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ABSTRACT | Initially developed for gaming and 3-D rendering,

graphics processing units (GPUs) were recognized to be a

good fit to accelerate deep learning training. Its simple math-

ematical structure can easily be parallelized and can therefore

take advantage of GPUs in a natural way. Further progress in

compute efficiency for deep learning training can be made by

exploiting the more random and approximate nature of deep

learning work flows. In the digital space that means to trade off

numerical precision for accuracy at the benefit of compute effi-

ciency. It also opens the possibility to revisit analog computing,

which is intrinsically noisy, to execute the matrix operations

for deep learning in constant time on arrays of nonvolatile

memories. To take full advantage of this in-memory compute

paradigm, current nonvolatile memory materials are of limited

use. A detailed analysis and design guidelines how these

materials need to be reengineered for optimal performance

in the deep learning space shows a strong deviation from the

materials used in memory applications.

KEYWORDS | Analog computing; deep learning; neural net-

work; neuromorphic computing; nonvolatile memory; synapse

I. I N T R O D U C T I O N

Recent hardware developments for deep learning show a
migration from a general-purpose design to more special-
ized hardware to improve compute efficiency, which can
be measured in operations per second per watt (ops/s/W).
The limited number of mathematical operations needed,
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and the reoccurring nature of these operations in the
underlying algorithms, was first successfully exploited
using graphics processing units (GPUs) for gaming and 3-D
rendering [1]. GPUs allow a high degree of parallelism for
such workloads and, therefore, significantly enhance the
throughput compared to a conventional central processing
unit (CPU). Since deep learning algorithms also use a lim-
ited amount of mathematical operations that are repeated
they would also benefit from the parallel execution using
a GPU [2]–[5]. To drive further improvement of com-
pute efficiency, features of deep learning algorithms can
be exploited that are unique to that space [6], [7]. For
example, deep learning algorithms are resilient to noise
and uncertainty and allow, in part, a tradeoff between
algorithmic accuracy and numerical precision [8], [9]. This
tradeoff is not present in the traditional application space
for GPUs, and this key difference is driving a new gener-
ation of ASIC [10]–[12] chip designs for deep learning.
This also opens the opportunity to revisit the use of analog
computing. The analog approach to deep learning hard-
ware we consider here is an extension of the in-memory
compute [13] concept in which data movement is reduced
by performing calculations directly in memory. Arrays of
nonvolatile memory (NVM) can be used to execute matrix
operations used in deep learning in constant time, rather
than as a sequence of individual multiplication and sum-
mation operations. For instance, in an n×m array it is pos-
sible to execute n×m multiply and accumulate operations
in parallel by exploiting Kirchhoff’s law [14]. However, to
effectively use analog computing based on NVM in deep
learning applications, implementation details and material
properties need to be aligned with the requirements of the
algorithms.

Deep learning can be divided into two distinct operation
modes: training and inference. The training phase is an
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optimization problem in a multidimensional parameter
space to build a model that can be used to provide a wider
generalization in the inference process. A model usually
consists of a multilayer network with many free parameters
(weights) whose values are set during the training process.
The optimal form and structure of these networks is an
intense area of current research in deep learning with
neural networks. The optimal network structure depends
on the task to be solved and on the computer hardware
that is available. In the training phase, the backpropaga-
tion algorithm (BP) [15] is used to implement stochastic
gradient descent (SGD) to solve the weight optimization
problem. Backpropagation consists of three components:
1) the forward path—the presented data propagates for-
ward through the network until the end where an error
is computed; 2) the backward path—the error propagates
backward through the network to compute the gradients
in the parameters; and 3) the parameter (weight) update.
During the training process, a large body of labeled data
is repeatedly presented to the network to determine the
best values for the parameters. Due to the volume of data
that are processed repeatedly through the many layers of
the neural net network, the training process tends to be
time consuming and can take weeks for a realistic data
set, which can require models with hundreds of millions
of weight parameters. To find an optimal solution, fine
tuning of the hyperparameters, e.g., parameters related to
the structure of the network and the training algorithm,
is also usually required. Optimizing the hyperparameters
requires several complete learning cycles. Therefore, the
development of customized hardware to reduce training
time is desirable to speed up model development. For
inference, the optimized (trained) network is only oper-
ated in the forward path mode, and the computational
requirements can vary depending on the specific applica-
tion. Inference in mobile applications will stress low power
while in data center applications speed (latency) may be
more important. Therefore, optimal solutions for training
and inference can be quite different. From a software
point of view, both training a model and executing it
for inference do not depend on the underlying hardware.
This can, however, lead to a suboptimal performance since
hardware optimization for training and inference-only will
tend to be different. As a practical matter, and with the
advent of specialized hardware, it is advantageous to run
training and inference on the same hardware platform for
a seamless transition from training to inference. For exam-
ple, if training and inference are performed on different
hardware platforms, retraining or tuning of the model to
accommodate the difference may be needed.

The remainder of this paper is organized as follows.
In Section II, a short discussion of the basic types of
networks is given, and in Section III, we briefly discuss the
current state of various hardware implementations. This
discussion is by no means complete but describes some of
the tradeoffs that need to be addressed to optimize training
performance. In Section IV, we give a detailed analysis of

the design and material requirements for analog comput-
ing elements. Finally, in Section V, we briefly summarize
some of the interesting recent material developments.

II. D E E P L E A R N I N G N E T W O R K S

As data scientists seek to increase the accuracy and speed
of deep learning, the complexity of network architectures
has exploded [16], [17]. We can group the most commonly
used deep learning neural networks (DNNs) into three
principle classes: fully connected networks (FCNs), con-
volutional neural networks (CNNs), and recurrent neural
networks (RNNs). The latter two are designed to take
advantage of spatial or temporal (or sequential) correla-
tions in the data, for instance, in image processing, text,
and speech processing. The building block of a multilayer
FCN is a linkage that connects every element of an input
layer with every element of an output layer. It can easily
be represented as an n × m matrix with n input channels
(rows) and m output channels (columns). The matrix
elements wi j determine the strength of the connection
from input xi (i = 1, . . . , n) to output y j ( j = 1, . . . , m).
The multilayer network is then built up as a sequence
of these connected layers, with the output of each layer
serving as the input to the next. One complication is that
a nonlinear activation function is applied to the output of
each layer before it is passed to the next layer. Without
this nonlinear element between the layers, the network
would be equivalent to a simple two-layer linear regression
model and the advantages of the BP algorithm to capture
complex data structures would vanish. A CNN [2] consists
of convolution and pooling layers. A convolution layer
[Fig. 1(a)] consists of a set of filters or kernels of size
k × k and d input channels. The input channels d can
be considered as the decomposition of the input into
appropriate components. For the first layer, that could
be, for instance, the decomposition into red, green, and
blue components for a color picture, and for successive
layers, it is the number of independent kernels from the
previous layer. The kernels are moved across the input
data with a given stride s (the number of pixels moved)
to scan the whole picture. There could be a number of
kernels M in one convolution layer. The filters contain
the weight elements wl

