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Abstract— The trend of pushing inference from cloud to
edge due to concerns of latency, bandwidth, and privacy has
created demand for energy-efficient neural network hardware.
This paper presents a mixed-signal binary convolutional neural
network (CNN) processor for always-on inference applications
that achieves 3.8 µJ/classification at 86% accuracy on the
CIFAR-10 image classification data set. The goal of this paper
is to establish the minimum-energy point for the representative
CIFAR-10 inference task, using the available design tradeoffs.
The BinaryNet algorithm for training neural networks with
weights and activations constrained to +1 and −1 drastically
simplifies multiplications to XNOR and allows integrating all
memory on-chip. A weight-stationary, data-parallel architec-
ture with input reuse amortizes memory access across many
computations, leaving wide vector summation as the remain-
ing energy bottleneck. This design features an energy-efficient
switched-capacitor (SC) neuron that addresses this challenge,
employing a 1024-bit thermometer-coded capacitive digital-to-
analog converter (CDAC) section for summing pointwise products
of CNN filter weights and activations and a 9-bit binary-
weighted section for adding the filter bias. The design occupies
6 mm2 in 28-nm CMOS, contains 328 kB of on-chip SRAM,
operates at 237 frames/s (FPS), and consumes 0.9 mW from
0.6 V/0.8 V supplies. The corresponding energy per classification
(3.8 µJ) amounts to a 40× improvement over the previous low-
energy benchmark on CIFAR-10, achieved in part by sacri-
ficing some programmability. The SC neuron array is 12.9×
more energy efficient than a synthesized digital implementation,
which amounts to a 4× advantage in system-level energy per
classification.

Index Terms— Binarized neural networks, deep learning,
mixed-signal processing, near-memory computing, switched-
capacitor (SC).
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I. INTRODUCTION

RECENT advancements in machine learning algorithms,
hardware, and data sets have made it possible to

train deep neural networks (DNNs) with many hidden lay-
ers [1], [2]. DNNs have achieved state-of-the-art performance
on tasks such as visual recognition and speech recognition, and
have been deployed in cloud-based services such as language
translation and photo search [3], [4]. Due to concerns of
latency, network bandwidth, and privacy, there now exists
a trend to push DNNs from cloud to edge, for inference
applications such as keyword spotting, face detection, and
image classification [5]–[7].

The key building block of DNNs is the multiply–accumulate
(MAC) operation. A significant challenge arises from the fact
that DNNs perform millions to billions of MAC operations
per inference. For this reason, commercial GPUs have become
the standard hardware for deep learning. An embedded GPU
system-on-module has been developed for inference at the
edge [8], but consumes several watts of power, making it diffi-
cult to deploy in always-on applications. Given that the energy
cost of memory access is considerably higher than that of
MAC operations, prior work has demonstrated dedicated DNN
accelerators that aim to minimize data movement [9], [10]. The
Eyeriss architecture maps CNN computations onto a spatial
array in a manner that minimizes access to energy-hungry off-
chip DRAM, but does not eliminate it completely due to the
high complexity of the ImageNet task [11]. With energy per
classification at the millijoule level, edge deployment remains
a challenge.

This design targets an inference task of moderate com-
plexity, the CIFAR-10 image classification data set [12].
A strong tradeoff exists between energy and programmability,
and between energy and accuracy. The design objective of
this work is to minimize energy while permitting the sacrifice
of some programmability and accuracy. Nonetheless, this
design remains semi-programmable and achieves accuracy on
CIFAR-10 competitive with other recent hardware implemen-
tations. To our knowledge, this design achieves the lowest
energy per classification on CIFAR-10 reported to date.
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Fig. 1. Chip overview. Our design contains a weight-stationary, data-parallel,
mixed-signal processing array as well as the surrounding memory required to
time multiplex the array for processing deep CNNs.

For the CIFAR-10 problem size, algorithmic and architec-
tural solutions are readily applied to overcome the memory
energy bottleneck [13], [14]. The BinaryNet algorithm for
training neural networks with weights and activations con-
strained to +1 and −1 drastically simplifies multiplications
to XNOR and allows integrating all memory on-chip [13].
Inspired by [14], we demonstrate a weight-stationary, data-
parallel architecture with input reuse that amortizes memory
access across many computations. We address BinaryNet’s
remaining challenge of wide vector summation using mixed-
signal processing [15]. The employed switched-capacitor (SC)
neuron improves energy efficiency over the equivalent dig-
ital adder tree while preserving system-level classification
accuracy. Our proof-of-concept mixed-signal binary CNN
processor (depicted in Fig. 1) performs a complete image
classification on the chip.

The computing in memory (CIM) approach has recently
been explored as a means of overcoming the memory energy
bottleneck. Zhang et al. [16] describe how the conventional
von Neumann and CIM architectures scale in bandwidth and
energy as a function of the total amount of the data required
for a computation, in order to illustrate the advantages of
the CIM approach. These advantages apply to the general
class of weight-stationary, data-parallel processing arrays with
each cell containing both memory and compute elements.
This class of processing arrays subsumes the CIM designs
in [16]– [19], as well as the SC neuron array with weight local
memory latches described in this paper. However, the recent
CIM designs do not realize a complete DNN on chip, nor
do they address the issue of dataflow into and out of the
processing array (with the exception of [19], which cascades
two arrays to process two DNN layers). Restricting the circuit
implementation of the processing array to high-density RAM
results in poor matching between the unit elements involved
in analog addition along a column (e.g., SRAM cells). The
CIM design of [16] achieves sub-nanojoule energy per classi-
fication, but like the rest of the aforementioned CIM designs,
its functionality has only been demonstrated on the low-
complexity MNIST handwritten digit recognition task [20].

Fig. 2. The CIFAR-10 data set contains 10 categories of 32 × 32 RBG
images: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

Fig. 3. Energy-accuracy tradeoff in CNN hardware running CIFAR-10 image
classification.

In contrast, the mixed-signal binary CNN processor presented
in this paper contains the surrounding memory required to time
multiplex the SC neuron array for processing deep CNNs,
thereby realizing a complete neural network with image-to-
label functionality on chip.

