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Superparamagnetic tunnel junctions (SMTJs) have emerged as a competitive, realistic nanotech-
nology to support novel forms of stochastic computation in CMOS-compatible platforms. One of
their applications is to generate random bitstreams suitable for use in stochastic computing im-
plementations. We describe a method for digitally programmable bitstream generation based on
pre-charge sense amplifiers. This generator is significantly more energy efficient than SMTJ-based
bitstream generators that tune probabilities with spin currents and a factor of two more efficient
than related CMOS-based implementations. The true randomness of this bitstream generator allows
us to use them as the fundamental units of a novel neural network architecture. To take advantage
of the potential savings, we codesign the algorithm with the circuit, rather than directly transcrib-
ing a classical neural network into hardware. The flexibility of the neural network mathematics
allows us to adapt the network to the explicitly energy efficient choices we make at the device level.
The result is a convolutional neural network design operating at ≈ 150 nJ per inference with 97 %
performance on MNIST—a factor of 1.4 to 7.7 improvement in energy efficiency over comparable
proposals in the recent literature.

I. INTRODUCTION

Magnetic tunnel junctions are poised to make signifi-
cant contributions to new computer chips, most immedi-
ately from non-volatile memory applications [1–3], such
as magnetic random access memory (MRAM). These de-
vices consist of two magnetic layers separated by a thin
tunnelling barrier. The memory values of 0 and 1 are en-
coded in two different stable configurations of the device
(parallel and anti-parallel magnetizations). Values can
be read by passing a small current (≈ 10 µA) through
the device, since its resistance depends on its configura-
tion. The device state can be switched by overcoming an
energy barrier between the two configurations by pass-
ing a higher current through the device. Since MRAM
is used as a non-volatile memory, retention requirements
demand that the energy barrier be kept high (greater
than 40 kT ).

However, if the energy barrier is decreased by a fac-
tor of ten (to ≈ 4 kT ) [4–6], then thermal fluctuations at
room temperature cause the device to randomly switch
between its stable configurations. In this case, the mean
time between thermal switching events is about 55 ns,
and the magnetic tunnel junction is said to be in a su-
perparamagnetic state, making such devices superpara-
magnetic tunnel junctions (SMTJs). In principle, the
barrier could be lowered even further for faster switch-
ing. The relative times spent in each configuration can be
controlled by passing a current through the device cre-
ating a spin-transfer torque [7] or by passing a current
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through an adjacent heavy metal layer creating a spin-
orbit torque [8]. They can currently be fabricated down
to a 10 nm length scale [9, 10].

The low energy, truly random behavior, ease of con-
trol, and established compatibility with complementary-
metal-oxide-semiconductor (CMOS) circuitry has led to
the use of SMTJs as the basis for a number of novel com-
puting schemes [11–13]. SMTJs were proposed to imple-
ment the concept of probabilistic bits, or p-bits, which
were leveraged for applications as Bayesian neural net-
works [14–16], invertible Boolean logic [17, 18], reservoir
computing [19], and Ising network models applied to opti-
mization problems [20, 21]. SMTJs were also proposed as
stochastic neural units [22] that can interact with synap-
tic units, emulated by crossbar arrays of magnetic tunnel
junctions that can switch stochastically in the presence
of current pulses [23, 24].

Some of these schemes encode information in the
switching rates [5] and others encode information in
the relative time spent in each state [13, 17]. In these
cases, the rates or probabilities are controlled by currents.
Though current-controlled methods have been used in
many previous device proposals, the ohmic losses they
incur can be significant.

Many of these previous applications can be classified as
types of probabilistic computing. The specific (and am-
biguously named) subfield of probabilistic computing we
consider in this paper is called stochastic computing [25].
Many of the works mentioned above would not qualify
as stochastic computing per se. Stochastic computing is
concerned with encoding real-valued numbers as the ex-
pectation values of random bitstreams; for example, a
bitstream such as 01001101000 has four ones and six ze-
ros, thereby encoding the value 0.4, since the probability
of seeing a 1 on this wire is 4/10. Stochastic computing



is a competitive candidate for energy-efficient application
specific architectures [26]. Its robustness to noise [27],
high density [27, 28], intrinsic parallelism [26, 27], and
latency-precision trade-off [26] make it a promising plat-
form for the implementation of dataflow-based computa-
tions in CMOS circuits.

Ideally, stochastic computers operate on long chains of
non-repeating, uncorrelated bitstreams that are cheap to
produce from an area and energy efficiency standpoint.
The conventional way of producing bitstreams is based on
a circuit called the linear feedback shift register (LFSR),
which comprises a series of flip-flops and simple combina-
tional circuits. LFSRs operate by cycling through all of
their internal binary states, each producing a pseudoran-
dom bit, before returning back to the initial state. When
LFSRs are used to generate a vast number of pseudoran-
dom bitstreams, those bitstreams are both periodic and
cross-correlated. Such correlations are usually undesir-
able from a computational perspective [26, 29]. Pseudo-
random bitstream generation can incur significant over-
heads in accelerator architectures [28, 30].

Stochastic bitstreams with neither periodicity nor
cross-correlation can be generated by SMTJs. The ther-
mal nature of their switching behaviour makes bitstreams
generated by SMTJ circuits aperiodic and truly ran-
dom [31–33]. We replace LFSR-based stochastic sources
with arrays of SMTJs that use energy-efficient readout
circuitry and programmable logic to generate truly ran-
dom bitstreams, demonstrating their application in a
convolutional neural network architecture.

Using SMTJs to generate stochastic bitstreams be-
comes useful only when the statistics of those bitstreams
can be controlled. Previous works have focused on us-
ing current biasing to realize a steady-state spin-transfer
torque on the free layer of the junction. This modifies
the effective energy landscape of the device so that one
of the configurations is tunably preferred over the other.
The use of spin-orbit torques in a similar context has also
been explored. In this paper, however, we demonstrate
how statistical control can be readily accomplished by
traditional circuit design; moreover, we show that such
digital control has superior energy efficiency over current
control for a large range of reasonable material param-
eters. We discuss the challenges to be overcome, and
the contexts to be used, wherein spintronic probability
control may become an efficient option.

To make this demonstration concrete, we develop the
circuits and architecture to use SMTJs as the basis for a
neural network designed to recognize hand-written dig-
its. This allows us to compare, in an application, digi-
tally programmable SMTJ-sourced stochastic bitstreams
against spintronically controlled versions. Considering
a full scale stochastic computing application also lets us
compare SMTJ-sourced stochastic bitstreams against the
performance of digitally generated pseudorandom bit-
streams. The interplay between high level design re-
quirements for the neural network and the capabilities
of the low level devices (SMTJs) leads to modifications

in the design of both the networks and the circuits that
connect with the devices. Such engineering across the
computational hierarchy, or stack, plays an important
role throughout this paper. In traditional computational
systems, cross-stack engineering is not necessary because
clean abstraction layers have been identified between dif-
ferent levels of design to allow optimization of each layer
by itself. Computer programmers do not need to know
the details of circuits in order to write code, and electri-
cal engineers do not need to know the details of device
physics in order to layout useful circuits. These clean
abstraction layers break down when using novel devices
or novel architectures.

In our case, for example, implementing the neural net-
work with stochastic bitstreams requires uncorrelated
bits that can be generated at low energy, a requirement
at the device and circuit level driven by the architecture.
At the same time, the use of simple primitives, AND and
OR gates, to implement pieces of the neural network dic-
tates changes to the high level structure of the neural
network. Similar engineering across the computational
stack is important for the many bio-inspired or other al-
ternative computing approaches that aim to take advan-
tage of materials and devices wherein the native dynam-
ics manifest the behavior of neural processes. Because
the algorithmic operation depends on the physics (but
not vice versa), bottom-up approaches like ours, which
choose interesting or energy-efficient physical systems at
the foundational level, demand that we pay attention to
whether and how the high-level computation can effec-
tively utilize the physics.

In Sec. II, we propose a circuit based on a precharge
sense amplifier (PCSA) to read the states of SMTJs to
generate a stochastic bitstream. Including a set-reset
latch with the PCSA fixes the output to a form useful for
stochastic computing. This modified PCSA avoids con-
trolling the state of the SMTJ by write currents; these
currents are much higher than the currents needed to
read the state, and give rise to ohmic losses that can
dominate the energy consumption of the device. Since
the expected value of the bitstream is fixed in the ab-
sence of tunable write currents, multiple such bitstreams
must be combined to produce variable expected values.
In Sec. III, we show how to use digital logic to combine
these low energy SMTJ-based stochastic oscillators into
programmable bitstream generators. These circuits op-
erate at lower energies than LFSRs and other approaches
based on SMTJs.