i j (i = 1, . . . , k, j = 1, . . . , k,

l = 1, . . . , d) and are moved across the entire range of
the input data. The convolution process associated for one
filter bank can be interpreted as a scan for a feature in
the data. The convolution process is repeated for several
distinct filter banks. Each of these filter banks will produce
a feature map which is then reduced in dimensionality
by the pooling process. One common approach is max
pooling, in which a window is defined in the feature map
and the maximum element in this window is retained. In
the next convolution layer, these pooled feature maps will
serve as the input data set and the process is repeated.
Unlike the processing that occurs in FCNs, convolution and
pooling cannot be represented as simple standard matrix
multiplication. For example, since the same weights are
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Fig. 1. (a) Convolution layer n × n input at d channels and M

convolution kernels. (b) Mapping a convolution layer into standard

matrix multiplication. The weight matrix has M rows, for M different

kernels and each row contains the k × k filter pixels for d channels

for each kernel. The input matrix maps the input data of dimension

n × n into a matrix of dimension [(n − k)/s C �]� × k�d.

used across the entire input for one filter, the weights are
reused many times on the data. The input data stream
into the convolution layer can, however, be transformed
so that the convolution process can be cast into a standard
matrix multiplication form, with the columns of the weight
matrix containing the weight coefficients of the different
filter banks [Fig. 1(b)]. The reuse of the weights is shifted
now to a multiple use of data points in the input matrix.
This transformation will have the effect that the simple
data input vector of dimension n2d is now replaced by
an input matrix of dimension ((n − k)/s + 1)2 × k2d, with
n2d the number of pixels in the input data, feeding into
the convolution matrix. The weight matrices are relatively
small of dimension M× (k2d+1). For instance, for the first
convolution layer for AlexNet, the weight matrix would
have the dimension 96× [11× 11× 3+ 1] = 96× 364 [the
number of kernels × (kernel dimension squared × input
channels + bias)] [5].

The most popular implementation of an RNN is the long-
short-term-memory (LSTM) network [18]. The structure
of this network enables the emphasis or deemphasis of
portions of the data based on the data history, or its
sequential (temporal) order, by feeding the output of the
network back into itself. The complete input sequence is
represented by an input vector that combines the training
data with the feedback from the previous step. This vector

is fed into a weight matrix that has components that either
emphasize or deemphasize the processed data according to
the data history (sequence). This combination of feedback
and ingestion of new data can be repeated many times
before the backward path and update process is executed.
While the data handling is quite different in LSTM than
in FCNs and CNNs, the weight matrix represents a fully
connected network such as the FCN and is therefore also
a computational bottleneck. However, there is some signif-
icant digital postprocessing of the matrix output required
to accommodate the data history and intermediate results
need to be stored in memory.

Matrix multiplications are at the core of the deep learn-
ing networks. For fully connected networks, data travel
through the network in form of vector–matrix multiplica-
tions. For a better utilization of compute resources, several
data points are usually batched together (mini-batch).
To reduce the convolution process to a simple matrix
multiplication requires the input to become a matrix, to
begin with, and the convolution operation is a matrix–
matrix multiplication. We will see later that this will have
impact on the performance of an analog implementation.

III. D E E P L E A R N I N G H A R D WA R E

The most popular acceleration scheme for deep learning
training today involves the use of GPUs. Since GPUs are
more efficient at handling matrix–matrix multiplication
compared to vector–matrix multiplications, the input data
are usually grouped into so-called mini-batches, combining
Mb data input vectors into an input matrix that trav-
els through the network together. The weight update is
performed as an average across the mini-batch. In addi-
tion, the structure of the network is often designed to
avoid costly memory access. These requirements drive,
for example, smaller filter sizes and deeper networks. To
further utilize parallel processing, ng GPUs on a single
node running on N nodes are used (Fig. 2) with a total
number of NGPU = ng N . The efficiency or speedup S of
these distributed learning solutions depends strongly on
balancing several system properties: GPU utilization, node
and GPU I/O, and communication between the compo-
nents as shown in

S = NGPU
tMb
io+GPU + tMb

GPU

t
Mb,ng
io+GPU + tMb

GPU + t N
comm

. (1)

The quantity S (S ≤ NGPU) is a measure how effective
the distributed learning solution is. The optimal balance
will depend on the exact details of the workload (network
architecture and algorithm details) [19]–[21]. Since the
mini-batch size is a critical parameter for the individual
GPU utilization, distributed learning systems usually work
with a very large mini-batch size that is then distrib-
uted across the GPUs for optimal results. Typically, mini-
batch sizes for optimal use of a single GPU are in the
range 32–512. For a system with 256 GPUs in parallel and
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Fig. 2. Distributed learning system. A number of N nodes with ng

GPUs and a number of CPUs (here two as an example) are connected

through network. Optimal operation requires balancing utilization of

components and communication. CPUs serve as node control units

and can also be used for additional computation.

an individual GPU mini-batch Mb of, for example 128, that
would result in a mini-batch size of 32 768 (for ImageNet
∼5 GB). These data need to be read from the disk and
distributed across the GPUs without creating a bottleneck.
To find the right balance between compute and communi-
cation is a key challenge in hardware optimization [22].
Here tMb

io+GPU and tMb
GPU are the time to load the data for

minibatch size Mb onto one GPU and the time to execute
that minibatch, respectively. In the denominator t

Mb,ng
io+GPU

and t N
comm are the time to load the data onto the node with

ng GPUs and the communication between the N nodes,
respectively. A perfectly balanced system would hide the
communication between nodes and would gate the data
input/output (I/O) for a node by the GPU I/O. That would
result in S = NGPU . Accelerating deep learning on a
distributed system of GPUs is easily generalizable for any
accelerator solution. The solution to the balancing problem
will, however, depend on the accelerator architecture and
the details of the network.

