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Miniaturization of electronics started by NASA’s push became an

entire consumer products industry. Now we’re carrying the complete

works of Beethoven on a lapel pin listening to it in headphones. —

Neil deGrasse Tyson, astrophysicist and science commentator

[…] the pervasiveness of ultra-low-power embedded devices, coupled

with the introduction of embedded machine learning frameworks like

TensorFlow Lite for Microcontrollers will enable the mass

proliferation of AI-powered IoT devices. — Vijay Janapa Reddi,
Associate Professor at Harvard University
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This is the (rst in a series of articles on tiny machine learning. The

goal of this article is to introduce the reader to the idea of tiny

machine learning and its future potential. In-depth discussion of

speci(c applications, implementations, and tutorials will follow in

subsequent articles in the series.
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Over the past decade, we have witnessed the size of machine

learning algorithms grow exponentially due to improvements in

processor speeds and the advent of big data. Initially, models were

small enough to run on local machines using one or more cores

within the central processing unit (CPU).

Shortly after, computation using graphics processing units (GPUs)

became necessary to handle larger datasets and became more

readily available due to introduction of cloud-based services such



as SaaS platforms (e.g., Google Colaboratory) and IaaS (e.g.,

Amazon EC2 Instances). At this time, algorithms could still be run

on single machines.

More recently, we have seen the development of specialized

application-speci(c integrated circuits (ASICs) and tensor

processing units (TPUs), which can pack the power of ~8 GPUs.

These devices have been augmented with the ability to distribute

learning across multiple systems in an attempt to grow larger and

larger models.

This came to a head recently with the release of the GPT-3

algorithm (released in May 2020), boasting a network architecture

containing a staggering 175 billion neurons — more than double

the number present in the human brain (~85 billion). This is more

than 10x the number of neurons than the next-largest neural

network ever created, Turing-NLG (released in February 2020,

containing ~17.5 billion parameters). Some estimates claim that

the model cost around $10 million dollars to train and used

approximately 3 GWh of electricity (approximately the output of

three nuclear power plants for an hour).

While the achievements of GPT-3 and Turing-NLG are laudable,

naturally, this has led to some in the industry to criticize the

increasingly large carbon footprint of the AI industry. However, it

has also helped to stimulate interest within the AI community

towards more energy-e[cient computing. Such ideas, like more

e[cient algorithms, data representations, and computation have

been the focus of a seemingly unrelated (eld for several years: tiny
machine learning.



Tiny machine learning (tinyML) is the intersection of machine

learning and embedded internet of things (IoT) devices. The (eld is

an emerging engineering discipline that has the potential to

revolutionize many industries.

The main industry bene(ciaries of tinyML are in edge computing

and energy-e[cient computing. TinyML emerged from the concept

of the internet of things (IoT). The traditional idea of IoT was that

data would be sent from a local device to the cloud for processing.

Some individuals raised certain concerns with this concept:

privacy, latency, storage, and energy e[ciency to name a few.

Energy EAciency. Transmitting data (via wires or wirelessly) is

very energy-intensive, around an order of magnitude more energy-

intensive than onboard computations (speci(cally, multiply-

accumulate units). Developing IoT systems that can perform their

own data processing is the most energy-e[cient method. AI

pioneers have discussed this idea of “data-centric” computing (as

opposed to the cloud model’s “compute-centric”) for some time

and we are now beginning to see it play out.

Privacy. Transmitting data opens the potential for privacy

violations. Such data could be intercepted by a malicious actor and

becomes inherently less secure when warehoused in a singular

location (such as the cloud). By keeping data primarily on the

device and minimizing communications, this improves security

and privacy.

Storage. For many IoT devices, the data they are obtaining is of no

merit. Imagine a security camera recording the entrance to a



building for 24 hours a day. For a large portion of the day, the

camera footage is of no utility, because nothing is happening. By

having a more intelligent system that only activates when

necessary, lower storage capacity is necessary, and the amount of

data necessary to transmit to the cloud is reduced.

