+ + + + + + + +

tinyML development with TensorFlow Lite for Microcontrollers using CMSIS-NN and Ethos-U55

+ + + + + + + + +

+ OFT ALAL Al Virtual Tech Talks Series

Al Virtual Tech Talks Series

Date	Title	Host
See Arm's YouTube for recording	Machine learning for embedded systems at the edge	Arm and NXP
Today	TensorFlow Lite for Microcontrollers using Arm's CMSIS-NN and Ethos-U55	Arm
July, 14	Demystify artificial intelligence on Arm MCUs	Cartesiam.ai
July, 28	Speech recognition on Arm Cortex-M	Fluent.ai
August, 11	Getting started with Arm Cortex-M software development and Arm Development Studio	Arm
August, 25	Efficient ML across Arm from Cortex-M to Web Assembly	Edge Impulse

Visit: developer.arm.com/solutions/machine-learning-on-arm/ai-virtual-tech-talks

Today's speakers

Fredrik Knutsson ML Software Team Lead

Felix Johnny Thomasmathibalan ML Engineer

Agenda

- Tensorflow Lite for Microcontrollers (TFLu)
- CMSIS-NN
 - Neural network kernels developed to maximize the performance on Cortex-M CPU
- Ethos-U55
 - A new class of machine learning (ML) processor, called a microNPU, specifically designed to accelerate ML inference in area-constrained embedded and IoT devices.
- Integration: TFLu, Ethos-U55 and CMSIS-NN
 - CMSIS-NN and Ethos-U55 integrated with Tensorflow Lite for microcontrollers
- Demo: CMSIS-NN / TFLu speed-up on Arduino

+ + + + + + + + +

+ **O**+**D**+**D**+**A** + Al Virtual Tech Talks Series

Tensorflow Lite for Microcontrollers TFLu)

+ + + + + + +

TensorFlow Lite for Microcontrollers (TFLu)

- Version of TensorFlow Lite designed to execute neural networks on microcontrollers, starting at only a few kB of memory
- Designed to be portable even to 'bare metal' systems
- The core runtime is ~20kB.
- Examples/demos
 - Micro speech: Detects simple commands such as yes, no and silence.
 - Person detection: Detects whether a person is in the room or not.
 - Magic wand demo for image recognition etc.
- Generate multiple projects, for example MbedOS and Arduino
- Over 50 operators supported currently. Growing quickly
 - Many integrated operator optimizations

+ **O**+**TCA** Al Virtual Tech Talks Series

+ + + + + + + + +

Efficient Neural Network kernels for Arm Cortex-M CPUs via TFLu

CMSIS

Pathway to the Arm ecosystem

6,000+ devices supported with CMSIS

Used in many projects > 1,200,000 source files public on GitHub

Device family packs > 3,000,000 pack downloads in past 6 months

- Cortex Microcontroller Software Interface Standard
- Consistent, generic, and standardized software building blocks
- Available for all Cortex-M and Cortex-A5, Cortex-A7 and Cortex-A9 processors
- Open source public development on GitHub: <u>https://github.com/ARM-software/CMSIS_5</u>

CMSIS-NN

Part of CMSIS that provide optimized ML kernel implementation

arm

8-bit MAC as SIMD operation

Load data -> MAC -> Load data -> MAC -> -> Save data

DSP Extension

- A max capability of 2 MACs/cycle.
- Cortex-M4 processor: 1 MAC/cycle
- Cortex-M7 processor: 2 MAC/cycle (dual issue)

MAC - Multiply Accumulate SIMD – Single Instruction Multiple Data

M-profile Vector Extension (Helium tech.)

