

Storage Developer Conference September 22-23, 2020

Analog Memory-Based Techniques for Accelerating Deep Neural Networks

Hsinyu (Sidney) Tsai IBM Almaden Research Center – San Jose, CA USA

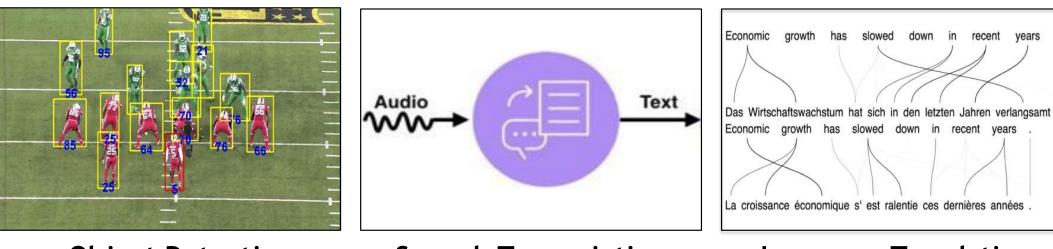
Outline

- Introduction Deep Neural Networks (DNN) and Analog Memory
- Phase Change Memory for DNN Training and Inference
- Energy Efficiency for Analog Memory-Based Techniques
- Summary

20

The Rise of Al and DNN

- The rise of AI relied on improving algorithms, abundant data, and accelerating hardware.
- Deep Neural Network (DNN), as a major field of AI, has surpassed human-level accuracy in some tasks and outperformed most rule-based models.



Object Detection

Speech Transcription

Language Translation

Algorithms

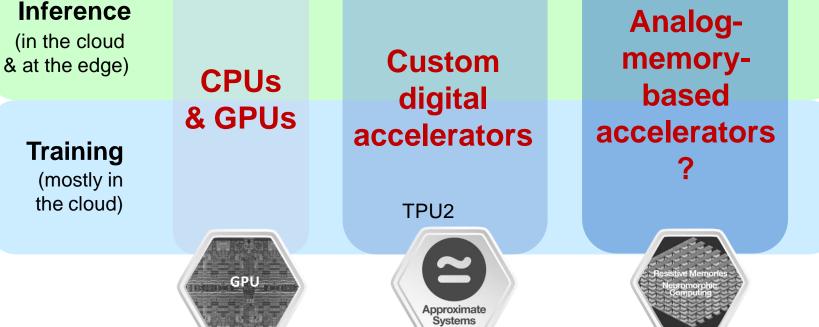
Data

Hardware

2020 Storage Developer Conference. © IBM Research. All Rights Reserved.

Forward TPU1

TODAY



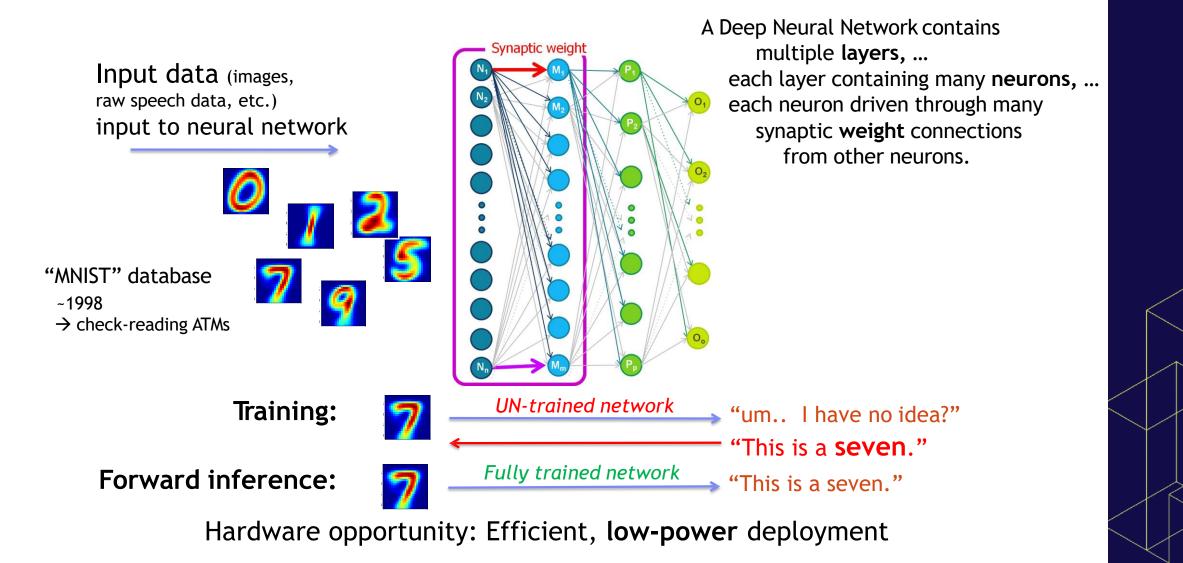
Al Hardware: from Today to the Future

Near-term

Future...?

2020 Storage Developer Conference. © IBM Research. All Rights Reserved.

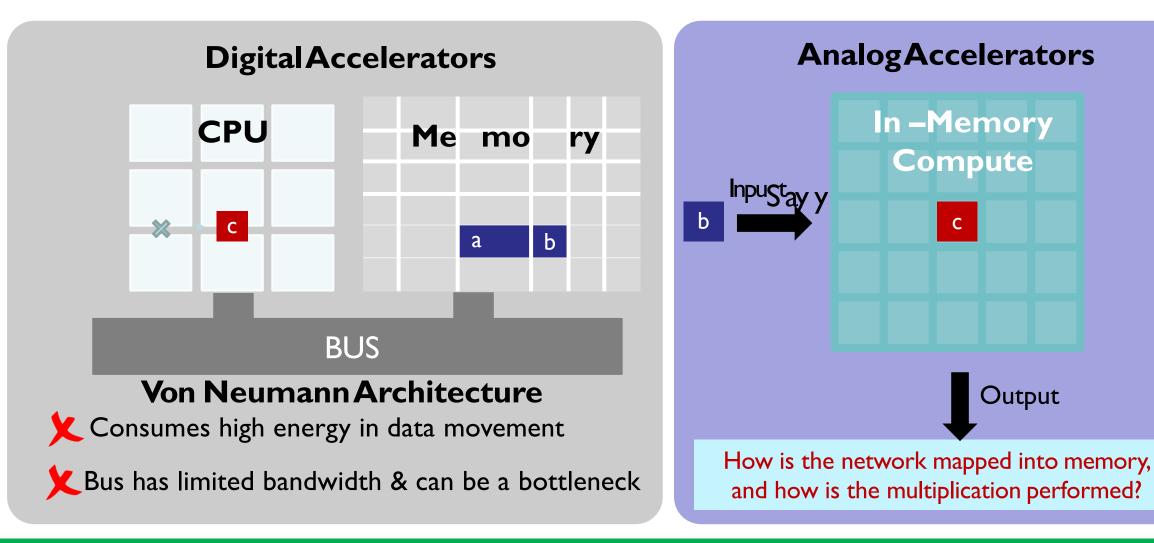
Deep Neural Network (DNN)