The remainder of this paper expands on our conference con-
tribution [21] and is organized as follows. Section II describes
the co-design of the binary CNN topology and the chip
architecture. Section III presents the circuit implementation
of the SC neuron, and the behavioral Monte Carlo simula-
tion technique used to predict CNN classification accuracy
in the presence of circuit nonidealities. Section IV presents
measurement results. Section V compares the mixed-signal
binary CNN processor of this work to the synthesized digital
implementation presented in [22], which uses the same base-
line architecture but adds a degree of flexibility to the CNN
topologies that can be processed. In addition, the SC neuron
is compared to a hand-designed digital neuron in terms of
simulation results. Section VI concludes the paper.

II. SYSTEM ARCHITECTURE

This work uses the CIFAR-10 image classification data set
as a driving example of an inference task for always-on edge
devices. Fig. 2 shows examples of the 10 categories of 32×32
RGB images, illustrating that due to the small image size,
the category can be difficult to determine. Human accuracy
on the CIFAR-10 data set is 94% [23]. The best accuracy
reported on CIFAR-10 at this time is 96.53%, achieved using
a deep CNN with floating-point precision [24].

The original BinaryNet topology for CIFAR-10 image clas-
sification achieved 88.60% accuracy, 7.93% lower than the
best reported [13], [24]. However, Zhao et al. [25] demon-
strated that the field-programmable gate array (FPGA) imple-
mentation of the original BinaryNet translates this accuracy
loss to an energy efficiency gain with respect to an embedded
GPU, reducing energy per classification from hundreds to
tens of millijoules. Fig. 3 shows several energy accuracy
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Fig. 4. General multi-filter, multi-channel convolution. Filter size R, number
of channels C, number of filters M, input image size H, output image size E.

points achieved by GPU, FPGA, and custom hardware running
CIFAR-10 image classification [21], [26], [27].

In this work, we make several modifications to the original
BinaryNet topology in order to simplify the logic and intercon-
nect at the interface between memory and compute, resulting
in a binary CNN topology which we call CMOS-inspired.
This topology achieves 86.05% accuracy on CIFAR-10
(2.55% lower than the original [13]), but enables energy
per classification of 3.8 μJ in the mixed-signal binary CNN
processor. This energy-accuracy point resides on the Pareto-
optimal frontier for CIFAR-10 (Fig. 3), achieving 40× lower
energy than the previous state of the art [27]. This is accom-
plished through hardware specialization, which sacrifices some
programmability but still provides a practical CNN topol-
ogy that can be trained for other lightweight applications.
These applications include audio keyword spotting using spec-
trograms as input, and more generally always-on wake-up
detection that serves to turn on more accurate and/or more
programmable inference hardware when necessary.

A. Binary CNN Topology

In general, each layer of a CNN performs a multi-filter,
multi-channel convolution, depicted in Fig. 4. Consider the
case of a single filter (M = 1). Each channel of the filter is
convolved with the corresponding channel of the input image.
Channelwise results are then summed to form a single-channel
output image. The filter also has a bias term that is added to
the output. With multiple filters (M > 1), each filter is applied
independently to the input image and produces one channel of
the output image. Hence, the output image has M channels.
One channel of one pixel of a hidden layer input image is
the output of one neuron in the previous layer, also called an
activation.

The CMOS-inspired binary CNN topology is described
in Table I. It uses only valid convolutions (no zero padding).
Each convolution is followed immediately by batch normal-
ization, which scales pixel intensities to have zero mean and
unit variance [28]. After training, batch normalization becomes
an affine transformation. Each filter has batch normalization
parameters in addition to its weights and bias. Batch normal-
ization helps to train neural networks with saturating activation
functions (such as the sgn function) [13], [28]. After batch
normalization, output image pixels are binarized. Max-pooling

TABLE I

BINARY CNN WITH REGULAR STRUCTURE

layers downsample each channel of an image independently,
by discarding all but the activation with maximum intensity
in a set of non-overlapping 2 × 2 patches [1].

The CMOS-inspired binary CNN differs from the original
BinaryNet topology as follows:

1) Structural Regularity: By enforcing structural regularity
on the CNN topology, we ensure high utilization of each path
through the interface logic between memory and compute,
thereby making efficient use of the dynamic energy dissipated
in the physical design. Each CNN layer uses strictly 2 × 2
filters (R = 2), 256 channels (C = 256), and 256 filters
(M = 256). The circuit-level implications of this structural reg-
ularity are short wires and arrayed, low fan-out de-multiplexers
at the interface between memory and compute.

2) No Hidden Fully Connected Layers: Fully con-
nected (FC) layers do not permit weight reuse, hence they can
dominate the memory requirements of a CNN. The original
BinaryNet topology required 1.67 MB of weight memory, with
558 kB needed for six CNN layers and 1.13 MB needed for
three FC layers. The binary CNN of this work uses only
one FC layer, which outputs the category label. It requires
261.5 kB of weight memory: 256 kB for eight CNN layers
and 5.5 kB for one FC layer.

3) Max-Pooling After Binarization: The original BinaryNet
topology placed max-pooling layers immediately following
convolutions, before batch normalization and binarization.
This required max-pooling to operate over floating point values
(due to the filter bias, which has floating point precision in
the original BinaryNet [13]). Alternatively, the binary CNN
of this work places max-pooling layers after binarization,
such that max-pooling operates over binary activations. In this
manner, only binary activations need to be manipulated and
stored outside the processing element that computes them.
With binary inputs, the 2 × 2 max-pooling operation reduces
to a four-way logical OR [26].

In summary, the CMOS-inspired topology follows the goal
of minimizing energy while permitting the sacrifice of some
programmability and accuracy. Restricting the filter size to
2×2 and the number of filters and channels to 256 minimizes
the path loading between memory and compute. Using only
a single FC layer at the network output reduces the required
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weight memory capacity by 5.1×. The CMOS-inspired topol-
ogy achieves 86.05% accuracy on CIFAR-10 (2.55% lower
than the original [13]), but enables energy per classification
of 3.8 μJ, 40× lower than the previous low-energy bench-
mark (Fig. 3).

