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The Von Neumann Bottleneck

CPU MemoryCommunications Bus

Cross chip communications ~ 1 pJ
DRAM Access  >10 pJ
Ethernet ~ 1nJCurrent Transistors ~ 10 aJ

40kT Noise Limit ~ 0.2 aJ

Processor Layer Photonic Layer

Optical interconnects 100  fJ to 1 pJ

Communications require 
orders of magnitude more 
energy!



Use Resistive Memories for Local 
Computation

• A resistive memory or ReRAM is a 
programmable resistor

• Apply small voltages allows the conductance 
to be read: I = G × V

• Apply large voltages to change the resistance
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Directly Process in the Memory Itself
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Analog is efficiently and naturally 
able to combine computation and 
data access  

Effectively, large-scale processing in 
memory with a multiplier and adder 
at each real-valued memory location 
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Crossbars Can Perform Parallel Reads 
and Writes
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E ~ O(N×M)



SRAM Arrays Require Charging 
Columns Multiple Times

WL[0]

WL[1]

WL[2]

BL[0] BL[1] BL[2]

SRAMs must be read one row at a time, charging M columns
Each column wire length is O(N).

Energy  = N Rows × M Columns × O(N) wire length
Energy ~ O(N2×M)

O(N) times worse than a crossbar!
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Want To Accelerate Many Different 
Neural Algorithms

Backpropagation
Sparse 
Coding

Liquid State 
Machine

Input 
Nodes

Output 
Nodes

Reservoir



Crossbars Can Perform Parallel Reads 
and Writes
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General Purpose Neural Architecture

Neuromorphic core:
• Evaluate vector matrix multiplies along 

rows or columns
• Train based on input vectors

Digital Core:
• Process neural core inputs/outputs
• For NxN crossbar, the crossbar accelerates 

O(N2) operations leaving only O(N) operations 
for the digital core

Run any neural algorithm on the 
same hardware
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Design & Model Detailed Architecture
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Vector Matrix Multiply Matrix Vector Multiply Outer product Update

Neuron Circuitry Current Conveyor 
Based Integrator

Comparator



Row & Column Driver Circuitry
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Row Driver Logic

Column Driver Logic

Voltage level shifter (drive 
high V transistor with low V)

Array driver pass transistors



Compare Architectures
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1024 x1024 = 1M array operations, sum over 1 training cycle, 3 operations:
• Vector Matrix Multiply
• Matrix Vector Multiply
• Outer Product Update

Latency
35 – 800X over SRAM

Energy
430 – 6,900X over SRAM

Area
11 – 20X over SRAM

Used a commercial 14/16 nm PDK ***Requires 100 MΩ on state devices



Neural Core Energy Analysis
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Analog 
ReRAM

Digital 
ReRAM

SRAM

12,010  nJ 10,150 nJ 8,970 nJ

7,520 nJ 5,580 nJ 4,340 nJ

28 nJ 2.7 nJ 1.3 nJ

8 bits In/out
8 bit weights

4 bits In/out
8 bit weights

2 bits In/out
8 bit weights
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AlgorithmsAlgorithms

Sandia Cross-Sim: 
Translates device measurements and 
crossbar circuits to algorithm-level 
performance

ArchitectureArchitecture

CircuitsCircuits

DevicesDevices

MaterialsMaterials

Target Algorithms
• Deep Learning
• Sparse Coding
• Liquid State 

Machines
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Modified McPAT/CACTI: 
Model performance and 
energy requirements 

In situ TEM of filament switching: Use 
DFT model to interpret EELS signature

Sandia’s Xyce Circuit Sim: Simulate 
crossbar circuits based on our devices

Memristor 
fabrication and 
measurements 
in MESAFab

Multiscale Model of a 
Neural Training Accelerator



Numeric
Crossbar 
Simulator

Xyce 
Crossbar 

Circuit Model

Learning 
Algorithm

Neural Core 
Simulator

Simple Python API:
# Do a matrix vector multiplication
result = neural_core.run_xbar_mvm(vector)

+ - + - + -
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Devices

https://cross-sim.sandia.gov

Algorithmic 
Performance

Physical
Hardware 
Crossbar
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Simple API to model crossbars
# ************** set parameters defining the crossbar

params.algorithm_params.weights.sim_type = “XYCE” # Use a XYCE based sim
params.algorithm_params.weights.maximum = 10  # clipping limits
params.algorithm_params.weights.minimum = -10  # clipping limits
params.xyce_parameters.xbar.device.TAHA_A1 = 4e-4  # Xyce Parameters
…
…

# ************** API for running neural operations
# All crossbar details are transparent to the user

# Create a neural_core object that models a crossbar
neural_core = MakeCore(params=params)

neural_core.set_matrix(weights) # set the initial weights
result = neural_core.run_xbar_vmm(vector) # Do a vector matrix multiply
result = neural_core.run_xbar_mvm(vector) # Do the transpose, a matrix vector mult. 
neural_core.update_matrix(vector1,vector2) # Do an outer product update

https://cross-sim.sandia.gov



Go from Measurement to Accuracy
Measured Pulsing ΔG Scatterplot

Cumulative 
Probability of ΔG
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If we need more bits per synapse, use multiple memristors 