2020 Storage Developer Conference. © IBM Research. All Rights Reserved.

SD @

Data Movement Cost

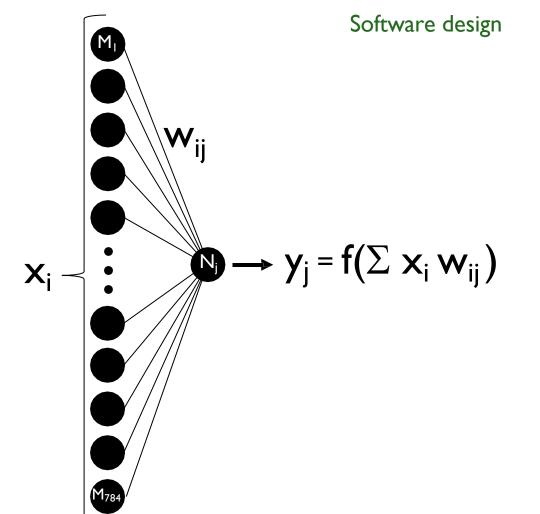


Analog in-memory computing offers better energy efficiency and throughput

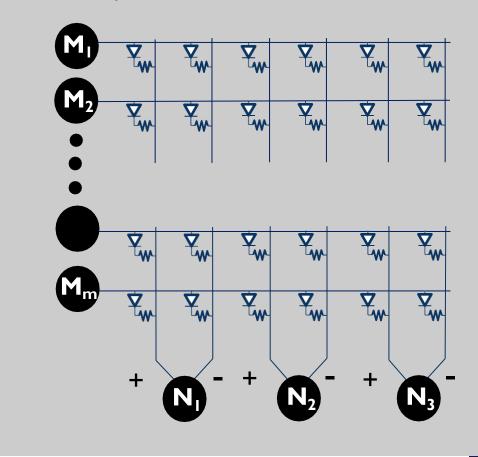
SD (20

С

Output



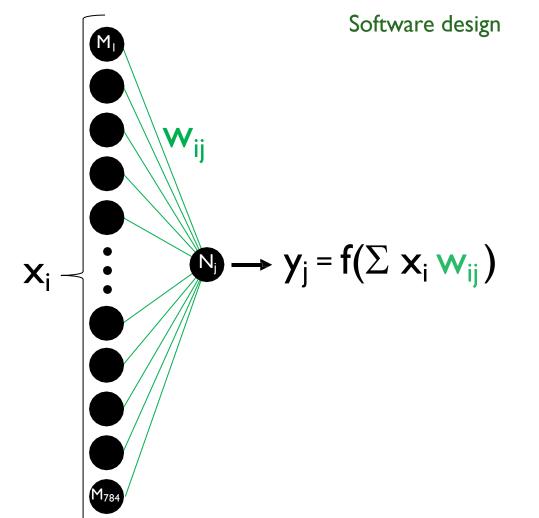
Hardware implementation



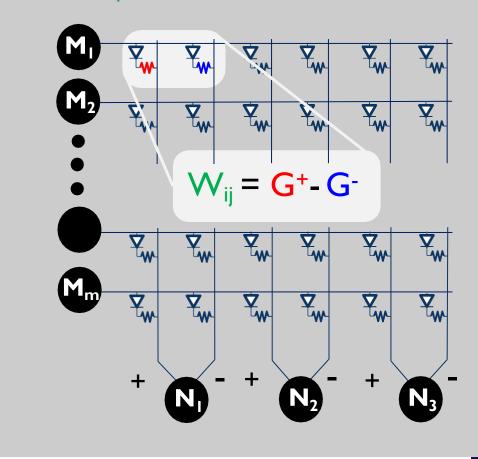
• How to map a neural network on a NVM crossbar array?

2020 Storage Developer Conference. © IBM Research. All Rights Reserved.

SD @



Hardware implementation

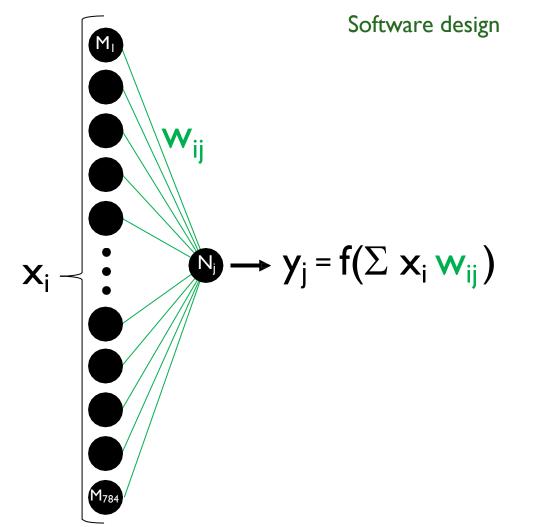


0

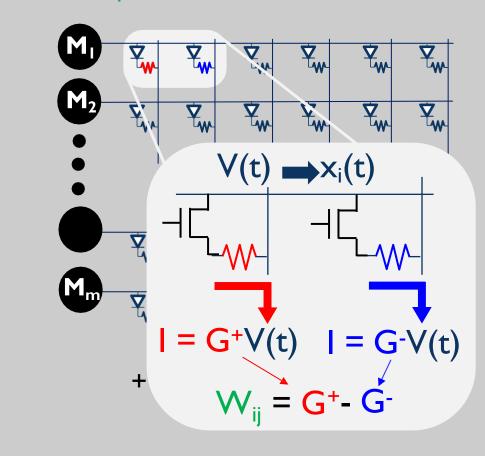
SD @

2020 Storage Developer Conference. © IBM Research. All Rights Reserved.

The weight is encoded with a conductance pair (G⁺, G⁻)