B. Filter Computation and Dedicated Hardware Neuron

One filter computation includes the dot product between an
R×R×C image patch x and an R×R×C filter w, the addition
of the filter bias b, and the affine transformation required for
batch normalization parameterized by μ, σ , γ , β, and �. The
sgn function is applied to the result, producing the activation z

z = sgn

((
N−1∑
i=0

wi xi + b − μ

)
γ√

σ 2 + �
+ β

)
. (1)

In this expression, wi , xi , and z take on values +1 or −1
as in [13], N = R × R × C = 1024 is the number
of pointwise weight-activation products, and the remaining
terms are floating point. Taking advantage of the fact that
the argument of the sgn function can be scaled by a positive
number without affecting its output, we absorb the batch
normalization parameters into b and the sign of γ into each
wi [25], [26]. The filter computation is simplified to

z = sgn

(
N−1∑
i=0

wi xi + b

)
. (2)

The filter bias b is then converted from floating point to a
9-bit sign-magnitude integer. Because the sgn function is itself
a quantizer, only the clipping of b introduces error.

Each filter computation is completed inside a dedicated
hardware neuron. In this manner, partial results do not need
to be written to or loaded from memory. The neuron contains
XNOR gates that perform pointwise multiplications between
the 2 × 2 × 256 filter and image patch. In the mixed-signal
binary CNN processor, addition is implemented using charge
redistribution. The summation over 1024 pointwise products
and bias is completed in the analog domain. Only the polarity
of the result, the 1-bit neuron activation, needs to be resolved
by a voltage comparator.

C. Top-Level Architecture

Fig. 5(a) shows the top-level block diagram of the mixed-
signal binary CNN processor. The architecture was inspired
by [14], which showed that data parallelism and parameter
reuse together result in a significant reduction in the number
of memory accesses required to perform a multi-filter, multi-
channel convolution. The input to the chip is a 32 × 32
RGB image, and the output is a 4-bit category label. The
weight-stationary, data-parallel neuron array performs filter
computations for up to eight CNN layers. In the final stage of
the neural network, the category label is computed by an FC
layer that performs MAC operations digitally. Up to 10 FC
layer neurons can be accommodated, each using XNOR mul-
tiplication followed by a 13-bit wide sequential accumulator.
This provides sufficient precision to determine the index of
the FC layer neuron with the maximum activation, which

Fig. 5. (a) Top-level block diagram. (b) Weights are transferred from filter
SRAM to neuron array weight local memory latches. (c) 64 neurons process
the same image patch simultaneously.

represents the category label. The processor features a cus-
tomized instruction set for CNN layers, max-pooling layers,
FC layers, and input–output actions. Instructions indicating
the layer types, sizes, and ordering are programmed at startup
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Fig. 6. Each color channel of each pixel is quantized to 85 levels, read
into the chip as a 7-bit binary code, and subsequently decoded into an 85-bit
thermometer code.

over a Serial Peripheral Interface. The number of CNN layers
is programmable, up to a maximum of eight. Voltage supplies
for digital logic and memory, VDD and VMEM, are separated to
allow independent voltage scaling. A 0.6-V combined digital
supply and analog reference VNEU powers the SC neuron array,
and a 0.8-V supply VCOMP powers the voltage comparators
resolving neuron outputs.

Each color channel of each pixel of the 32 × 32 RGB
image is quantized to 85 levels and read into the chip as a
7-bit binary code. On chip, these binary codes are converted
to 85-bit thermometer codes (Fig. 6) and stacked (with 1 bit
of zero padding) to form a 256-channel pixel. The resulting
32 × 32 × 256 input image is directly compatible with the
binary CNN, allowing the input layer to utilize the same
dedicated hardware neuron (or in software, the same XOR,
NOT, and popcount instructions) as the rest of the network.
This is a solution to the first layer issue pointed out in [13].
Alternatively, a separate first layer input image SRAM sized at
2.6 kB could store the 32×32 RGB image with 7 bits per color
channel, which would consume less energy to write and read.
However, the overall savings in energy per classification would
be limited by the fact that the first layer contains only 25% of
the filter computations in the network in Table I. Hence, we opt
for the simplicity of hardware reuse and avoid the datapath and
control overhead of an additional memory block.

Filter SRAM banks are located on the north and south
sides of the neuron array and are written once at startup.
With strictly 2 × 2 × 256 filters, 256 kB of filter SRAM is
required to store weights for eight CNN layers. The south
filter SRAM bank includes an additional 3 kB for storing
filter biases. Weights for the FC layer are stored in a separate
5.5-kB SRAM bank. Image SRAM banks are located on the
east and west sides of the neuron array, and have the capacity
to store the input and output images for one CNN layer at a
time. Image SRAM banks alternate roles between input and
output from layer to layer in a ping-pong fashion. Each image
SRAM bank is sized at 32 kB to accommodate the largest
possible CNN layer input—the 32 × 32 × 256 thermometer-
coded RGB image.

D. Convolution Dataflow

Before a convolution begins, filter weights are transferred
from filter SRAM into neuron array weight local memory

latches, as shown in Fig. 5(b). Weights are stationary through-
out the duration of a convolution, which amortizes the energy
cost of reading them from SRAM across all filter computations
until the next convolution begins. Image SRAM banks are
256 bits wide, with one word representing one 256-channel
pixel, as shown in Fig. 5(c). The input DEMUX block inter-
faces between image SRAM, which loads a 256-channel pixel,
and the neuron array, which receives a 2 ×2 ×256 patch. The
data-parallel array of 64 neurons processes the same image
patch simultaneously, amortizing the energy cost of reading the
patch across 64 filter computations. In order to process 256 fil-
ters per layer with 64 hardware neurons, the neuron array
must be four-way time-multiplexed. This is accomplished by
splitting the 256 filters into four filter groups, and repeating
convolution over the input image for each filter group. The
output DEMUX block manages writing 64 channels at a time
to a 256-channel pixel in output image SRAM.

