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Abstract—In this paper, we propose MRIMA, as a novel
MRAM-based In-Memory Accelerator for non-volatile, flexible,
and efficient in-memory computing. MRIMA transforms current
Spin Transfer Torque Magnetic Random Access Memory (STT-
MRAM) arrays to massively parallel computational units ca-
pable of working as both non-volatile memory and in-memory
logic. Instead of integrating complex logic units in cost-sensitive
memory, MRIMA exploits hardware-friendly bit-line computing
methods to implement complete Boolean logic functions between
operands within a memory array in a single clock cycle, over-
coming the multi-cycle logic issue in contemporary Processing-
In-Memory (PIM) platforms. We present practical case studies
to demonstrate MRIMA’s acceleration for binary-weight and
low bit-width Convolutional Neural Networks (CNN) as well as
data encryption. Our device-to-architecture co-simulation results
on CNN acceleration demonstrate that MRIMA can obtain
1.7× better energy-efficiency and 11.2× speed-up compared to
ASICs, and, 1.8× better energy-efficiency and 2.4× speed-up
over the best DRAM-based PIM solutions. As an AES in-memory
encryption engine, MRIMA shows ∼77% and 21% lower energy
consumption compared to CMOS-ASIC and recent domain wall-
based design, respectively.

Index Terms—Spintronics, in-memory processing platform,
CNN, AES.

I. INTRODUCTION

Over the past decades, the amount of data that is required
to be processed and analyzed by computing systems has been
increasing dramatically to exascale (1018 bytes/s or flops) [1],
[2]. However, the inability of modern computing platforms to
deliver both energy-efficient and high performance computing
solutions leads to a gap between meets and needs [3], [4].
Unfortunately, with current Boolean logic and Complementary
Metal Oxide Semiconductor (CMOS)-based computing plat-
forms, such gap will keep widening mainly due to limitations
in both devices and architectures. First, at device level, as
depicted in Table I, the computing efficiency and performance
of CMOS Boolean systems is beginning to stall due to ap-
proaching the end of Moore’s law and also reaching its power
wall (i.e. huge leakage power consumption limits the perfor-
mance growth when technology scales down) [1], [5]. For
example, the highest power efficiency of contemporary CPU
and GPU system is only 10GFLOPS/W, which is difficult
to substantially improve in the predictable scaled technology
node [6]. Second, at the architecture level, as depicted in Table
I, today’s computers are based on Von-Neumann architecture
with separate computing and memory units connecting via
buses, which leads to memory wall (including long memory
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Table I: Current computing platforms vs. MRIMA.
Current Platforms MRIMA

Device CMOS transistors STT-MRAM
Architecture Von-Neumann PIM

Breaking the
memory wall

unity of memory & logic 8 3
reduced data transfer 8 3

non-volatility 8 3

Breaking the
power wall

low leakage power 8 3
scaling 8 3

efficient data transfer 8 3

access latency, limited memory bandwidth, energy hungry data
transfer) and huge leakage power for holding data in volatile
memory [4], [7]. For example, it was reported that data transfer
between CPUs and off-chip memory consumes two orders of
magnitude more energy than a floating point operation [8].
Therefore, there is a great need to leverage innovations from
both device and architecture to build an energy-efficient and
high performance computing platform integrating memory and
logic to break the existing memory and power walls.

In the last two decades, Processing-in-Memory (PIM) archi-
tecture, as a potentially viable way to solve the memory wall
challenge, have been well explored [4], [5], [9], [10], [11].
The key concept behind PIM is to embed logic units within
memory to process data by leveraging the inherent parallel
computing mechanism and exploiting large internal memory
bandwidth. It could lead to remarkable savings in off-chip data
communication energy and latency. PIM architectures ideally
should be capable of performing bulk bit-wise operations
which is needed in many applications [12]. The proposals for
exploiting SRAM-based [13], [14] PIM architectures can be
found in recent literature. However, PIM in context of main
memory (DRAM- [5], [10]) has drawn much more attention in
recent years mainly due to larger memory capacities and off-
chip data transfer reduction as opposed to SRAM-based PIM.
However, existing DRAM-based PIM architectures have major
shortcomings, e.g., high refresh/leakage power, multi-cycle
logic operations, operand data overwritten, operand locality,
etc.

The PIM architecture has become even more intriguing
when integrated with emerging Non-Volatile Memory (NVM)
technology, such as Phase Change Memory (PCM) [15] and
resistive RAM (ReRAM) [4]. ReRAM and PCM offer more
packing density (∼ 2 − 4×) than DRAM, and hence appear
to be competitive alternatives to DRAM. However, they suffer
from slower and more power hungry writing operations than
DRAM [15]. In emerging NVM technologies, Magnetic RAM
(MRAM) technology is another promising high performance
candidate for both last level cache and main memory, due to its
ultra-low switching energy, non-volatility, superior endurance,
excellent retention time, high integration density and compati-
bility with CMOS technology. Meanwhile, MRAM technology
is in the process of commercialization [16]. Hence, PIM in
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the context of different NVMs, without sacrificing memory
capacity, can open a new way to realize efficient in-memory
computing paradigms [4], [12], [17]. However, existing NVM-
based PIM architectures have unavoidably relied on external
processing unit to perform complex logic operations which
further limits their performance. Additionally, they have been
limited to basic logic operations such as AND, OR and XOR so
far [12], [18], which are not necessarily applicable to a wide
variety of tasks except by imposing multi-cycle operations to
realize specific functions such as addition [10], [19].

The main goal of this paper is to develop a multipurpose,
flexible, non-volatile, parallel, and energy-efficient PIM ar-
chitecture that could simultaneously work as a non-volatile
memory and realize a high performance accelerator for both
structured and non-structured data-intensive applications. The
main contributions of this paper are summarized as follows:
• We propose a novel STT-MRAM in-memory accelerator,

MIRMA, that integrates important memory and logic functions.
MIRMA is based on a set of novel microarchitectural and
circuit-level schemes that position MIRMA as a massive data-
parallel unit with negligible area overhead.
• We present in-memory bit-wise adder and in-memory bit-

wise convolver architectures based on MRIMA to accelerate
binary-weight and low bit-width CNNs and to demonstrate
the effectiveness of MRIMA, with resource allocation opti-
mization. We further propose detailed mapping methods that
harness the full potential of PIM capabilities to reduce CNN’s
data movement overheads. MRIMA is fully capable of realizing
CNN-in-memory.
• We present an in-memory data encryptor, which shows

the superior performance of MRIMA as an in-memory encryp-
tion engine employing Advanced Encryption Standard (AES)
algorithm.
• We discuss major challenges and opportunities for practi-

cal integration of MRIMA in other architectural layers consid-
ering cache coherence, memory layout and interleaving, etc.

