
!"#$%&'((')*+, · -.'/0 &'((')

!"#$"%&'()*%$'"#%'#!%%+"%$'"
12*%)23%456%02*%)240

742*56+45%8*59404:24(4; </5%#"=%#>?" · @%;A5%+*46

B'/%24C*%,%D+**%;*;.*+E'5(3%,0'+3%(*D0%02A,%;'502F%GAH5%/I%D'+%7*6A/;%456%H*0%45%*J0+4%'5*

K*0%,04+0*6

Our biggest source of confusion was the heptapods’ “writing.” It didn’t

appear to be writing at all; it looked more like a bunch of intricate

graphic designs. The logograms weren’t arranged in rows, or a spiral,

or any linear fashion. Instead, Flapper or Raspberry would write a

sentence by sticking together as many logograms as needed into a

giant conglomeration.

These lines from Ted Chiang’s novella “Story of your life” perhaps

give a good sense of what di3erentiates attention based

architectures from the sequential nature of vanilla RNNs.

Let’s take a quick look at vanilla RNNs and the encoder-decoder

variation used in sequence to sequence tasks, understand what

drawbacks these designs have and see how attention mechanisms

address them.

!"#$%L%845A((4%MNN%*J4;I(*

The basic premise of a vanilla RNN is to parse every item in an

input series, one after the other, and keep updating it’s “hidden

state” vector every step of the way as shown in Figure 1. This

hidden vector at the end of every step is understood to represent

the context of all prior inputs. In other words, the last hidden state

represents the context of the entire sequence.

In sequence to sequence translation tasks, this context-

representing hidden-state-producing RNN is considered an

Encoder and the Gnal hidden state vector, referred to as “Context”

in Figure 2, is fed into another sequence generating RNN called

the Decoder.

But is this sequential nature of processing important or does it put

us at a disadvantage? There are languages where word order

doesn’t strictly matter like Polish and Hungarian. Or even in

English, where we can change word order depending on what we

want to emphasize. Sometimes even in practical applications, say

while processing a patient’s history in diagnosis prediction models,

the inter-event relationships are as, if not more, important than the

actual event sequence itself.

Intuitively speaking, this strict order of processing is perhaps akin

to Qattening a 2-D image, i.e. converting from a matrix into a

vector and using a vanilla feed-forward network to process it. It is

much less eScient compared to CNN architectures that preserves

the natural spatial relationship in the matrix representation (Of

course, unlike in an image, we do not know if a correct order exists

or what that order is. So that’s that!).This strict sequential nature

of processing is perhaps the 9rst drawback.

!"#$&L%MNN,%A5%G*O%0'%G*O%P5:'6*+%Q*:'6*+%;'6*(

This is where LSTMs and GRUs helped in a big way by providing a

way to carry only relevant information from one step to the next

through various cell level innovations like forget gate, reset gate,

update gate etc. Bidirectional RNNs provided a mechanism to look

at not just the prior but also the subsequent inputs before

generating an output at a time step. Such developments addressed

the “strictly sequential” problem, but it didn’t quite solve the next

challenge.

The longer the input sequence length (i.e. sentence length in NLP)

the more diScult it is for the hidden vector to capture the context

(explanatory hypotheses suggested by Cho et al here, experimental

demonstration of degrading performance can be found in the

paper by Koehn and Knowles here). This drawback makes sense

intuitively; the more updates are made to the same vector, the

higher the chances are the earlier inputs and updates are lost (as

demonstrated in Figure 3).

!"#$'L%R'50*J0%.*:';*,%)*49%)A02%('5H*+%,*50*5:*,

How could we solve this? Perhaps if we get rid of using just the last

hidden state as a proxy for the entire sentence and instead build an

architecture that consumes all hidden states, then we won’t have to

deal with the weakening context. Well, that is what “attention”

mechanisms do. It was introduced in this paper by Bahdanau et al.

!"#$(L%S,A5H%4((%2A66*5%,040*,=%5'0%T/,0%02*%(4,0%'5*

In the proposed model, each generated output word is not just a

function of just the Gnal hidden state but rather a function of ALL
hidden states. And, it’s not just a simple operation that combines

all hidden state — if it was, then we are still giving the same

context to every output step, so it has to be di3erent! It is not a

simple concatenation or dot product, but an “attention” operation

that, for every decoder output step, produces a distinct vector

representing all encoder hidden states but giving di3erent weights

to di3erent encoder hidden state.

!"#$)L%&+';%I4I*+%.3%U426454/%*0%4(F

The distinct context vector for an output step is a sum-product of

attention weights and all input hidden states. The attention

weights for every single output will be di3erent and therefore the

sum of the weighted hidden vectors is distinct for each output step.

!"#$*L%U4,*6%'5%I4I*+%.3%U426454/%*0%4(F

Keep in mind that the spirit of “attention” is more about the ability

to attend to various inputs for every output step and is less about

other aspects like alignment function used, nature of RNN involved

etc. So, you might come across other variants to what is described

above.

On that note, while this solution seems to have addressed the

problem of single context vector, it has made the model really big.

There are a lot of computations involved when you try to prepare a

separate context vector for every output step.

In addition, there is yet another problem with computational

complexity that wasn’t introduced by this solution, but existed

even in the basic RNN. Given the sequential nature of the

operations, if the input sequence is of length “n”, it requires “n”

sequential operations to arrive at the Gnal hidden state (i.e.

calculate h1, h2 etc till hn). We cannot perform these operations in

parallel as h1 is a prerequisite to calculate h2. This lack of

parallelization within a sequence cannot be o3set by adding more

samples within a training batch either, as loading and optimizing

weights for di3erent samples increases memory needs which will

limit the number of samples that can be used in a batch.

Solving some of these issues requires us to look at a few other

variants of attention, and subsequently it will lead us into

exploring the Transformer model. I intend to write about those in

another post, hopefully sometime soon.

+"#,$-.$/01$234$56"78$9":;
U3%1')4+6,%Q404%G:A*5:*

V456,E'5%+*4(E)'+(6%*J4;I(*,=%+*,*4+:2=%0/0'+A4(,=%456%:/00A5HE*6H*

0*:25AO/*,%6*(AC*+*6%7'5643%0'%12/+,643F%749*%(*4+5A5H%3'/+%64A(3

+A0/4(F%149*%4%(''9

K*0%02A,

5*),(*00*+

U3%,AH5A5H%/I=%3'/%)A((%:+*40*%4%7*6A/;%4::'/50%AD%3'/%6'5W0%4(+*463%24C*%'5*F%M*CA*)%'/+%X+AC4:3%X'(A:3%D'+
;'+*%A5D'+;40A'5%4.'/0%'/+%I+AC4:3%I+4:0A:*,F

74:2A5*%Y*4+5A5H -00*50A'5 M55 G*O/*5:*%1'%G*O/*5:* Q**I%Y*4+5A5H

-.'/0 V*(I Y*H4(

B'/+%*;4A(