To accelerate deep learning with conventional digital
hardware, the following strategies have been employed: 1)
exploit the possibility of operating with reduced precision
to increase compute efficiency; and 2) use data compres-
sion [23] to reduce the amount of data that is moved
between components. Reduced precision provides a very
effective mechanism to improve compute efficiency since it
scales quadratically with the bit width [8], [7]. The use of
reduced precision requires, however, a careful analysis of
the complete algorithmic workflow to understand where,
and to what extent, precision can be reduced without
impacting classification accuracy [24]. The choice of fixed-
point or floating-point arithmetic is another lever that can
be exploited [8]. Again, it is important to understand the
impact of these choices on the performance and versatility
of a given network architecture. Since there is no funda-
mental theory of deep learning at present, most of these
tradeoffs must be studied empirically, and a certain “safety
margin” must be provided in order to apply these ideas to
networks that have not been explicitly tested.

The appropriate metric for digital computation is the
number of operations performed per second per unit

power (ops/s/W), or per chip area (ops/s/mm2). This
measure is a reasonable metric if communication can
be ignored, and if networks are confined to single chip.
Unfortunately, this is typically not the case. However, if
we consider the individual components of a larger system,
these metrics are still a valid basis for comparison. Ulti-
mately operation and system design will determine how
much of this “raw performance” can be ultimately realized.

IV. A N A L O G C O M P U T E F O R
D E E P L E A R N I N G

We now turn to a more detailed discussion of the core
component of a deep learning system. At the heart of the
BP algorithm are three distinct operations: matrix multi-
plication, weight update, and the application of activation
functions. For purely digital computation, these operations
can be reduced to floating-point or fixed-point operations
with an appropriate accuracy requirement. Alternatively,
analog computing elements can be used to perform the
matrix operations. Analog computations for matrix oper-
ation exploit the fact that a 2-D matrix can be mapped
into a physical array (Fig. 3) with the same number of
rows and columns as the abstract mathematical object.
At the intersection of each row and column there will
be an element with conductance G that represents the
strength of connection between that row and column (i.e.,
the weight). If we now apply a voltage difference V across
a given row and column, there will be a current flow j

j = GV . (2)

We can easily generalize this concept for an n × m array
(Fig. 3). At the n rows, we apply the components of a
voltage vector vi (i = 1, . . . , n) and collect the current at
the n columns j j ( j = 1, . . . , m). Simple network analysis
applying Ohm’s and Kirchhoff’s laws relates the current
vectors to the voltage vectors

j j =
∑n

i=1
g j,i Vi . (3)

The above equation is exactly equivalent to the
conventional result of a matrix multiplication if we iden-
tify the physical array with its connections gi j with the
abstract mathematical construct. The use of analog arrays
allows us to replace two n × m floating-point operations
(n × m multiplications and n × m additions) associated
with vector–matrix multiplication by one single (parallel)
operation. If we now further assume that the connec-
tion strengths gi j (i = 1, . . . , n, j = 1, . . . , m) can be
simultaneously changed, the weight update operation can
also be mapped into a single operation (in time). We
would again replace two n × m floating-point operations
by a single operation. The benefit is twofold: 1) we avoid
moving the weight elements from memory to the chip for
processing; and 2) we can replace two n × m floating-
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Fig. 3. Analog memory array—read operation. A time-encoded

signal is applied to the rows and the current is integrated at each

column. The ADC decodes the signal from analog into digital for

further processing. If data flow between layers is time encoded, the

ADC can be eliminated.

point operations by one single operation. Both compute
efficiency and communication are dramatically improved
simultaneously [25]. For backpropagation, matrix multi-
plications is done with the transposed matrix, simply swap-
ping the rows and columns, including the functionality of
the peripheral circuits.

Of course, this begs the question: If it is that simple, why
are we not doing it already? To understand the answer, we
now will examine this analog process in more detail.

The use of arrays of conductive elements for matrix
multiplication is not new; it was proposed many years
ago [14]. With renewed interest in deep learning, it gained
attention again as a possible solution to accelerate the
required computations [26]–[28]. To maintain the benefits
noted above, this would mean that the weight data are
stored in a physical array, and that all operations are
performed locally with the weights in place (i.e., not
moved in and out of memory). The natural choice for such
arrays come from memory technologies. We seek a memory
solution that 1) can store and retain weights; 2) has a
nondestructive readout mechanism; and 3) has the ability
to read and write the entire memory array in one single
operation. While 1) and 2) are conceivable, 3) is diametral
to conventional memory operation which in its extreme
implementations is optimized for random sequential access
or at least will limited the accessible address space. This
means we might be able to use conventional memory
elements but we must create an array architecture that is
different form the architecture of conventional memory.
The basic array architecture that accomplishes vector–
matrix multiplication as a single operation is a cross-point
array with n rows and m columns, as shown in Fig. 3.
A digital-to-analog (DAC) converts the components of a

digital input vector of length n into a time or voltage
encoded signal that is applied to the rows. The resulting
column current is integrated at each column by charging a
capacitor which feeds into an integrator/amplifier circuit
that creates an output voltage Vout that is appropriate
for further processing. The next step at the output would
be to compute the activation function. This can be done
either directly in the analog space, e.g., integrated into
the amplifier function [29], or alternatively the output of
the operational amplifier can be fed into an analog-to-
digital converter (ADC) to calculate the activation digitally
[we address the performance requirements of the input
(DAC) and output (ADC) elements below]. The benefit
of retaining a time-encoded signal at the output is the
elimination of ADCs (power and real estate) at the cost,
however, of the flexibility that a digital solution might offer
in additional processing capabilities (choice of activation
function, data renormalization, network configurability,
etc.). A critical quantity in this scheme is the integration
time tint needed to accurately determine the integrated
column charge. The integration time depends on the tol-
erated signal-to-noise ratio (SNR) and is influenced by the
array size n, the dynamic range of the cross-point element
β = gmax/gmin, the operating voltage Vin, and the cross-
point device resistance Rdev = 1/gdev. If we assume an
SNR of 10% at the integrator/amplifier output, the design
tradeoffs are captured by [30]

1

10

(
β − 1

β + 1

)
Vin

√
tint

n RdevkB T
> 1 (4)

where kB is the Boltzmann constant and T is the chip tem-
perature. For the estimation of the feedback capacitance
Cint (see also Fig 3), we have

