
CO
M

PU
TE

R
SC

IE
N

CE
S

N
EU

RO
SC

IE
N

CE

Unsupervised learning by competing hidden units
Dmitry Krotova,b,1,2 and John J. Hopfieldc,1,2

aMassachusetts Institute of Technology–International Business Machines (IBM) Watson Artificial Intelligence Laboratory, IBM Research, Cambridge, MA
02142; bInstitute for Advanced Study, Princeton, NJ 08540; and cPrinceton Neuroscience Institute, Princeton University, Princeton, NJ 08544

Contributed by John J. Hopfield, February 11, 2019 (sent for review November 30, 2018; reviewed by Dmitri B. Chklovskii, David J. Heeger, and
Daniel D. Lee)

It is widely believed that end-to-end training with the backprop-
agation algorithm is essential for learning good feature detectors
in early layers of artificial neural networks, so that these detec-
tors are useful for the task performed by the higher layers of that
neural network. At the same time, the traditional form of back-
propagation is biologically implausible. In the present paper we
propose an unusual learning rule, which has a degree of biologi-
cal plausibility and which is motivated by Hebb’s idea that change
of the synapse strength should be local—i.e., should depend only
on the activities of the pre- and postsynaptic neurons. We design
a learning algorithm that utilizes global inhibition in the hid-
den layer and is capable of learning early feature detectors in
a completely unsupervised way. These learned lower-layer fea-
ture detectors can be used to train higher-layer weights in a usual
supervised way so that the performance of the full network is
comparable to the performance of standard feedforward net-
works trained end-to-end with a backpropagation algorithm on
simple tasks.

biological deep learning | backpropagation | Hebbian-like plasticity

Supervised learning with backpropagation at its core works
extremely well on an immense diversity of complicated tasks

(1). Using conventional techniques, the earliest layers of neurons
in deep neural networks learn connections that yield the neu-
ron’s receptive fields qualitatively described as feature detectors.
In visual tasks, the resemblance of some of the features found by
backpropagation in convolutional neural networks to the simple
observed selectivities of the response of neurons in early visual
processing areas in the brains of higher animals is intriguing (2).
For simplicity, we always describe the task to be performed as a
visual task, but none of our methods have any explicit limitation
to vision. All of the methods discussed below are pixel and color
permutation invariant.

In concept, the learning rule that shapes the early artificial
neural network responses through supervised end-to-end train-
ing using backpropagation and the learning rules which describe
the development of the early front-end neural processing in
neurobiology are unrelated. There are two conceptual reasons
for this. First, in real biological neural networks, the neuron
responses are tuned by a synapse-change procedure that is phys-
ically local and thus describable by local mathematics. Consider
the synaptic connection Wij between an input neuron i and an
output neuron j . In the backpropagation training the alteration
of Wij depends not only on the activities of neurons i and j , but
also on the labels and the activities of the neurons in higher lay-
ers of the neural network, which are not directly knowable from
the activities of neurons i and j . Thus, the learning rule is non-
local, i.e., requires information about the states of other specific
neurons in the network in addition to the two neurons that are
connected by the given synapse. In biology, the synapse update
depends on the activities of the presynaptic cell and the postsy-
naptic cell and perhaps on some global variables such as how well
the task was carried out (state of animal attention, arousal, fear,
etc.), but not on the activities other specific neurons.

Second, higher animals require extensive sensory experience
to tune the early (in the processing hierarchy) visual system into
an adult system. This experience is believed to be predominantly

observational, with few or no labels, so that there is no explicit
task. The learning is said to be unsupervised. By contrast, super-
vised training of a deep artificial neural network (ANN) with
backpropagation requires a huge amount of labeled data.

The central question that we investigate in this paper is the
following: Can useful early layer representations be learned in
an ANN context without supervision and using only a local “bio-
logical” synaptic plasticity rule? We propose a family of learning
rules that have conceptual biological plausibility and make it pos-
sible to learn early representations that are as good as those
found by end-to-end supervised training with backpropagation
on Modified National Institute of Standards and Technology
(MNIST) dataset. On Canadian Institute for Advanced Research
10 dataset (CIFAR-10) the performance of our algorithm is
slightly poorer than end-to-end training, but it still demonstrates
very good results in line with some of the previously published
benchmarks on biological learning. We demonstrate these points
by training the early layer representations using our algorithm
and then freezing the weights in that layer and adding another
layer on top of it, which is trained with labels using conventional
methods of stochastic gradient decent (SGD), to perform the
classification task.

End-to-end training with backpropagation can also be used to
generate useful early representations in an unsupervised way. An
autoencoder can be trained to carry out a self-mapping task on
input patterns (3). This is very different from our system which
requires no backpropagation of signals, receives all its informa-
tion directly from forward-propagating signals, and has a local
rule of synapse update.