Latency. For standard IoT devices, such as Amazon Alexa, these

devices transmit data to the cloud for processing and then return a

response based on the algorithm’s output. In this sense, the device

is just a convenient gateway to a cloud model, like a carrier pigeon

between yourself and Amazon’s servers. The device is pretty dumb

and fully dependent on the speed of the internet to produce a

result. If you have slow internet, Amazon Alexa will also become

slow. For an intelligent IoT device with onboard automatic speech

recognition, the latency is reduced because there is reduced (if not

no) dependence on external communications.

These issues led to the development of edge computing, the idea of

performing processing activities onboard of edge devices (devices

at the “edge” of the cloud). These devices are highly resource-

constrained in terms of memory, computation, and power, leading

to the development of more e[cient algorithms, data structures,

and computational methods.

Such improvements are also applicable to larger models, which

may lead to e[ciency increases in machine learning models by

orders of magnitude with no impact on model accuracy. As an

example, the Bonsai algorithm developed by Microsoft can be as

small as 2 KB but can have even better performance than a typical

40 MB kNN algorithm, or a 4 MB neural network. This result may



not sound important, but the same accuracy on a model

1/10,000th of the size is quite impressive. A model this small can

be run on an Arduino Uno, which has 2 KB RAM available — in

short, you can now build such a machine learning model on a $5

microcontroller.

We are at an interesting crossroads where machine learning is

bifurcating between two computing paradigms: compute-centric

computing and data-centric computing. In the compute-centric

paradigm, data is stockpiled and analyzed by instances in data

centers, while in the data-centric paradigm, the processing is done

locally at the origin of the data. Although we appear to be quickly

moving towards a ceiling in the compute-centric paradigm, work in

the data-centric paradigm has only just begun.

IoT devices and embedded machine learning models are becoming

increasingly ubiquitous in the modern world (predicted more than

20 billion active devices by the end of 2020). Many of these you

may not even have noticed. Smart doorbells, smart thermostats, a

smartphone that “wakes up” when you say a couple of words, or

even just pick up the phone. The remainder of this article will focus

deeper on how tinyML works, and on current and future

applications.
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Previously, complex circuitry was necessary for a device to perform

a wide range of actions. Now, machine learning is making it

increasingly possible to abstract such hardware “intelligence” into

software, making embedded devices increasingly simple,

lightweight, and gexible.

The challenges that machine learning with embedded devices

presents are considerable, but great progress has already been

achieved in this area. The key challenges in deploying neural

networks on microcontrollers are the low memory footprint,

limited power, and limited computation.

Perhaps the most obvious example of TinyML is within

smartphones. These devices perpetually listen actively for ‘wake
words’, such as “Hey Google” for Android smartphones, or ‘Hey

Siri” on iPhones. Running these activities through the main central



processing unit (CPU) of a smartphone, which is 1.85 GHz for the

modern iPhone, would deplete the battery in just a few hours. This

level of degradation is not acceptable for something that most

people would use a few times a day at most.

To combat this, developers created specialized low-power

hardware that is able to be powered by a small battery (such as a

circular CR2032 “coin” battery). These allow the circuits to remain

active even when the CPU is not running, which is basically

whenever the screen is not lit.

These circuits can consume as little as 1 mW and can be
powered for up to a year using a standard CR2032 battery.

It may not seem like it, but this is a big deal. Energy is a limiting

factor for many electronic devices. Any device that requires mains

electricity is restricted to locations with wiring, which can quickly

get overwhelming when a dozen devices are present in the same

location. Mains electricity is also ine[cient and expensive.

Converting mains voltage (which operates around 120 V in the

United States) to a typical circuit voltage range (often ~5 V)

wastes large amounts of energy. Anyone with a laptop charger will

probably know this when unplugging their charger. The heat from

the transformer within the charger is wasted energy during the

voltage conversion process.

Even devices with batteries sujer from limited battery life, which

requires frequent docking. Many consumer devices are designed

such that the battery lasts for a single workday. TinyML devices

that can continue operating for a year on a battery the size of a coin



mean they can be placed in remote environments, only

communicating when necessary in order to conserve energy.

Wake words are not the only TinyML we see seamlessly embedded

in smartphones. Accelerometer data is used to determine whether

someone has just picked the phone up, which wakes the CPU and

turns on the screen.