In Sec. IV, we design and simulate a deep convolutional
neural network based on LeNet5 [34] to demonstrate the
effectiveness of this SMTJ-based approach. The true ran-
domness of SMTJs relaxes constraints on design space
considerations for stochastic circuits, allowing us to take
advantage of uncommon stochastic computing ideas. We
choose an architecture that uses logical OR gates as neu-
rons, minimizing area and power expenditure compared
to state-machine based approaches. The OR gate simul-
taneously provides both the summation and nonlinear
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Figure 1. SMTJ readout. (a) The PCSA circuit for reading
an SMTJ state [35]. (b) The SC-PSCA includes an set/reset
(SR) latch on top of the PCSA from (a), to prevent the pre-
charging of nodes e and f from affecting the output duty
cycle. The left and right (e and f) branches of the latch are
directedly wired to the e and f nodes of the PSCA. A more
pedagogical version of this circuit is found in Fig. 10.

activation function of a neuron. The use of these devices
saves enough energy to justify the modifications needed
in the high level architecture. We train the stochastic
neural network by backpropagation on an analytic ap-
proximation to the network. In Sec. V, we give the results
for the accuracy and energy efficiency of this approach
based on simulations of this network architecture.

II. PRECHARGE SENSE AMPLIFIER
READOUT OF SUPERPARAMAGNETIC

TUNNEL JUNCTIONS

Most previous uses of SMTJs use current biasing to
vary the duty cycle of the generated bitstream, which can
lead to sizeable leakage currents (typically on the order
of microwatts). In large scale architectures that require
many SMTJs, the resulting ohmic losses can dominate
the energy consumption of the computation. An alter-
nate approach using a pre-charge sense amplifier (PCSA)
has been proposed in the literature [35]. In this approach,
the state is read by a minimal read current pulse and is
not controlled by a larger write current.

Others have used the PCSA method successfully to
generate random bits [5, 32]. However, these applica-
tions only need a single random bit to be produced at
a time. In stochastic computing, we need a continuous
stream of random bits to be made available at the hard-
ware level. Continuous production happens naturally in
current-biased systems where the SMTJ simply sits in a
voltage divider, but in the PCSA artifacts of the digital
circuitry interfere with extraction of a random bitstream.

Fig. 1(a) shows the PCSA described by Ref. [35]. It
works in two cycles. When the clock signal [Fig. 2(d)]
is at a low voltage, the transistor at c is turned off but
the transistors a and b are on. As there is no path to

Figure 2. Circuit simulations of the SC-PCSA circuit. (a)
Time-series resistance of the SMTJ due to thermal fluctua-
tions. (b) Sampling clock (clk from Fig. 1). (c) Voltage at
node f from Fig. 1(a), the output of the standard PCSA cir-
cuit. (d) Voltage at node OUT from Fig. 1(b), the output of
the SC-PSCA.

ground, all wires in the circuit are brought to Vdd. When
the clock signal goes high, a path to ground is opened at
c, and all paths to Vdd are closed. Because of the small
capacitances C in the transistors, there is a finite dis-
charging time (Rsd +Rref)C in which charge drains from
node e to ground, and a finite time (Rsd + RSMTJ)C in
which charge drains from f to ground, where Rref is the
resistance of the reference resistor, RSMTJ is the state-
dependent resistance of the SMTJ, and Rsd is the source-
drain resistance of the transistors between e or f and c.
The horizontal red and blue wires provide a nonlinear
interaction between these two discharging processes such
that the lower resistance channel will connect to ground
and the higher resistance channel to Vdd after the system
comes to equilibrium (Fig. 10). Note that only a small
amount of charge ∝ CVdd ultimately flows through the
system, so ohmic losses are very small; transistor capac-
itances are typically on the order of 10 aF to 100 aF.
Appendix A gives a more detailed discussion of the op-
eration of the PCSA and our proposed modification dis-
cussed immediately below.

The problem with the above process is the pre-charge
phase, when the clock signal is low and the whole circuit
is brought to Vdd. The state of the system in that phase
does not represent the last measured state of the SMTJ;
it is simply preparing to perform the next measurement.
This can be seen in Fig. 2(c). Around t ≈ 2.25 µs, for
instance, we can see that the SMTJ is in a low resistance
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state [Fig. 2(a)]. The output of the PCSA in Fig. 2(c)
nevertheless goes to a high voltage repeatedly in this
timeframe. This anomalous comb structure on top of
the actual SMTJ states is an artifact of the pre-charge
phase.

To address this, we attach a circuit called a set/reset
(SR) latch to the PCSA design, Fig. 1(b). Whenever
e and f are different, the latch copies the values of e
and f into its internal wires, so that OUT is set to f .
When e and f are both brought to Vdd during the pre-
charge phase, the internal state of the latch is left un-
changed. The behavior is explained in detail in Fig. 10
in Appendix A. The simulated state of OUT is shown in
Fig. 2(d). With the anomalous comb structure removed,
this voltage signal becomes suitable for stochastic com-
puting applications.

Fig. 2 shows simulation results of the SC-PCSA ob-
tained using a commercial software package and a 22 nm
predictive technology model [36, 37]. The simulations
include modeled parasitic contributions from the transis-
tors but not the interconnects, which would depend on
layout. The interconnect capacitances would play a role
at high speeds, but not the clock periods we consider. In
terms of energy, the contributions from the interconnect
capacitances are negligible compared to those from the
transistor capacitances.

The SMTJ model was implemented in Verilog-A as de-
scribed in Ref. [38] using parallel and antiparallel resis-
tances of 1.5 kΩ and 4.5 kΩ respectively. The dynamics
of the SMTJ are described by the probability to switch
in a given time interval, δt of Pswitch = 1 − exp(−δt/τ),
where τ is the mean dwell time in that state. It is given
by τ = τ0 exp(∆/kT ), where ∆ is the energy barrier out
of the current state of the SMTJ, T is the temperature, k
is the Boltzmann constant and τ0 is a characteristic time
scale. In general, the net energy barrier depends on the
applied field and voltage, which we do not apply in this
paper. These simulations use τ0 = 10−9 s and ∆/kT = 4.

It is not obvious that SMTJ output sampled at a given
time is decorrelated from the output sampled on the same
device a single clock cycle later. If the SMTJ is read too
frequently, the state of the device has no time to change,
and the generated bitstream will have strong autocorre-
lation. This autocorrelation can suppressed by increas-
ing the sampling interval. In Fig. 3, we see from nu-
merical simulation that the autocorrelation between two
time-adjacent samplings vanishes once the clock interval
is chosen to be more than twice the mean dwell time τ of
the SMTJ. In other words, the clock cycle should be cho-
sen so that the expected “period” 2τ of a P → AP → P
cycle fits within a single clock cycle. When the SMTJ
switches more slowly than the clock, the autocorrelation
increases linearly with τ .

Establishing an appropriately large clock cycle is cru-
cial. In many stochastic computing applications, auto-
correlation can introduce not only energy inefficiency but
functional incorrectness. In the application we present
in Sec. IV, for instance, we will purposefully delay

Figure 3. Autocorrelation under a lag of one clock cycle as
a function of clock cycle time tclock compared to the STMJ
mean dwell time τ . Each point gives the mean autocorrleation
time over 103 trials, with each trial sampling the SMTJ for
103 clock cycles. The vertical error bars give 95 % confidence
intervals on the mean.

time signals from each other in order to suppress cross-
correlations among them. This only works if the initial
signals themselves have vanishing autocorrelation.

If the continued development of SMTJ technology
could engineer a sufficiently small autocorrelation time
for the thermally-induced magnetic dynamics—that is, a
speed comparable to the switching speed of the CMOS
gates—then the integrated ohmic power loss will be sim-
ilar to losses in the CMOS itsef, and it may then become
reasonable to place a static read current across the de-
vices, as proposed in Refs. [12, 17, 19]. This would pro-
vide a continuous-time random telegraph signal, open-
ing up the possibility of running asynchronous computa-
tions. We compare the energetic performance of such an
approach to our proposal in Sec. III, in the context of
current SMTJ technology. We explore this limit in detail
in Appendix C.