The paper is organized as follows. Section II presents
the background of MRAM and existing PIM challenges. In
Section III, we propose MRIMA architecture and its system
integration. Section IV presents the acceleration methods of
MRIMA for different applications. We then present the experi-
mental results to show the efficacy of the proposed platform in
Section V. Section VI and Section VII discuss the architectural
challenges and related works, respectively. Finally, Section
VIII concludes the work.

II. BACKGROUND

A. Fabrication and Commercialization of MRAM

Recent experiments and fabrication of nano-magnets
demonstrate the ability to switch the magnetization using
ultra-small current induced Spin-Transfer Torque (STT) or
Spin-Orbit Torque (SOT) with high speed (sub-nanosecond),
long endurance (10 years) and less than fJ/bit memory
write energy (close to SRAM) [20], [21]. Various nanoscale
spintronic devices have been explored to realize non-volatile
storage devices for MRAM applications, including but not
limited to Magnetic Tunnel Junction (MTJ) [22], Domain
Wall Motion (DWM) device [23] and SOT-MTJ memory
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Figure 1: (a) Device structure of MTJ, (b) 1T1R STT-MRAM,
(c) Biasing conditions.

device [24]. Several companies, including IBM [25], and
Everspin [16] are developing MRAM chips for next-generation
universal NVM systems. In early 2016, Everspin announced
256Mb STT-MRAM chips based on MTJ with interface speed
similar to DRAM and was planning 1Gb chips in near future
[16]. Toshiba and SK Hynix co-developed a 4-Gbit STT-
MRAM chip prototype and demonstrated at IEDM 2016 [26].
In summary, with the great advancement of fabrication tech-
nology and commercialization progress, MRAM is becoming
a next-generation universal NVM technology, with potential
applications in both last level cache and main memory. It
will greatly change the state-of-the-art memory hierarchy due
to its non-volatility, zero leakage power in un-accessed bit-
cell, high integration density (2X more than SRAM), excellent
endurance (∼ 1015 cycles [27]) and compatibility with the
CMOS fabrication process (back end of line) [22].

B. STT-MRAM

A typical MTJ structure (Fig. 1a), consists of two ferromag-
netic layers with a tunnel barrier sandwiched between them.
Due to the Tunnel MagnetoResistance (TMR) effect [28], the
resistance of MTJ is high (low) when the magnetization of two
ferromagnetic layers are in anti-parallel (parallel) state. The
TMR ratio is defined as (RAP-RP)/RP, which may vary from
10% to 400% depending on materials and temperature [28],
[29]. Thus, the data are stored as the magnetization direction
in the free layer, which could be programmed through current
induced STT. Note that, the MTJ with Perpendicular Magnetic
Anisotropy (PMA) is used in this work. The 1T1R memory bit-
cell is widely used in the typical MRAM design, as depicted
in Fig. 1b, which is controlled by Bit Line (BL), Word
Line (WL), and Source Line (SL). The biasing conditions of
memory read/ write are presented in Fig. 1c.

C. PIM Challenges

Recent PIM architectures have faced several limitations and
challenges. Here, we briefly discuss some of them. First, most
of recent PIM designs offer application-specific acceleration
architectures rather than a general-purpose platform for com-
putation due to the device-circuit level limitations, so they
are not necessarily applicable to other applications. For in-
stance, the ReRAM crossbar-based designs [4], [17], [30], [31]
have been widely used to accelerate CNNs. Ambit [10] and
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Figure 2: MRIMA architecture.

Pinatubo [12] as recent in-memory accelerators enable only
bulk bit-wise in-memory operations tailored for data-intensive
applications. DRISA [5], Compute Cache [13] and CMP-
PIM [32] optimize and exploit massive DRAM, SRAM and
SOT-MRAM parallelism, respectively, by modifying memory
peripherals like SAs at memory sub-array level to perform
CNN acceleration. DW-AES [33], RIMPA [34] and HieIM
[35] target for designing in-memory encryption engines by
developing efficient in-memory XOR units. Second, current
PIM schemes unavoidably rely on external processing unit for
performing more complex logic operations, otherwise PIM’s
performance degradation would be considerable due to multi-
cycle logic operations. For instance, addition as a preeminent
operation for a wide variety of applications, can be more
efficiently performed by processor rather than a PIM platform.
Recent in-memory addition techniques [19], [36], [34] do not
show acceptable performance specially for multi-bit addition.
The STT-CiM [37] presents an interesting way to realize in-
memory bit-line addition by adding logic gates directly in
reconfigurable SA. However, it requires additional memory
cycles to save carry out bit back to the memory and uses
it for computation of next bits. Third, in addition to large
refresh power of DRAM-based PIM architectures [5], [10],
they are dealing with a destructive data-overwritten issue due
to the charge sharing characteristic of capacitors. It means
that the result of computation will ultimately overwrite the
operands. To solve this issue in the context of DRAM, multi-
cycle operations [5], [10] are set forth which further degrade
PIM performance.

III. MRIMA ARCHITECTURE
A. Architecture

The general memory organization of MRIMA is shown
in Fig. 2. The main memory chip is basically divided into
multiple Banks. Each bank, consists of multiple memory
matrices (mats). Banks within the same chip typically share
I/O and buffer, and banks in different chips work in a lock-step
manner. The mats are connected to a Global Row Decoder
(GRD) and a shared Global Row Buffer (GRB). Each mat
consists of multiple memory sub-arrays connected to a GRD
and GRB. According to the application type and physical
address of operands within memory, MRIMA’s Controller
(Ctrl) is able to configure the computational sub-arrays to
perform data-parallel inter-sub-array computations. Every two
computational sub-arrays share a Local Row Buffer (LRB) as
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Figure 3: MRIMA’s acceleration steps.

well as a Digital Processing Unit (DPU) to further process the
data (if necessary) in specific applications as will be discussed
later. Fig. 3 gives an overview on MRIMA’s acceleration steps.
Assume input tensors A and B (that can belong to a variety of
applications) are initially stored in Data Banks of the memory.
In the first step, either raw data or preprocessed data (by DPU)
are mapped into the computational sub-arrays in specific mats.
In the second step, parallel computational sub-arrays, which
are designed to handle the computational load employing
PIM techniques, perform bulk bit-wise operations between
tensors and generate the output. This can be considered as
the ultimate output in data-encryption or graph processing
applications. Additionally, the generated data can be further
processed by DPU to generate the output for neural network-
based applications. We elaborate the above-mentioned steps in
the rest of the paper.

