue.

More speciKcally, the authors pinpoint the drawbacks of Kne-tuning using

task speciKc datasets.

Getting these datasets is diOcult.

Fine-tuning allows the model to exploit spurious correlations, which

lead to bad out-of-distribution performance.

A brief directive in natural language is usually enough for humans to

understand a given task. This adaptability is a desired property of NLP

systems.

The route the authors chose to take is “in-context learning” — feeding the

model a task speciKcation (prompt) and/or a few demonstrations of the

task as a preKx, priming it towards a subspace in the latent space that

adheres to the given task. Translation, for instance, would look like “Q:

What is the {language} translation of {sentence} A: {translation}”.
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This is based on the assumption that the model develops a broad set of

skills and pattern recognition abilities at training time, and then uses those

abilities at inference time to rapidly adapt to or recognize the desired task.

It’s a common wisdom that low perplexity is correlated with performance

on downstream tasks, so one can hope that bigger models will yield better

in-context capabilities. And indeed, this holds true, as can be seen in the

next Kgure, where a simple task requiring the model to remove random

symbols from a word is tested:

Larger models make increasingly eUcient use of in-context information.

The number of in-context examples varies between 10 to 100, since this is

typically what’s permitted with the model’s context size of 2048. Prompt

(task speciKcation) plays a signiKcant role when the number of examples is

low.

The authors tested many well known benchmarks, but Krst — let’s inspect

the model speciKcation.
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Heavy Weight Lifting
GPT-3 is made up of a Transformers-based architecture similarly to GPT-2,

including the modiKed initialization, pre-normalization, and reversible

tokenization described therein, with the exception that it uses alternating

dense and locally banded sparse attention patterns in the layers of the

transformer, similar to the Sparse Transformer.

The authors trained several model sizes, varying from 125 million

parameters to 175 billion parameters, in order to measure correlation

between model size and benchmark performance.

Show Me Your Data and I’ll Show You Your
Future
The authors took three steps to improve the average quality of the datasets:

They downloaded and Kltered a version of CommonCrawl based on

similarity to a range of high-quality reference corpora.

They performed fuzzy deduplication to prevent redundancy and

preserve the integrity of the held-out validation set.

They added known high-quality corpora to the training mix.
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Datasets used to train GPT-3.
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To test if the pretrained validation loss is correlated with downstream task

performance, the authors evaluated an exhaustive list of known NLP

benchmarks by feeding K examples from the training set in-context to

evaluate an example from the test set. In the paper they detail all the

benchmarks, but here I chose to describe only a small sample:

Language Modeling

While forced to skip many language modeling perplexity related datasets

due to containment in training data, PTB escapes this issue due to

predating the modern internet, and GPT-3 sets a new SOTA.

LAMBADA

In this task, the model has to predict the last word of a given sentence. It

has recently been suggested that the continued scaling of LMs is yielding

diminishing returns on this diOcult benchmark. And yet, GPT-3 achieved

76% accuracy in the zero-shot setting — a gain of 8% over the previous

SOTA.

In the few-shots setting, the task can be framed as the cloze task (Klling in

the blanks), making it easier for the model to understand that only one

word is required. This yields an accuracy of 86.4%.

Closed Book Question Answering

In this task, GPT-3 is superior to the SOTA which not only Kne-tunes on the

task, but also uses an Information Retrieval component to retrieve pieces

of texts that are likely to contain the answer. This suggests that LMs

continue to absorb knowledge as their capacity increases.
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GPT-3’s performance on TriviaQA.

SuperGLUE

GPT-3 appears to be weak in some tasks that require a comparison

between two sentences, including determining whether a word is used the

same way in two sentences, whether one sentence is a paraphrase of

another, or whether one sentence implies another.

News Article Generation

The authors asked human evaluators to distinguish between human and

machine generated news articles. As model size increases, participants got

lower accuracy scores despite increased time investment per news article.

This supports the Knding that larger models generate harder-to-distinguish

news articles.
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People’s ability to identify whether news articles are model-generated decreases as model size increases.

There’s a Lot of Memorization That Goes on in
School
Accurately detecting test contamination from internet-scale datasets is a

new area of research without established best practices. As model capacity

increases, the risk of memorization increases. At large, the authors

removed documents that have overlap with the test set. However, due to a

bug, this process had leftovers. They tried to assess the damage, and it

seems like the model doesn’t memorize, and (most of) the results are

valid.

(My own note: maybe it is time for more rigorous testing in the ML Keld as

a whole, like what’s customary in other Kelds.)

Limitations
While qualitatively GPT-3 is better than its predecessor, its text synthesis

ability still incurs the weak spots we’re familiar from other LMs, such as

repetitions, coherence loss over suOciently long passages, and

contradiction.

In addition, in some of the tasks GPT-3 failed miserably. This might be due
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to the choice to use an autoregressive LM, instead of incorporating

bidirectional information (similarly to Bert). While in-context learning is

more straightforward with autoregressive LMs, bidirectional models are

known to be better at downstream tasks after Kne-tuning. At the end,

training a bidirectional model at the scale of GPT-3, and/or trying to make

bidirectional models work with few-shot learning, is a promising direction

for future research.

A more fundamental limitation is that autoregressive (and bidirectional)

models may eventually run into (or could already be running into) the

limits of the pretraining objective. Making the task better, e.g.

understanding what is most important to predict (such as entities), might

beneKt the model. Grounding the model in other domains of experience,

such as video or real-world physical interaction, might move the needle as

well.

An evidence that the pretraining task is not optimal is sample eOciency:

GPT-3 sees much more text during pre-training than a human sees in their

lifetime. Improving pre-training sample eOciency is an important direction

for future work, and might come from grounding in the physical world to

provide additional information, or from algorithmic improvements.

Furthermore, with self-supervised objectives, task speciKcation relies on

forcing the desired task into a prediction problem, whereas ultimately,

useful language systems (for example virtual assistants) might be better

thought of as taking goal-directed actions rather than just making

predictions.

Another limitation, or at least uncertainty, associated with few-shot

learning in GPT-3 is ambiguity about whether few-shot learning actually

learns new tasks “from scratch” at inference time, or if it simply recognizes

and identiKes tasks that it has learned during training.

Last but not least, the size of the model incurs practical inconvenience.
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