Since the SC-PCSA is charge based, the dwell time of
the SMTJ does not change the energy expenditure of the
circuit (so long as the mean dwell times are not faster
than the equilibration time of the PCSA, about 1 ns).
Ideally, then, we would like the SMTJs to fluctuate as
quickly as possible; in general, we would also hope for
uniformity of dwell times and operation ranges. Mea-
sured dwell times range between 1 µs and 0.1 s depend-
ing on the operating regime [6]. The fluctuation rates are
highly sensitive to applied fields and currents. The two
state fluctuator model used in this paper is not valid for
fluctuator frequencies approaching the 10−9 s time scale
of magnetization reversal [39], but for applications like
ours in which a reference resistor is present, Kaiser et
al. [40] show that frequency scales can exceed the 1 GHz
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regime. The achievable time scale depends on the dif-
ferences in the resistance, proportional to the tunneling
magnetoresistance of the magnetic junction, that can be
detected and the size of the current needed to do so.

The resistance and magnetoresistance of the tunnel
junction are the same as those developed for memory
applications and so should have margins sufficient for ef-
fective circuit design [41]. In memory applications, how-
ever, the state of device is switched by the spin transfer
torque (STT) that is generated by the current passing
through the device. Substantial work has been done to
make that switching current as low as possible [42]. In
the present application, by contrast, we want the cur-
rent response to be as weak as possible, so that the read
current has a minimal effect on switching rates. Unfor-
tunately, the current needed to influence the switching
behavior apparently [9] scales to smaller values as devices
become smaller. Increasing the this current requires ad-
ditional research; recent work suggests that devices with
easy-plane anisotropy may be preferable, in this sense,
compared to perpendicularly magnetized devices [43].

There has been considerable work in the recent liter-
ature to use MTJs or SMTJs as the fundamental units
for truly random number generators [31–33, 44]. For gen-
eral purpose applications, random number generators are
required to pass certain tests of randomness; the NIST
statistical test suite [45] is usually taken as a standard
benchmark for validating good randomness in that sense.
An important criterion required by that test suite is that
the mean value of a bitstream has a long time average of
50 %. To date, all MTJ-based solutions that pass those
tests require XOR’ing eight devices together to eliminate
bias. Given SMTJs with similar enough dwell times in
each state as we assume here, we expect that we could
combine SC-PCSAs in a similar manner and pass the
statistical tests needed for random number generation.

In this work, we do not subject our SC-PCSA to these
randomness tests, as they are not necessary for our ap-
plication space. Stochastic computing aims to encode
values in the expected value of random bitstreams. It is
traditionally implemented with low bit-resolution pseu-
dorandom number generators that have poor random-
ness properties; some stochastic computing has even been
done with entirely deterministic bitstreams [46, 47]. The
important properties needed for stochastic computing are
simply small enough cross-correlation between different
devices and small enough autocorrelation after some time
has passed. The correct metric for the success of our gen-
erator is not that it can produce unbiased random bits
for cryptographic or scientific applications, but that it
can be used to carry out stochastic computing calcula-
tions. We show that it can in a complex neural network
architecture in Sec. IV.

Figure 4. Bitstream generator with four programmable bits.
Each row is a recursive subdivision unit. Assuming input
probabilities of 1/2 from the SC-PCSAs, the topmost 2-input
multiplexer outputs 1/4 or 3/4 depending on b2; the middle
multiplexer 1/8, 3/8, 5/8, and 7/8, depending on b2 and b3;
and so on. SRAM control-and-decode circuits, which set the

bits ~b appropriately for the desired output probability, are
hidden for clarity.

III. SMTJ PROGRAMMABLE BITSTREAM
GENERATOR

In order to generate arbitrary bitstreams with n-bit
precision, we develop a composite cell that can be pro-
grammed based on values stored in static random access
memory (SRAM) cells. If the programmed value is 1/2,
we need only tap the output of one of the SC-PCSA cells
discussed in Sec. II. Otherwise, we perform a sort of bi-
nary search on the unit interval. Given a stochastic signal
carrying the probability value k/2n−1, it is synchronously
fed into a NAND gate together with a 1/2 probability signal
from a new SC-PCSA cell to produce a signal with prob-
ability 1− k/2n. A simple multiplexer (MUX) can then
optionally route the signal through an inverter, allowing
us to access values of both 1− k/2n and k/2n.

Iterating this recursive subdivision operation allows us
to access all multiples of 1/2n using n SC-PCSA cells.
Values for zero and unity can be trivially implemented on
the end of the circuit by replacing the stochastic signal
with a constant voltage. In our simulations of a neural
network later in this paper, we restrict ourselves to the
4-bit case, as illustrated in Fig. 4, allowing our synaptic
weights to express integer multiples of 1/16.

Though strict tests of randomness are not necessary for
our purposes, careful attention to correlation is. Statis-
tical correlations can arise in many ways in a stochastic
computing circuit. We distinguish between two types:
graph correlation, and source correlation. To understand
the former, suppose a circuit designer makes a simpli-
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fying assumption that the inputs to a particular circuit
node represent statistically independent stochastic pro-
cesses. This may not be true, depending on whether the
computations producing those inputs overlapped at some
point earlier in the circuit. If they are not statistically
independent, the circuit output statistics will differ from
the value expected by the designer. We call the corre-
lations leading to such errors graph correlations, as they
arise due to reconvergent fanout in the computational
graph of the circuit. One method for alleviating these
correlations is called isolation, and has recently been dis-
cussed in Ref. [48]. We make use of these and discuss
their implementation and impact in Sec. IV.

The programmable bitstream generator described
above addresses a more insidious form of correlation
that can arise when the original bitstreams are not ran-
dom. In typical implementations of stochastic comput-
ing, the LFSRs and other commonly used sources of
pseudorandom bitstreams are periodic. Overusing the
same LFSR design at multiple instances in a circuit can
lead to correlation-induced errors that are difficult to pre-
dict [49]. We call these source correlations; they are in-
duced by inconsistent assumptions about bitstream gen-
erators on the boundary of the computational graph.
One of our motivations for SMTJ-based stochastic com-
puting is to solve the problem of source correlations.
This is especially important in neural networks, where
hundreds or thousands of inputs can all fan-in to the
same circuit node. To avoid source correlations in this
case, pseudorandom circuit designs become prohibitively
energy-hungry, but our SMTJ-based approach scales to
any degree of fan-in with no source correlation present.

Energy numbers for our approach at various bit-
precisions and power supply voltages are shown in Fig. 5.
Though lower supply voltages should generally lead to
lower energies, we see that for n = 8 the energy per cycle
is actually higher for the lower supply voltage. In or-
der to get high reliability operation of the SC-PCSA at
low supply voltage, the drive strength of some transistors
needs to be increased. This results in the 0.8 V SC-PCSA
requiring more energy than its 1 V counterpart. As the
number of SC-PCSAs in the readout circuit increases at
high bit-precision, this anomalous energy cost at low sup-
ply voltage can overwhelm the nominal savings in the rest
of the logic tree.

Fig. 5 also compares SC-PSCA energy to the energy
consumption of an LFSR with the same bit precision.
For a fair comparison, we designed the (Galois type) LF-
SRs according to standard maximum sequence length de-
signs, and using the same technology node and predictive
technology models as for the SC-PSCA simulations. We
found that the SC-PSCA performed about twice as effi-
ciently across a range of bit precisions. This result is pre-
dictable from the transistor count of the two designs; the
SC-PSCA has 15 transistors, whereas a clocked, NAND-
gate based digital flip flop (the fundamental unit of the
LFSR) has 20. The circuitry of comparator in the LFSR-
based is also slightly larger than the AND-NOT-MUX rows

Figure 5. Energy efficiency comparison between our pro-
grammable bitstream generator (PBS) at supply voltages of
1 V and 0.8 V and a traditional LFSR with binary compara-
tor. Plotted horizontally is the energy needed to produce a
single new element of the output stochastic bitstream. The
N -bit PBS uses N SMTJs where the N -bit LFSR uses an
N -bit register, ensuring a fair equiprecision comparison.

of Fig. 4. The LFSR-based scheme additionally contains
some small number of XOR gates, though the number of
XORs is an algebraic property that does not necessarily
scale with the number of bits, N .

We note that several proposals address the cost of
LFSR-based pseudorandom number generator by ex-
tracting combinatorial subsets of the bits in a large
LFSR [50, 51]. Though these shared-LFSR methods
amortize the energy cost by sharing it over many pseu-
dorandom bits, the resulting correlation between these
bitstreams is 1.5 to 2 times higher than the isolated
LFSR case [51]. In correlation-sensitive applications,
this is clearly disadvantageous. In applications that have
been engineered to be correlation insensitive, one could
imagine applying the same shared generator techniques
to our programmable bitstream generator; the same en-
ergy/correlation trade-off should apply. We leave the de-
tails of such a device to future research.