Clearly, these are not the only possible applications of TinyML. In

fact, TinyML presents many exciting opportunities for businesses

and hobbyists alike to produce more intelligent IoT devices. In a

world where data is becoming more and more important, the

ability to distribute machine learning resources to memory-

constrained devices in remote locations could have huge bene(ts

on data-intensive industries such as farming, weather prediction,

or seismology.

It is without a doubt that empowering edge devices with the

capability of performing data-driven processing will produce a

paradigm shift for industrial processes. As an example, devices that

are able to monitor crops and send a “help” message when it

detects characteristics such as soil moisture, speci(c gases (for

example, apples emit ethane when ripe), or particular atmospheric

conditions (e.g., high winds, low temperatures, or high humidity),

would provide massive boosts to crop growth and hence crop yield.

As another example, a smart doorbell might be (tted with a

camera that can use facial recognition to determine who is present.

This could be used for security purposes, or even just so that the

camera feed from the doorbell is fed to televisions in the house



when someone is present so that the residents know who is at the

door.

Two of the main focus areas of tinyML currently are:

Keyword spotting. Most people are already familiar with this

application. “Hey Siri” and “Hey Google” are examples of keywords

(often used synonymously with hotword or wake word). Such

devices listen continuously to audio input from a microphone and

are trained to only respond to speci(c sequences of sounds, which

correspond with the learned keywords. These devices are simpler

than automatic speech recognition (ASR) applications and utilize

correspondingly fewer resources. Some devices, such as Google

smartphones, utilize a cascade architecture to also provide speaker

veri(cation for security.

Visual Wake Words. There is an image-based analog to the wake

words known as visual wake words. Think of these as a binary

classi(cation of an image to say that something is either present or

not present. For example, a smart lighting system may be designed

such that it activates when it detects the presence of a person and

turns oj when they leave. Similarly, wildlife photographers could

use this to take pictures when a speci(c animal is present, or

security cameras when they detect the presence of a person.

A more broad overview of current machine learning use cases of

TinyML is shown below.
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TinyML algorithms work in much the same way as traditional

machine learning models. Typically, the models are trained as

usual on a user’s computer or in the cloud. Post-training is where

the real tinyML work begins, in a process often referred to as deep
compression.
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Post-training, the model is then altered in such a way as to create a

model with a more compact representation. Pruning and

knowledge distillation are two such techniques for this purpose.

The idea underlying knowledge distillation is that larger networks

have some sparsity or redundancy within them. While large

networks have a high representational capacity, if the network

capacity is not saturated it could be represented in a smaller

network with a lower representation capacity (i.e., less neurons).

Hinton et al. (2015) referred to the embedded information in the

teacher model to be transferred to the student model as “dark
knowledge”.

The below diagram illustrates the process of knowledge

distillation.
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In this diagram, the ‘teacher’ is a trained neural network model.

The teacher is tasked with transferring its ‘knowledge’ to a smaller

network model with fewer parameters, the ‘student’. This process is

used to enshrine the same knowledge in a smaller network,

providing a way of compressing the knowledge representation, and

hence the size, of a neural network such that they can be used on

more memory-constrained devices.

Similarly, pruning can help to make the model’s representation

more compact. Pruning, broadly speaking, attempts to remove

neurons that provide little utility to the output prediction. This is

often associated with small neural weights, whereas larger weights

are kept due to their greater importance during inference. The



network is then retrained on the pruned architecture to (ne-tune

the output.
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Following distillation, the model is then quantized post-training

into a format that is compatible with the architecture of the

embedded device.

Why is quantization necessary? Imagine an Arduino Uno using an

ATmega328P microcontroller, which uses 8-bit arithmetic. To run a

model on the Uno, the model weights would ideally have to be

stored as 8-bit integer values (whereas many desktop computers

and laptops use 32-bit or 64-bit goating-point representation). By

quantizing the model, the storage size of weights is reduced by a

factor of 4 (for a quantization from 32-bit to 8-bit values), and the

accuracy is often negligibly impacted (often around 1–3%).
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Some information may be lost during quantization due to