• Three 10 level ReRAMs could represent 1-1000!
• Adding to the weight requires reading every 

ReRAM to account for any carries and serially 
programming each ReRAM: VERY EXPENSIVE

Neuron

×100 ×10 ×1 • Use >10 levels to represent a base 10 system
• Ignore carry and program the crossbar in parallel.
• Periodically (once every few hundred cycles) read 

the ReRAM and perform the carry

10 levels 
represent the 

weight

Extra levels 
store the 
carry

conductance

Multi-ReRAM Synapse: Periodic Carry



Read and reset every 100 pulses
Do 300,000 small (0.02% of weight range) updates
• net of 1500 positive training pulses

Noise Sigma = 1.4% for single device

• (from ) 
• Write noise applied during updates and carries

Periodic Carry Compensates for Write Noise

Periodic 
Carry

Single 
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rangerangenoise GGG  1.0

Learn from a 0.5% Signal
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Pulse Number
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Pulses

Alternating 
Pulses
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Periodic Carry Mitigates Write Nonlinearity

Write Nonlinearity
Alternating Pulses Cause Weight Decay

Use center linear range of weights

• Train with 1% signal
• Ideal result is 0.6

Single 
Device

Periodic 
Carry



TaOx Results

A/D and D/A is modeled, Serial operations modeled
• When resetting weight, need to adjust pulse size based on current state to compensate for nonlinearity
• When reading a single weight, need to adjust readout range to be smaller (change capacitor on the integrator)

Carry once every 
1000 updates
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Li-Ion Synaptic Transistor for Analog 
Computation (LISTA)

E. J. Fuller, et al, "Li-Ion Synaptic Transistor for Low Power Analog Computing," Advanced 
Materials, vol. 29, no. 4, p. 1604310, 2017.

Off by ~ 1% 
from Ideal



Summary

 Fundamental O(N) energy scaling advantage

 Use CrossSim to co-design materials to algorithms
 Use periodic carry to overcome noise devices

 Need high resistance 10-100 MΩ Devices

 Need low write nonlinearities
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Latency
35 – 800X over SRAM

Energy
430 – 6,900X over SRAM

Area
11 – 20X over SRAM

https://cross-sim.sandia.gov



Extra Slides
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Overcoming the Power Limit

CPU MemoryCommunications Bus

Integrate Processing and Memory

Richard Goering, “Three Die Stack -- A Big Step “Up” for 3D-ICs with TSVs” Cadence blog
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VGI oo 

VGI oo 

VGI oo 

Measure N resistors and determine the total output 
current with some signal to noise ratio (SNR)*

What is the minimum energy?

f
NGVEnergy O
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Power in each resistor ×
number of resistors

Determined by 
noise and SNR

*we are assuming we need some fixed precision on the output, and don’t need full floating point accuracy 
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If we double the number of resistors, we can double 
the speed to get the same energy and SNR.

This is because the noise scales as sqrt(N) while the 
signal scales as N
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SNRTk

f o

b



 2

2 1
4

1

The Noise Limited Energy to Read a Crossbar 
Column is Independent of Crossbar Size



Experimental Device Non-idealities

Device: Write Variability, Write Nonlinearity, Asymmetry, Read Noise

Circuit: A/D, D/A noise, parasitics
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Full System Simulation

Range Bits

Row Input -1 to 1 8

Col Output -6 to 6 8

Col Input -1 to 1 8

Row Output -4 to 4 8

Row Update -0.01 to 0.01 7

Col Update -1 to 1 5

A/D & D/A Have 
Minimal Impact
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weights

negative 
weights

Data set
#Training/Test 

Examples
Network Size

File Types 4,501 / 900 256×512×9
MNIST 60,000 /10,000 784×300×10

MNIST

Conductance

Wmax

-Wmax

0

0

Gmax

Weight

Gmax/2



TaOx Results

A/D and D/A is modeled, serial operations modeled
• When resetting weight, need to adjust pulse size based on current state to 

compensate for nonlinearity
• When reading a single weight, need to adjust readout range to be smaller (change 

capacitor on the integrator)

Carry once every 1000 updates 
for the LSB, and every 2 updates 
on others
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LISTA Results
Weight 

Configuration 
(base 7)
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-49

-98

98

0

×7

343

-343

-686

686

0

×49

Carry

• Carry once every 1000 updates
• Use a single device per weight and 

subtract a reference current 
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14
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Neural Core Latency Analysis
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Analog ReRAM

Min write time of 8 ns vs 
1 ns incremental write

1.28 µs

Digital ReRAM
All bit precisions

4 bit in/out 2 bit in/out

SRAM
All bit precisions

SRAM transpose 
read expensive

0.08 µs 0.054 µs

1335 µs 44 µs

8 bit in/out

x1 x0.06 x0.04

x1040 x35

OPU =  Outer Product Update



Neural Core Area Analysis
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Analog ReRAM

Digital ReRAM

SRAM

x1

x1.8

x11.1

8 bits In/out
8 bit weights

SRAM Array

MAC

Array 
Drivers

Array

836k µm2

137k µm2

75k µm2

4 bits In/out
8 bit weights

2 bits In/out
8 bit weights

For the ReRAM, high voltage transistors require 8X area, improving this could give ~2X area savings

ReRAM Array 
on logic