E. Datapath Microarchitecture

Fig. 7 shows how sliced processing translates to reduced
path loading. The input DEMUX block is implemented as an
array of 256, 1-to-4 de-multiplexers with output registers. Each
pixel of the input image can be reused in the processing of
two overlapping patches, amortizing the input image SRAM
read energy per filter computation by 2×. A 2 × 2 crossbar
interchanges pixel pairs at the neuron array input as required
by sliding window convolution. Filter weights are transferred
over a 4 bit per neuron bus, split into north and south halves
to reduce loading of weight transfers by 2×. To minimize
logic and interconnect at the neuron array to memory interface,
each neuron processes the same four filters and writes to the
same four output channels in each CNN layer. For example,
neuron 0 always processes filters 0 to 3, and neuron 63 always
processes filters 252 to 255. The output DEMUX block is
implemented as an array of 1-to-4 de-multiplexers, which
minimizes path loading between the neuron array and out-
put image SRAM. Max pooling occurs incrementally during
convolution by first reading a 256-channel pixel from output
image SRAM, and then writing back the logical OR of the
64 channels corresponding to the current filter group with the
64-channel neuron array output. Each path through the de-
multiplexers is utilized in each CNN layer. In this manner,
the CMOS-inspired binary CNN topology with a fixed filter
size makes efficient use of the dynamic energy consumed in
the physical design.

This design uses strictly 2 × 2 filters. However, a network
with filter size fixed at 1 × 1 or 3 × 3 can utilize a similar
datapath microarchitecture. With 1×1 filters, the filter SRAM
capacity decreases to 64 kB, the input DEMUX block is no
longer necessary, and only one input image SRAM read is
required per filter computation. With 3 × 3 filters, the filter
SRAM capacity increases to 576 kB, the input DEMUX block
becomes an array of 256, 1-to-9 de-multiplexers, and three
input image SRAM reads are required per filter computation.

III. SWITCHED-CAPACITOR NEURON ARRAY

BinaryNet makes multiplications trivial by reducing them
to XNOR, but addition remains a challenge due to the large
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Fig. 7. Microarchitecture of neuron array datapath.

Fig. 8. SC neuron performing wide vector summation via charge redistribution. The 1-bit neuron output is resolved with a single comparator decision.

number of inputs per neuron. The dedicated hardware neuron
of this design must compute its output z according to the
expression in (2). Because the binary CNN can tolerate a
certain number of erroneous neuron outputs without misclassi-
fying the input image, an opportunity exists to improve energy
efficiency by computing z with an internally analog, externally
digital SC neuron.

A. Ideal Neuron Operation

Fig. 8 shows the SC neuron schematic, which computes
z exactly according to (2) under ideal operation. The filter

bias b is represented as a 9-bit sign-magnitude integer
as follows:

b = (−1)s
B−2∑
i=0

2i mi (3)

where the bias word length B = 9, s is the sign bit, and
mi are the magnitude bits. The SC neuron uses a differential
CDAC with four sections: a 1024-bit thermometer section for
summing pointwise products of filter weights and activations,
a 9-bit binary-weighted section for adding the filter bias,
a threshold section, and a common-mode (CM) setting section.
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The CDAC unit element is a metal-oxide-metal (MOM) fringe
capacitor. In the SC neuron layout, each unit capacitor pair
sits on a standard cell row with its drivers. Due to the
number of wire tracks per standard cell height, one extra
MOM fringe capacitor finger is left unused for every two
unit capacitors. These fingers are re-purposed as the CM
section and switched to VDD to slightly lift the comparator
input common-mode voltage. The binary-weighted section
is symmetrically switched to maintain a constant common-
mode voltage into the comparator [29]. A dynamic double-tail
comparator resolves the 1-bit neuron output [30].

Before convolution begins, all capacitors are discharged by
asserting and de-asserting the signals CLR and CLRe. To pre-
vent drawing excessive charge from the supply, the bottom
plate nodes are discharged by asserting CLR before the top
plate is discharged via CLRe. To prevent asymmetric charge
injection, the top plate switches are turned off before the
bottom plate voltages resume their values set by the neuron
inputs. The frequency of CLR operations is dictated by leakage
at the top plate node. During convolution, a CLR operation is
executed every 100 to 300 cycles, resulting in a negligible
contribution to energy per classification.

With zero charge on the top plate nodes, the differential
voltage vtd = vtp − vtm can be expressed as a superposition of
capacitive dividers

vtd

VDD
=

N−1∑
i=0

(
Cwp,i

Cp,tot
[wi ⊕ xi ] − Cwm,i

Cm,tot

[
wi ⊕ xi

])

+
B−2∑
i=0

(
Cbpa,i

Cp,tot
[mi s] + Cbpb,i

Cp,tot
[mi s]

)

−
B−2∑
i=0

(
Cbma,i

Cm,tot

[
mi s

] + Cbmb,i

Cm,tot
[mi s]

)
. (4)

In this expression, the non-italicized wi and xi take on values
0 and 1 (corresponding to −1 and +1 in (2)). The Boolean
expressions in brackets are treated as 0 or 1 integers multiply-
ing the capacitive ratios, and Cp,tot and Cm,tot denote the total
capacitance in the positive and negative differential halves.
We have omitted the threshold section (assumed mh = 0) for
brevity. In the ideal case, the capacitors take exactly the values
labeled in Fig. 8, and the expression in (4) reduces to

vtd

VDD
= Cu

Ctot

(
N−1∑
i=0

wi xi + b

)
. (5)

We define the CDAC step size and full-scale range as follows

vLSB = Cu

Ctot
VDD (6)

VFS = (N + 2B−1 − 1)Cu

Ctot
VDD. (7)

An ideal comparator senses the polarity of vtd, which is exactly
equal to z in (2). The purpose of the threshold section is
to subtract 1/2 from the integer term inside the parenthesis
in (5), which defines how the sgn function treats an identically
zero input. This allows simulation of the ideal SC neuron to

produce ideal results, but becomes irrelevant in the presence
of comparator noise and offset.