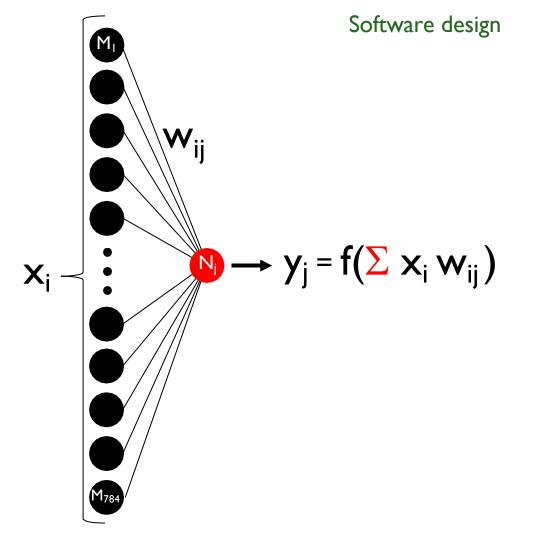


Hardware implementation

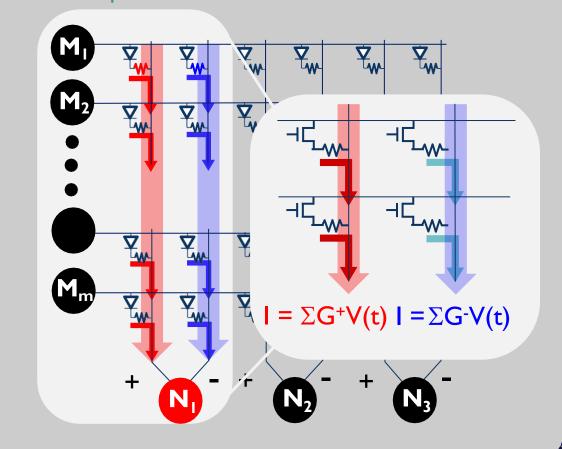


The product x_i w_{ij} is obtained using Ohm's Law

2020 Storage Developer Conference. © IBM Research. All Rights Reserved.



Hardware implementation

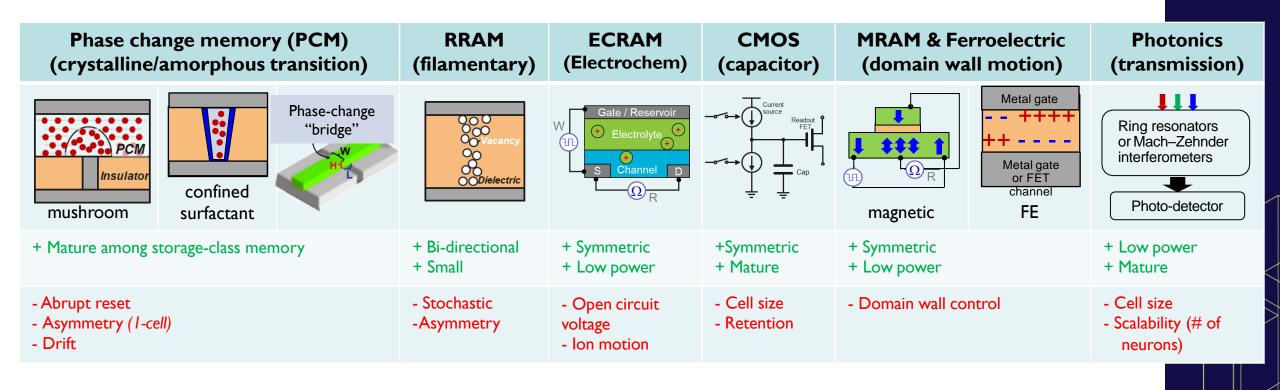


The sum performed using Kirchhoff's Law

2020 Storage Developer Conference. © IBM Research. All Rights Reserved.

Analog Memory Options (Examples)

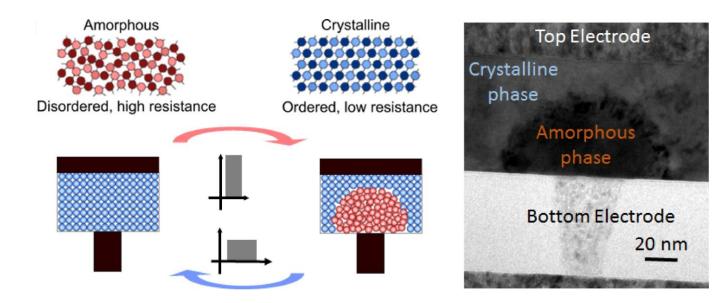
• No ideal device for analog computing, but many promising candidates.



SD @

Why Phase Change Memory (PCM)?

- Mature memory technology (large-scale demos & products)
- Large resistance contrast (allows more analog states)
- Much longer endurance than Flash
- Good physical understanding of device non-idealities, such as conductance drift

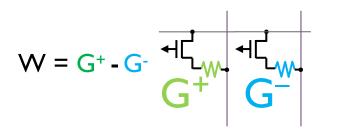


Outline

- Introduction Deep Neural Networks (DNN) and Analog Memory
- Phase Change Memory for DNN Training and Inference
- Energy Efficiency for Analog Memory-Based Techniques
- Summary

20

For Training: Achieving Software Accuracy

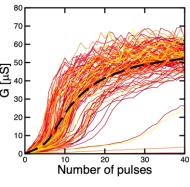


Problem: Conductance changes in PCM are ...