Significance

Despite great success of deep learning a question remains
to what extent the computational properties of deep neural
networks are similar to those of the human brain. The partic-
ularly nonbiological aspect of deep learning is the supervised
training process with the backpropagation algorithm, which
requires massive amounts of labeled data, and a nonlocal
learning rule for changing the synapse strengths. This paper
describes a learning algorithm that does not suffer from these
two problems. It learns the weights of the lower layer of neu-
ral networks in a completely unsupervised fashion. The entire
algorithm utilizes local learning rules which have conceptual
biological plausibility.
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A large body of research is dedicated to constructing algo-
rithms that approximate backpropagation training, without
grossly violating the “rules” of neurobiology. These diverse ideas
include the feedback alignment algorithms (4, 5), target prop-
agation algorithms (6), equilibrium propagation (7), predictive
coding network algorithms (8), alternating minimization tech-
niques (9), etc. There are also online videos summarizing some
of these approaches (10, 11). Some of these algorithms use
local learning rules (6–8, 12). The main difference between our
approach and the aforementioned ideas is that the algorithms
of refs. 4–8 and 10–12 use top–down propagation of informa-
tion in the neural network to adjust the weights in the lower
layers of that network (the task can be supervised or unsuper-
vised, depending on the specific paper cited above). In contrast,
in our algorithm the synapse learning procedure uses only the
bottom–up information about activities of the neurons.

Another set of ideas, more closely related to the current pro-
posal, is studied in a series of papers (13–16). Similarly to our
approach this work takes as fundamental two ideas: that the learn-
ing be unsupervised and that the synaptic plasticity rule be local.
From that common starting point the two approaches diverge.
Studies (13–16) postulate in addition that the desired hidden unit
synapses should minimize a particular mathematical measure of
similarity of data. Their equations describing synapse change,
although motivated by biology, are tailored to implement mini-
mization of this postulated measure. Our algorithm for synapse
development does not assume such a restriction. Instead the goal
of our approach is to engineer a plasticity rule that leads to a
good generalization performance of the neural network. Because
of the common starting point and the focus of interest, for par-
ticular network architectures, plasticity rules, learning protocols,
etc., there might be special cases in which the conclusions of the
two approaches are similar. But this will not generally be the case.

What is meant by “biological plausibility” for synapse change
algorithms in ANNs? We take as fundamental the idea coming
from psychologists that the change of the efficacy of synapses
is central to learning and that the most important aspect of
biological learning is that the coordinated activity of a presynap-
tic cell i and a postsynaptic cell j will produce changes in the
synaptic efficacy of the synapse Wij between them (17). In the
years since Hebb’s original proposal, a huge amount of neuro-
biology research has fleshed out this idea. We now know that
neurons make either excitatory or inhibitory outgoing synapses,
but not both (18) (this constraint is not respected by the pro-
posed algorithm); that for excitatory synapses the change in
efficacy can either increase or decrease, depending on whether
the coordinated activity of the postsynaptic cell is strong or
weak [long-term potentiation (LTP) and long-term depression
(LTD)] (19); that homeostatic processes regulate overall synap-
tic strength; that prepost timings of neuronal action potentials
can be very important (STDP) (20); that changes in synaptic
efficacy may be quantized (21); that there are somewhat differ-
ent rules for changing the strength of excitatory and inhibitory
synapses (22), etc. For the ANN purposes, we subsume most of
such details with four ideas:

i) The change of synapse strength during the learning process
is proportional to the activity of the presynaptic cell and to
a function of the activity of the postsynaptic cell. Both LTP
(Hebbian-like plasticity) and LTD (anti–Hebbian-like plastic-
ity) are important. The synapse update is locally determined.

ii) Lateral inhibition between neurons within a layer, which
makes the network not strictly feedforward during training,
is responsible for developing a diversity of pattern selectivity
across many cells within a layer.

iii) The effect of limitations of the strength of a synapse and
homeostatic processes will bound possible synaptic connec-
tion patterns. The dynamics of our weight-change algorithm

express such a bound, so that eventually the input weight vec-
tor to any given neuron converges to lie on the surface of a
(unit) sphere.

iv) The normalization condition could emphasize large weights
more than small ones. To achieve this flexibility we construct
(local) dynamics of the synapse development during learning
so that the fixed points of these dynamics can be chosen to lie
on a Lebesgue sphere with p norm, for p≥ 2.

Throughout the paper, biological algorithm is used as a meta-
phorical name, meaning an algorithm obeying the most important
constraints of biological neural networks. We recognize that our
proposed algorithm omits many known aspects of neurobiology.

Mathematical Framework
A standard feedforward architecture is considered with a layer
of visible neurons vi , a layer of hidden neurons hµ, and a layer of
output neurons cα. In this case the forward pass is specified by the
equations (summation over repeated indexes i and µ is assumed){

hµ = f (Wµivi)

cα = tanh(βSαµhµ)
where f (x ) =

{
xn , x ≥ 0

0, x < 0.
[1]

The power of the activation function n ≥ 1 is a hyperparameter
of the model (23, 24), n = 1 corresponds to rectified linear unit
(ReLU), and β is a numerical constant. The receptive fields of
the hidden layer Wµi are learned using our local unsupervised
algorithm, described below, without any information about the
labels. Once this unsupervised part of the training is complete,
the second set of weights Sαµ is learned using conventional SGD
techniques. This is the only part of the training algorithm where
labels are used. This logic is illustrated in Fig. 1.