quantization error (for example, a value that is 3.42 on a goating-

point representation may be truncated to 3 on an integer-based

platform). To combat this, quantization-aware (QA) training has

also been proposed as an alternative. QA training essentially

constrains the network during training to only use the values that

will be available on the quantized device (see Tensorgow

example).
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Encoding is an optional step that is sometimes taken to further

reduce the model size by storing the data in a maximally e[cient

way: often via the famed Hujman encoding.
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Once the model has been quantized and encoded, it is converted to

a format that can be interpreted by some form of light neural

network interpreter, the most popular of which are probably TF



Lite (~500 KB in size) and TF Lite Micro (~20 KB in size). The

model is then compiled into C or C++ code (the languages most

microcontrollers work in for e[cient memory usage) and run by

the interpreter on-device.
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Most of the skill of tinyML comes in dealing with the complex

world of microcontrollers. TF Lite and TF Lite Micro are so small

because any unnecessary functionality has been removed.

Unfortunately, this includes useful abilities such as debugging and

visualization. This means that it can be di[cult to discern what is

going on if there is an error during deployment.

Additionally, while the model has to be stored on the device, the

model also has to be able to perform inference. This means the

microcontroller must have a memory large enough that it can run



(1) its operating system and libraries, (2) a neural network

interpreter such as TF Lite, (3) the stored neural weights and

neural architecture, and (4) the intermediate results during

inference. Thus, the peak memory usage of a quantized algorithm

is often quoted in tinyML research papers, along with memory

usage, the number of multiply-accumulate units (MACs), accuracy,

etc.

:A52"%#2#$,)"2%"B&0C)(0D

Training on-device brings about additional complications. Due to

reduced numerical precision, it becomes exceedingly di[cult to

guarantee the necessary level of accuracy to su[ciently train a

network. Automatic dijerentiation methods on a standard desktop

computer are approximately accurate to machine precision.

Computing derivatives to the accuracy of 10^-16 is incredible, but

utilizing automatic dijerentiation on 8-bit values will result in

poor results. During backpropagation, these derivatives are

compounded and eventually used to update neural parameters.

With such a low numerical precision, the accuracy of such a model

may be poor.

That being said, neural networks have been trained using 16-bit

and 8-bit goating-point numbers.

The (rst paper looking at reducing numerical precision in deep

learning was the 2015 paper “Deep Learning with Limited

Numerical Precision” by Suyog Gupta and colleagues. The results of

this paper were interesting, showing that the 32-bit goating-point

representation could be reduced to a 16-bit (xed-point

representation with essentially no degradation in accuracy.



However, this is the only case when stochastic rounding is used

because, on average, it produces an unbiased result.

In 2018, Naigang Wang and colleagues trained a neural network

using 8-bit goating point numbers in their paper “Training Deep

Neural Networks with 8-bit Floating Point Numbers”. Training a

neural network using 8-bit numbers rather than inference is

signi(cantly more challenging to achieve because of a need to

maintain (delity of gradient computations during backpropagation

(which is able to achieve machine precision when using automatic

dijerentiation).
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Models can also be tailored to make them more compute-e[cient.

Model architectures widely deployed on mobile devices such as

MobileNetV1 and MobileNetV2 are good examples. These are

essentially convolutional neural networks that have recast the

convolution operation to make it more compute-e[cient. This

more e[cient form of convolution is known as depthwise
separable convolution. Architectures can also be optimized for

latency using hardware-based proRling and neural architecture
search, which are not covered in this article.
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The ability to run machine learning models on resource-

constrained devices opens up doors to many new possibilities.

Developments may help to make standard machine learning more

energy-e[cient, which will help to quell concerns about the impact

of data science on the environment. In addition, tinyML allows

embedded devices to be endowed with new intelligence based on

data-driven algorithms, which could be used for anything from

preventative maintenance to detecting bird sounds in forests.

While some machine learning practitioners will undoubtedly

continue to grow the size of models, a new trend is growing

towards more memory-, compute-, and energy-e[cient machine

learning algorithms. TinyML is still in its nascent stages, and there

are very few experts on the topic. I recommend the interested

reader to examine some of the papers in the references, which are

some of the important papers in the (eld of tinyML. This space is

growing quickly and will become a new and important application

of arti(cial intelligence in industry within the coming years. Watch

this space.
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