Uni-directional

• Stochastic

•Non-linear \rightarrow asymmetric



What do we really want? For <u>training</u>

• Gentle, symmetric conductance changes

Our published results in DNN training w/ PCM on MNIST dataset

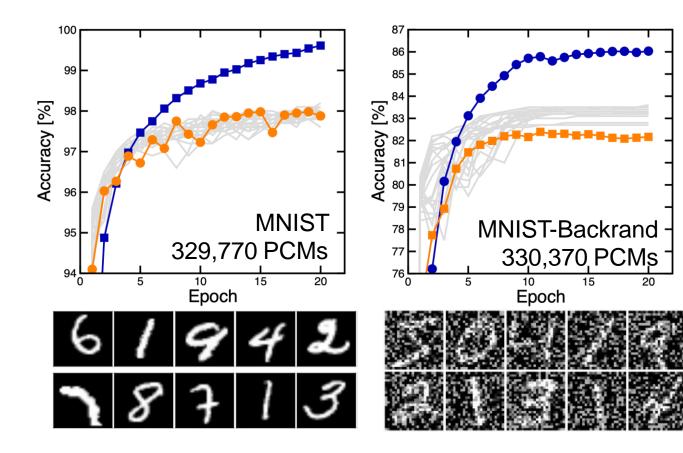
2014 – IEDM \rightarrow **82%** w/ "mixed-hardware-software" experiment **2018** – *Nature* \rightarrow **98%** (e.g., software-equivalent) w/ new unit-cell

2020 Storage Developer Conference. © IBM Research. All Rights Reserved.

20

Accuracy on MNIST Datasets

 Software-equivalent training accuracy achieved with 2T2R+3T1C unit cell and "polarity inversion" technique



More Significant Pair Less Significant Pair $W = F * (G^+ - G^-) + g^+ - g^ \downarrow G^+ \leftarrow \bigcirc G^- \leftarrow \bigcirc g^+ \qquad \leftarrow \bigcirc g^- \qquad \bigcirc g^- \qquad \leftarrow \bigcirc g^- \qquad \leftarrow \bigcirc g^- \qquad \bigcirc \bigcirc \bigcirc g^- \qquad \bigcirc \bigcirc \bigcirc g^- \qquad \bigcirc \bigcirc g^- \qquad$

- Symmetry → Weight update performed on g+

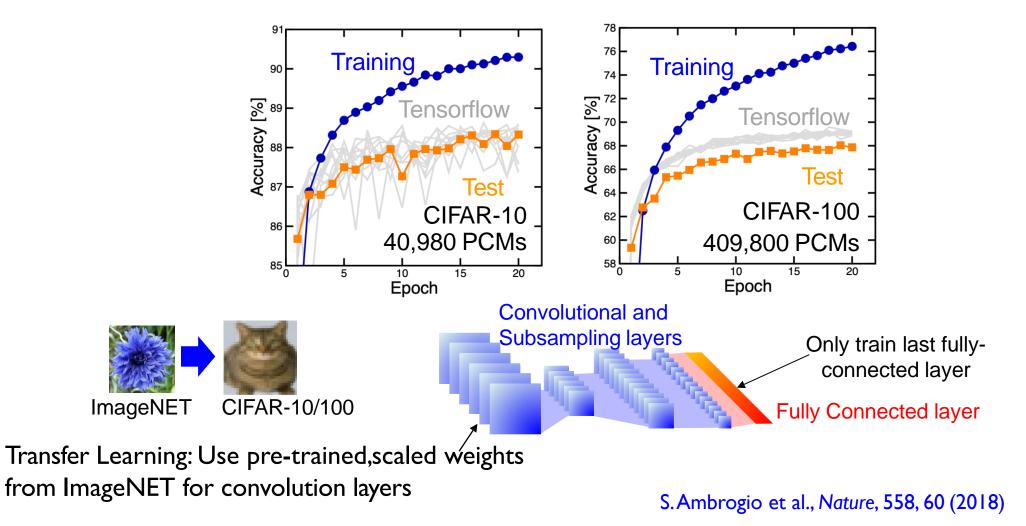
 g⁻ shared among many columns

 Dynamic Range → Gain factor F (e.g. F = 3)
- Non-Volatility → Weight transferred to PCMs infrequently (every 1000s of images)
- "CMOS variabilities" → Counteracted by "Polarity Inversion" technique

S. Ambrogio et al., Nature, 558, 60 (2018)

SD @

Transfer learning ImageNet to CIFAR-10/100



For Inference: Addressing PCM Non-Idealities

• Stochastic

• Non-linear \rightarrow asymmetric

What do we really want? For training

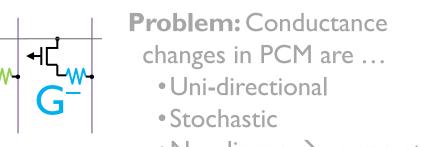
> Gentle, symmetric conductance changes

- Precise tuning
- High yield
- •No change over time

Number of pulses

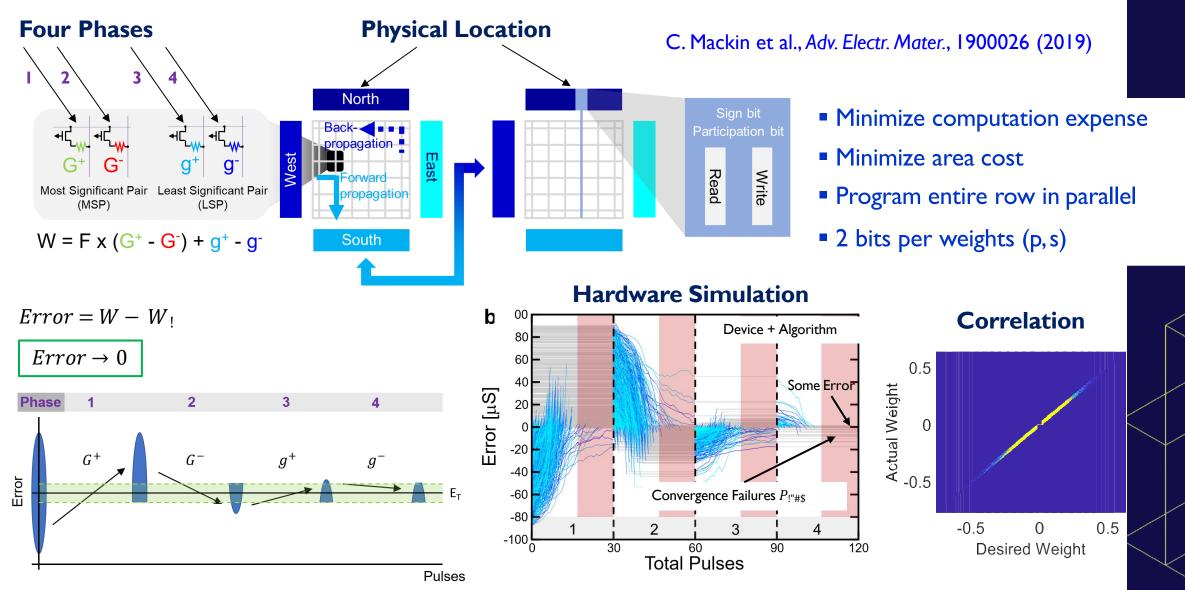
Our recent results in DNN inference w/ PCM