Several related configurations for using magnetic tun-
nel junctions have been proposed that could be used
for generating stochastic bitstreams. Most fall into two
broad categories, those based on nominally stable mag-
netic tunnel junctions that are brought into an unstable
state by a current [31, 44, 52] and those based on SMTJs
that are current biased to control the expected value of
the bitstream [14–17, 19–21]. The write currents in both
of these approaches lead to significant ohmic losses, which
are disadvantageous for this stochastic computing. We
note however that in many cases, these configurations
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have been proposed for applications for which the ohmic
losses may not be quite as important.

We estimate the ohmic losses for pulsed destabiliz-
ing of stable MTJs in Appendix B. The circuits re-
ported in Ref. [44] are based on MTJs with average re-
sistance R = 1000 Ω, and use an average write voltage of
217.5 mV for 8.75 ns. The ohmic losses are then 414 fJ
per bit. Ref. [52] uses similar techniques on MTJs specif-
ically tailored to the generation of stochastic computing
bitstreams (the same task we consider here); they re-
port average costs of 526 fJ per bit. Both estimates are
significantly higher than the 10 fJ estimated for the SC-
PCSA-based approach.

To estimate the ohmic losses (see Appendix C for de-
tails) for p-bit style current-biased SMTJs, we assume a
supply voltage of Vdd = 1 V and favorable resistances of
RAP = 100 kΩ and RP = 50 kΩ, and find ohmic losses
of about 500 fJ per bit for the 150 ns clock cycle we con-
sider; the clock period is set by the autocorrelation time
of the SMTJ. In the SC-PCSA-based approach described
above, the energy per bit of 10 fJ for the whole circuit
is roughly independent of the clock cycle. Note that, for
the current controlled approach, the energy per bit de-
creases linearly as the clock cycle decreases, decreasing
the advantage of the SC-PCSA-based approach.

We cannot expect the manufacturing margins of real
SMTJ devices to be ideal. The fabrication of magnetic
tunnel junctions has been optimized in commercial fab-
rication facilities [53, 54] in the nonvolatile regime that
is desirable for memory applications. SMTJs have only
been studied for larger devices fabricated in laboratory
settings [6].

Real devices will have distributions of all of their prop-
erties. Three important ones are variations in barrier
heights (and hence characteristic dwell times), variations
in biasing around the perfect p = 1/2 that we have as-
sumed above, and variations in the device resistances.
The insensitivity to a distribution of barrier heights in
addressed in Fig. 3. Essentially uncorrelated bitstreams
are generated as long as the mean dwell times are shorter
than the clock cycle and longer than some lower limit set
by the response time of the PCSA, on the order of 1 ns
for the circuits considered here. Assuming a prefactor
of τ0 ≈ 1 ns in the transition time distribution, this ap-
proach is insensitive to fluctuations in the barrier height
for 0 < ∆/kT < 5. Since considerable effort has been
required to keep energy barriers large as MTJ devices
become smaller [55, 56], it seems that it should not be
difficult to fabricate devices with small enough barriers
to enable thermally driven transitions. Variations in the
barrier height should not pose a difficulty if it is pos-
sible to maintain the roughly 10 % variation in barrier
heights [57] as devices are scaled down.

Having an expected value of 0.5 for the output of the
bitstream generator requires that the energies of the par-
allel and antiparallel states are the same. Such equality
in turn requires that the fringing fields acting on the free
layer be close to zero. It is difficult to fabricate devices

with precisely these fields and there will naturally be a
distribution of relative energies and hence dwell times.
Fig. 6 gives the effect of the variation in the relative dwell
times on the output of a four-bit stochastic bitstream
generator. We assume that the fluctuations in the rela-
tive dwell times in the parallel and antiparallel states are
distributed around zero with standard deviations given
in the figure (see Appendix D for details). These distri-
butions should be compared to the expected distribution
for perfectly balanced bitstreams that are sampled for a
finite sample size. For the results presented below based
on using bitstreams of length 128, the expected distribu-
tions of values found from perfectly balanced bitstreams
are similar to the distributions found for 10 % variations
in the distribution of the relative dwell times.

Finally, we address whether the distributions of resis-
tances would adversely affect the performance of our bit-
stream generator. We have avoided the use of spintronic
control over the random telegraph noise, so resistance
variations do not directly affect the probability of our
bitstreams. The main failure mode would arise from re-
sistance variations, that is, if the reference resistor Rref,
selected before devices are grown and tested, were to not
fall between the resistances RP and RAP of the parallel
and antiparallel states.

Recent data from fabrication facilities [58, 59] show
that the the manufacturing margins should be tight
enough to accomplish this. The 3σ variability in the
parallel state resistance is under 10 %. The 3σ vari-
ability in the tunneling magnetoresistance is only 2 %
to 3 %. If we target a 1.5 kΩ resistance for RP, and a
4.5 kΩ resistance for RAP, then a reference resistance of
3 kΩ is about 15σ away from both resistances, providing
an adequate manufacturing margin even if the magne-
toresistance were much smaller than the assumed 200 %.
In addition, neural network applications, which we have
considered in some detail in the paper, can be robust to
single-device failures, if the failure of particular devices
can be detected (which it is easy to imagine doing here).

The data we cite above is for high-barrier magnetic
tunnel junctions developed for magnetic random access
memory (MRAM) but manufacturers are pushing toward
the superparamagnetic regime; recently announced [60]
work on embedded MRAM devices works with retention
times on the order of seconds to milliseconds. This is not
too far from the SMTJ speeds fabricated in academic
labs, and the reported fabrication distributions continue
to be satisfactory in this lower barrier regime. Based on
these reports, our proposed approach should be resistant
to device fluctuations within the range of fluctuations
that can be expected from a dedicated fabrication pro-
cess.

IV. APPLICATION TO NEURAL NETWORKS

Artificial neural networks, initially inspired by the
structure of the brain [61], have become one of the most
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Figure 6. Output probability distributions for the four bit
generator induced by imprecision in SMTJ fabrication. The
three different standard deviations correspond to the three
distributions in Fig. 11. The width of a bubble at a particu-
lar vertical coordinate gives the probability density that the
generator outputs that probability in its bitstream. Note that
the three, two, and one-bit versions can be extracted by sim-
ply restricting this plot to outputs with mean values that are
multiples of 1/8, 1/4, and 1/2, respectively.

powerful classes of algorithms in machine learning. These
neural networks are composed of two fundamental units:
neurons, which sum inputs and apply a nonlinear activa-
tion function to the resulting sum; and synapses, which
multiply the output of one neuron by a real-valued weight
and pass the result to a downstream neuron. Tradition-
ally, the numerical values that propagate through neural
networks correspond to rates at which neural spikes prop-
agate through an actual biological brain.

The origins of stochastic computing lie in the obser-
vation that time series data of stochastic spike trains in
the brain could be modeled by stochastic jumps from
ground to Vdd in a logic circuit [62–64]. It is no sur-
prise, then, that neural network structures have been
implemented successfully and energy efficiently in recent
stochastic computing work [65–68]. Rather than carrying
out high level arithmetic and logic operations to “theo-
retically predict” a neural network’s output, stochastic
computing implements neuromorphic models of the net-
work in CMOS circuitry. The network operation is “ex-
perimentally simulated” by the physics of the circuit, and
the results are obtained by monitoring the time series
voltages at the network output.

A crucial synergy involved in this scheme is the inher-
ent parallelism of both neural networks and stochastic
computing. Whereas the many mathematical operations
involved in a neural network layer would need to be com-
puted serially in a traditional computing environment,
the physical nature of the stochastic computer means
that these operations are all run simultaneously. There
is a sizeable body of recent work that uses this principle
to build efficient, stochastic-computing-based neural net-
works. The first stochastic computing implementation of
a deep convolutional neural network, a particularly im-

portant neural network topology with broad applications
to image processing, was proposed by Ren et alia [65]
and further optimized in Refs. [66, 69]. These works draw
heavily on new ideas in the stochastic computing litera-
ture, including massively parallel generation of pseudo-
random bitstreams [70], state-machine based nonlinear
activation functions [67, 71], and aggressive use of corre-
lation insensitivity [72].

A common approach in the stochastic computing neu-
ral network literature is to construct a neuron unit
from multiplexer-based addition composed with a state-
machine-based nonlinearity. These operations are costly
in terms of CMOS transistor counts. We take a simpler
approach: our entire neuron is a single logical OR gate.