B. Microarchitecture
Fig. 4a depicts the presented PIM sub-array architecture

based on STT-MRAM. This architecture mainly consists of
Write Driver (WD), modified Memory Row Decoder (MRD)
(elaborated in Fig. 4b), Memory Column Decoder (MCD),
reconfigurable Sense Amplifier (SA) (Fig. 4b), and can be
adjusted by Ctrl unit (Fig. 4b) to work in dual mode that
perform both memory write/read and bit-line computing.

The key idea to perform memory read and bit-line comput-
ing is to choose different thresholds (references) when sensing
the selected memory cell(s). The proposed reconfigurable
SA, as depicted in Fig. 4b, consists of two sub-SAs and
totally six reference-resistance branches that can be selected
by enable bits (ENM , ENOR3, ENOR2, ENMAJ , ENAND3,
ENAND2) by the sub-array’s Ctrl to realize the memory and
computation schemes as tabulated in Table II. Such reconfig-
urable SA could implement memory read and one-threshold
based logic functions only by activating one enable at a time
e.g. by setting ENAND2 to ‘1’, 2-input AND/NAND logic can
be readily implemented between operands located in the same
bit-line. Meanwhile, by activating two enables at a time e.g.
ENOR2, ENAND2, two logic functions can be simultaneously
implemented and further used to generate two-threshold based
logic functions like XOR2/XNOR2, as explained accordingly.

1) Memory Mode: To write a data in a memory cell,
the corresponding WL is activated using the MRD. Then
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Figure 4: The MRIMA’s sub-array architecture: (a) Block level scheme and STT-MRAM realization of 2-input and 3-input
in-memory logic methods, (b) Peripherals of computational sub-arrays to support computation.

Table II: Config. of enable bits for different functions.

Ops. read/
NOT

OR2/
NOR2

AND2/
NAND2

XOR2/
XNOR2

MAJ/
MIN

OR3/
NOR3

AND3/
NAND3

ENM 1 0 0 0 0 0 0
ENOR2 0 1 0 1 0 0 0
ENAND2 0 0 1 1 0 0 0
ENOR3 0 0 0 0 0 1 0
ENAND3 0 0 0 0 0 0 1
ENMAJ 0 0 0 0 1 0 0

appropriate voltage difference (Fig. 1c) is applied to the
corresponding BL and SL using the WD connected to them
(the write current path is shown in Fig. 1b), leading to MTJ
resistance in High-RAP (/Low-RP ). To read a data from a
memory cell, the corresponding WL is activated using the
MRD and the corresponding BL is connected to the SA using
the MCD (the read current path is shown in Fig. 1b). The idea
of voltage comparison for memory read is shown in Fig. 5a,
a single cell is addressed to generate a sense voltage (V sense),
which will be compared with memory mode reference voltage
activated by ENM (Vsense,P<Vref,M<Vsense,AP). Now, if the
path resistance is higher (/lower) than RM (memory reference
resistance), i.e. RAP (/RP ), then the SA produces High (/Low)
voltage indicating logic ‘1’ (/‘0’). Note that, one SA per BL
is considered to maximize the output bandwidth.
•Fast row copy (FRC): MRIMA’s FRC mechanism needs

a consecutive memory read and write operations. In the first
half-cycle, the source row is activated by sub-array’s MRD and
readout to LRB (shown in Fig. 2); in the second half-cycle,
the data stored in buffer is written back to the destination
row. It is noteworthy that FRC can be readily used in mat
and bank levels considering inter-component’s buffer (GRB)
to accelerate copy operation in MRIMA’s sub-components.

2) Bit-line Computing Mode: The computational sub-array
of MRIMA is designed to perform bulk bit-wise in-memory
logic operations between two or three operands located in the
same bit-line.
•Two-input in-memory logic (IML2x): In this method, ev-

ery two bits stored in an identical column can be selected

employing the MRD and sensed simultaneously, as depicted in
Fig. 4a R.H.S. Then, the equivalent resistance of such parallel
connected STT-MRAMs and their cascaded access transistors
are compared with a programmable reference by SA. Through
selecting different reference resistances (RAND2, ROR2), the
SA can perform basic 2-input in-memory Boolean functions
(i.e. AND2 and OR2) e.g. to realize AND operation, Rref is
set at the midpoint of RAP //RP (‘1’,‘0’) and RAP //RAP

(‘1’,‘1’). Consider the data organization shown in Fig. 4a
L.H.S., where A and B operands correspond to M1 and
M2 memory cells in Fig. 4a R.H.S., respectively, IML2x
method generates AB after SA in a single memory cycle.
The idea of voltage comparison between Vsense and Vref for
IML2x is shown on Fig. 5b. It is worth pointing out that
only one sub-SA is used during one-threshold logic operations
to reduce the power consumption of sensing. Owing to the
complementary outputs of sub-SAs, the reconfigurable SA can
also provide NOT, 2-input NOR, NAND functions. The XOR2
logic is realized with two SAs (i.e. performing AND2 and
NOR2 logic, simultaneously) and an additional CMOS NOR
gate as shown in SA circuit in Fig. 4b.
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Figure 5: The idea of voltage comparison between Vsense and
Vref for (a) memory read, (b) IML2x, and (c) IML3x.

•Three-input in-memory logic (IML3x): In this method,
every three cells located in an identical column can be selected
by MRD and sensed simultaneously to realize 3-input logic
functions (i.e. AND3/NAND3, OR3/NOR3, MAJ/MIN). For
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instance, consider the data organization shown in Fig. 4a,
where A, B, and C operands correspond to M1, M2, and
M3 memory cells, respectively, the computational sub-array
can perform majority function (AB + AC + BC) by setting
ENMAJ to ‘1’. As shown in Fig. 5c, to perform MAJ
operation, RMAJ is set at the midpoint of RP //RP //RAP

(‘0’,‘0’,‘1’) and RP //RAP //RAP (‘0’,‘1’, ‘1’). Note that,
R1, R2 and R3 in Fig. 5 denote the equivalent resistance
of selecting transistor, wire, etc. cascaded within the sensing
path. We take the average value across the memory array, since
normally the equivalent resistance depends on the location of
the selected memory cell.