Jan 2019 – Adv. Electr. Mater. \rightarrow programming schemes for 4 PCM devices **June 2019** – VLSITech. Symp. \rightarrow software-equivalence in "mixed-hardware-software" experiment for Long-Short Term Memory (LSTM) **Dec 2019** – *IEDM* \rightarrow effects of PCM "resistance drift" on DNN accuracy

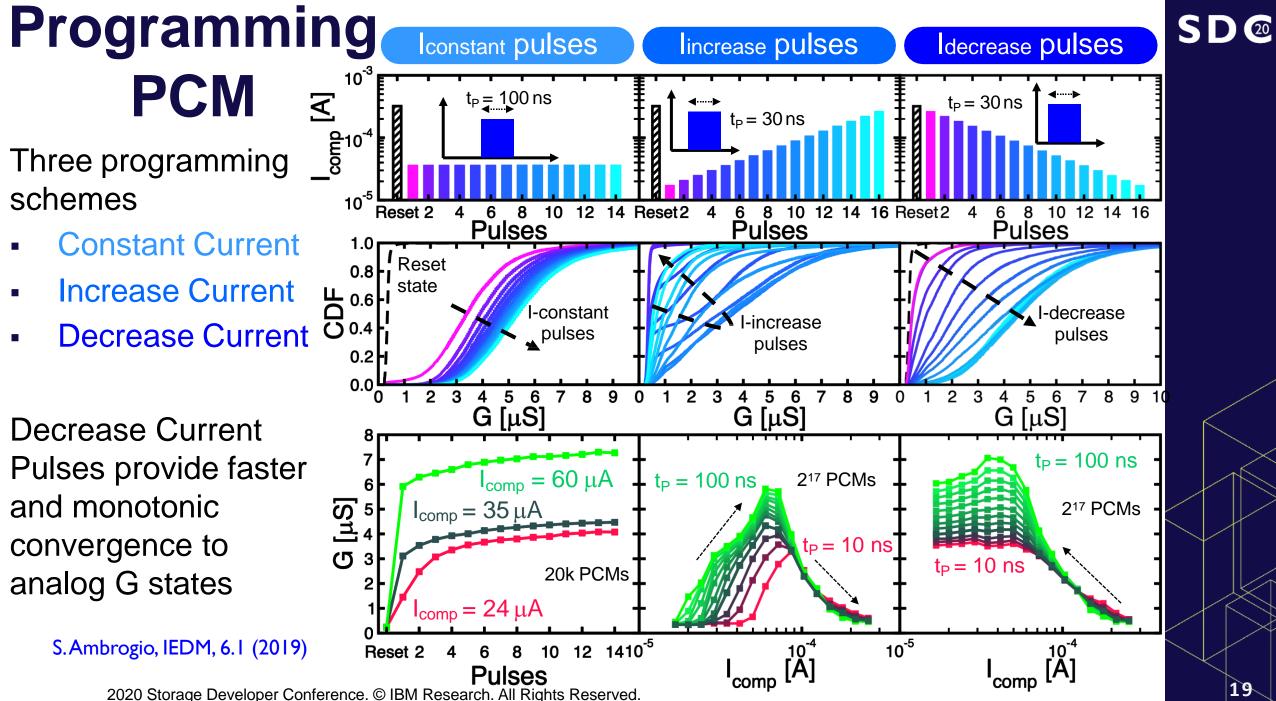


20

Programming of Multi-PCM Weights

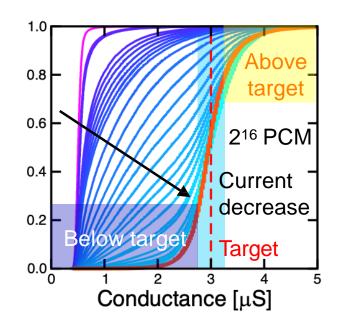


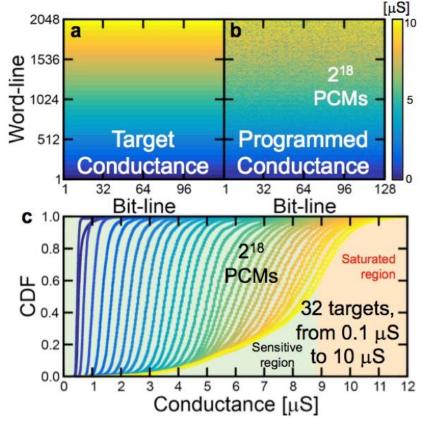
2020 Storage Developer Conference. © IBM Research. All Rights Reserved.



Closed Loop Parallel Programming with Device Variation

 An iterative RESET programming scheme to program phase change memory (PCM) is more tolerant to device-to-device variations

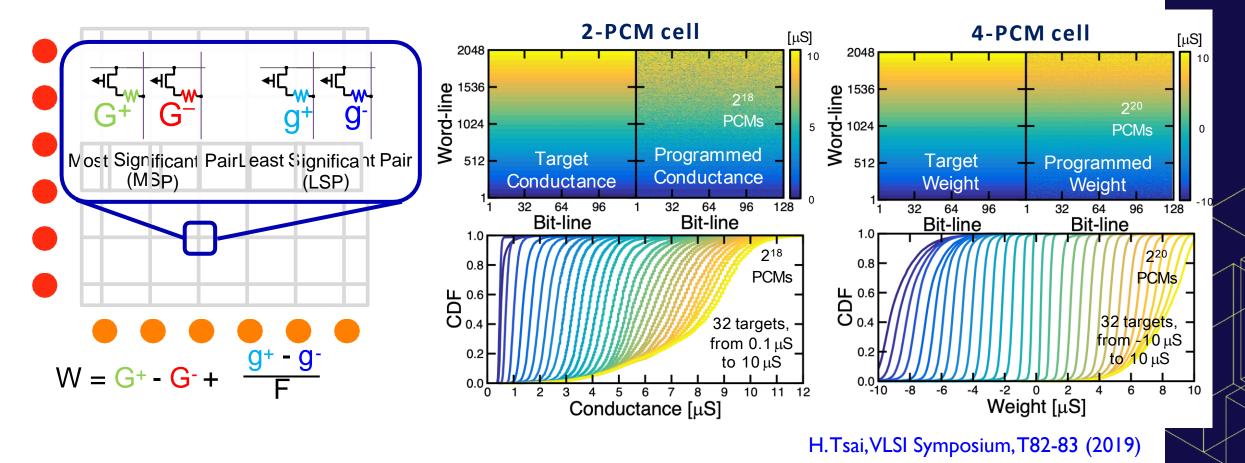




H.Tsai, VLSI Symposium, T82-83 (2019)