- Cortex-M55 processor: 8 MAC/cycle
- MAC operands use vector registers (128 bit) and result is stored in a 32 bit GP register.
 - $y += \sum_{n=1}^{16} (a_n * b_n)$, in two cycles

Performance Results - TFLu runtime with CMSIS-NN

On a Cortex-M55 system

- These numbers show current improvements on an FPGA reference system
- Continuously improving performance

CMSIS-NN performance on Cortex-M55

+ + + + + + + +

+ **CHARTER AI** AI Virtual Tech Talks Series

+ + + + + + + +

Ethos-U55: First microNPU for Cortex-M CPUs

- Neural network processor for Cortex-M systems
 - Works alongside Cortex-M55, Cortex-M7, Cortex-M33 and Cortex-M4 processors
- Designed for embedded type systems
 - Fast on-chip SRAM and a slower system flash
- Heavy compute operators for CNN and RNN accelerated in hardware.
- Support for efficient weight compression
 - Compression typically offline
 - Decompression on-the-fly
- Configurations 32, 64, 128 or 256 MAC/cc
 - 8-bit activations use 1 cc per MAC
 - 16-bit activations use 2 cc per MAC

Ethos-U55 Optimized Software Flow

- Train network in TensorFlow
- Quantize it to Int8 TFL flatbuffer file (.tflite file)
- Vela compiler identifies graphs to run on Ethos-U55
 - Optimizes, schedules and allocates these graphs
 - Lossless compression, reducing size of tflite file

- Runtime executable file on device
- Accelerates kernels on Ethos-U55. Driver handles the communication
- The remaining layers are executed on Cortex-M
 - CMSIS-NN optimized kernels if available
 - Fallback on the TFLu reference kernels

Vela Compiler

A Python based optimizer executed on your computer

- Reads a tflite file, writes a modified tflite file
- Generates commands for microNPU
- Optimizes scheduling of subgraphs
- Loss-less compression of weights
- Reduces SRAM and Flash footprint
- Enabling networks previously not feasible in embedded systems!
- Open source

Ethos-U55 Performance Results

Using 256 MACs/Cycle configuration vs. Cortex-M4 using CMSIS-NN optimizations

arm

+ + + + + + + + +

Al Virtual Tech Talks Series

Ethos-U55 & CMSIS-NN: Integration with Tensorflow Lite for Microcontrollers

Software Stack Integration

Add CMSIS-NN and Ethos-U55 under the same stack

Applica	ation	 TFLu is built as a lib, then linked with application
TF Lite	micro	 Optimized kernels enabled by using "TAGS" in the TFLu build system
Reference and CMSIS- NN kernels	Ethos-U55 driver	 Software is open source Vela compiler, Ethos-U55 driver, TFLu and CMSIS-NN
Cortex-M	Ethos- U55	

Optimize Where it Matters...

...and always have a fallback path

- Reference kernels always a possibility
- For more horsepower CMSIS-NN
- For most horsepower Ethos-U55

Kernel	TFLu reference implementation	CMSIS-NN (fast)	NPU (faster)
Kernel 1	\checkmark	\checkmark	\checkmark
Kernel 2	\checkmark	\checkmark	\checkmark
Kernel 3	\checkmark	\checkmark	\checkmark
Kernel 4	\checkmark	\checkmark	\checkmark
Kernel 5	\checkmark	\checkmark	
Kernel 6	\checkmark		
Kernel 7	\checkmark		

Build TFLu with Ethos-U55 and CMSIS-NN

Access to optimized kernels through TFLu, simple example

• Step 1: Clone TensorFlow repository from GitHub

git clone https://github.com/tensorflow/tensorflow

• Step 2: Compile it using TAGS, in prio order.

make -f tensorflow/lite/micro/tools/make/Makefile TAGS="ethos-u cmsis-nn" TARGET=<your cortex-m plus
ethos-u55 board> person_detection_int8

Person detection with CMSIS-NN and TFLu

+ + + + + + +

+ **OLATION AI** AI Virtual Tech Talks Series

The Hardware

Arduino Nano 33 BLE Sense + Arducam Mini 2MP Plus

- Powered by Arm's Cortex-M4 CPU
- 1 MB flash. 256kB SRAM. 64MHz.