In order to validate the variation tolerance of the sens-
ing circuit, we have performed Monte-Carlo simulation with
10000 trials. A σ = 2% variation is added to the Resistance-
Area product (RAP), and a σ = 5% process variation (typical
MTJ conductance variation [3]) is added on the TMR. The
simulation result of sense voltage (Vsense) distributions in Fig.
6 shows the sense margin for memory read, IML2x, and
IML3x. It can be seen that sense margin gradually reduces
when increasing the number of fan-ins. To avoid logic failure
and guarantee the output’s reliability, we limited the number of
sensed cells to 3. Such sense margin could be even improved
by either increasing the sense current or oxide thickness (tox),
but obviously by sacrificing the operation’s energy-efficiency.
To show this, we first increased the sense current (Isense)
from the initial value (∼ 6.6µA), plotted in Fig. 6c, to
∼ 18µA and re-ran the simulation for only IML3x to plot
Fig. 6d. We observe that, as we increase the sense current, the
voltage margin between two sensitive states (RP //RP //RAP

and RAP //RAP //RP ) has increased from initial 6.31mv to
31.4mv. Note that we don’t increase the sensing current above
20µA to make sure there is no read-write conflict.
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when Isense = 18µA.

To further explore the correlation between Isense and volt-
age margin for different MRIMA’s operations, Fig. 7a shows
the voltage margin for memory read, IML2x, and IML3x
operations when we gradually increase the Isense. As can be
seen, the larger Isense is, the larger voltage margin is achieved
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for different operations. In addition, we investigate IML3x’s
voltage margin considering different stochastic variations on
MTJ’s RAP/TMR (2%/5%, 5%/2%, and 5%/5%) in Fig. 7b
by increasing tox, from 1nm to 2.25nm (as experimentally-
demonstrated in [38]). We observe that, increasing tox from
1.5nm to 2nm leads to ∼30.4 mv increase in the sense margin,
which considerably enhances the reliability of this operation
in MRIMA.

In addition to the above-mentioned single-cycle logic oper-
ations, MRIMA’s sub-array can perform addition/ subtraction
(add/sub) operation quite efficiently. With a careful observa-
tion on full-adder Boolean logic, we notice that carry-out can
be directly produced by MAJ function (Carry in Fig. 4b) just
by setting ENMAJ to ‘1’. Accordingly, we devised a carry
latch at this point to store intermediate carry outputs to be
used in summation of next bits. Meanwhile, Sum output can
be obtained by inserting a 2-input XOR gate in reconfigurable
SA. Now, assume A, B, and C operands (in Fig. 4a), IML2x
and IML3x are able to generate Sum (/Difference) and Carry
(/Borrow) bits as will be elaborated in the next section. Parallel
computing/read is implemented by using one SA per bit-line.

C. System Integration

While MRIMA is meant to be an independent high-
performance and energy-efficient accelerator, we need to ex-
pose it to programmers and system-level libraries to utilize it.
From a programmer perspective, MRIMA is more of a third
party accelerator that can be connected directly to the memory
bus or through PCI-Express lanes rather than a memory unit,
thus it is integrated similar to that of Graphic-Processing Units
(GPUs). Therefore, a virtual machine and ISA for general-
purpose parallel thread execution need to be defined similar
to PTX [39] for NVIDIA. Accordingly, the programs are
translated at install time to the MRIMA hardware instruction
set tabulated in Table III. The micro and control transfer
instructions are not shown in the table.

Table III: The basic instructions of MRIMA.
opcode operation function
FRC B ← A Copy row A to Row B

IML2x
IML21
IML22
IML23

A.B
A+B
A⊕B

AND2/NAND2
OR2/NOR2

XOR2/XNOR2

IML3x
IML31
IML32
IML33

A.B.C
A+B+C

AB +AC +BC

AND3/NAND3
OR3/NOR3
MAJ/MIN
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The MRIMA commands/instructions can be directly
copied/written to a predefined memory-mapped address
ranges, e.g., defined in the memory type range registers
(MTRRs), or programmed through writing to Memory-
Mapped I/O regions that are allocated through a simple
device driver to do initialization/cleanup for required software
memory structures. Note that the first approach can potentially
bring more performance gains compared to the later one;
accessing MRIMA as an I/O device can incur significant
overheads due to interrupts and page faults (in case of
shared memory model). In contrast, memory-mapped MRIMA
scheme can cause major contentions in the memory bus in
case the processor is executing memory-intensive applications
simultaneously. We leave choosing the scheme of integrating
MRIMA to system architects based on their workloads and
usecases. In both schemes for integrating MRIMA, the com-
mands/instructions that MRIMA architecture accept is similar
and based on the ISA.

IV. MRIMA ACCELERATION METHODS
A. CNN Inference Accelerator

In CNNs, Multiplication and Accumulations (MAC) be-
tween input and kernels are the key and most computationally
-expensive arithmetic operations that always take most fraction
of execute time in different hardware implementations [40]. To
eliminate the need for massive MAC operations and memory
usage, researchers have come up with various quantized/binary
CNNs [41], [42] by forcing the inputs/weights to be quan-
tized/binary specifically in inference mode. In this work, we
demonstrate that MRIMA can accelerate binary-weight CNNs
(BWNNs) and low bit-width CNNs using its intrinsic in-
memory bit-wise adder and convolver. Assume input feature
maps (I) and kernels (W ) are stored in data banks of memory
(Fig. 3). In both networks, except for the inception layer,
kernels need to be constantly quantized before mapping into
computational sub-arrays. However, quantized shared kernels
can be utilized for different inputs. DPU includes three ancil-
lary units (i.e. Quantizer, Batch Normalization and Activation
Function). Quantization is basically performed using DPU’s
Qnt. module and then results are mapped to the parallel sub-
arrays (1st step). In the 2nd step, the parallel sub-arrays extract
the features using MRIMA’s computation methods. Finally,
DPU’s Active. module activates the generated feature map and
complete 3rd step by producing output fmaps.

1) In-memory bit-wise adder: As the main operation of
BWNNs, add/sub is the most critical unit of the accelerator
[30], [42]. This unit must keep high throughput and resource
efficiency while handling different input bit-widths at run-time.
Therefore, here we propose a parallel in-memory adder (/sub-
tractor) based on IML2x and IML3x methods to accelerate
multi-bit add/sub operations. While there are few designs for
in-memory adder/subtractor in literature [5], [19], [34], [36],
to the best of our knowledge, this work is the first which
presents a fast and fully parallel design in MRAM domain. Fig.
8 shows the requisite data organization and computation steps
of binary-weight layers with a straightforward and intuitive
example in Fig. 9 only considering add operations. Obviously
sub can be implemented based on add.
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weight layers.