B. Impact of Circuit Nonidealities

Three circuit nonidealities in the SC neuron can affect the
classification accuracy of the binary CNN. These are digital-to-
analog converter (DAC) unit capacitor mismatch, comparator
offset, and comparator noise. In the presence of unit capacitor
mismatch, the capacitive ratios in (4) do not reduce to a perfect
factor of Cu/Ctot as in (5). Due to unit capacitor mismatch and
comparator offset, the SC neuron effectively applies a different
filter, with weights weff and bias beff determined by the actual
capacitor values and comparator offset voltage. Unlike unit
capacitor mismatch and comparator offset that are random
but static, comparator noise vn randomizes every decision
independently. The differential voltage can be expressed as

vtd

VDD
=

N−1∑
i=0

weff,i xi + beff + vn

VDD
(8)

where the actual capacitor values and comparator offset deter-
mine weff and beff

weff,i =
(

Cwp,i

2Cp,tot
+ Cwm,i

2Cm,tot

)
wi (9)

beff =
N−1∑
i=0

(
Cwp,i

2Cp,tot
− Cwm,i

2Cm,tot

)

+
B−2∑
i=0

(
Cbpa,i

Cp,tot
[mi s] + Cbpb,i

Cp,tot
[mi s]

)

−
B−2∑
i=0

(
Cbma,i

Cm,tot

[
mi s

] + Cbmb,i

Cm,tot
[mi s]

)

+ vos

VDD
. (10)

C. Offset Calibration at Startup

With 9 bits allocated to the filter bias, sufficient range
exists for offset correction using the binary-weighted DAC
section, without the introduction of an additional trim-DAC.
The comparator offset vos is digitized at startup, stored in a
local register, and subtracted from the bias loaded from filter
SRAM during weight transfer using saturating arithmetic [31].
Behavioral Monte Carlo simulations show that this greatly
relaxes the amount of comparator offset that can be tolerated
without degrading system-level classification accuracy. With
calibration, the tolerable offset is limited by the resulting clip-
ping of the filter bias. In environments where large temperature
changes may induce significant offset drift, calibration can be
performed periodically (e.g., once per second) at negligible
cost in average energy per classification and throughput.

D. Behavioral Monte Carlo Simulation

Based on the error model of (8)–(10), we now present a
method for simulating system-level classification accuracy in
the presence of circuit nonidealities. This method determines
the amount of capacitor mismatch and comparator offset and
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noise that the binary CNN can tolerate without accuracy
degradation, which specifies the design requirements on the
analog signal path.

The statistical parameters of the error model are unit capac-
itor coefficient of variation σu/Cu and the comparator offset
and noise standard deviations normalized to the supply volt-
age, σos/VDD and σn/VDD. Given the statistical parameters,
we generate random values for every capacitor and every
comparator offset in a model of the 64-neuron array. The set
of CNN filters processed by each neuron is predetermined by
the architecture. Hence, it is straightforward to transform the
weights and biases of each filter into their effective values
according to the randomly generated capacitances and offset
of the neuron that will process that filter. Then, the trans-
formed CNN performs inference on a set of test images. Each
filter computation is performed using the expression in (8),
which requires generating and adding a random noise term
with standard deviation σn/VDD to model comparator noise.
This exhaustive method captures not only mismatch between
capacitors in a DAC but also mismatch between neurons in
the array.

Fig. 9 plots classification accuracy over a range of the sta-
tistical parameters, for each nonideality acting alone. Ideally,
the binary CNN in Table I achieves 86.05% classifica-
tion accuracy on the CIFAR-10 test set. At the design
point σu/Cu = 0.85%, σos/VFS = 1.0% (13 LSB), and
σn/VFS = 0.1% (1.3 LSB), the classification accuracy with
all nonidealities acting together is 86%. This design point has
2× margin in each of the three statistical parameters, meaning
that increasing σu/Cu , σos/VFS, and σn/VFS each by 2× with
all nonidealities acting together results in 86% classification
accuracy. We take this design point as a specification for the
analog signal path.

E. Synapse Logic

We refer to the unit cell of the weight-stationary, data-
parallel neuron array as a “synapse”, shown in Fig. 10. The
synapse must at least contain a weight latch and an XNOR

gate. In this design, activation signals are driven horizontally
in both directions, due to the ping pong style architecture. For
simplicity and robustness, we use two separate wires, with one
active and one held low during the processing of each CNN
layer. An OR gate inside the synapse merges the signals on
the two wires. In the SC neuron, the CLR signal is necessary
to zero the charge on the top plate node, and additionally data
gates the CDAC during weight transfers to prevent it from
consuming dynamic energy without computing a useful result.

F. MOM Fringe Capacitive DAC

Fig. 11 shows a single unit element of the CDAC.
We assume a Pelgrom coefficient A = 0.85% ×√

1fF based
on [32] and calculate the coefficient of variation as follows:

σu

Cu
= A√

Cu
. (11)

Hence, a 1 fF unit capacitance is used to achieve the
coefficient of variation specified by behavioral Monte Carlo

Fig. 9. Behavioral Monte Carlo simulation shows that the design point
σu/Cu = 0.85%, σos/VFS = 1.0%, and σn/VFS = 0.1% achieves 86%
classification accuracy.

Fig. 10. SC neuron synapse contains a weight latch and logic gates for
driving the CDAC’s two differential halves. One synapse (including the unit
capacitor pair) occupies one standard cell row.

σu/Cu = 0.85%. Top plate parasitic capacitances Cp1 and Cp2
attenuate signal swing at vtd, lowering VFS, and tightening the
requirement on the absolute comparator input-referred noise
and offset RMS voltages. In SPICE simulation of the SC
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Fig. 11. (a) 1fF unit capacitor layout drawn to scale. (b) Model with top
plate parasitics.

neuron, VFS = 460 mV, which sets the comparator input-
referred noise and offset requirements at σn = 460 μV and
σos = 4.6 mV. With greater than 1 pF of capacitance in the
CDAC, the noise voltage sampled during the CLR operation
can be safely neglected.