Cint = 40
Vin

Vmax

(
β − 1

β + 1

)
tint

Rdev
. (5)

The last constraint comes from the fact that the voltage
drop across the metal lines, i.e., within the rows and
columns, should be no more than 10% of the voltage drop
across the device itself

n2 Rcell

Rdev
< 0.1. (6)

Here Rcell is the resistance of the metal line in a unit cell
of the array. Equations (4)–(6) constrain the design of a
suitable analog array for deep learning. They implicitly
assume that no select device is needed. The introduction
of a select device might be necessary, as discussed below,
to compensate for nonideal behavior in the memory ele-
ments. The design constraints presented in (4)–(6) provide
the densest array solution for optimal power and perfor-
mance at the array level. An n × m array configuration
can perform an equivalent of two n × m floating-point
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Fig. 4. Array sizing tradeoff at constant performance: resistive

noise limit (blue solid line), metal line limit (brown dashed–dotted

line), integrator capacitance limit (gray dashed–dashed line).

Parameters used are: t��� = 80 ns, R���� = 144 mΩ, V�� and V	
� = 1 V,

β = �. Shaded area indicates optimal device operation

range 5 to 25 MΩ.

operations at constant time. With an integration time tint

this gives the equivalent performance of two n × m/tint

ops/s. For example, parallel processing of a square 1000 ×
1000 array with tint = 1μs corresponds to 2 Tops/s. If
the integration is reduced to 80 ns and the array size
increased to 4000 × 4000, the throughput is equivalent to
400 Tops/s. Basic restrictions on noise, voltage drop in
the metallic cross-bar lines, and integrator capacitance size
will limit the practical array size. For example, the tradeoff
between cross-point element resistance and array size is
shown in Fig. 4, at constant performance, e.g., integration
time. On the one hand, a larger device resistance enables
a larger array at a given metallization technology because
the voltage drop in the metal lines will remain relatively
small compared to Rdev. On the other hand, a larger resis-
tance increases the thermal noise. Array size and device
resistance will be optimal at near the cross point of these
two factors. For low resistance and array size tradeoff,
the integrator capacitor will (at the constant performance
scaling) be the limiting factor since the integrator circuit
needs to fit into the array pitch which is difficult if the
required capacitance is too large. Adjusting performance
(smaller integration time for smaller arrays) will remedy
this situation.

The vector–matrix multiply function is rather straight-
forward to implement. In the backpropagation algorithm,
vector–matrix multiplication occurs in both the forward
and backward paths. The third component of the BP algo-
rithm is the weight update. During training, the weights
(or conductances) are updated according to

wi, j = wi, j + εxiδ j (7)

with xi the forward path input vector into layer L , δ j

the backpropagated error vector coming from layer L + 1
and ε the learning rate, which is a hyperparameter that
is adjusted for optimal performance (accuracy and speed).
In matrix multiplication, the conductances in the array are

considered fixed, and are merely sampled by applying a
voltage. The weight update process is considerably more
complex. Here the weights must be changed in response to
xi and δ j . The challenge is to execute the weight change
locally—at each individual cross-point element—for all
array elements at the same time. This requires a physical
mechanism in which resistance of the cross-point material
changes in response to a stimulus. One class of material
that has this property is nonvolatile memory (NVM). Non-
volatility means that the conductance of the element, i.e.,
the weight value, persists over a considerable time. Typical
NVM elements are used to store a small number of bits
(e.g., one or two) in such a way that the stored information
can be recovered individually for each element. For deep
learning applications, many more states per device must
be accessible to enable an incremental (or analog) weight
change during training. We will see below that required
properties of NVM elements for deep learning are qualita-
tively different from materials optimized for conventional
memory applications. For example, the required changes
in the conductance level are more gradual and that it is,
in general, not necessary to recover the conductance of a
single element.

There are many potential schemes for updating the
conductances of the cross-point elements. For example,
a selector device could be used so that each device in
the array is independently updated in a serial fashion.
Closed-loop iterative methods can be implemented to pre-
cisely adjust each conductance. However, these methods
increase circuit complexity and are too slow for prac-
tical applications. Furthermore, as noted above, parallel
weight update would result in significantly higher through-
put. One scheme that enables open-loop, parallel weight
update without a selector device is shown in Fig. 5. The
approach exploits coincidence between voltage signals on
both the rows and columns. A sequence of voltage pulses
representing the input vector x is applied to the rows.
Similarly, a sequence of voltage pulses representing the
backpropagating error vector δ are applied to the columns.
The components of these vectors are time-encoded repre-
sentations [29], i.e., series of pulses of constant voltage
and length, for both the input vector x and the error vector
δ. The encoding scheme discretizes the analog input signal
into a fixed bit stream of K bits. Each bit consists of a fixed-
length voltage pulse with an amplitude of 0 or V , with
the number of nonzero pulses for each input component
ki would be proportional to the input vector component
xi . The finite quantization will require a rounding to fit
the grid. A stochastic rounding procedure turns out to be
beneficial for the robustness of algorithm. An alternative
approach is to encode row and column signal as stochastic
bit stream of length K [30]. The number of nonzero pulses
ki in that bit stream would then, in average, be propor-
tional to the input signal xi . In both cases, K could be used
as an adjustable parameter that will modulate the learn-
ing rate. Encoding the signals into bit streams with con-
stant voltage pulse sequences will simplify the peripheral
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Fig. 5. Analog array—weight update. Rows (x) and columns (δ)

receive a bit stream BL of K constant voltage pulses. Weight update

occurs where row and column pulses coincide.

circuits. At the core of this scheme is the response of the
material to coinciding pulses at the cross points of the rows
and columns. Ideally, the conductance at the cross point
will change by a maximum amount �gi j when there is a
coincidence between pulses on the row and column and
the voltage across the device is 2 V. “Half-select” condition,
e.g., a pulse on the row but not the column, can also cause
a response in the material. For materials with a switching
threshold, the signal voltage V can be chosen to be lower
than the threshold to avoid the half-select problem. This
is not always possible and the “half-select” problem can
degrade performance. However, with stochastic bit stream
encoding, the half-select problem can be mitigated due to
random averaging of the half-select signals. Coincidence
events permit a certain tolerance which would result in a
fluctuation of the learning rate. The goal is to compute all
weight updates in parallel. Since both the row and column
inputs could carry a sign, the array update will require four
cycles (++, -+, +-, - -) with the correct pulse polarity. The
time that is needed for that will be determined by the pulse
length tpulse and the length KBL of the stimulus bit stream

tupdate = 4KBL tpulse. (8)

Both are hyperparameters that need to be adjusted for
optimal performance. Their values will depend on the
materials used for the cross point and on the network
architecture [31].