In our approach, a single multi-input logical OR gate
simultaneously, approximately, and inseparably performs
both the summation and non-linear activation. Though
for small input magnitudes an OR gate performs addition
of probabilities p1 +p2 +O(p2), nonlinear corrections be-
come important as the input probabilities increase. Uti-
lizing this property to our advantage, we harness that
nonlinearity directly as our neuron’s nonlinear activation
function. This approach was originally proposed in [73–
76], but until now has been unable to scale beyond small
networks due to correlations between LFSRs. Our use of
truly random bitstreams sourced from SMTJs opens the
possibility of using this very small and efficient neuron in
modern-scale neural networks. The synapses in our work
are AND gates, which naturally implement multiplication
on probabilities, with inputs from the output from the
previous neuron and from a fresh stochastic bitstream
encoding the weight (in our case, provided by an SMTJ
programmble bitstream generator).

The probabilistic response of an OR gate in stochas-
tic computing is analogous to its Boolean response; the
output probability is given by

POR(p) = 1−
N∏
j=1

(1− pj), (1)

where p is the vector of input probabilities. Eq. (1) holds
when each input probability pj is an independent ran-
dom variable. Note that this condition generally fails
in stochastic neural networks that use LFSR-based bit-
stream generation, especially when the number of inputs
to a neuron approaches or exceeds the periodicity of the
LFSR design being used.

Unlike a traditional artificial neuron, the OR gate’s ac-
tion on probabilities cannot be factored into two sepa-
rate processes of summation and activation. But by ex-
amining its limiting cases, we can see that the OR gate
does approximately perform summation-and-activation
functionality: for the large fan-in case, where N > 10,
the lower bound of the OR gate output approaches
1 − exp(−

∑
j pj). We plot this bound, and all of the

other allowed output values, as a function of the input
probability sum in Fig. 7. The functional form of this dis-
tribution is similar to the hyperbolic tangent function, a
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Figure 7. Activation pseudo-function of the OR gate in terms
of its bounds. The shaded region indicates possible output
values in the large fan-in case. For comparison, the dashed
line plots the hyperbolic tangent function, a common neural
activation in deep learning applications. Like the hyperbolic
tangent, the OR gate operation is asymptotically linear near
the origin and saturates exponentially to unity.

widely used activation function in machine learning.
The inputs to a neuron are multiplied by real num-

bers often called synaptic weights. We represent each
weight using a programmable bitstream generator, and
each multiplication using an AND gate. The OR-gate neu-
ron, together with AND-gate synapses, form the funda-
mental unit of our proposed neural network architecture.
This is an extremely energy efficient primitive cell, and
we have to accept multiple constraints in order to use
it. The most striking constraint is that, since all values
in our neural network are represented by probabilities
between zero and one, our network nominally lacks any
form of inhibition (classically implemented with negative
numbers) as reflected in the fact that the activation func-
tion in Fig. 7 is not defined left of the origin.

Without making changes at the algorithmic level to
accommodate the lack of inhibition, the OR-gate neuron
would be largely useless. To facilitate the use of this
neuron, we replace the standard weight matrices by two
sets of weight matrices, one for inhibition, wI , and one
for excitation, wE , that are merged to provide a form
of inhibitory activation for the network. The inhibitory
subneuron uses a NOR gate rather than an OR gate so that
large inhibitory input supress the neuron output. The
binary output y ∈ {0, 1} of each neuron is given by

y =

1−
∏
j

(1− wEj xj)


︸ ︷︷ ︸

OR

×

∏
j

(1− wIjxj)


︸ ︷︷ ︸

NOR

, (2)

where the outermost multiplication is implemented with

a single AND gate. The use of both excitatory and in-
hibitory subnetworks introduces a higher dimensional
symmetry, which the network can break to accomplish
dynamical inhibition (or excitation) and successfully
learn correct weights for classification. More details are
discussed in Appendix E 2.

Since the OR gate neuron is unusual, the network
training algorithms must adapted to it. We derive the
backpropagation equations for this neuron and the in-
hibitory/excitatory subnetworks for use in training, and
adapt standard training algorithms to accommodate the
hard constraints on allowed weights. The details of this
codesign process are elaborated upon in Appendix E.
One important note is that Eq. (2) prescribes the correct
boolean output at a given clock cycle, but is formally in-
accurate as a prescription for the expectation value of y
over many cycles. It treats the inputs x to the OR and
NOR gates as independent random variables, when in fact
they are identical and thus perfectly dependent on each
other. Nevertheless, we found empirically that the use of
Eq. (2) for network training performed well enough for
our purposes. Refining the training process to use a more
accurate expression could improve network performance.

To demonstrate the effectiveness of our stochastic neu-
ron and synapses, we implement a stochastic approxima-
tion of LeNet5 [34], a convolutional neural network. For-
mally, LeNet5 is based on floating point arithmetic and
specific choices of neurons. We instead use the AND and
OR gates for synaptic and neural operations, as outlined
above, in a stochastic computing framework. We also
make simple changes to the layer structure to account
for our restriction to nonnegative probabilities, which are
outlined in Appendix E. This benchmark task allows for
an easy comparison to existing literature. Ref. [66] treats
the standard form of LeNet5 (using stochastic arith-
metic) as a fixed boundary condition at the top of the
stack, and optimizes a scaffolding of stochastic comput-
ing hardware around this software-oriented neural net-
work design. The implementation of LeNet5 we present
here is instead based on the kind of cross-stack reasoning
we just outlined: we relax the strict definition of LeNet5
as a boundary condition and use the resulting flexibility
to accommodate our energy efficient choice of neurons
and synapses at lower levels.

V. EVALUATION AND RESULTS

To evaluate our implementation of LeNet5, we train
and test our neural network on the MNIST dataset.
The MNIST dataset comprises 60000 training images and
10000 test images of 28× 28 pixel images. First, we per-
form offline training on an analytic model based on prob-
abilities rather than stochastic representations of proba-
bilities, that is, on a traditional software model using the
unusual topology, constraints, and activation functions of
our proposed network. Though the network does train,
we find the process to be significantly noisier than train-
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Table I. Energy breakdown on worst-case analysis of LeNet5
case study for an SMTJ-driven computation. The rightmost
column corresponds to the N = 128, δ = 16 network configu-
ration.

Energy/fJ
Element cycle

Energy/nJ
LeNet5 cycle

Energy/nJ
inference, at 97 % accuracy

Vdd = 1 V

Weights 5.80 0.50 112.80
Neurons 3.11 0.04 8.09
Isolators 19.75 0.11 25.72

Total (nJ) 0.65 146.62

Vdd = 0.8 V

Weights 5.62 0.49 109.39
Neurons 2.47 0.03 6.44
Isolators 15.02 0.09 19.56

Total (nJ) 0.60 135.40

ing of classical LeNet5 models under the same hyperpa-
rameters. We speculate that the noise arises from the
unfactorability of the summation-nonlinearity approxi-
mated by Eq. 1, as well as the hard constraint that all
weights must be between zero and one.

Among successfully trained networks, we find that we
frequently achieve around 98 % test set accuracy with
the analytic model applied to MNIST, within 1 % of
the 98.9 % accuracy achieved by the original LeNet5 au-
thors [34]. We then discretize the trained weights and
biases by rounding them to the nearest multiple of 1/16.
These are loaded into a stochastic simulation of the log-
ical architecture, complete with stochastic processes to
generate the SMTJ statistics.

To deal with residual graph correlations induced by
reconvergent fanout of the signals into and out of each
neural network layer, we insert what we call an isolator
mask—an array of randomly chosen (but static) pixelwise
temporal delays—after each network layer. We discuss in
more detail in Appendix E 4 how isolators can be used to
achieve decorrelating effects by shifting signals relative to
each other in time. Each pixelwise, integer-valued delay
is chosen uniformly at random from the interval [0, δ],
where δ is the maximum delay. In our LeNet5 architec-
ture, this leads to a total of L = 6 decorrelation layers.
The maximally delayed route from input to output, then,
has delay length W = Lδ, which is the amount of time
we must wait before collecting N usable data points at
the output.

In the upper black curve on Fig. 8, we plot the per-
formance of a trained network on the test datasets as a
function of the maximum delay δ and length of collected
bitstream N . Performance improves exponentially with
increasing δ, eventually saturating around a maximum
delay length of 16—and, therefore, a mean delay length
of 8. We also find, in the lower curve, that increasing N
provided diminishing returns beyond N ≈ 128. We use
this (δ,N) = (16, 128) configuration to report the rest of
the numbers in our paper. The fluctuations that become

Figure 8. Evaluation of our network performance for vari-
ous hyperparameters. The upper curve shows variation in
δ, the maximum number of isolators decorrelating each of
the L hidden layers. This affects the energy by increasing
the total warm-up time Lδ needed before network output be-
comes meaningful. The lower curve tracks N , the number
of meaningful data points collected after the warm-up period
concludes.

evident in the plot at high δ arise from the pseudoran-
domness of the isolator mask configuration. A systematic
approach would search through multiple mask configu-
rations until an appropriate one is found for the given
trained network.