(1) Initially, c channels (here, 4) in the size of kh×kw (here,
3×3) are selected from input batch and accordingly produce
a combined batch w.r.t. the corresponding binary {0,1} kernel
batch. Note that, MRIMA only employs 2’s complement-based
data partitioning, mapping and computation method. (2) The
combined batch’s channels are transposed and mapped to the
designated computational sub-arrays. Considering n-activated
sub-arrays with the size of x×y, each sub-array can handle the
parallel add/sub of up to x elements of m-bit (3m+ 2 ≤ y)
and so MRIMA could process n×x elements to maximize the
throughput. Here, Ch-1 to Ch-4 are respectively transposed
and mapped to sub-array #1. (3) After mapping, the parallel
in-memory adder of MRIMA accelerator operates to produce
the output feature maps. The memory sub-array organization
for such parallel computation is delineated in Fig. 8 R.H.S.
Two reserved rows for Carry results initialized by zero and
m (here, 4) reserved rows are considered for Sum results. We
have shown the current state (Q) as well as the next state
(Q*) of SA’s latch after being enabled for further clarification.
We use the add operation of two matrices of 4-bit elements
(Ch1 and Ch2) in Fig. 9 to elaborate how addition operates in
the MRIMA. Every two corresponding elements that are going
to be added together have to be aligned in the same bit-line.
Here, Ch1 and Ch2 should be aligned in the same sub-array.
Ch1 elements take the first 4 rows of the sub-array followed
by Ch2 in the next 4 rows.
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the two words and continues towards MSBs. There are 2
cycles for every bit-position computation divided into four
steps indicated by S1, S2, C1, and C2. In step 1 of Sum (S1),
2 RWLs (accessing to LSBs of 4 elements) and Latch (storing
zero) are enabled to generate the sum. The SAs use the 2 bit
cells located in the same bit-lines as input operands for IML23
(see Table III) and carry latch’s data as carry-in to generate
sum based on the method explained in the previous subsection.
During step 2 of Sum (S2), a WWL is activated to save back
the Sum bit using FRC. In step 1 of Carry (C1), the same
2 operands in conjunction with one of the carry’s reserved
rows are enabled to generate the carry-out leveraging IML33.
During step 2 of Carry (C2), FRC is activated to save back
the carry-out bit into a reserved row and also in latch. This
carry-out bit overwrites the data in the carry latch and becomes
the carry-in of the next cycle. This process is concluded after
2×m cycles, where m is number of bits in elements. To sum it
up, MRIMA’s bit-wise adder supports different configurations
of activation when weight is binary (<W:A>=< 1:m >).

2) In-memory bit-wise convolver: The main idea of this
scheme is to exploit logic AND, bitcount, and bitshift as
rapid and parallelizable operations to accelerate low bit-width
(quantized) MACs in convolutional layers. The AND-based
convolution of k-bit fixed point integers has been presented in
[41]. There are some other layers in CNNs, such as inception
layer (directly taking image as inputs and not necessarily
quantized) and Fully-Connected (FC) layer. These layer can
be equivalently implemented by convolution operations using
1× 1 kernels [41]. Thus, all layers could be implemented by
convolution computation by exploiting these operations [41],
[43]:

I ∗W =

M−1∑
m=0

N−1∑
n=0

2m+nbitcount(AND2(Cn(W ), Cm(I))) (1)

Assume I is a sequence of M -bit input integers (3-bit as
an example in Fig. 10) located in input fmap covered by
sliding kernel of W , such that Ii ∈ I is an M -bit vector
representing a fixed-point integer. We index the bits of each
Ii element from LSB to MSB with m = [0,M − 1], such that
m = 0 and m =M − 1 are corresponding to LSB and MSB,
respectively. Accordingly, we represent a second sequence
denoted as Cm(I) including the combination of mth bit of
all Ii elements (shown by elliptic). For instance, C0(I) vector
consists of LSBs of all Ii elements “0110”. Considering W
as a sequence of N -bit weight integers (3-bit, herein) located
in sliding kernel with index of n = [0, N − 1], the second
sequence can be similarly generated like Cn(W ). Now, by
considering the set of all mth value sequences, the I can be
represented like I =

∑M−1
m=0 2mcm(I). Likewise, W can be

represented like W =
∑N−1

n=0 2ncn(W ).
As shown in data mapping step in Fig. 10, C2(W )-C0(W )

are consequently mapped to the designated sub-arrays of
MRIMA. Accordingly, C2(I) − C0(I) are mapped in the
following memory rows in the same way. Now, computa-
tional sub-array can perform bit-wise parallel AND2 operation
(IML21) of Cn(W ) and Cm(I) as depicted in Fig. 10. The re-
sults of parallel AND operations stored within sub-array will be
accordingly processed using bit-counter. Bitcount is translated
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Figure 10: Mapping and computation of MRIMA’s bit-wise
convolver.

to the addition of bits implemented by our in-memory adder.
It passes the data to a shifter implemented by consecutive
memory read and write operations (FRC). As depicted in
Fig. 10, “0001”, produced by in-memory adder is left-shifted
by 3-bit (×22+1) to “1000”. Eventually, in-memory bit-wise
adder can produce the output fmaps. Note that MRIMA’s bit-
wise convolver supports different configurations of weight and
activation (<W:A>=< n:m >).

B. Data Encryption Accelerator

As emerging NVMs can potentially host persistent data,
hence enable data remanence attacks, their deployment is often
paired with some sort of encryption. Specifically, most state-
of-the-art secure NVM systems use AES encryption engines
to encrypt the data as it gets written to NVM. While the
processor is typically the trust base, we can also rely on PIM
to do the actual encryption without the need to bring the data
all the way to the processor chip, decrypt it, then encrypt
it with a new key and write it back again, but rather just
doing it on the spot. There are many use-cases in which such
in-memory encryption accelerator is useful: encrypting files
with different keys, frequent updates for the keys, and frequent
reassignment of memory pages for users with different keys. In
all such cases, an efficient way of encrypting data is preferred;
refreshing keys would no longer throttle memory bandwidth
and limit performance of other running applications. We take
the AES algorithm as an example to elucidate the mapping
of transformations in MRIMA, which reveals its benefits of
energy-efficiency and high throughput for in-memory data
encryption applications. AES is an iterative symmetric-key
cipher where both sender and receiver units use a single key
for encryption and decryption. AES basically works on the
standard input length of 16 bytes (128 bits) data organized in a
4×4 matrix (called state matrix (SM )) while using 3 different
key lengths (128, 192, and 256 bits) [33]. For 128-bit key
length, AES encrypts the input data after 10 rounds of con-
secutive transformations enumerated as SubBytes, ShiftRows,
MixColumns, and AddRoundKey (Fig. 11a).