It has been known since the work of Hubel and Wiesel that
many neurons in the visual cortex are tuned to detect certain
elementary patterns of activity in the visual stimulus. There is
a body of literature dedicated to the study of biologically plau-
sible mechanisms for development of orientation selectivity in
the visual cortex, for example refs. 25–29. For our purposes
the work of Bienenstock, Cooper, and Munro (BCM) (26) is
particularly important. The idea of BCM theory is that for a
random sequence of input patterns a synapse is learning to
differentiate between those stimuli that excite the postsynap-
tic neuron strongly and those stimuli that excite that neuron
weakly. Learned BCM feature detectors cannot, however, be
simply used as the lowest layer of a feedforward network so
that the entire network is competitive to a network of the same
size trained with backpropagation algorithm end-to-end. The
main reason for this is that by using BCM alone, without inhi-
bition between the hidden neurons, synapses of many hidden
units can converge to the same pattern. In other words, BCM
is a theory of the development of the pattern selectivity of

Fig. 1. Lower layers of the neural network (weights Wµi) are trained using
the proposed biological learning algorithm. Once this phase is complete, the
weights are plugged into a fully connected perceptron. The weights of the
top layer Sαµ are then learned using SGD in a supervised way.
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a single cell. Highly specific pattern responses in BCM come
about because there is a temporal competition between patterns
seeking to drive a single neuron. This competition is controlled
by the dynamics of an adjustable learning threshold parame-
ter. In our system, the neurons compete with each other for
patterns, and there is no adjustable threshold. The competition
is between neurons, not between patterns. When one neuron
becomes tuned to some pattern of inputs, the within-layer lateral
inhibition keeps other neurons from becoming selective to that
same pattern. Thus, a layer of diverse early feature detectors can
be learned in a completely unsupervised way without any labels.

Synaptic Plasticity Rule. Consider the case of only one hidden
unit. Then the matrix Wµi becomes a vector W, which has com-
ponents Wi . We use similar notations for other variables; for
example, X is a vector with components Xi . It is convenient to
define a metric and an inner product (δij is Kronecker delta)

〈X, Y〉=
∑
i,j

ηijXiYj , with ηij = |Wi |p−2δij , [2]

where p≥ 1 is the parameter defining the Lebesgue p norm. In
the case of p = 2 this inner product is the conventional dot prod-
uct between two vectors, and if p> 2 the contribution of the
weights in the metric ηij becomes important. The plasticity rule
that we study can then be written as

τL
dWi

dt
= g (Q)

(
Rpvi −

〈
W, v

〉
Wi

)
where Q =

〈
W, v

〉
〈
W, W

〉 p−1
p

.
[3]

The constant τL defines the time scale of the learning dynamics.
It should be larger than the time scale of presentation of an indi-
vidual training example, as well as the time scale of evolution of
individual neurons, which is defined below. The function g(Q) is
a nonlinear learning activation function that is discussed below
(Eq. 9) and plotted in Fig. 2, vi are visible neurons or training
examples, and R is a constant that is discussed below.

The plasticity rule [3] is an extension of the famous Oja rule
(30). It implements three of the four ideas outlined in the Intro-
duction. The first term of the plasticity rule is the product of
the activity of the presynaptic neuron vi and a function of the
postsynaptic activity g(Q). Thus, it is an example of Hebbian-
like plasticity. As we discuss below this function g(Q) has both
positive and negative values, resulting in both Hebbian and anti-
Hebbian learning. The first term in Eq. 3 implements the first
idea from the Introduction. The second term in [3] ensures that

the weights of a hidden neuron connected to all of the visible
units converge to vectors of length R. This is an implementation
of the third and the fourth ideas outlined in the Introduction.
Initially the weights are initialized from a standard normal distri-
bution. Then a sequence of training examples is presented one
at a time and the weights are updated according to [3]. It can
be shown that as t→∞ the weights Wi converge to a sphere of
radius R, defined using the Lp norm:

|W1|p + |W2|p + · · ·+ |WN |p =Rp . [4]

To see this consider the time derivative of the p norm of the
weight vector

τL
d

dt

〈
W, W

〉
= pτL

〈
W,

dW
dt

〉
= pg(Q)

〈
W, v

〉 [
Rp −

〈
W, W

〉]
,

[5]

where in the second line the time derivative of the weight vec-
tor is substituted from [3]. Provided that g(Q)

〈
W, v

〉
≥ 0, if the

p length of vector W is less than R, its length increases on
the dynamics, and if it is greater than R, its length decreases.
Thus, although the training procedure starts with random val-
ues of the synaptic weights, eventually these weights converge to
a sphere. The positivity bound g(Q)

〈
W, v

〉
≥ 0 is satisfied for a

broad class of activation functions. In practical applications, we
use this learning rule even in situations when the positivity con-
straint is violated. It turns out that if the violation is weak, which
is justified by the small parameter ∆ (Fig. 2), the weights still
converge to a sphere of radius R.

In situations when the network has more than one hidden unit,
which are enumerated by index µ, each vector Wµ will have an
external index, as will the inner product:

〈X, Y〉µ =
∑
i,j

η
(µ)
ij XiYj , with η

(µ)
ij = |Wµi |p−2δij . [6]

In this case the fixed points of the plasticity dynamics are such
that synapses of each hidden unit converge to their own unit
vector on a sphere.