To compute the energy efficiency of our proposed archi-
tecture, we extract the mean activity factors from weights
and neurons in the network over an inference pass on the
MNIST test data set. As our simulation is purely logi-
cal (that is, it works at the level of clocked bits rather
than dynamical voltages), we find it unwieldy to extract
the expected activity factors from inside the circuit-level
composite gates of the OR gate neuron. Instead, we con-
vert the activity factors from the logical model into the
worst case activity factors for the realistic architecture.

To produce our worst-case analysis, we assume that ev-
ery switch in the voltage signal causes a maximal number
of switches in the AND gate synapse and the downstream
OR gate neuron. We apply this assumption to the activ-
ity factors found in our stochastic model, together with
circuit power estimates based on predictive technology
models [36, 37]. The results for the N = 128, δ = 16 case
are listed in Table I. For Vdd = 1 V at the 22 nm node,
CMOS switching events in OR gate neurons and AND gate
synapses together account for 8.09 nJ.

Random bitstream generation and isolator-based
decorrelation are more expensive than the computational
graph. For these estimates we again use worst-case
activity factors. In the full LeNet5 architecture, the
pre-charge sense amplifier circuits generating network
weights and inputs account for about 113 nJ for a full
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inference. The programmable isolator buffers are each
relatively expensive, but fewer were needed compared to
the weights. The total cost for the isolator circuits is
around 26 nJ.

We also test the behavior of our architecture at a re-
duced supply voltage. For voltages below 0.7 V, the
PCSA performance begins to degrade, causing errors in
the output bitstream. At 0.8 V, the total energy con-
sumed by the entire architecture drops from 147 nJ to
135 nJ. These energy estimates are also displayed in Ta-
ble I.

One likely source of network inference error that re-
mains after accounting for latency and isolator length is
the quantization of weights from the analytic model to
discrete values allowed by the bitstream generator. Co-
design of hardware with deep neural networks has made
the study of low-precision neural networks a topic of con-
siderable recent interest [77]; quantization-aware training
methods are now being developed both for pure CMOS
systems [78–80] and platforms with nanodevice integra-
tion [81, 82]. Applied to systems like ours, these may
offer the possibility of improved inference performance
at fewer and fewer bits, improving energy consumption
and network latency.

With that said, the robustness of our stochastic model
after rounding the weights of our analytic model ex-
presses a robustness to error characteristic of neural net-
works. We speculate that, since network performance
was robust with respect to rounding weights to multiples
of 1/16, it should be equally robust had the weights been
rounded to values slightly different than the multiples of
1/16. If that is indeed the case, then systems like ours
would enjoy a degree of robustness against variation of
the type shown in Fig. 6.

Although some designs for modern neural networks can
work at four bit (or sometimes lower) precision, it does
not necessarily follow that one could successfully use an
N = 16 stochastic computing network. Stochastic com-
puters have two types of precision that are intrinsically
linked: representational precision, and sample precision.
Collecting N time steps means that N different values are
representable on the output, but it also means that our
certainty (standard deviation) that the measured value
matches the true value of the output distribution scales as
N−1/2. Therefore the expected length of a computation
itself influences the meaningful representational precision
of the inputs; we found that our 4-bit programmable bit-
stream generator gave sufficient resolution at N = 128.
The link between these two types of precision is subtle
[83] but will be increasingly important in determining
when stochastic computing is or is not energy efficient
for different target applications.

In Fig. 9, we compare with the current state of the art
in stochastic computing research. The works we cite all
treat LeNet5 on MNIST. However, these works were also
simulated at the 45 nm, rather than 25 nm, technology
node. As is standard practice, we scale our reported ener-
gies by the corresponding scaling in transistor size (and

Figure 9. Comparsion of stochastic computing implementa-
tions of LeNet5 on the MNIST dataset from the literature.
The survey of logistic, ReLU, and tanh networks is reported
in Ref. [69]. Two best-performing examples were extracted
for SC-DCNN [65], and HEIF is reported in Ref. [66]. These
references are all reported at the 45 nm technology node. The
results for our work are presented at 1 V with N = 128 and
δ = 16 and are scaled up by a factor of four to bring our 22 nm
node calculation into fair comparison with the literature.

therefore capacitance) to make a fair comparison [84].
We found that with significant energy savings we could
achieve comparable accuracy, 97 %. While HEIF, the
most modern work in that field, does significantly better
(around 99.1 %), it is also the culmination of a research
program that optimized all the other networks in Fig. 9,
which originally performed at higher energy and lower
performance. We have made no similar attempt to opti-
mize our network and believe that it could be improved
in principle to perform with similar accuracy and signif-
icantly lower energy.

The question remains as to whether 97 % is a useful
recognition accuracy. The answer is conditionally yes,
as long as one chooses the correct application. Though
our network addressed the “Hello, world!” task of hand-
writing recognition, one might imagine a similar convo-
lutional neural network used for face recognition. Pre-
sumably, our implementation would not perform as well
as what can be done in mainstream neural networks. For
mission critical applications like biometric identification,
this would be an unacceptable drop in performance. But
for, say, automatic face detection in a power-constrained
edge context like a mobile device’s camera application,
the drop in performance may be well worth the consid-
erable energy efficiency advantages.
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VI. CONCLUSION

We introduce a hybrid approach to classical stochas-
tic computing, based on truly stochastic, low energy bit-
streams generated by SMTJs. We introduce energy ef-
ficient primitive circuit elements (SC-PCSAs) that can
be used to interface SMTJs with standard stochastic cir-
cuits. To test their effectiveness and explore the relaxed
design space constraints afforded by true randomness, we
simulated a neural network with OR gate neurons driven
by SMTJ-based bitstream generators. Stochastic simu-
lations of the network give 97 % classification accuracy
on the MNIST dataset and circuit simulations of the
circuit elements show that the energy usage should be
about 150 nJ per inference, several times less than other
stochastic implementations of LeNet5.

The energy efficiency we find in this case study is
made possible in large part by true randomness, which
eliminates the source correlations that would arise from
the use of periodic pseudorandom number generators.
Timing-based decorrelators called isolators address but
do not entirely eliminate graph correlations, which arise
due to reconvergent fanout of stochastic bitstreams. We
analyze the energy and power usage of our neural network
and discuss, in particular and in general, how SMTJ-
based stochastic computing will scale with the progress
being made in materials science. From the neural net-
work perspective, our case study of LeNet5 was not op-
timized over all potential hyperparameters, so we expect
that it should be possible to achieve higher classifica-
tion accuracy and greater energy efficiency with more
research. Non-neuromorphic stochastic computing de-
signs [85] may also be able to benefit from correlation-free
randomness sources. The design space degrees of freedom
enabled by true randomness are an exciting landscape for
future research.
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Appendix A: The SR-latch in the SC-PSCA

Judiciously adding the set-reset (SR) latch is a cru-
cial modification we make to the standard PSCA circuit.
The SR latch is a standard electrical engineering con-
cept that can be found in textbooks [86]. Because the
operating principles of the SR latch may nevertheless be
unfamiliar to some readers, we include in this appendix

a brief description of the activity in the circuit in Fig. 1.
Typical descriptions of the SR-latch are given in terms
of two recurrently connected NAND gates, but we will an-
alyze it at the transistor level since the operation of a
field-effect transistor is more physically transparent and
familiar to many physicists.

We described in Sec. II how nodes e and f are brought
to either 01 or 10 after the clock signal goes to 1, the so-
called evaluation phase. It seems that the state of node
f is a good representative of the current state of the
SMTJ, but unfortunately node f goes to a high voltage
state in the pre-charge phase when the clock goes back to
0. Therefore f carries artifacts of the circuit operation,
and does not faithfully represent the physical state of the
SMTJ at the time it was previously read. We fix this by
adding the SR-latch in Fig. 1(b).