To facilitate working with input data, each byte in input
data is distributed into 8-bit (Fig. 11b). So, 8 memory arrays
are filled by 4×4 bitmatrices. Mapping of four AES transfor-
mations to MRIMA is shown in Fig. 11d. In SubBytes stage,
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Figure 11: (a) AES block diagram, (b) Data organization, (c)
ShiftRows and MixColumns transformation, (d) Mapping of
AES’s transformations to MRIMA.

each byte of SM will undergo a Look-Up Table (LUT) based
transformation using S-box which was conventionally stored
in SRAM with significant leakage power. However, it can
be readily implemented within the MRIMA sub-arrays with
no add-on circuits with consecutive read/write operations as
shown in Fig. 11d. In ShiftRows stage, SM will undergo a
cyclical shift operation by a certain offset. One of the STT-
MRAM arrays is considered as a buffer to temporarily save the
readout data. In this way, after reading the data from second to
fourth row (3 rows), they can be easily rewritten to the memory
with desired order. In MixColumns and AddRoundKey stage,
parallel in-memory XOR2 operation (IML23) along with FRC
operations are used.

V. EVALUATION
•Evaluation platform: To assess the performance of

MRIMA as a new PIM platform, a comprehensive device-to-
architecture evaluation framework along with two in-house
simulators are developed. First, at the device level, we
jointly use the Non-Equilibrium Green’s Function (NEGF)
and Landau-Lifshitz-Gilbert (LLG) equations to model STT-
MRAM bitcell (i.e. MTJ) [3], [44] based on device parameters
tabulated in Table IV. For the circuit level simulation, a
Verilog-A model of 1T1R STT-MRAM device is developed
to co-simulate with the interface CMOS circuits in Cadence
Spectre and SPICE. 45nm NCSU Product Development Kit
(PDK) library [45] is used in SPICE to verify the proposed
design and acquire the performance of designs. Second, an
architectural-level simulator is built based on NVSim [46].
NVSim is a non-volatile memory circuit simulator and reports
MRAM performance parameters, which can be calibrated
with fabrication MRAMs. Based on the device/circuit level
results, our simulator can alter the configuration files (.cfg)
corresponding to different array organization and report per-
formance metrics for PIM operations. The controllers and
add-on circuits are synthesized by Design Compiler [47]
with an industry library. Third, a behavioral-level simulator
is developed in Matlab calculating the latency and energy
that MRIMA spends considering a particular application. In
addition, it has a mapping optimization framework for the
CNN and data encryption applications. Besides, we developed
a comprehensive Verilog model for DPU interacting with our

Table IV: Simulations Parameters.

Parameter Value
Free layer dimension (W × L× t)FL 65× 65× 2 nm3

Polarization factor, P 0.4
Gilbert Damping Factor, α 0.007

Saturation Magnetization, Ms 850 kA/m
Oxide thickness, tox 1.5 nm

RA product, RAp / TMR 10.58 Ω · µm2 / 171.2%
Supply voltage 1 V

CMOS technology 45 nm
STT-MRAM cell area 48F 2

Access transistor width 9F
Cell aspect Ratio 1.34

SPICE level circuit implementation to run the simulation and
perform the evaluation. There are two activation functions be-
ing used in MRIMA (i.e. tanh(x)+1

2 and sign(x)). From hard-
ware implementation perspective, activation functions were
developed using lookup-table-based transformations [48] with
case-statement codes. Batch normalization unit alleviates the
information loss during quantization by normalizing the input
batch to have zero mean and unit variance. It generally
performs an affine function y = kx + h [49], where y and x
denote the corresponding output and input feature map pixels,
respectively. During inference mode, all the other parameters
are pre-computed and stored in MRIMA arrays. Therefore, BN
can fetch each pixel of feature maps, fed forward to the batch-
norm layer, and write back the corresponding normalized
pixel employing an internal, multiplexed CMOS adder and
multiplier to perform this computation efficiently.

•Experimental setup for MRIMA: We configure MRIMA’s
memory organization with 512 rows and 256 columns per sub-
array with total 16 sub-arrays per mat in a H-tree routing
manner, 2×2 mats (with 2/2 and 2/2 as row and column
activations) per bank, 4×4 banks (with 1/4 and 4/4 as row and
column activations) per group; in total 4 groups and 512Mb
total capacity.

•Area and peak performance: The area of MRIMA is
109.6mm2. Fig. 12a shows the breakdown of the area over-
head resulted from add-on hardware to original MRAM chip.
Our experiments show that, in total, MRIMA imposes 5.6%
area overhead to the memory die, where Pinatubo [12], RIMPA
[34], and DRISA [5] incur 0.9%, 17%, and 5% area overhead,
respectively. We observe that the modified controller and
drivers contribute more than 50% of this area overhead in a
memory group. Obviously, the choice of the number of sub-
arrays is a trade-off between peak GOps/s and area overhead.
Enlarging the chip area brings in a higher performance for
MRIMA and other PIM designs due to the increased number of
sub-arrays, though the die size directly impacts the chip cost.
Fig. 12b shows this trade-off considering both computational
and power efficiency metrics [17], [31]. With current config-
uration, the computational efficiency of MRIMA is 1521.83
GOps/s/mm2 which is higher than PipeLayer-ReRAM [31]
(1485), ISAAC-ReRAM [17] (478.9) and DaDianNao-ASIC
[50] (63.46). Power efficiency of MRIMA is 455.48 GOps/W
which is higher than PipeLayer-ReRAM (142.9), ISAAC-
ReRAM (380.7) and DaDianNao-ASIC (286.4). To have a fair
comparison, the area-normalized results will be reported in
section 5.2 for different platforms.
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Figure 12: (a) Area overhead of MRIMA in a memory group,
(b) Area-peak performance trade-off.