G. Dynamic Double-Tail Comparator

The dynamic double-tail comparator was selected for its
energy efficient fully dynamic operation (no static pre-amp)
and its low-voltage compatibility [30]. High transconduc-
tance efficiency and low threshold voltage mismatch make
it possible to meet the noise and offset requirements with
low switched capacitance, leading to a simulated energy per
decision of 85 fJ. Section IV shows that this translates to 9%
of measured neuron array energy per classification, and 2% of
overall core energy per classification.

IV. EXPERIMENTAL RESULTS

The prototype IC was fabricated in TSMC’s high-
performance low-leakage (HPL) 28-nm CMOS process.
Fig. 12 shows a micrograph of the 6 mm 2 die. 328 kB of
on-chip SRAM was implemented using standard macros. The
chip uses a single clock domain. All measurements were taken
at room temperature.

Fig. 13 shows the energy breakdown versus VDD and VMEM.
The supply VMEM powers image and filter SRAM banks. VNEU
serves as a combined digital supply and analog reference
for the neuron array, and VCOMP powers comparators. The
supply VDD powers everything else on chip, including the
control finite-state machine (FSM), input–output DEMUX
blocks, FC layer weight storing SRAMs, and FC layer digital
MAC logic. From post-layout simulation, we estimate that
the FC layer consumes less than 2% of the core energy per
classification. At nominal supply voltages VDD = VMEM =
1.0 V, the chip operates up to 380 frames/s (FPS) with

Fig. 12. Die photo.

Fig. 13. Measured energy per classification breakdown.

fCLK = 16 MHz and achieves 5.4 μJ/classification. Lower-
ing VDD and VMEM to 0.8 V leads to 3.8 μJ/classification
(1.43× reduction) at 237 FPS with fCLK = 10 MHz.
At this operating point, the neuron array consumes
0.86 μJ/classification from the 0.6-V supply VNEU, and the
comparators consume 81.2 nJ/classification from the 0.8-V
supply VCOMP. Dividing by 983 040 comparator decisions per
classification, we obtain 82.6 fJ/decision. Not included in these
energy figures is the 1.8-V chip I/O energy, which amounts to
0.43 μJ/classification (a small fraction of the core energy). The
energy-efficiency of the 1.8-V chip I/O interface is 13 pJ/bit.

For the purpose of measurement, classification accuracy is
defined as the fraction of images classified correctly during
one run through the CIFAR-10 test set. Measurements over
multiple runs on multiple chips were used to collect statistics,
such as the mean and standard deviation of classification
accuracy. Fig. 14 shows a histogram of classification accuracy
measured over 10 different chips, 180 runs each through the
10 000 image CIFAR-10 test set. These measurements were
taken with VDD = VMEM = 0.8 V, and do not capture
process- or aging-related variations. The mean classification
accuracy is 86.05%, the same as observed in a perfect digital
model of the binary CNN described in Table I. The standard
deviation is 0.40%, with spread solely caused by noise and
mismatch in the SC neuron array (which can notably lead
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Fig. 14. Measured classification accuracy over 10 chips, 180 runs each
through the 10 000 image CIFAR-10 test set.

Fig. 15. (a) Gaussian CDF fit extracts the noise and offset from measurements
of a single comparator. (b) Measured offset over 10 chips, 64 comparators
per chip.

to a higher classification accuracy than in the perfect digital
model). The 95% confidence interval in mean classification
accuracy is 86.03% to 86.07%.

At VDD = VMEM = 0.8 V, digital logic and SRAM macros
are error free. To explore further energy savings in the presence
of bit errors, we reduced VDD to 0.6 V and set VMEM to 0.53,
0.52, 0.51, and 0.50 V. The mean accuracy degrades to 85.7%,
85.2%, 84.2%, and 82.5%, respectively. At VDD = 0.6 V
and VMEM = 0.53 V (borderline practical), the chip con-
sumes 2.61 μJ/classification, a 2.1× reduction versus nominal
1.0-V supplies. At this operating point, the frame rate is
36 FPS with fCLK = 1.5 MHz. A complete characterization
of classification accuracy in the presence of bit errors and
the resulting energy savings is presented in [33]. From the
energy breakdown in Fig. 13, we see that neuron array energy

TABLE II

COMPARISON TO STATE OF THE ART

increases due to leakage at the lower FPS imposed by voltage
scaling. However, this increase is small compared to the logic
and memory savings.

Comparator noise was measured in units of LSB by apply-
ing a ramp input using the CDAC and counting the number
of logic 1s resolved in a sequence of 1024 decisions at each
input voltage. Fig. 15(a) shows the resulting P(z = 1) versus
vtd curve for a single comparator and the Gaussian CDF fit,
indicating a noise standard deviation of 0.95 LSB. Error bars
show the minimum and maximum of the proportion of logic
1s over 10 repetitions of the measurement. Averaging over
10 chips, 64 comparators per chip, we find σn = 0.97 LSB,
which meets the 1.3 LSB requirement specified by behavioral
Monte Carlo. The comparator’s offset voltage in units of LSB
is negative the mean of the Gaussian CDF fit. For the particular
comparator of Fig. 15(a), the offset voltage equals 2.96 LSB.
Fig. 15(b) shows a histogram of offset voltages over 10 chips,
64 comparators per chip. The offset standard deviation σos =
11.7 LSB, which meets the 13 LSB requirement specified by
behavioral Monte Carlo.

Table II compares this paper with prior art. To our knowl-
edge, TrueNorth [27] is the only dedicated neural network
chip for which post-silicon energy per classification and accu-
racy on CIFAR-10 have been reported to date. Furthermore,
TrueNorth previously set the state of the art for minimum
energy on CIFAR-10, at 164 μJ/classification. Our intent in
comparing with TrueNorth is simply to report an advancement
in energy per classification. This advancement stems from
specializing the mixed-signal binary CNN processor to the
CMOS-inspired topology, which sacrifices some programma-
bility. The designs in [34] and [35] are provided in Table II for
context, illustrating that lower energy per classification can be
attained on the MNIST handwritten digit data set, an inference
task of significantly lower complexity. The binarized DNN
accelerator in [34] has all memory on-chip, but because fully-
connected neural networks do not reuse weights, the energy
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TABLE III

MIXED-SIGNAL VERSUS DIGITAL COMPARISON

cost of an SRAM bit load is attached to each XNOR operation.
However, this accelerator has the advantage that its processing-
in-memory (PIM) module can be densely tiled and used to
process DNN layers in a pipelined manner. The design in [35]
implements the Locally Competitive Algorithm (LCA) using
an array of 512 internally analog neurons with fully digital
I/O, and exhibits low energy but does so at relatively low
accuracy on the MNIST data set. However, the design in [35]
is distinguished by its capability of on-chip learning.