To estimate the cycle time per layer of the network we
add the times for the forward and backward passes to the
weight update time

tcycle = 2tint + tupdate. (9)

To this we must add the overhead that comes from
the DAC, ADC, other digital computations, and the

communication between digital and analog components.
With a proper choice of architecture some of these can
be hidden through proper pipelining and others represent
a genuine constraint. For instance, when the ADCs are
sampling the output voltage at the opamp, the array can
already process the vector–matrix multiplication and data
could be encoded at the DAC. The number of analog
arrays, or tiles, that can be operated in parallel will
depend on the available on-chip data rate and the on-
chip memory. From a network-on-chip (NoC) prospective,
an optimal solution requires balance between the optimal
number of analog tiles, digital backbone, on-chip memory,
and on-chip communication bandwidth. The tradeoffs are
like those discussed above [see (1)], however without
the weight movement which reduces the data amount
significantly. In addition, these must be balanced with off-
chip I/O. We will not discuss the system design aspects
further, but will focus on the operation of a single analog
tile.

There are two key considerations that need to be
addressed to understand performance quantitatively:
1) the digital/analog interface requirements; and 2) the
material properties of the cross-point elements. To study
the impact of the A/D interface and the impact of cross-
point material properties, we constructed a simulation
tool [30] that captures the impact of the peripheral cir-
cuits, e.g., DAC and ADC accuracy, SNR sensitivity of the
integrator/amplifier, as well as the switching behavior of
the cross-point element, including device-to-device varia-
tion, stochasticity, and cycle-to-cycle variations in a single
device. We do not consider a detailed circuit model for the
periphery [32] but maintain an abstraction level that cap-
tures the interaction of the A/D and D/A conversion with
the properties of the analog elements on the algorithmic
performance for easy scalability to larger more complex
networks. The typical switching behavior of NVM materials
depends very strongly on the switching mechanism. The
weight elements can be positive and negative and will,
during training, move up and down, often changing sign.
Since physical conductivities are always positive, signed
weights can only be realized using a differential signal. The
differential signal can be obtained either by associating
two conductivities G+ and G− to one cross point

G = G+ − G− (10)

or comparing a local cross-point conductance G local to a
global reference Gglobal for all elements

G = G local − Gglobal. (11)

Changes in the conductivity need to be small to avoid
convergence problems in the algorithm. In deep learning
software solutions, the change in weight is controlled
by the learning rate ε [see (7)]. Weight changes that
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Fig. 6. (a) One-sided switching: Conductivity can only change gradually in one direction. Conductance level will eventually saturate and

the differential signal will not change anymore. (b) Two-sided switching: Conductivity can gradually switch up and down. Differential signal is

measured against a fixed reference (global or local).

increase the weight value are called potentiation, and
weight changes that decrease the weight value are called
depression. Material properties for NVM do not map in a
natural way into the requirements for the weight move-
ments, mainly because the response to a given stimulus
depends both on the value of the weight and the sign of the
stimulus [27]. Ideally, the response would be linear (inde-
pendent of the weight value) and symmetric (independent
of the sign of the stimulus). For many NVM materials,
conductance increase is associated with the set operation
and conductive decrease with the reset operation, e.g.,
phase change memory (PCM) and resistive random-access
memory (RRAM). In general, for existing NVM materi-
als, these two processes are very different due to the
underlying physical mechanisms. NVM materials can be
distinguished by the detailed switching properties of these
two branches. There are several materials available that
fall under the following categories (Fig. 6).

1) One-sided or unipolar switching. These are materials
that show a gradual change of conductivity in one
branch, usually the set branch, and are abrupt in the
other [Fig. 6(a)]. In practice, the conductivity can
only be gradually changed in one direction.

2) Two-sided or bipolar switching. These materials
show gradual change in both set and reset branch
[Fig. 6(b)]. Gradual conductivity changes can be
made in either direction.

The switching behavior can be further classified as either
linear or nonlinear depending on the number of stimulus
pulses and the conductance state. As indicated in Fig. 6(a),
the nonlinearity can lead to a saturation since conduc-
tance change is only in one direction. For a two-sided
switching device, symmetric switching means that under
the same number of potentiation and successive depression
pulses the device returns to its original conductance level.
This last requirement is more general than linear switch-
ing since symmetric switching does not require linearity.

In operation, one-sided switching devices must be paired,
with one element carrying the potentiation and the other
the depression signal as shown in Fig. 6(a). The net
conductance is the difference between the conductances
of the individual elements. To achieve symmetric weight
update, the pair needs to match in their linearity. For the
two-sided device, it is possible to use a global reference
(a column for forward or row for backward propagation)
since the conductivity in the cross point can move locally
up and down [Fig. 6(b)]. The reference element however
must be the same for all rows and columns because the
weights need to be the same for forward and backward
propagation. A local fixed reference would eliminate this
restriction at the cost of array size or process complexity
(stacked arrays). The requirements for the cross-point
materials for use in deep learning training can be explored
using a fully analog deep learning model. The subtleties
in the material properties are incorporated into our device
switching model. It incorporates spatial variations (device-
to-device) and temporal stochastic behavior (coincidence-
to-coincidence) shown in Fig. 7.