It can also be shown that plasticity rule [3] has a Lyapunov
function (Appendix A)

L=
∑
data

K∑
µ=1

G

 〈
Wµ, v

〉
µ〈

Wµ, Wµ

〉 p−1
p

µ

, where G ′(Q) = g(Q) [7]

that monotonically increases on the dynamical trajectory of
synapses (the sum over data runs over all of the training

Fig. 2. The pipeline of the training algorithm. Inputs vi are converted to a set of input currents Iµ. These currents define the dynamics [8] that lead to the
steady-state activations of the hidden units. These activations are used to update the synapses using the learning rule [3]. The learning activation function
changes the sign at h*, which separates the Hebbian and anti-Hebbian learning regimes. The second term in the plasticity rule [3], which is the product of
the input current Iµ and the weight Wµi , corresponds to another path from the data to the synapse update. This path is not shown here and does not go
through Eq. 8.
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examples). Finally, if one works on the ordinary Euclidean
sphere with p = 2 and the function g(Q) =Q is linear, our learn-
ing rule reduces to the famous Oja rule (30). In the following the
radius of the sphere is set to R = 1.

To summarize, the learning rule [3] implements the Hebbian-
like plasticity (idea i from the Introduction) subject to home-
ostatic constraints on the length of synaptic weights (ideas iii
and iv). The intuition behind different choices of the Lebesgue
parameter p is the following. For p = 2 the weights are normal-
ized to lie on the ordinary Euclidean sphere. If p is increased,
only large values of the weights Wi contribute to the normaliza-
tion condition [4], while small values become suppressed, since
the power function grows very rapidly. This results in weights that
lie almost on the surface of a hypercube with slightly rounded
corners. This allows the learning algorithm to find a good set
of weights that are smaller than the maximal weight without
too many restrictions from the homeostatic constraint [4]. If
those small weights increase and approach the maximal weight,
however, they begin to contribute strongly to the normalization
condition [4].

A Biologically Inspired Learning Algorithm. A good set of weights
in the neural network should be such that different hidden units
detect different features of the data. Neither the BCM algo-
rithm nor the plasticity rule [3] addresses this issue of differential
selectivity. To do this, we use a neural network with global
inhibition between the hidden neurons and dynamical equations

τ
dhµ
dt

= Iµ−winh

∑
ν 6=µ

r(hν)− hµ, where Iµ = 〈Wµ, v〉µ. [8]

In Eq. 8 the activities of the hidden neurons are denoted by hµ,
r(hµ) = max(hµ, 0) are the corresponding firing rates (we use a
ReLU), Iµ is the input current from the visible layer, winh is a
parameter that defines the strength of the global inhibition, and
constant τ� τL defines the dynamical time scale of individual
neurons.

The pipeline of the unsupervised part of the algorithm is
shown in Fig. 2. Using the weights Wµi a raw input is converted
into a set of input currents Iµ. These currents drive the dynamics
of hidden units, as is shown in Fig. 2. The strength parame-
ter of the global inhibition is set so that in the final state only
a small fraction of hidden units have positive activity (in this
case h3, h1, and h5). The values of these steady-state activities
are then used as arguments in the nonlinear learning activa-
tion function g(h) in [3]. This function implements temporal
competition between the patterns, so that it is positive for the
activities exceeding a threshold h∗ and negative for the activities
in the range 0< hµ< h∗. Activities that are below zero do not
contribute to training:

g(h) =


0, h < 0

−∆, 0≤ h < h∗
1, h∗≤ h.

[9]

The intuitive idea behind this choice of the activation function
is that the synapses of hidden units that are strongly driven are
pushed toward the patterns that drive them, while the synapses
of those hidden units that are driven slightly less are pushed away
from these patterns. Given a random temporal sequence of the
input stimuli, this creates a dynamic competition between the
hidden units and results in the synaptic weights that are differ-
ent for each hidden unit and specific to features of the data. The
idea of having an activation function that is positive for activa-
tions above the threshold h∗ and negative below the threshold h∗
is inspired by the BCM theory (26) and the existence of LTP and
LTD (19).

The idea of using lateral inhibition combined with Hebbian-
like plasticity goes back to a series of papers (27–29). In the
machine-learning literature it is known as competitive learning
or “winner-takes-all” learning (31, 32). Formally our approach
reduces to those methods if anti-Hebbian learning is switched
off (∆ = 0 limit) and the second term in the plasticity rule [3],
which describes homeostatic constraints on synaptic strengths
and leads to normalized weights, is removed. The global inhi-
bition motif has also been used in a number of unsupervised
learning algorithms (13, 25, 33–35).

A Fast Implementation
We view the algorithm presented in the previous section as
a conceptual idea of how it might be possible to learn good
early layer representations given the biological constraints of
the sensory cortex. A computational advantage of the presented
algorithm, compared with the standard supervised training with
backpropagation, is that it is unsupervised. The question then
arises whether this algorithm might be valuable from the artificial
intelligence (AI) perspective even if we forget about its biological
motivation.

From the AI point of view the main drawback of the pre-
sented algorithm is that it is slow. There are two reasons for this.
First, it is an online algorithm so that training examples are pre-
sented one at a time, unlike SGD where training examples can
be presented in minibatches. Second, for any training example
one has to wait until the set of hidden units reaches a steady
state. This requires numerically solving Eq. 8, which is time
consuming.