First, consider the conclusion of the evaluation phase
for the case e = 1 and f = 0, as illustrated in Fig. 10(a,b).
In this figure, blue wires are at Vdd while red wires are
connected to ground. The evaluated voltages at e and
f are physically wired to the the e and f branches of
the latch in Fig. 10(b). Because branch e is on, the top-
left transistor path is disconnected, denoted by a red cir-
cle. One can verify by hand that both transistors above
the output node are disconnected (in the sense of open
switches), while the transistors below the output node
are connected to ground. The transistors above and be-
low node g are in the opposite configuration. The output
node thus reliably captures the state of node f during
the evaluation phase. Notice that there are no paths for
current to flow from Vdd to ground, so ohmic losses ter-
minate as soon as this steady state is reached.

Now we consider the pre-charge phase in Fig. 10(c,d).
Both nodes e and f are brought to a high voltage state
in preparation for the RC race that will occur when the
clock goes high again. Now that node f is high, the top
and bottom transistors change state on the f branch of
the latch, in the far right of Fig. 10(d). However, this
does not change the state of the output node (or node
g), node g (and the output node) themselves contribute
to the opening and closing of each other’s paths to Vdd

and ground. Again, there is no steady state current flow
once equilibrium is reached, so there are no continuous
ohmic losses.

The two parallel transistors above node g act like a
OR gate; if either of their gate voltages is low, then a
current path exists between Vdd and node g. The series
transistors below node g act like an AND gate; a current
path exists from g to ground only if both gate voltages are
high. This logical analysis will lead one to the standard
presentation, but for our purposes it is sufficient to see
that a change in state of f does not cause a change of
state in the output node, so the unwanted comb structure
from Fig. 2(d) is avoided.
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Figure 10. Operation of SC-PCSA. Blue wires represent V = Vdd, red wires represent V = 0, and red circles indicate that the
source-drain path of transistor is turned off. (a): steady-state conclusion of evaluation phase, corresponding to the far-right of
(f). The PCSA has detected that the SMTJ is in the parallel state, pulling node f to ground and node e to Vdd as a result. (b):
The SR-latch copies the value of node f to the output node. (c): steady-state conclusion of reset/pre-charge, corresponding to
the far-right of (g). (d): The PCSA has brought both e and f to Vdd in preparation for the measurement in the next evaluation
phase. Although f has been brought to Vdd, the internal state of the latch does not change, so the output node continues to
correctly represent the previously measured state of the SMTJ. (e, f, g): States of the various circuit node voltages throughout
a simulation of the SC-PSCA. Curve colors correspond to points in the circuit indicated by the small circles in (a-d).

Appendix B: Comparison with
stochastically-switched MTJs

A popular method in the literature for random number
generation based on magnetic nanotechnology is the use
of stochastic switching phenomena in non-volatile MTJs
[31, 44, 52]. In this approach, an MTJ is first written
to one preferred configuration, and then a sub-critical
write voltage is placed across an MTJ. The strength of
the write voltage is related to the parameter p of the
Bernoulli trial to be performed. After probabilistically
writing to the MTJ, the state is sensed with a read volt-
age in the usual way; the MTJ will have switched to the
other stable configuration with probability p.

To compare our method with this one, we refer to
Ref. [44] as a standard point of reference. Though that
reference does not report numbers for the entire circuitry,
they do report resistance and voltage numbers for the

tunnel junction itself. Their devices have an average
resistance R = 1000 Ω, and they apply an average of
217.5 mV bias perturbative write voltages over an av-
erage window of 8.75 ns. We neglect the cost of their
read operation and any required CMOS circuitry here;
the ohmic losses in the MTJ alone amount to 414 fJ per
bit. Ref. [52] uses similar techniques on MTJs specifi-
cally tailored to the generation of stochastic computing
bitstreams (the same task we consider here); they report
average costs of 526 fJ per bit.

Though the energy per bit is orders of magnitude
higher than what we have presented in Fig. 5, the tasks
are not immediately equivalent. The main difference
seems to be in speed available in the current state-of-the-
art. Write/read cycles on non-volatile MTJs can be quite
fast, allowing for rapid generation of random numbers in
principle. Our scheme and that of [32] avoid large ohmic
losses by using sense amplifiers, but as a result are limited
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in speed by the natural time scale of the SMTJ’s random
telegraph noise. Experiments on SMTJs have demon-
strated millisecond scale fluctuations; uncorrelated ran-
dom bits cannot be sampled significantly faster than this
time scale, which goes as roughly e∆/kBT ns. If faster
SMTJs can be engineered, our scheme would continue to
function at the same energy per bit performance that we
describe in this paper, and could plausibly produce bits
down at the nanosecond time scale for ultra-low barrier
devices.

Appendix C: Comparison with p-bits

A common application of SMTJs is the p-bit [14–
17, 19–21]. A p-bit consists of an SMTJ and a transistor
in series between a supply voltage Vdd and ground. The
node between the SMTJ and the transistor is a voltage
divider; its output is sent to a sequence of specially tuned
CMOS inverters, where that output fluctuates around
some reference voltage to produce a random telegraph
noise signal. Controlling the gate-source voltage of the
transistor in an analog fashion allows one to access ana-
log tunability of the spin-torque on the SMTJ; this con-
sequently allows one to tune the probability encoded in
the output of the CMOS inverters.

Generally speaking, ideal p-bits are in a different class
of device than what we propose here. In particular, they
operate on analog voltage inputs. One could in principle
build an analog probabilistic computer out of these units,
whereas our proposed circuit is purely digital. Here, we
do not compare the relative computational ability of dig-
ital versus analog computing but evaluate how well p-bit
circuits would work for stochastic computing.

To make a fair comparison of device power and en-
ergy, we assume the supply voltage is again Vdd = 1 V.
The voltage division provided by the inverter and SMTJ
in the p-bit swings between two values which must be
distinguished by the CMOS inverter. In order to center
the p = 1/2 response of the p-bit at an input voltage of
V = 0.5 V, the effective resistance of the transistor at
that input voltage should be

√
RPRAP to maximize the

sensitivity of the circuit to both the high and low resis-
tance states. In that configuration, we essentially have a
1 V voltage drop across a series resistor of effective resis-
tance

√
RPRAP + (RP + RAP )/2. The current running

through the structure is therefore

I =
2Vdd

(RP +RAP ) + 2
√
RPRAP

. (C1)

For RAP = 100 kΩ and RP = 50 kΩ, this amounts to
a 3.4 µA current, or 3.4 µW of ohmic dissipation per
device. Neglecting the energy cost associated with gen-
erating independently controllable analog voltage sources
for each p-bit, the ohmic loss is about 500 fJ per bit at
the 150 ns clock cycle we consider, substantially greater
than the≈ 10 fJ for our PCSA-based approach. However,

Figure 11. Probability density functions for the beta distribu-
tion centered at 1/2 with three different standard deviations.

as the clock speed of the circuit is increased, the PCSA-
based approach has constant energy cost per bit while
the p-bit approach scales roughly linearly to lower ener-
gies with increasing speed. In order to achieve 10 fJ per
bit performance, the autocorrelation time of the stochas-
tic fluctuations in a p-bit would need to be reduced to
3 ns.

Recent work has attempted to push the theory of
SMTJs toward this limit where the analog behavior can
be harnessed more energy efficiently. Ref. [18] makes
similar order of magnitude energy projections as ours in
the case that the SMTJ dwell time could be reduced to
≈ 1 ns. Theory [40] suggests that nanomagnets with au-
tocorrelation times on this scale might be realizable in
the limit that the barrier goes to zero. Realizing devices
that operate in this regime face a number of obstacles.
As the barrier goes to zero, the current becomes more
and more efficient at dictating the SMTJ state, requir-
ing a delicate balance between adequate read currents
and currents that control the state of the nanomagnet.
Fabricating such a device may require extremely narrow
margins of error.

Appendix D: Device variability

In the main text, especially leading up to Fig. 6, we
assume a distribution for device variability. However, we
do not assume the distribution to be gaussian, because
the exponential tails of the normal distribution are prob-
lematic; the probability that a particular device is found
in the parallel or antiparallel states is strictly confined to
the open subset (0, 1), by construction. Instead of trying
to truncate or morph normal distributions to the domain,
we opt instead to use the beta distribution, which is nat-
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urally defined on the unit interval.