V. COMPARISON OF MIXED-SIGNAL AND

DIGITAL IMPLEMENTATIONS

In this section, we compare the SC neuron array to its
equivalent digital implementation, in order to quantify the
advantage of mixed-signal processing. In [36], it was shown
that analog filters possess greater energy efficiency than digital
in the low-SNR regime. Although neural networks share the
same MAC building block as filters, the applicability of
this result is limited to mixed-signal processing due to the
requirement for dense digital storage. In [15], it was shown
that the energy overhead of switches becomes dominant at low
SNR for one instance of mixed-signal processing for neural
networks, making the advantage of purely analog processing
unrealizable. Although the energy of the SC neuron array is
limited by its digital gates, it nonetheless achieves an energy
savings of 12.9× relative to a synthesized digital neuron array,
and an energy savings of 4.2× relative to a hand-designed
digital neuron array. This is attributed to the low effective
switched capacitance of the CDAC and the low energy per
decision of the comparator, made possible by precise matching
of MOM fringe capacitors, high transconductance efficiency,
and low threshold voltage mismatch.

A. BinarEye

The BinarEye chip presented in [22] has the same baseline
architecture as this work, but uses a digital neuron array and
was synthesized with an RTL-to-GDSII standard cell flow.
BinarEye adds the flexibility to modulate the number of filters
and channels in the CNN, which provides an extra system-level
knob to increase throughput and decrease energy consumption
at the cost of classification accuracy. Whereas this design uses
strictly 2 × 2 × 256 filters, BinarEye can be programmed to
use filters of size 2 × 2 × 256, 2 × 2 × 128, or 2 × 2 × 64.
Table III compares the mixed-signal binary CNN processor
of this work with BinarEye, and Fig. 16 plots the measured
core energy per classification versus classification accuracy
for both designs at several operating points. The third column
of Table III shows the estimates extrapolated from post-layout
simulation of a single hand-designed digital neuron, which we
address in Section V-B.

Whereas this design consumes 3.8 μJ/classification
at 86.05% accuracy on CIFAR-10, BinarEye consumes
15 μJ/classification at the same accuracy and throughput.1

This energy difference is attributed to the SC neuron array,
which consumes 12.9× lower energy per classification than
the synthesized, digital neuron array of BinarEye.2 However,
BinarEye can scale energy consumption quadratically with

1With the SC neuron array, convolution must be periodically paused
to zero the charge on the CDAC top plate node (CLR operation). As a
result, the mixed-signal design takes 42 000 clock cycles per classification,
as opposed to 40 000 cycles achieved by BinarEye which does not require
CLR operations.

2Because BinarEye uses a single power domain for the neuron array and
control/datapath logic, the neuron array energy per classification reported
for BinarEye in Table III is based on a combination of measurements and
simulation.
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Fig. 16. Measured energy-accuracy tradeoff for this work (supply voltage
scaling) and BinarEye (neuron width scaling).

neuron width (by dividing each neuron into parallel sub-
neurons) if lower accuracy is permitted. Using 2×2×64 filters,
BinarEye reduces energy per classification to 1.1 μJ and
increases throughput to 3791 FPS, at 76% classification accu-
racy on CIFAR-10. This design consumes greater silicon area
than BinarEye, leading to higher die cost. The available chip
area was limited for the BinarEye tape-out, which adversely
affected routability. This resulted in additional vertical wiring
and buffering, and led to the neuron array energy being
dominated by wires and buffers. The larger chip area available
for the mixed-signal design allowed us to enforce a strict grid
structure on the neuron array layout, thereby minimizing the
length of array-traversing wires.

In this work, we explored circuit techniques that lower
energy consumption at the cost of random classification errors
due to the underlying circuit nonidealities, such as thermal
noise and threshold voltage mismatch. The energy per clas-
sification of 3.8 μJ is measured at VDD = 0.8 V and
VMEM = 0.8 V, where the 95% confidence interval in mean
classification accuracy is 86.03% to 86.07%. For the memory
voltage overscaling measurements, the large error bars are due
to SRAM VMIN variations across 10 chips [33]. BinarEye uses
supply voltages VDD = 0.72 V and VMEM = 0.7 V, where
compute and memory are both error free. By modulating the
filter size, BinarEye lowers energy at the cost of accuracy in
a deterministic way.

B. Hand-Designed Digital Neuron

The SC neuron array of this paper consumes 12.9× lower
energy per classification than the synthesized digital neuron
array of BinarEye for two reasons: 1) it performs addition
via charge redistribution and 2) it has a full custom design
and layout. To isolate the energy improvement of mixed-
signal processing versus digital processing, as opposed to
the energy improvement of hand-designed circuits versus
synthesized circuits, we additionally compare against a hand-
designed digital neuron in this section. The hand-designed
digital neuron performs the same arithmetic function specified
by (2), but it differs from the SC neuron of Fig. 8 in that the
CDAC has been replaced by a Wallace tree adder. The hand-
designed digital neuron is wider than the SC neuron due to
the adder (29 μm vs 21 μm), but without the binary-weighted
CDAC section, it is vertically shorter (922 μm vs 1210 μm).

Fig. 17. Digital neuron synapse.

The hand-designed digital neuron synapse shown in Fig. 17
only needs to drive a single input of the tree adder, rather than
two differential halves of the CDAC. However, the CLR signal
serves the same data-gating function as in the SC neuron,
so the NOR gate driver is retained.