An approximation of this computational algorithm has been
found which circumvents these two drawbacks and works
extremely well in practice. First, instead of solving dynamical
equations we use the currents as a proxy for ranking of the final
activities. Given that ranking, the unit that responds the most to
a given training example is pushed toward that example with acti-
vation g = 1. The unit that is second (or more generally k th) in
ranking is pushed away from the training example with activa-
tion g =−∆. The rest of the units remain unchanged (here K is
the total number of hidden units, i = 0 corresponds to the least-
activated hidden unit, and i =K is the strongest-driven hidden
unit):

g(i) =


1, if i =K

−∆, if i =K − k

0, otherwise.
[10]

This heuristic significantly speeds up the algorithm. Second,
training examples can then be organized in minibatches, so that
the ranking is done for the entire minibatch and the weight
updates that result from the learning rule [3] are averaged over
all examples in the minibatch.

In this “fast” implementation the sorting of the input currents
has a computational complexity O(Kk)× size of the minibatch,
where K is the number of hidden units, and k is the ranking
parameter.

Testing the Model
The presented algorithm was tested on the MNIST and CIFAR-
10 datasets. All of the tasks that are discussed below are pixel
and (in the case of CIFAR-10) color permutation invariant. The
hyperparameters are reported in Appendix B. The benchmarks
discussed below use the fast implementation of the proposed
algorithm, described in A Fast Implementation. The code can be
found in the GitHub repository (36).

MNIST. A standard training set of 60,000 examples was randomly
split into a 50,000-examples training set and a 10,000-examples
validation set that was used for tuning the hyperparameters.
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After the hyperparameters were fixed, the training and the val-
idation sets were combined to train the final model on 60,000
examples. The final performance of the models was evaluated on
the standard held-out test set of 10,000 examples.

In the first set of experiments a network of 2,000 hidden units
was trained using the proposed biological algorithm to find the
weights Wµi . The initial values for weights were drawn from the
standard normal distribution. As training progresses the weights
eventually converge to the surface of a unit sphere. Final learned
weights, connected to 20 randomly chosen hidden units, are
shown in Fig. 3, Left. After the unsupervised phase of the train-
ing was complete, the learned weights Wµi were frozen and used
in the network [1]. The second set of weights was learned using a
standard SGD procedure described in Appendix B. The decrease
of the errors on the training and the test sets during this second
(supervised) phase of the training is shown in Fig. 3, Right (blue
and red curves). The performance of this biologically trained net-
work was compared with the performance of the feedforward
network of the same size (784→ 2,000→ 10) trained end-to-
end using the Adam optimizer starting from random weights
(training and test errors are shown in Fig. 3, Right, magenta
and green curves). Twenty randomly chosen feature detectors
learned by the standard network trained end-to-end are shown
in Fig. 3, Center.

The network trained with the backpropagation end-to-end
reaches the well-known benchmarks: training error = 0%, test
error ≈ 1.5%. Training error of the biological network is 0.40%.
The most surprising aspect of this plot is that the test error
of the biological algorithm, which is 1.46%, is as low as the
test error of the network trained end-to-end. This result can be
compared with the previously published benchmarks on other
biologically inspired algorithms, for example 2−3% in ref. 7,
1.96% in ref. 12, 1.94% in ref. 6, 1.45% in ref. 37, and 5% in
ref. 38. There is also a recent paper (39), where multiple biolog-
ically inspired algorithms are assessed on this task with results
ranging from 1.83% to 3.52%. When comparing these numbers,
it should be noted that the algorithms of refs. 6, 7, 12, 37, and
39 are using the information about the labels all of the way
during the training. In contrast, our algorithm learns the first-
layer representations in a completely unsupervised way. Thus,
it demonstrates a comparable or better performance despite
solving a more challenging task. Finally, we note that the per-
formance of networks trained end-to-end with backpropagation
can be significantly enhanced using dropout, injecting noise, aug-

menting the dataset, etc. See for example ref. 40, which reports
0.87% error, or ref. 41, which reports 0.57% error. Additional
work is required to see whether similar (or different) approaches
can affect the performance of the proposed biological training
algorithm.

It is instructive to examine the weights (Fig. 3, Left) learned
by the unsupervised phase of the proposed biological algorithm.
The color coding uses the white color to represent zero weights,
the red color to represent positive weights, and the blue color to
represent negative weights. Training examples vi are normalized
so that they are always positive vi ≥ 0. The weights associated
with each hidden unit live on a unit sphere, i.e., satisfy the con-
straint

∑784
i=1 |Wµi |p = 1, which is the fixed point of the learning

rule [3]. Although some of the learned feature detectors resem-
ble certain training examples, they are not simply copies of the
individual training data points. The easiest way to see this is to
note that the largest (in absolute value) negative weight among
the 20 shown feature detectors, −0.345, is almost as big as the
largest positive weight 0.444, while the training examples are
always positive. Thus, the learned feature detectors encode both
where the ink is in the data and where the ink is not. Mathemati-
cally, these negative weights arise because of the anti-Hebbian
piece, proportional to −∆, in the learning rule [3] (Fig. 2
and Eq. 10).