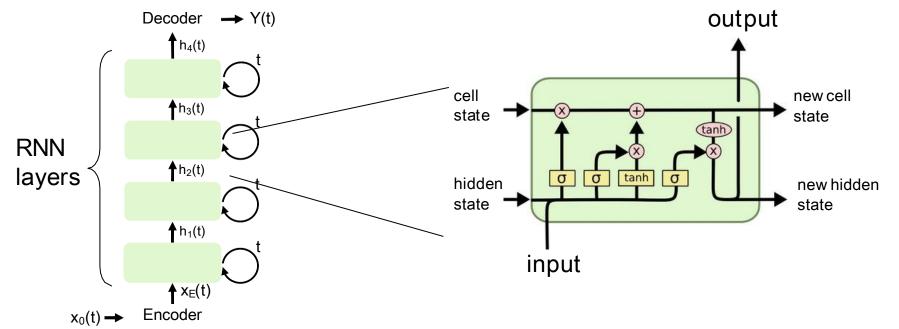
Mapping of Multi-PCM Weights

 Mapping weights to 4 phase change memory (PCM) devices improves resilience to write noise and conductance saturation



Long-Short Term Memory (LSTM)

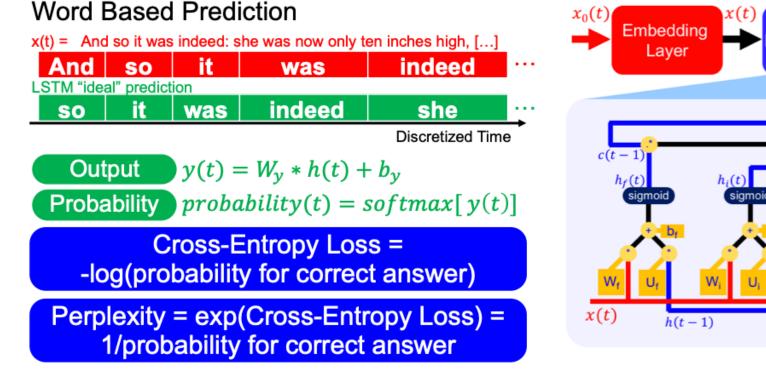
- Long-Short Term Memory (LSTM) networks are use extensively for sequence modeling, e.g., speech recognition and translation
- LSTMs consist of mostly fully connected networks that are well suited for analog acceleration



Long Short-Term Memory (LSTM) cell

Language Modeling with LSTM

- Task: Predict the probability of the next character or word
- Training is supervised, but no labeling is needed
- Performance is measured by cross-entropy loss or perplexity

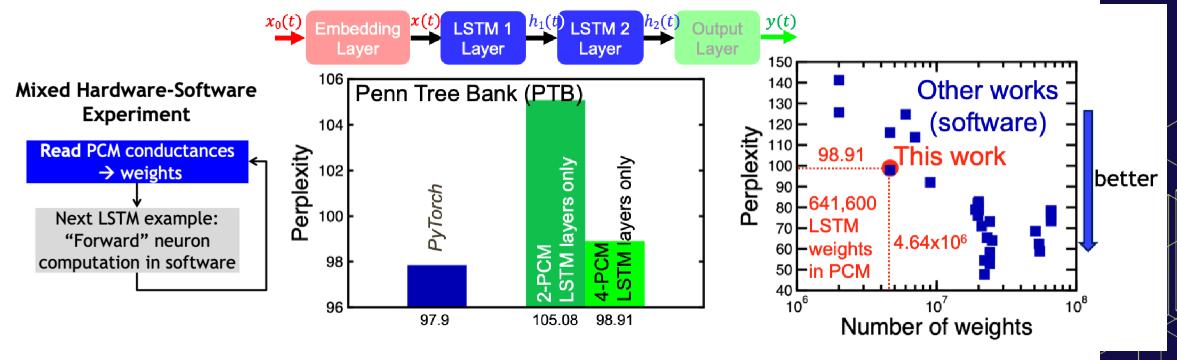


(t) Embedding Layer LSTM 1 Layer LSTM 2 Layer Output Layer Output Layer Cutput Lay

SD (20

Mixed Hardware-Software Experiments with Long-Short-Term Memory (LSTM)

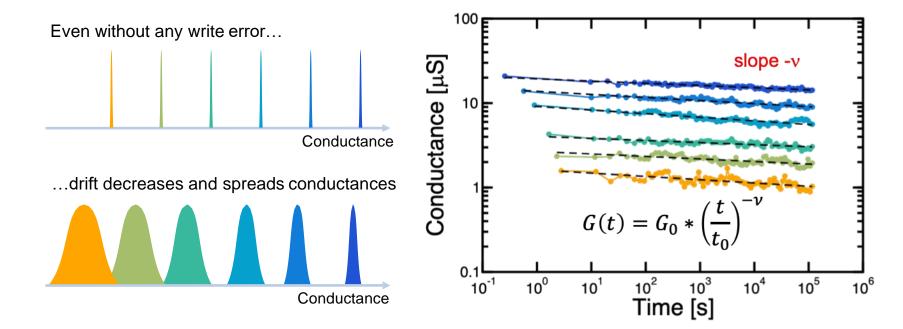
 Software-equivalent accuracy was achieved on commonly used language modeling benchmarks, with 2.5M PCM devices in weights



H.Tsai, VLSI Symposium, T82-83 (2019)