At a single node in a static CMOS digital circuit, the energy
consumed per cycle is

Ecyc = αCswV 2
DD + PleakTclk (12)

where α is the activity factor (the probability of a 0-to-1
transition), Csw is the switched capacitance at the node, Pleak
is the leakage power of the driver, and Tclk is the clock period.
To characterize the energy consumption in a complete circuit,
we apply stimuli over a range of α and perform a linear fit,
the slope of which is CswV 2

DD, where Csw is the effective
switched capacitance of the complete circuit.

Fig. 18 shows the energy per cycle versus input activity
factor in post-layout simulation for the SC and hand-designed
digital neurons. All weight latches are set to logic 1, and an
I.I.D. Bernoulli stimulus is applied to each activation input
with probability p varying from 0.01 to 0.99. In this manner,
α = p(1− p) is swept from 0.0099 to 0.25. Due to the Wallace
tree adder, energy per cycle in the digital neuron is weakly
nonlinear in activity factor. For the CDAC, it can be shown that
the expected energy per cycle under I.I.D. Bernoulli stimulus
in the thermometer-coded section is

E[Ecyc] =
(

1 − Cu

Ctot

)
αNCu V 2

DD. (13)

This explains the close linear fit for energy per cycle in
the SC neuron versus activity factor. The effective switched
capacitance of the SC neuron is 18.1 pF, 2.9× lower than that
of the digital neuron. Only 12.7% is contributed by the CDAC,
with the remaining capacitance contributed by the synapse
logic gates.

The neuron array energy per classification has four com-
ponents: 1) filter computations; 2) weight transfers; 3) CLR
operations; and 4) leakage energy over the idle time. The
above-mentioned results show how the neuron’s effective Csw
for filter computations is extracted from simulation. We addi-
tionally extract the neuron’s effective Csw for weight transfers,
and simulate the energy of a CLR operation and the leakage
power. Based on these quantities and the measured SC neuron
array energy per classification, we estimate an activity factor
α = 0.059. Then, we use the simulated energy values at
this activity factor to break down the measured energy per
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Fig. 18. Simulated energy per cycle versus activity factor.

Fig. 19. Simulated neuron array energy per classification breakdown.

classification of the SC neuron array into its components and
to estimate the energy per classification of a hand-designed
digital neuron array. Because filter computations account for
more than 94% of the energy in both cases, we neglect the
other components in the following bar graph. Fig. 19 shows
the energy per classification broken down by transistors, wires,
CDACs, and comparators.

The energy per classification measured for the SC neuron
array is 4.2× lower than that estimated for a hand-designed
digital neuron array. Fig. 19 shows that the SC neuron array
energy is dominated by wiring in the synapse. Due to the
additional gates required to drive two differential CDAC
halves, the SC synapse energy is 1.9× greater than the digital
synapse energy. However, this is outweighed by the fact that
the CDACs and comparators together consume 19× lower
energy than the equivalent Wallace tree adders.

The parameters of the 28-nm technology make it possible
for the CDACs and comparators to meet the error requirements
of BinaryNet at low energy. Precise matching between MOM
fringe capacitors allows a 1-fF unit capacitance, reducing
the energy per classification of the CDACs to 104 nJ. High
transconductance efficiency and low threshold voltage mis-
match reduce the energy per classification of the comparators
to 81.2 nJ while maintaining a noise and offset of 0.97 LSB
and 11.7 LSB, respectively. In comparison, the estimated
energy per classification of the digital static CMOS Wallace
tree adders is 3.49 μJ.

C. Discussion

Together with [22], this study explores three circuit
implementations of the same baseline architecture: synthesized

digital, hand-designed digital, and mixed-signal. The
RTL-to-GDSII flow used in [22] results in the fastest design
time and smallest silicon area. With the RTL-to-GDSII flow,
the baseline architecture is readily extended to achieve a
wider, more flexible tradeoff in the energy-accuracy plane
(Fig. 16). However, the top-down place and route flow does
not fully take advantage of CNN structural regularity. A full-
custom design and layout, whether mixed-signal or digital,
allows the length of array-traversing wires to be minimized,
thus lowering the energy consumption. The hand-designed
digital neuron array consumes 3.1× lower energy than the
synthesized digital neuron array in [22], translating to an
overall 2.2× reduction in energy per classification at the
system level. However, the hand-designed digital neuron array
consumes the largest silicon area, owing to the width of the
Wallace tree adder. The SC neuron array consumes 4.2× lower
energy than the hand-designed digital neuron array, translating
to an overall 1.8× reduction in energy per classification at
the system level. The mixed-signal implementation has the
lowest energy consumption and achieves the same mean
classification accuracy, but has a classification accuracy
standard deviation of 0.40% due to noise and mismatch in
the SC neuron array. In summary, each of the three circuit
implementations occupies a distinct point in the tradeoff space
of energy, accuracy, throughput, die cost, and design time.

VI. CONCLUSION

We have presented a mixed-signal binary CNN processor
that uses strictly on-chip memory, amortizes access across
many computations, and performs addition via charge redistri-
bution. The BinaryNet algorithm drastically simplifies multi-
plications to XNOR and reduces memory requirements [13].
The CMOS-inspired binary CNN topology incurs a 2.55%
accuracy loss, but reduces weight memory from 1.67 MB
to 261.5 kB and minimizes path loading at the interface
between memory and compute. The energy cost of memory
access is amortized across many computations using a weight-
stationary, data-parallel architecture with input reuse [14]. The
remaining energy bottleneck is wide vector summation, which
we address using an energy efficient SC neuron. This design
is distinguished from the recent CIM designs of [17]– [19] by
the fact that it contains the surrounding memory required to
time-multiplex the SC neuron array for processing deep CNNs,
thereby realizing a complete neural network with image-to-
label functionality on chip. Given the error requirements of
the binary CNN and the parameters of the 28-nm technology,
the SC neuron array operates at 12.9× lower energy than the
synthesized digital neuron array in [22], leading to an overall
energy savings of 4×. The mixed-signal binary CNN processor
achieves 3.8 μJ/classification on the CIFAR-10 data set, a 40×
improvement over the previous low energy benchmark.
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