Another important aspect is that the proposed biological net-
work is not doing a simple template matching to classify the data.
For example, feature detector 9 (counting is left to right, top to
bottom) encodes subdigit features—a slanted line with a gap in
the middle. Feature detector 3 “votes” for class 5 and against
class 0. Feature detectors 6 and 13 are activated by classes 4, 7
and 2, 7, respectively. When a network is presented with an input,
many hidden units are activated. Activities of these hidden units
are then used in the next layer to arrive at the classification deci-
sion. Thus, the network learns a distributed representation of the
data over multiple hidden units. This representation, however, is
very different from the representation learned by the network
trained end-to-end, as is clear from comparison of Fig. 3, Left
and Center.

It is instructive to learn the first-layer weights Wµi for the opti-
mal values of the hyperparameters p, k , and ∆ (on the validation
set), then freeze those weights, and then learn the second-layer
weights Sαµ for different values of power n in [1]. The remaining
hyperparameters associated with the second supervised phase of
the training, m from Eq. 12 and β from Eq. 1, are optimized

backpropagation

number of epochs
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Fig. 3. (Left) The weights learned by the biological network using the unsupervised learning algorithm. Twenty randomly chosen feature detectors of
2,000 are shown. (Center) The weights learned by the network trained end-to-end with the backpropagation algorithm. Twenty randomly chosen feature
detectors of 2,000 are shown. (Right) Error rate on the training and test sets as training progresses for the proposed biological algorithm and for the
standard network trained end-to-end.
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Fig. 4. Error on the training set (blue) and the test set (red) for three networks with different powers of the activation function f(x). All networks were
trained for 300 epochs with the schedule of the learning-rate annealing described in Appendix B. The hyperparameters of the unsupervised phase of the
training are p = 3, k = 7, ∆ = 0.4.

for each value of power n individually. The results are shown in
Fig. 4. There is an optimal value of power n ≈ 4.5 for which the
validation error and the test error are the smallest. The errors
increase for both smaller and larger values of power n . This
indicates that given the weights, which are learned by the unsu-
pervised phase of the algorithm, the architecture of higher layers
should be tuned so that the network could take most advantage
of those unsupervised weights.

For completeness we tested our algorithm in the limit ∆ = 0,
when it reduces to familiar competitive learning with additional
dynamical convergence of weight vectors to a unit sphere. The
weights in this limit are shown in Fig. 5. They are all positive and,
unlike the weights shown in Fig. 3, represent prototypes of hand-
written digits. The performance of the algorithm in this limit is
2.02% error rate, which is significantly worse than the perfor-
mance of our algorithm with nonzero ∆, which is 1.46% error
rate. The two networks that are compared have the same capacity
(2,000 hidden units).

We systematically investigated the performance of the “fast
AI” implementation for different values of Lebesgue norm
p and the ranking parameter k . To do this, for each value
of 2≤ p≤ 6 and 2≤ k ≤ 8 (with increment 1 in both param-
eters) the proposed biological algorithm was used to find a
set of weights Wµi . For each p and k the top-layer weights
were trained for different values of the hyperparameters n ∈
{3, 3.5, 4, 4.5, 5, 5.5, 6, 7} from Eq. 1, m ∈{4, 6, 8, 10, 12} from
Eq. 12, and β ∈{0.01, 0.1, 1} from Eq. 1. For each combination
of the parameters the network was trained three times for dif-
ferent random initializations of the weights, different sampling
of minibatches, and different validation sets (10,000 examples
sampled from the standard training set of 60,000 examples).
Altogether this results in 360 training runs per each combina-
tion of p and k and 12,600 runs in total. For each combination of
p and k a combination of n , m , and β that worked best on the
validation set was selected. For those “optimal” hyperparame-
ters the training was repeated on the complete training set of
60,000 examples three times to determine the performance on
the held-out test set. The results are shown in Fig. 6, where for
each combination of p and k the mean performance together
with the SD for the three training runs is reported. As is clear
from Fig. 6, the algorithm demonstrates competitive results for
close to all values of p and k . If one further optimizes the perfor-
mance (on the validation set) over the parameters p, k , and ∆,
the best combination ends up being p = 3, k = 7, ∆ = 0.4. This
gives the final performance of our proposed biological algorithm,
1.46± 0.005%.

CIFAR-10. A standard training set of 50,000 examples was ran-
domly split into a 45,000-examples training set and a 5,000-
examples validation set. After tuning the hyperparameters on
the validation set, the final models were trained on the entire

50,000 data points and evaluated on the held-out test set of
10,000 examples. No preprocessing of the data was used, except
that each input image was normalized to be a unit vector in the
32× 32× 3 = 3,072-dimensional space.

In analogy with MNIST the performance of two networks
was compared. One trained using the proposed biological algo-
rithm in two phases: unsupervised training of the 3,072→ 2,000
network, followed by the supervised training of the top layer,
2,000→ 10. The other one, 3,072→ 2,000→ 10, trained with
Adam end-to-end. The results are shown in Fig. 7. The optimal
duration of the backpropagation training for the conventional
network (see Appendix B for details) was 100 epochs, which gave
the error on the test set of 44.74%. At that point the error on
the training set is still nonzero. To demonstrate that the capac-
ity of the standard network is sufficient to fit all of the training
examples, we kept training it until the training error reached
0%. The proposed biological network achieves training error
44.95% and test error 49.25%. Unfortunately, previously pub-
lished benchmarks for biologically inspired training algorithms
are very scarce on CIFAR. The study (6) reports 49.29%. A
recent paper (39) reports error rates in the range 41.97−59.14%.