Conductance Drift

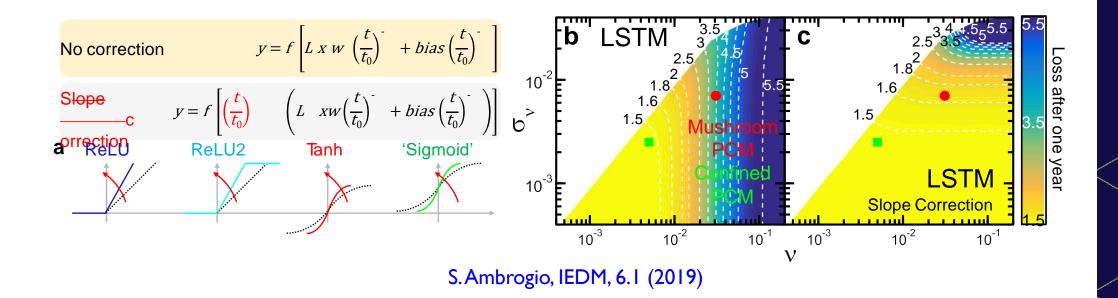
- As the amorphous state relaxes, PCM conductance gradually decreases
- PCM drift can be quantified with an exponential time dependence with a drift coefficient $\boldsymbol{\nu}$



SD (20

Drift Impact and Slope Correction

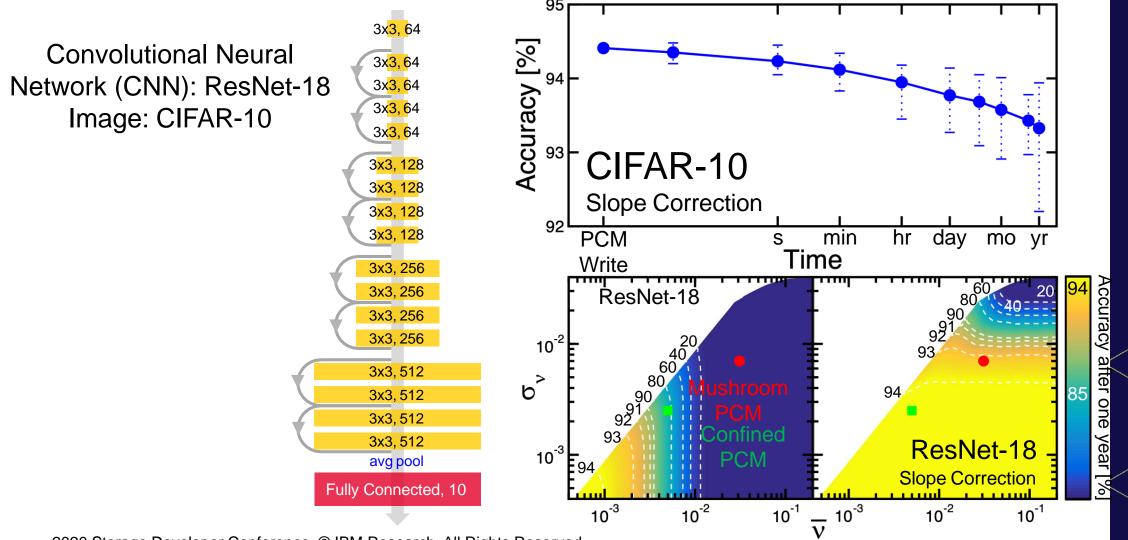
- PCM drift causes weight decrease at different rates from device to device, which increases LSTM loss over time
- Slope correction: tuning the activation function leads to signal restoration



SD (20

Impact of PCM Drift on ResNet-18

Impact of drift is much stronger since every weight is reused many times

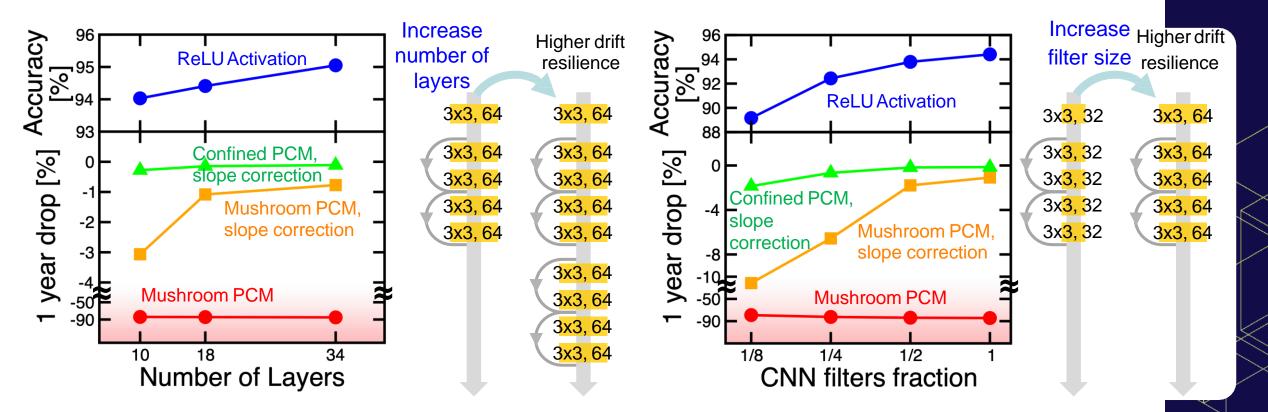


2020 Storage Developer Conference. © IBM Research. All Rights Reserved.

Dependence on Network Design

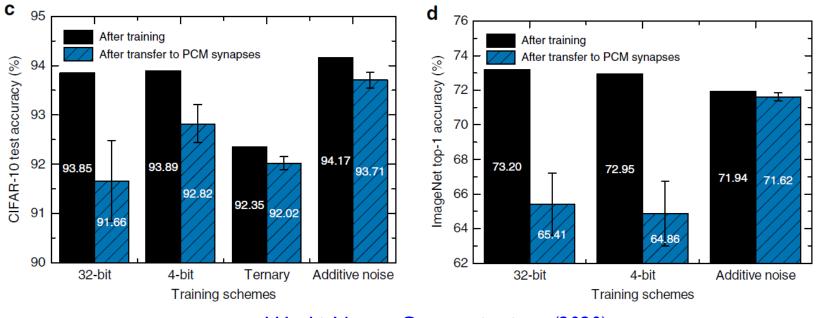
 Increasing number of hidden layers or size of hidden layer leads to increased drift resilience – IF slope correction is used