Step-by-step

Utilize CMSIS-NN in TFLu on an Arduino Nano 33 BLE Sense

• Step 1 (optional): Clone TensorFlow repository from GitHub

git clone https://github.com/tensorflow/tensorflow

• Step 2 (optional): Generate an Arduino project

make -f tensorflow/lite/micro/tools/make/Makefile TARGET=arduino TAGS=cmsis-nn generate_arduino_zip

- Step 3 (optional): Include the generated project into your Arduino libraries folder unzip tensorflow_lite.zip -d ~/Arduino/libraries/
- Step 4: Compile and flash demo using the Arduino IDE
 - Check "person detection experimental" example in library "Arduino_TensorFlowLite". A one button install using Arduino IDE library manager.

Useful links

- TFLu + CMSIS-NN instructions: <u>https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/micro/kernels/cmsis-nn/README.md</u>
- TFLu + Ethos-U55 instructions: <u>https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/micro/kernels/ethos-u/README.md</u>
- CMSIS GitHub: <u>https://github.com/ARM-software/CMSIS_5</u>
- Person Detection Int8 example: <u>https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/micro/examples/person_detection_on_experimental</u>
- Arm AI: <u>https://www.arm.com/solutions/artificial-intelligence/iot-endpoint-devices</u>
- ML platform Ethos-U landing page: <u>https://review.mlplatform.org/plugins/gitiles/ml/ethos-u/ethos-u/ethos-u/+/refs/heads/master/README.md</u>

Contact us!

- Fredrik Knutsson (freddan80 @ Github)
- Felix Johnny Thomasmathibalan (felix-johnny @ Github) and www.instagram.com/photoquiver/
- Jens Elofsson (jenselofsson @ Github)
- Måns Nilsson (mansnils @ Github)
- Patrik Laurell (patriklaurell @ Github)
- Magnus Midholt (mmidholt @ Github)

+ + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + +

+ + + + + + + + + + + + +

| - | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
|----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |

+ O + T + Al Virtual Tech Talks Series

| Thạnk You | + | + | + | + | + | + | + | + | + | + | + | + | + |
|---------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Danke | | | | | | | | | | | | | |
| . Merci | | | | | | | | + | | + | | | |
| 谢谢 | | | | | | | | | | | | | |
| ありがとう | | | | | | | | | | | | | |
| Gracias | | | | | | | | | | | | | |
| ⁺ Kiitos | | | | | | | | | | + | + | | |

+ **OFTANAI** Al Virtual Tech Talks Series

Join our next virtual tech talk: Demystify artificial intelligence on Arm MCUs

Tuesday 14 June

Register here: developer.arm.com/solutions/machine-learning-on-arm/ai-virtual-tech-talks

|
上 |
_ | _ | ± | <u>+</u> | 1 | 上 | - | ± | 1 | 1 | ± | + |
|--------------|--------------|----------|---|----------|----------|----------|----------|---|----------|----------|---|----------|
| | | | | | | | | | | | | |
| | | | | | | | | | | | | |

| | | r'n | | | | | | ⁺ The
trac
th | Arm trådema
demarks or tra
ne US and/or e
featured | irks featured
ademarks of
elsewhere. A
may be trad | in this pres
Arm Limited
All rights res
emarks of th | entation are
d (or its subsi
erved. All ot
neir respectiv | registèred
idiaries) in
her marks
⁄e owners. |
|----------|-----------|-----|---|--------------|---|---|---|--------------------------------|---|---|---|--|---|
| <u>н</u> | <u>ــ</u> | - | - |
<u>.</u> | - | ± | - | <u>_</u> | 4 | - | <u> </u> | – | - |

www.arm.com/company/policies/trademarks

+

| | | | | + | | | | | |
|--|--|--|--|---|---|---|--|--|--|
| | | | | + | + | + | | | |
| | | | | | | | | | |

| - | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
|----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |

+ O + T + Al Virtual Tech Talks Series

| Thạnk You | + | + | + | + | + | + | + | + | + | + | + | + | + |
|---------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Danke | | | | | | | | | | | | | |
| . Merci | | | | | | | | + | | + | | | |
| 谢谢 | | | | | | | | | | | | | |
| ありがとう | | | | | | | | | | | | | |
| Gracias | | | | | | | | | | | | | |
| ⁺ Kiitos | | | | | | | | | | + | + | | |