Fig. 5. Weights of the first layer in the limit ∆ = 0. All synaptic connections
are positive and represent prototypes of digits.
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Fig. 6. For each pair of hyperparameters p and k of the proposed unsu-
pervised algorithm the hyperparameters of the top layer (n, m, β) were
optimized on the validation set. For these optimal (n, m, β), the mean error
together with the SD of the individual runs on the held-out test set is shown
for each pair of Lebesgue norm p and the ranking parameter k. In these
experiments the hyperparameter ∆ was set to the optimal value ∆ = 0.4
determined on the validation set. The unsupervised algorithm did not con-
verge for (p = 2, k = 8) and (p = 6, k = 8), indicating that a smaller value of
∆ is required for those hyperparameters.

It also reports a benchmark of 41.32% for the networks trained
end-to-end, which is better than the result that we achieved in
our end-to-end trained network. This is perhaps explained by
the fact that a deeper architecture was used in ref. 39 for this
task. It is worth emphasizing again that the algorithms of refs.
6 and 39 are supervised all of the way throughout training and
for this reason solve a simpler task compared with our algorithm
that learns the first set of weights in an entirely unsupervised
way. In Fig. 7 the weights of 25 randomly selected hidden units
learned by the unsupervised phase of the algorithm are shown.
They represent a diverse collection of features and prototypes of
the training images. These weights have large negative elements
and for this reason are not just copies of the training examples,
which are all positive. The classification decision of the full bio-
logical network is done in a distributed way involving votes of
multiple hidden units. This distributed representation is very dif-
ferent, however, from the end-to-end feature detectors shown

in Fig. 7, Center. Finally, although the network is dealing with
the pixel-color permutation invariant problem, the unsupervised
algorithm discovers the continuity of color in the data. This is dif-
ferent from the end-to-end trained feature detectors, which look
speckled.

Discussion and Conclusions
Historically, neurobiology has inspired much research on using
various plasticity rules to learn useful representations from the
data. This line of research chiefly disappeared after 2014 because
of the success of deep neural networks trained with backpropa-
gation on complicated tasks like ImageNet. This has led to the
opinion that neurobiology-inspired plasticity rules are computa-
tionally inferior to networks trained end-to-end and that super-
vision is crucial for learning useful early layer representations
from the data. By consequence, the amount of attention given
to exploring the diversity of possible biologically inspired learn-
ing rules, in the present era of large datasets and fast computers,
has been rather limited. Our paper challenges this opinion by
describing an unsupervised learning algorithm that demonstrates
a very good performance on MNIST and CIFAR-10. The core
of the algorithm is a local learning rule that incorporates both
LTP and LTD types of plasticity and a network motif with global
inhibition in the hidden layer.

The SGD training of the top layer was used in this paper to
assess the quality of the representations learned by the unsu-
pervised phase of our algorithm. This does not invalidate the
biological plausibility of the entire algorithm, since SGD in one
layer can be written as a local synaptic plasticity rule involving
only pre- and postsynaptic cell activities. Thus, it complies with
the locality requirement that we took as fundamental.

In the present paper all of the experiments were done on a
network with one hidden layer. The proposed unsupervised algo-
rithm, however, is iterative in nature. This means that after a
one-layer representation is learned, it can be used to generate
the codes for the input images. These codes can be used to train
another layer of weights using exactly the same unsupervised
algorithm. There are many possibilities of how one could orga-
nize those additional layers, since they do not have to be fully
connected. This line of research requires further investigation.
At this point it is unclear whether or not the proposed algorithm
can lead to improvements on the single hidden-layer network, if
applied iteratively in deeper architectures.

Another limitation of the present work is that all of the experi-
ments were done on MNIST and CIFAR-10 and only in the fully

number of epochs

er
ro

r, 
%

backpropagation

Fig. 7. (Left) The weights learned by the network using the unsupervised learning algorithm. Twenty-five randomly chosen feature detectors of 2,000
are shown. (Center) The weights learned by the network trained end-to-end with the backpropagation algorithm. Twenty-five randomly chosen feature
detectors of 2,000 are shown. (Right) Error rate on the training and test sets as training progresses for the proposed biological algorithm and for the
standard network trained end-to-end.
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connected setting. Many biologically plausible approaches to
deep learning fail on more complicated datasets, like ImageNet,
even if they work well on MNIST and CIFAR-10 (39).

Finally, this paper does not claim that end-to-end training is
incompatible with biological plausibility. There is a large body
of literature dedicated to designing biologically plausible vari-
ants of end-to-end training approximating backpropagation (4–8,
10–12). The main difference between those approaches and the
present proposal is that the algorithms of refs. 4–8 and 10–12
require the top–down propagation of information and craft the
synaptic weights in the early layers of neural networks to solve
some specific task (supervised or unsupervised). In our algorithm
there is no top–down propagation of information, the synap-
tic weights are learned using only bottom–up signals, and the
algorithm is agnostic about the task that the network will have
to solve eventually in the top layer. Despite this lack of knowl-
edge about the task, the algorithm finds a useful set of weights
that leads to a good generalization performance on the standard
classification task, at least on simple datasets like MNIST and
CIFAR-10.