Suppose that the probability for a device to be in the
on-state is itself a random variable P. We choose to
model P as a beta distribution with unnormalized prob-
ability density

f(p) ∝

{
pµφ−1(1− p)φ−µφ−1 0 ≤ p ≤ 1

0 otherwise.
(D1)

The normalization is given by an Euler integral of the
first kind. A convenient parametrization of the beta dis-
tribution is to specify its mean µ and a shape parameter
φ > 0, which is related to the variance of the distribution
by

σ2 =
µ(1− µ)

1 + φ
. (D2)

First, consider the case where µ = 1/2 but φ is greater
than zero. We plot three different distributions with
standard deviations σ ∈ {0.05, 0.1, 0.15} in Fig. 11. The
existence of these distributions at the inputs to the bit-
stream generator will induce distributions in the statis-
tics of the generator’s output bitstream. Expressions for
these output distributions are analytically tractable [87],
but are given in terms of hypergeometric Meijer G-
functions and provide little useful intuition. To gain in-
sight into the relationship between device variance and
bitstream variance, we sample five thousand generator
outputs at each programming code, for each of the dis-
tributions in Fig. 11. Fig. 6 plots these distributions
vertically at each programmable probability.

A similar idea for producing a discretely-specified
probability bitstream from a collection of LFSRs, called
the weighted binary generator (WBG), has been dis-
cussed in Refs. [88, 89]. Our circuit has the advantage
of O(n) scaling of the input capacitance as a function
of bit resolution n, whereas the input capacitance of the
WBG scales as O(n2). We expect our solution to take
less energy in general, regardless of whether LFSRs or
SMTJs are used as the randomness sources. On the other
hand, our numerical experiments indicate that for large
deviations of the mean input probabilities from 1/2, dis-
tortions in the output behavior of the WBG are more
well-behaved than ours in the sense that the ordering of
outputs is preserved relative to the WBG’s binary pro-
gramming. In the case that programming protocols can
be determined after fabricated devices are characterized,
our circuit remains favorable. But if the mean of beta dis-
tribution governing expected probability for each SMTJ
is unknown, or if the SMTJ variance is very large and
programming proctocol needs to be uniform across many
devices, then the use of the WBG circuit may be prefer-
able for reliability and ease of programming.

Figure 12. (a) Schematic block diagram of LeNet5 neural net-
work. (b) Schematic block diagram of a neural layer (either a
convolutional or a fully connected layer). Each of these layers
are composed by an excitatory and inhibitory sub-networks.
(c) Schematic view of a functional neural block comprised of
superparamagnetic tunnel junctions, AND gates, one OR gate,
and a decorrelator.

Appendix E: Details of the neural network

1. Layer structures

Each layer in a stochastic neural network architecture
receives output bitstreams from the previous layer, as
well as bitstreams from the programmable SMTJ weight
arrays. These bitstreams are all multiplied in parallel
using AND gates, the outputs of which are fed into the
OR gate neurons for summation and activation. In other
words, a fully connected layer with input degree m and
output degree n is simply implemented as n different m-
input OR gate neurons as we described in Sec. IV. The
output of each layer is then passed through a random
mask decorrelator as we described in Appendix E 4.

In a convolutional layer, we spatially multiplex the ker-
nel applications. This means that each weight, which is
being generated as described in Sec. II, is fanned out to
a large number of input pixels at the same time. This
massive weight sharing will cause neighboring pixels in
the layer output to be strongly correlated, making the
use of a graph decorrelator especially important here.

Today, most neural network designers implement the
max operation as their pooling function, though average-
pooling and min-pooling are also used. Ref. [90]
has developed a correlation-insensitive max function for
stochastic circuits that could be used for this purpose.
Our pooling layer performs “OR-pooling”—that is, we
simply use a single 4-input OR gate as our 2 × 2 pool-
ing operation. This is similar to the method used in
Ref. [91] to approximate average pooling, but without
their weighting elements.
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2. Dual architecture

In this paper, we use unipolar encoding to represent
values in the stochastic circuit. To use unipolar encoding
as such is to identify the probability of a wire being in
the on state with the value that wire is said to encode.
A disadvantage of this approach is that only numbers
between zero and one can be encoded by the network. An
alternative is bipolar encoding, where a wire turned on
with probability p is said to encode the value 2p− 1 [92].
This approach is used by many others in the field [65, 66],
but unfortunately it is not clear to us that the OR gate
can still be used as a useful nonlinear activation function
in this encoding scheme.

Inhibitory behavior is generally believed to be a cru-
cial aspect of neural networks [93, 94]. In most previous
stochastic network proposals, use of the bipolar represen-
tation [92] grants the network access to negative numbers
and, consequently, a mechanism for inhibitory signals.
Some work has also been done on learning in networks
with nonnegative weights [95], where inhibition is exer-
cised by amplifying all signals except for those targeted
for inhibition. Unfortunately, the unipolar representa-
tion employed here can represent neither negative num-
bers nor numbers greater than unity. Unipolar stochastic
networks therefore lack the usual inhibitory mechanisms
and fail to meaningfully learn most nontrivial data sets
in our experiments.

To address this issue, we use a variation on a method
proposed in Refs. [73, 76]. We refer to our strategy as a
dual architecture. We employ two separate weight matri-
ces in each layer, which are labeled as the excitatory and
inhibitory subnetworks. The entire output vector from
the inhibitory subnetwork is then elementwise inverted
and AND’d with the excitatory output to achieve the re-
sponse of the full layer. In the absence of correlations,
the jth element zj of the final output from a network
layer is therefore given by

zj = y
(e)
j

(
1− y(i)

j

)
, (E1)

where y
(e,i)
j is the output element for the excitatory

(inhibitory) subnetwork. This leads more explicitly to
Eq. (2) from the main text. In reality, the preliminary

outputs y
(e)
j and y

(i)
j are never uncorrelated, because they

are both sourced from the same set of inputs {xj} to the
layer. However, the use of the approximation in Eq. (E1)
is necessary to use standard, local backpropagation meth-
ods, and we find that any induced error is minimal.

3. Simulation and Training

We build two kinds of models for our architecture: an
analytic one and a stochastic one. The analytic model
provides a representation of the network in terms of prob-
abilities rather than the more complicated stochastic rep-
resentation of random processes, allowing it to run faster

than the stochastic model. The analytic model verifies
the functional correctness of our network structure and
provides a baseline against which to compare our stochas-
tic simulations. The stochastic model is a logic-level sim-
ulator, which allows us to determine the effects of corre-
lation and to estimate activity factors needed for energy
estimates. It uses input bitstreams that are generated
from statistics consistent with the known properties of
SMTJs.

To train our network, we use the standard backprop-
agation algorithm applied to our nonstandard network
functionality given by Eq. (2) (that is, Eqs. (1) and (E1)).
The speed of the analytic model makes it suitable for the
training phase, as running detailed stochastic simulations
for each inference of the training process would be pro-
hibitive. This model is deterministic in the sense that we
use the analytic probability equations for inference and
backpropagation; it is local in the sense that we assume
the inputs to each node of the network to be free of corre-
lations. To train the model, we use a mini-batch version
of the RMSProp optimization algorithm [96]. We use a
learning rate of 0.005 and a forgetting factor of 0.95. We
train sixty randomly initialized models for sixteen epochs
each and select the best performing model. This network
is then transferred to the stochastic model, to be simu-
lated using realistic bitstreams generated according to
known statistics for physical SMTJ devices.

4. Decorrelation

In order to train our neural network efficiently, we use
backpropagation and gradient descent. In practice, back-
propagation is implemented as a local learning rule; the
gradient of the cost function is determined at each node
in the network as a function only of that node and its
nearest, connected neighbors. This locality is essential
in keeping backpropagation algorithmically efficient, and
therefore necessitates the use of a local analytic descrip-
tion that assumes all inputs are statistically independent.
Such an analytic description, however, will necessarily
fail to capture most graph correlations. In the specific
case of a neural network, then, we need additional func-
tionality for addressing graph correlations.

Because of the massive fan-in required in neural net-
work systems, the algorithm from Ref. [48] would be un-
wieldy to implement in a neural network. For a fully con-
nected layer with n neurons on the output, total decor-
relation would require different delays for each neuron,
leading to O(n2) delay elements per neuron. Our ap-
proach is to instead delay each neuron by a pseudoran-
dom but fixed amount, creating a random mask of delay
lengths on the output of each neural network layer. Such
a programmable feature is implemented in our architec-
ture by a chain of flip flops which are tapped into a mul-
tiplexer. The output of each decorrelator is fed to the
next layer. In other words, every output of every layer
is delayed by some integer between zero and a fixed up-

16



per bound, chosen pseudorandomly and uniformly over
the interval at the network programming step. This ap-
proach does not formally eliminate graph correlations,
but it empirically reduces their impact to a low enough

level such that implementation of the network architec-
ture becomes feasible. The results presented in Sec. V
demonstrate that the delay time can be set long enough
to mostly saturate correlation-based network errors.
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