ResNet-18 Conv Network for CIFAR10



Noise-aware DNN training for Analog HW

- ResNet-34 trained on CIFAR-10 and ImageNet datasets
- Additive noise re-training can improve robustness of model and recover loss in inference accuracy



V. Joshi, Nature Communications (2020)

Outline

- Introduction Deep Neural Networks (DNN) and Analog Memory
- Phase Change Memory for DNN Training and Inference
- Energy Efficiency for Analog Memory-Based Techniques
- Summary

20

Hardware Approach for Energy Efficiency SD®

- 1) Parallelism is key
- 2) Avoiding ADC (Analog-to-Digital Conversion) saves time, power & area
- 3) Do the necessary computations (squashing functions) but be as "approximate" as you can
- Develop efficient and reconfigurable routing strategies to get vectors of data from the bottom of one array to the edge of the next one

AI hardware acceleration with analog memory: micro-architectures for low energy at high speed

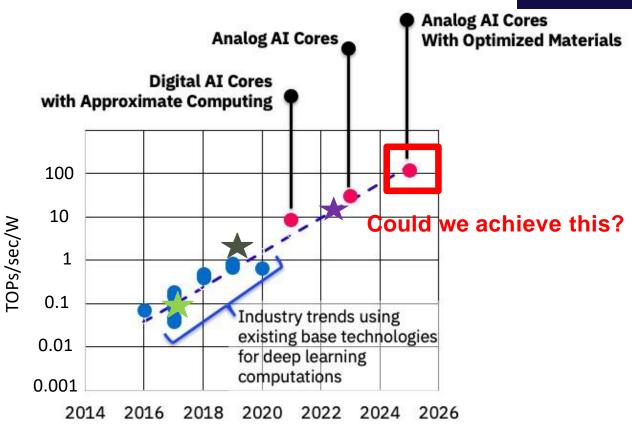
This paper presents innovative micro-architectural designs for multi-layer Deep Neural Networks (DNNs) implemented in crossbar arrays of analog memories. Data are transferred in a

IBM J. R&D, IEEE vol. 63, pp. 8:1-8:14, 1 Nov.-Dec. 2019.

2020 Storage Developer Conference. © IBM Research. All Rights Reserved.

Where are we on the Roadmap?

- NVIDIA V100: 0.1 TOPs/sec/W
- Google TPU1: 2.3 TOPs/sec/W
 - Inference Only
 - NOT including data movement
- IBM internal Analog designs:
 - MNIST : 15.2 TOPs/sec/W
 - PTB LSTM : 14 TOPs/sec/W



Al roadmap from IBM Al Hardware Center announcement www.ibm.com/blogs/research/2019/02/ai-hardware-center/

SD @

How to Improve Energy Efficiency?

1) Reduce average NVM conductance \rightarrow reduces array currents during Multiply-Accumulates

 \rightarrow Current focus of various material and device design efforts

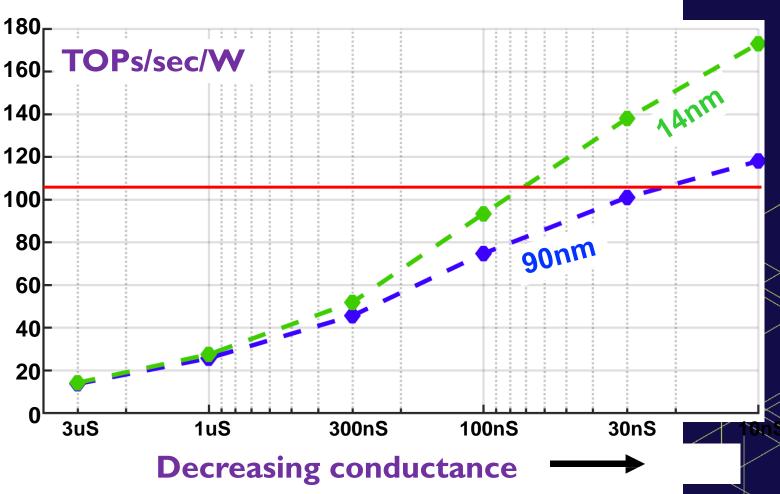
2) Reduce technology node

90nm -> 14nm Benefits just from scaling routing energy

Area efficiency for inference: 10–70TOPs/sec/mm²

(vs.~0.3TOPs/sec/mm2 forTPU v1: In-Datacenter Performance Analysis of aTensor Processing Unit)

IBM J. R&D, IEEE vol. 63, pp. 8:1-8:14, 1 Nov.-Dec. 2019.



2020 Storage Developer Conference. © IBM Research. All Rights Reserved.

SD₂₀

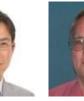
Conclusion

- NVM-based crossbar arrays can accelerate Deep Machine Learning compared to GPUs
 - Multiply-accumulate performed at the data \rightarrow saves power and time
 - But conventional NVM devices (like PCM) are imperfect...
- Recent training results
 - Mixed-hardware-software experiments → software-equivalent training accuracy (S. Ambrogio et al, *Nature*, 558, 60 (2018))
- Recent inference results
 - Programming strategies for 4-PCM-based weights (C. Mackin et al., *Adv. Electr. Mater.*, 1900026 (2019))
 - Mixed-hardware software experiments on LSTM (H. Tsai et al., VLSI Tech. Symp. (2019))
 - Impact of resistance drift in PCM (S. Ambrogio et al., IEDM, 6.1 (2019))
- Power projections based on real circuit designs
 - 100x better energy efficiency (+ 100x speedup) on fully-connected layers (for LSTM and other networks) (H.-Y. Chang et al., *IBM J. R&D*, (2019))

htsai@us.ibm.com

2020 Storage Developer Conference. © IBM Research. All Rights Reserved.

Acknowledgements



Lewis

Hosokawa

Kohji

Jeff Burns

Geoffrey Burr

Stefano Ambrogio Narayanan

Hsinyu Charles Tsai Mackin

An Chen

Katie Spoon

Shelby

Bulent Kurdi

Jeff Welser

Heike Riel

Dario

Gil

Sudhir Gowda

Management Support

Wilfried Haensch

Kumar

Vijay Narayanan