To understand the interdependence of the digital inter-
face, material properties, and the BP algorithm, we imple-
mented a three-layer FCN (784, 256, 128, 10) for the
handwritten character data set MNIST and investigated
the training performance, sensitivity to device parameters,
and the A/D interface specifications [30]. We find that
the performance of the FCN is robust against stochastic
behavior for certain properties and less tolerant to others,
as summarized in Fig. 7. Regarding the material proper-
ties, the most important attributes are: 1) weight move-
ment for potentiation and depression must be symmetric
within 2%; and 2) the granularity of the weight update
requires 1000 steps ( 10 b), on average, between minimum
and maximum conductance values in the case that all
variations are considered simultaneously. Relaxed require-
ments are observed for individual components which is
a nonphysical situation. A 5-b DAC and a 9-b ADC are
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Fig. 7. Important device variability components. Δ	�� minimum step from device to device (spatial) and from coincidence to coincidence

(temporal). Device to device weight range . Overall up (+) and down (-) change Δ−/C
	��

and up (+) and down (-) ratio for a single device

ΔC
	��

/Δ−
	��

. The table shows individual sensitivity and combined sensitivity at 0.3% penalty from floating-point results.

required, and a noise level of 6% can be tolerated at the
integrator/amplifier output. The MNIST data set is very
small, with only about 60 000 images, and the FCN that
is used for training has 235 000 weight parameters. For
comparison, the recent networks [6] used for training on
the ImageNet data set, with 1.2 million pictures, have
tens of millions of parameters and many layers [Alexnet
61 million weights, five convolutions, and three fully con-
nected layers; ResNet 50 25.5 million weights, 53 convo-
lutions, and one fully connected layer(s)]. It is not clear,
at present, if the sensitivity analysis presented here holds
true when the networks are massively scaled. In a more
recent analysis, we have shown that convolution layers
can be implemented with the same device parameters if
noise and bound management is introduced at the digital
peripheries [31] and that stochastic rounding is beneficial
for larger LSTM networks [33]. The sensitivity analysis
provides a set of target material properties for useful cross-
point elements to implement the BP algorithm for deep
learning networks. Given the material parameters, we can

Fig. 8. Performance, power, and data rate for a single tile with an

input vector of size 500, 1000, and 4000.

estimate the performance of a given tile. In Fig. 8, we show
an example for the performance as a function of array size
for one layer in a fully connected network (FCN, LSTM).
For a convolutional layer, power and performance will
degrade significantly due to the mapping discussed above
(Fig. 1). In contrast to the trend in GPU-based convolu-
tional networks, analog arrays would favor larger kernels.
The operation conditions for the example are: integration
time 80 ns, sharing 16 rows (columns) per ADC [34] with a
sampling rate of 200 M samples/s at an energy of 23 pJ per
sample and Rdev24 M�. An on-chip data rate of 90 GB/s
is required for the largest tile. In modern NoC, TB/s of on-
chip band width is available which gives enough headroom
for the communication between tiles. Latency due to the
additional digital operations (activation, data renormaliza-
tion, etc.) can be mostly hidden by pipelined design. Build-
ing a NoC with multiple analog tiles as a primary building
block can therefore provide a performance potential in the
thousands of Tops/W/s on chip.

V. M AT E R I A L S

To capitalize on this performance potential, further innova-
tion is required. Either more-ideal material systems must
be identified or circuit solutions must be developed that
can accommodate imperfect materials. The latter will,
however, come at a cost of performance, power, and
area since it will need an overhead that can be avoided
if suitable materials are identified. A third solution are
innovations or modifications of existing learning algo-
rithms that can function with imperfect devices and take
advantage of the array architecture. Ultimately, the clas-
sification accuracy of analog-based solutions needs to be
on-par with that of digital solutions, however with the
benefit of better power and performance. Conventional
NVM materials are optimized for memory applications that
require a large SNR ratio [Fig. 9(a)] to securely recover the
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Fig. 9. (a) Memory elements have well separated resistive states

that allow individually read out. (b) Deep leaning requires gradual

symmetric changes. Individual states will not be read out except in

case that an occasional reset is required (one-sided switch).

(a) Binary change. (b) Incremental change.

stored information. Therefore, only a few, or even just two,
conductance levels are supported in conventional NVM.
Since the cross-point elements in a deep learning array are
never accessed in a sequential fashion the individual state
is never captured. What matters is the accumulated column
(row) signal (Fig. 3), which is an averaged quantity. Our
sensitivity analysis shows that, unlike a conventional mem-
ory, a certain degree of variation is tolerable in a single ele-
ment. The deep learning training process is self-correcting
with self-consistent weight updates. However, small and
symmetric weight changes, as shown in Fig. 9(b), are
strict requirements. For one-sided switching elements, the
requirement for symmetric switching will require locally
matched linear switching behavior for G+ and G− to
realize accurate differential operation. Nonlinearities will
impact the network performance significantly [35]. For
the two-sided switching devices, symmetric switching in
both the set and reset branch is required while linearity is
less important. There are several NVM materials that have
been explored for deep learning. No winner has emerged
as a competitive solution for deep learning training. For
inference-only the material constraints are relaxed: no
symmetric switching is required, and the granularity (num-
ber of states) can be significantly reduced. The weight
transfer from a trained floating-point model to an analog
array can be done sequentially (node by node, row by
row, or column by column) with closed-loop feedback
to guarantee accuracy. We find that a replication of the
floating-point weights within a 5% error is sufficient to
replicate the classification error of the original model.
However, inference-only will stress cross-point array yield
since the training process implicitly assumes all cells are
functional.

Popular materials that are investigated for use in analog
arrays for deep learning networks are as follows.

A. Phase Change Memory (PCM)

In PCM, different conductance levels are created by
changing the morphology of chalcogenide layers from
amorphous to crystalline [36]. This transition is thermally

activated and therefore requires a heater. This heating
element can be the PCM material itself (i.e., Joule heating)
if fed with a critical current density. Typically, the memory
element (chalcogenide layers) is in series with a low
resistive contact material of small diameter to supply the
high current density that provides the energy for the phase
transition. The amorphous material gradually crystalizes in
a moving front, lowering the resistance. This mechanism
eventually saturates, and no further conductance increase
is possible. To return the element into the high resistive
state a high and fast current pulse will melt the material
and return it to the amorphous (high resistance) state. The
conductance change in this process is very abrupt. PCM
is therefore a 1-D switch with a gradual set (amorphous
–> crystalline) and an abrupt reset (crystalline –> amor-
phous). Since the switching process is related to a change
of crystal structure, PCM switching shows stochasticity and
relaxation phenomena during the set process which can
influence the training process due to unacceptable (and
unintended) weight changes between updates [37], [38].
Despite this, PCM materials have been successfully used
for deep learning [29], [39]. The work around for the sat-
uration of the conductivity is to periodically reset both the
G+ and G− conductances while maintaining the difference
which is proportional to the weight [35]. This operation
requires a select device because the reset operation needs
to be executed on a small number of devices and not on the
array. Recently significant progress has been reported by
combining the PCM element with a capacitor and separat-
ing leading and trailing digits of the weight [40]. Frequent
weight updates during training are performed by modulat-
ing the charge on a capacitor and periodically the weight
information is transferred to the PCM element when a
critical charge state is reached. This separation ensures a
symmetric update for frequently changing weight incre-
ments and provides nonvolatility for the most significant
digits of the weight, thus, circumventing the limitations of
the unipolar switching PCM material.