Appendix A
Below we prove that [7] monotonically increases on the
dynamics [3]. The temporal derivative of [7] is given by Eq. 11:

τL
dL

dt
=

K∑
µ=1

(p− 1)g(Qµ)

〈Wµ, Wµ〉
p−1
p

+1

µ

[
τL
〈dWµ

dt
, v
〉
µ

〈
Wµ, Wµ

〉
µ

− τL
〈dWµ

dt
, Wµ

〉
µ

〈
Wµ, v

〉
µ

]
=

K∑
µ=1

(p− 1)g(Qµ)2Rp

〈Wµ, Wµ〉
p−1
p

+1

µ

[〈
Wµ, Wµ

〉
µ

〈
v, v
〉
µ

−
〈

Wµ, v
〉2

µ

]
≥ 0. [11]

The last expression in [11] is positive due to the Cauchy–Schwarz
inequality. Thus, [7] monotonically increases on the dynam-
ics. Also, the Lyapunov function [7] is upper bounded by the
Cauchy–Schwarz inequality.

Appendix B
The unsupervised part of the training for MNIST was done
for the following parameters: Lebesgue norm p ∈{2, 3, 4, 5, 6},
ranking parameter k ∈{2, 3, 4, 5, 6, 7, 8}, and anti-Hebbian
learning parameter ∆∈{0, 0.1, 0.2, 0.3, 0.4}. Training was done
using minibatches of size 100 examples for 1,000 epochs. Learn-
ing rate linearly decreased from the maximal value 0.04 at the
first epoch to 0 at the last epoch. The learning rate here is
defined as the numerical coefficient that is used to multiply the
right-hand side of [3] to obtain the increment in weights.

The supervised part of the training was done using the loss
function (labels tα are one-hot–encoded vectors of Nc = 10 units
of ±1)

C =
∑

examples

Nc∑
α=1

|cα− tα|m . [12]

The Adam optimizer was used to minimize the loss function
during 300 epochs with the following schedule of learning rate
change: 0.001 for the first 100 epochs and after that the learn-
ing rate decreased every 50 epochs as 0.0005, 0.0001, 0.00005,
0.00001. Minibatch size was 100.

For the unsupervised part of CIFAR-10 experiments, a sim-
ilar setting was used with p ∈{2, 3, 4, 5}, k ∈{2, 3}, and ∆∈
{0, 0.1, 0.2, 0.3}. Training was done for 1,000 epochs with mini-
batches of size 1,000. Learning rate linearly decreased from
0.02 to 0.

For the supervised part of the biological network in Fig. 7 the
Adam optimizer was used with minibatch size 10, m = 6, n = 10
for 500 epochs. The learning-rate schedule: 0.004 for 100 epochs
and then each 50 epochs the learning rate changed as 0.002,
0.001, 0.0005, 0.0002, 0.0001, 0.00005, 0.00002, 0.00001. For the
supervised part of the conventional end-to-end trained network
the Adam optimizer was used with minibatch size 100 and m = 4,
n = 1 for 100 epochs. Learning rate: 0.004 for 50 epochs and then
0.001 for another 50 epochs.

The code used in the biological unsupervised phase of the
algorithm is available on GitHub (36).
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34. Földiak P (1990) Forming sparse representations by local anti-Hebbian learning. Biol

Cybernetics 64:165–170.
35. Seung HS, Zung J (2017) A correlation game for unsupervised learning yields compu-

tational interpretations of Hebbian excitation, anti-Hebbian inhibition, and synapse
elimination. arXiv:1704.00646. Preprint, posted April 3, 2017.

36. Krotov D, Hopfield JJ (2019) Data from “Biological Learning.” GitHub. Available at
https://github.com/DimaKrotov/Biological Learning. Deposited January 28, 2019.

37. Nøkland A (2016) Direct feedback alignment provides learning in deep neural net-
works. Advances in Neural Information Processing Systems, eds Lee DD, Sugiyama M,
Luxburg UV, Guyon I, Garnett R (Neural Information Processing Systems Foundation,
Inc., La Jolla, CA), pp 1037–1045.

38. Diehl PU, Cook M (2015) Unsupervised learning of digit recognition using
spike-timing-dependent plasticity. Front Comput Neurosci 9:99.

39. Bartunov S, Santoro A, Richards BA, Hinton GE, Lillicrap T (2018) Assessing the
scalability of biologically-motivated deep learning algorithms and architectures.
arXiv:1807.04587. Preprint, posted November 20, 2018.

40. Tang Y (2013) Deep learning using linear support vector machines. arXiv:1306.0239.
Preprint, posted February 21, 2015.

41. Rasmus A, Berglund M, Honkala M, Valpola H, Raiko T (2015) Semi-supervised learn-
ing with ladder networks. Advances in Neural Information Processing Systems, pp
3546–3554.

Krotov and Hopfield PNAS | April 16, 2019 | vol. 116 | no. 16 | 7731

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

M
ar

ch
 3

0,
 2

02
1 

https://github.com/DimaKrotov/Biological_Learning