A. Non-structured Bulk Benchmark Evaluation

We first analyze the logic performance of MRIMA compared
to recent PIM platforms taking intrinsically-non-structured
ISCAS85 benchmarks. A logic netlist in Berkeley Logic Inter-
change Format (.blif) is fed into ThrEshold Logic Synthesizer
(TELS) [51] to obtain synthesized logic networks. Meanwhile,
parameters such as fan-in restriction is set up during the syn-
thesis. The synthesized networks are then mapped to MRIMA
using the developed simulator to assess the performance. Fig.
13 gives energy and delay of ISCAS85 combinational circuit
benchmarks implemented using MRIMA, Pinatubo [12], STT-
CiM [37], RIMPA [34], HieIM [35], and Ambit [10]. To
have an impartial comparison, Pinatubo, as a general system
architecture for NVMs, is implemented with the same standard
STT-MRAM, SOT-MRAM, and ReRAM technologies. We
observe that MRIMA spends the lowest energy and delay com-
pared to the counterparts in different benchmarks. (1) MRIMA
reduces the energy consumption by ∼ 72%, 61.2%, 75.5%,
and 86.2% compared to Pinatubo-STT [12], STT-CiM [37],
HieIM [35], and Ambit [10], respectively. This considerable
improvement mainly comes from the proposed logic efficiency
and reduced-cycle operations. (2) MRIMA outperforms the
mentioned PIM architectures respectively with 40.8%, 38.3%,
66.7%, and 95% reduction in delay on different benchmarks.
For five more complex benchmarks (i.e. c2670, c3540, c5315,
c6288, and c7552), as logic complexity increases, MRIMA can
show much better performance compared to the rest.
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Figure 13: (a) Energy and (b) Delay of ISCAS85 benchmarks
(Y-axis: Log scale).

B. CNN Acceleration Performance

In this subsection, we compare MRIMA with state-of-the-art
DRAM-, ReRAM-, ASIC-, and GPU-based solutions for the

CNN inference acceleration.
1) Modeling Setup: Bit-width: Four bit-width configu-

rations of <W:I> (<1:1>,<1:2>,<1:4>,<1:8>) are con-
sidered for the evaluation with an 8-bit gradient (<G>).
Data-set: The SVHN data-set [52] is selected. The images
are re-sized to 40×40 and fed to the model. Model: A
CNN with 6 binary-weight convolutional layers, 2 (average)
pooling layers and 2 FC layers is adopted. FC layers are
equivalently implemented by bit-wise convolutions. Training:
We used open source algorithm by DoReFa-Net [41] where
all the operations can be accelerated significantly using bit-
wise convolution of fixed-point integers. We adopt batch
normalization and different dropout techniques to accelerate
and avoid over-fitting. The model is trained on TensorFlow
[53] with 100 epochs and the lowest test error of epoch is
reported.

2) Accelerators’ Setup: DRAM: We developed a DRISA-
like [5] accelerator for binary-weight CNNs. Two different
computing methods of DRISA named 3T1C and 1T1C-adder
were selected for comparison. The 3T1C uses DRAM cells
themselves for computing and naturally performs NOR logic
on BLs. However, 1T1C-adder exploits a large n-bit adder
circuit for n-bit BLs after SAs. We accordingly modified
CACTI-3DD [54] for evaluation of DRAM’s solutions. Similar
to [5], the controllers and adders were synthesized in Design
Compiler [47]. ReRAM: A Prime-like [4] accelerator with two
full functional (FF) sub-arrays and one buffer sub-array per
bank (totally 64 sub-arrays) were considered for evaluation. In
FF subarrays, for each mat, there are 256×256 ReRAM cells
and eight 6-bit reconfigurable SAs. For evaluation, NVSim
simulator [46] was extensively modified to emulate Prime
functionality. Note that the default NVSim’s ReRAM cell file
(.cell) was adopted for the assessment. STT-MRAM: A STT-
CiM-like [37] accelerator was developed with the exactly same
memory configuration as MRIMA considering 512 rows and
256 columns computational sub-arrays and 512Mb total mem-
ory capacity. We used the same peripheral circuitry and DPU
as in MRIMA to perform an impartial comparison. Accord-
ingly, we used the evaluation platform developed for MRIMA
to assess STT-CiM performance in accelerating CNNs. ASIC:
We developed a DaDianNao-like [50] accelerator. To have a
fair comparison, we select two versions with either 8×8 tiles
or 16×16 tiles. Accordingly, we synthesized the designs with
Design Compiler [47] under 45 nm process node. The eDRAM
and SRAM performance were estimated using CACTI [55].
GPU: We used the NVIDIA GTX 1080Ti Pascal GPU. It
has 3584 CUDA cores running at 1.5GHz (11TFLOPs peak
performance). The energy consumption was measured with
NVIDIA’s system management interface. Similar to [5], we
scaled the achieved results by 50% to exclude the energy
consumed by cooling, etc. Accordingly, based on bit-width
configuration of <I> i.e. 1, 2, 4, 8, we aggressively scaled
GPU results by ×32, ×16, ×8, and ×4, respectively, to get
the peak performance for each quantized networks. Note that,
GPU doesn’t support fixed point CNN and real scale ratio
should be less than these numbers [5], [8].

3) Accuracy: Fig. 14a tabulates the test error results and
relative complexity of the discussed model under various con-
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figurations. Complexity of inference and training are achieved
using W ×I and W ×I+W ×G, respectively. Generally, ex-
periments replicate the conclusion drawn by [41] that weights,
inputs and gradients are progressively more sensitive to bit-
width changes. Fig. 14b depicts the prediction accuracy curve
vs. number of epoch in different configurations. We observe
that the low bit-width networks can keep the accuracy high
compared to the original 32-bit case.

Config. Complexity Test Error
W I Inference Training our Model
32 32 -(†) - 2.4%
1 1 1 9 3.1%
1 2 2 10 2.6%
1 4 4 12 2.4%
1 8 8 16 2.3%

(†) The computation complexity of 32:32 is
not shown, since it is not computationally
efficient to perform bit-wise convolution of 32:32
configuration [41] and it is already reported in
previous works. 0 20 40 60 80 100
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Figure 14: (a) Test error of the CNN model, (b) Prediction
accuracy vs. epoch.

4) Energy Consumption: Fig. 15 shows the MRIMA’s
energy-efficiency results on CNN application with a batch
size of 8 and 64 in different <W:I>. As shown, MRIMA
solution offers the highest energy-efficiency normalized to area
compared to others owning to its energy-efficient and parallel
operations. We observe that MRIMA achieves ∼1.8× and
2.1× higher energy-efficiency than that of DRAM-3T1C and
1T1C-adder, respectively. The main reason here is the energy-
efficiency of operations in MRIMA; as discussed earlier,
MRIMA can finish the operation (such as IML21) in one-single
cycle, however similar operation in DRAM-3T1C imposes
multi-cycle operations to avoid destructive data-overwritten.
Besides, the n-bit adder located after SAs in DRAM-1T1C-
adder solution will bring higher performance compared to
1T1C, though it has limited its energy-efficiency. Fig. 15
shows that MRIMA solution is 1.7× more energy-efficient than
the best ASIC solution. In addition, it shows ∼8.5× saving in
energy compared to ReRAM solution. It is worth pointing out
that MRIMA doesn’t follow the conventional ReRAM-based
crossbar designs to realize CNN-in-memory, which brings
significant energy-efficiency due to eliminating DAC/ADC
units. Compared to STT-CiM counterpart, MRIMA obtains on
average 1.4× higher energy-efficiency normalized to area. It is
worth pointing out that STT-CiM imposes additional memory
cycles and consecutively energy to save Carry bit in addition
operation. This was alleviated using MRIMAs in-SA latch as
explained in Section III.B.