B. Resistive Random-Access Memory (RRAM)

The basic architecture of an RRAM device is a
metal–oxide film sandwiched between appropriate metal
contacts [41], [42]. The top contact controls the infusion
of oxygen vacancies to form a conductive filament that
consists of substoichiometric oxide. The conductivity of
the device is determined by the proximity of the filament
to the bottom contact. The conductivity is controlled by
growing (set) or shrinking (reset) the size of the fila-
ment. The filament formation (set) and dissolution (reset)
are reversible which enables conduction changes in both
directions. Although both branches can show a gradual
change in conductivity the observed changes are not sym-
metric. Most RRAM devices require a formation process
that establishes the conducting filament. This formation
process will determine the base resistance of the RRAM
device and it is known that a proper current control during
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the formation process can serve to modulate the operating
resistance range of the device. As with PCM, the change
of the conductance depends on structural changes at the
atomic level, and therefore is intrinsically stochastic. Con-
trolling the filament formation and dissolution, as well as
engineering symmetric set and reset behavior, are the key
challenges for RRAM. Convincing hardware demonstration
for deep learning training with RRAM is still lacking.
However, simulations that incorporate RRAM devices with
improved device characteristic [43] are encouraging. The
use of a select device for RRAM can be avoided if a mate-
rial combination is found that has a controlled filament
formation that does not require the active current limiting
needed for current devices.

C. Conductive Bridge Random Access
Memory (CBRAM)

In contrast to RRAM, in a CBRAM, a conductive path
is formed by mobile metal ions that move through an
electrolyte or dielectric [44], [45]. The typical stack of an
CBRAM consists of an inert electrode, a solid electrolyte
or dielectric, and an electrochemically active electrode.
The motion of the metal ions is controlled by applying a
voltage to the stack and it is reversible. There are a variety
of material combinations discussed in the literature for
this type of device, mostly addressing their use in memory
applications. More recently they have also been considered
as cross-point elements for analog arrays for deep learning.
A simple stack of Cu/SiO2/W showed interesting gradual
switching properties for set and reset branches [46], how-
ever with the caveat that variable voltage pulses were used,
which is impractical for an array implementation. That
work suggests that a two-layer diffusive model can explain
the linear switching of this stack and would possibly reduce
the stochasticity of the switching process.

D. Ferroelectric Devices

A ferroelectric device is a stack of a thin dielectric, fer-
roelectric material (FE) located between a suitable metal
electrode and a substrate. While initial material stacks
were based on ferroelectric perovskites, HfO2-based stacks
are easier to integrate with conventional CMOS [47].
Ferroelectric materials will respond to an external field
by changing their electric polarization, either by moving
domain wall boundaries or by directly flipping the polar-
ization of a small crystalline domain. In FE devices, the
polarization modulates the interface barriers in the stack
(Fig. 10) that can either be used to tune a threshold voltage
of a field-effect transistor (FET) or to modulate a current
through a tunable tunnel junction. Both applications have
been proposed for a synaptic device. While the FET solu-
tion is a three-terminal device, the tunnel junction is a
two-terminal device that will provide higher density for a
cross-point array due to its smaller size. Proposals to use
the adjustable channel conductance of ferroelectric (FE)
FETs as a synaptic weight date back to the early 1990s.

Fig. 10. Metal/ferroelectric/dielectric/metal tunnel junction.

Polarization domains are modulated by an applied voltage and

changing the interface barriers with respect to the Fermi energy EF
to modulate the tunnel current [51].

Significant progress has been made using perovskite fer-
roelectrics such as Pb(Zr,Ti)O3. Yet, implementation on a
conventional silicon CMOS platform remains challenging,
due to incompatibilities with CMOS processing. The recent
discovery of a previously unknown FE phase of HfO2

(FE–HfO2) [48], [49], has the potential to remove the inte-
gration challenges of the traditional perovskite-based FE
materials. Ferroelectric two-terminal (capacitor or resistor)
and three-terminal (transistor) devices can thus be built
from conventional high-k/metal gate materials [50], [51]
used in commercial CMOS logic FETs, albeit with different
processing and doping to achieve ferroelectric behavior.
This opens the possibility of implementing a variety of
tunable solutions on a CMOS platform, e.g., FeFETs, FE
capacitors controlling conventional FET gates, or metal–
FE–metal (MFM) ferroelectric tunnel junctions (FTJs) that
might be useful as synaptic device. The outstanding issues
are the demonstration of gradual symmetric switching
under constant voltage pulse stimulation, switching distri-
butions that meet the requirements outlined above, oper-
ating conditions that allow energy-efficient operation, and
dimensional scalability.

E. Electrochemical Device

Electrochemical devices are a newcomer in the field of
contenders for an analog array element for deep learning.
The device idea, however, has been around for a long time
and is related to the basic principle of a battery [52].
Compared to the previously discussed switches, which
only required two terminals, this switch required three
terminals. The device structure, shown in Fig. 11, is a
stack of an insulator that forms the channel between
two contacts source and drain, an electrolyte, and a top
electrode (reference electrode). Proper bias between the
reference electrode and the channel contacts will drive
a chemical reaction at the host/electrolyte interface in
which positive ions in the electrolyte react with the host,
effectively doping the host material. Charge neutrality
requires the free carriers to enter the channel through the
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Fig. 11. Three-terminal electrochemical device. Applying bias

between the reference (top) and S/D electrodes moves ions in and

out of the channel (host matrix). To maintain charge state of the

channel reference electrode must be disconnected after write.

channel contacts. If the connection between the reference
electrode and the channel contacts is terminated after the
write step the channel will maintain its state of increased
conductivity. The read process is simply the current flow
between the two channel contacts, source and drain, with
the reference electrode floating. It has been shown [53]
that almost symmetric switching can be achieved if the
reference electrode is controlled with a current source.
Regarding the switching requirements, the group obtained
similar criteria [54] that are shown above. Voltage control
of the reference electrode leads to strongly asymmetric
behavior due to the buildup of an open circuit voltage
(VCO) that can depend on the charge state of the host.
If the reference electrode voltage compensates for VCO,
almost symmetric switching can be achieved as well. For
a voltage controlled analog array for deep learning, this
device is not suited since every cell would require an
individual compensation depending on its conductivity.
Possible solutions are low VCO material stacks.

With the tunable resistive elements at different states
of maturity, the question is as follows: Can we imple-
ment analog arrays for deep learning with existing CMOS
technology options? Charge is the natural agent in the
CMOS world to represent the weights. Charges can be
stored either on a floating gate of an EPROM device or
in a capacitor. Both possibilities are explored and for both
the main switching properties we discussed above hold:
symmetricity in potentiation and depression and sufficient
granularity in the change.

F. Floating Gate Devices

Floating gate devices for use in analog arrays for DNN
were proposed in the early 1990s [55], [56] coinciding
with the emerging Flash memory technology. The weights
are represented by charges stored in the floating gate of
cross-point cell device. The analysis of the required switch-
ing properties matches our results with respect to symme-
try and weight granularity. To meet these requirements,
a modified cell design was proposed, albeit with a very
large cell size. There are two additional concerns for using
floating gate devices for deep learning analog arrays: write

speed and durability. During the write process, the charge
injection into the floating gate is either accommodated by
hot electron effects or by tunneling. Both processes are
relatively slow and require high voltages. They also tend to
damage the gate dielectric and lead to a limit on durability
of about 105 − 106 write cycles. The number of weight
updates for training on the 1.2 million ImageNet samples
with a minibatch size of 256 at 50 epochs is 2.3∗105.
Recently, proposals have emerged to take advantage of the
3-D stacked architecture for NAND flash or solid-state drive
(SSD) configurations [57] for deep learning applications.
Due to the limitations on endurability and high voltage
operation, it is questionable if floating gate devices are
competitive for deep learning training. They might, how-
ever, be useful for inference as only the read operation is
required.

G. Analog CMOS

In a DRAM, stored charge is used to represent a single
bit. Conceptually, the amount of stored charge could be
used to represent an analog weight. However, the transla-
tion from DRAM to an analog array for deep learning is
unfortunately not as straightforward as one might imag-
ine [58]. In DRAM, the charge state of the capacitor is
destroyed during the read operation. However, the read
mechanism remembers the state and writes it right back.
Unfortunately, the writeback operation can only restore the
signal to the rails: high or low, which is sufficient for the
DRAM but not for a deep learning array where the weights
are an arbitrary level between the high and low state. An
addition concern is that charge leaks out of the capacitor,
and to compensate for this, the entire DRAM array is
periodically refreshed. The typical period for the refresh
operation is in the order 32–64 ms, while the characteristic
leakage time, the retention time τret, in which 50% of the
cells fail to give the correct signal, is in the several-second
regime. For deep learning, we need to avoid destructive
reads and compensate for charge leakage. If we assume a
time � between weight updates of the order of 200 ns,
and a retention time in the order of seconds, the updated
weight will decay according to

w← w

(
1− �

τret

)
. (12)

This has the same form as the weight decay produced by L2

regularization [59] which is a method to avoid overfitting.
Typical values for the decay in the software world are
about 10−5–10−6. By comparison we find the required
retention of the order of several seconds. A word of caution
is in order since we assumed a cycle time of 200 ns
between updates. For convolutional networks as discussed
above the input is a matrix with [(n − k)/s + 1]2 columns.
The time between updates will then be approximately
[(n−k)/s+1]2× 200 ns, which would increase the required
retention time τret by [(n − k)/s + 1]2, which is difficult to
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achieve in hardware. The input matrix size, for instance,
for the first convolution layer for the small CNN LeNET
(MNIST) is 576 and for AlexNET (ImageNET) is 3025
which would require retention times τret in access of sev-
eral minutes or more which are unrealistic to achieve.
A controlled symmetrical change of charge requires the
use of current sources: one for injecting charges, the
other for extracting charges. These are usually done with
simple FETs that operate in saturation. In the dormant
state, they are turned off and leak. This leakage will
discharge(charge) the capacitor which is needed to hold
the charges to a certain level. With the definition of the
retention time, we find

C ≈ Ilkgτret

Vcap
. (13)

With the retention time in 1-s range and Vcap in the range
of 1 V, a very low leakage CMOS technology is required.
With an area capacitance of 470 fF/μm2 that can be
achieved for an eDRAM technology [60] real estate for the
capacitor would scale as 2(Ilkg/pA) × (τret/s)μm2. There-
fore, an ultralow leakage CMOS technology is required
for a competitive arrays size. In addition to these simple
scaling considerations, the effect of the device variations
on the scaling behavior of the cell needs to be explored in
more details for the implementation of a robust learning
algorithm.

VI. C O N C L U S I O N

Now artificial intelligence (AI) is synonymous with deep
learning. The desire to apply deep learning to all facets of
life is reminiscent of the pervasive use of microelectronics

enabled by traditional scaling. We are far away from a
similar scaling law for deep learning; in fact we do not even
have a fundamental theory that can guide us. Progress
is being made by brute force: we develop more complex
neural networks with tens of millions of parameters, collect
and curate huge labeled data sets, and find the hardware
to run the algorithms. For a pervasive use of deep learning,
cost is a major issue. Cost means the time to build models
and the computational resources that are needed to train
and execute them. The realization that GPUs are a good
fit for these tasks was a critical enabling step. However, it
is now clear that specialized hardware that is customized
for deep learning can do better than conventional GPUs.
We are already seeing the emergence of a new generation
of deep learning accelerator hardware: trading general use
for compute efficiency, which ultimately means cost. Unfor-
tunately, the shear complexity of building and training
models forces us to look at the solution at the system level,
where several deep learning accelerators work together
to solve the problem. We have only briefly touched on
the system aspects for deep learning machines, but these
issues will ultimately determine the viability of new AI
hardware accelerators. Our discussion focused on the basic
design and material properties issues that need to be
addressed for analog accelerators. Only if we can show, in
a convincing manner, that these are solvable do questions
concerning system-level integration become relevant. We
do not expect that analog computing for deep leaning
will drive a fundamentally new ecosystem but rather will
augment the existing, digital one. We will see a continued
push to improve neural networks and to push digital hard-
ware solutions to the limit of what is possible. The analog
solutions, if successful, should be ready to fit seamlessly
into this evolution. �
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