5) Performance: Fig. 16 shows the MRIMA’s performance
results on CNN application in different <W:I>. It shows that
MRIMA solution is 2.4× faster than the best DRAM solution
(1T1C-adder) and 11.2× faster than ASIC64 solution. This
is mainly because of (1) ultra-fast and parallel in-memory
operations of MRIMA compared to multi-cycle DRAM op-
erations and (2) the existing mismatch between computation
and data movement in ASIC designs and even 1T1C-adder
solution. As a result, ASIC256 with more tiles does not show
higher performance. We can also observe that the larger the
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Figure 15: Energy-efficiency of different CNN accelerators.

activation’s bit-width is, the higher performance is obtained
for MRIMA solution compared to DRAMs owning to its more
paralleled computations. Additionally, we see that MRIMA is
8.1× faster that ReRAM solution. Note that ReRAM design
employs matrix splitting due to intrinsically limited bit levels
of ReRAM device so multiple sub-arrays should be occupied,
besides ReRAM-based crossbar has a large peripheral circuit’s
overhead such as buffers and DAC/ADC which contribute
more than 85% of area [4]. MRIMA achieves on average
1.5× higher speed-up compared with STT-CiM, with the
exactly same memory configuration. This mainly comes from
MRIMA’s fast and fully parallel operations.
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Figure 16: Performance of different CNN accelerators.
Fig. 17 shows the breakdown of the energy and delay

measurement of convolutional layers for four PIM-based solu-
tions, i.e. MRIMA, STT-CiM, DR-3T1C, and ReRAM into the
read and write parts for two bit-width configurations <1:1>
and <1:4>. We can observe that MRIMA outperforms other
platforms in terms of number write-back operations leading
to a reduced energy and delay. Note that, while the other
PIM counterpart designs based on NVMs such as Prime [4],
ISAAC [17], etc. propose to implement full bit-wise CNN
inside ReRAM, MRIMA proposes an alternative way, not only
taking advantage of a higher endurance memory (MRAM), but
also providing a faster and more energy-efficient computation
solution for such data-intensive application. As a numerical
evaluation, assuming the most write-intensive application in
this work, i.e. bit-wise CNN with <1:8> configuration, with
the same layer structure, MRIMA requires 9224 ' 105 write
cycles. Therefore, even by reusing computational sub-arrays
by repeatedly R&W operations, MRIMA can readily run the
application.

6) Memory Wall: Fig. 18 depicts the memory bottleneck
ratio i.e. the time fraction at which the computation has
to wait for data and on-/off-chip data transfer obstructs its
performance (memory wall happens). The evaluation is per-
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Figure 17: Break-down of (a) Energy and (b) Delay of four
PIM platforms.

formed according to the peak performance and experimentally
extracted results for each platform considering number of
memory access in each bit-width configuration. The results1

show the MRIMA’s favorable solution for solving memory wall
issue. (1) We observe that MRIMA, STT-CiM and DRAM-
3T1C solutions spend less than ∼15% time for memory access
and data transfer. While ASIC- and DRAM-1T1C accelerators
spend more than 90% time waiting for the loading data.
(2) In larger activation bit-widths (<I>=4 and 8), ReRAM
solution shows lower memory bottleneck ratio compared with
MRIMA. This comes from two sources: (1) increased number
of computational cycles and (2) unbalanced computation and
data movement of MRIMA due to limitation in number of
activated sub-arrays when operands get larger.
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Figure 18: The memory bottleneck ratio.

7) Resource Utilization: The less memory wall ratio can
be interpreted as the higher resource utilization ratio for
the accelerators, which is shown in Fig. 19. For instance,
in <1:8>, MRIMA, STT-CiM, DRAM-3T1C and ReRAM
solutions utilize the highest ratio (up to 65%) which reconfirms
the results reported in Fig. 18.
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Figure 19: The resource utilization ratio.

1GPU data could not be accurately reported for this evaluation.

C. Encryption Accelerator Performance

We assess the performance of 128-bit AES implemented
by MRIMA, general purpose processor (GPP), ASIC, CMOL
[56], DW-AES [33], RIMPA [34], Ambit [10] and Pinatubo
[12] in terms of energy consumption and number of cycles
required for the process. For evaluation of AES performance
in GPP, we have used similar method in [33] at 2GHz. AES C
code is extracted from [57] and compiled, then cycle-accurate
architecture simulator gem5 [58] is employed to take AES
binary and accordingly system level processor power evalu-
ating tool McPAT [59] is used to estimate power dissipation.
For evaluation of AES in CMOS ASIC (1.133GHz), Synopsys
Design Compiler tool is used. Fig. 20a and Fig. 20b show
the breakdown of energy2 and number of cycles required for
different AES transformations after mapping to the different
platforms, respectively.
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Figure 20: Breakdown of (a) Energy consumption and (b)
Delay of different AES implementations.

We observe that MixColumns consumes the most clock
cycles as well as energy due to the high number of resources
(memory and in-memory XOR) that it takes during operation.
In some of the XOR-unfriendly platforms such as Ambit [10]
and RIMPA [34], MixColumns contributes to more than 70%
of the energy consumption and number of cycles. The results
reveal the MRIMA’s energy-efficiency (Fig. 20a) compared to
other implementations. For instance, it can achieve ∼77% and
21% lower energy consumption compared to CMOS-ASIC and
RIMPA implementations, respectively at 30MHz. However,
from the number of cycles perspective, ASIC (with 336 cycles)
and CMOL (470) designs show better performance compared
to MRIMA (865).

VI. DISCUSSIONS

•Cache coherence: One major concern that is common
across most off-chip accelerators is cache coherence. When
MRIMA updates data directly in memory, there could be stale
copies of the updated memory locations in the cache, thus data
inconsistency issues may arise. Similarly, if the processor up-
dates cached copies from memory locations that MRIMA will
process later, MRIMA could actually use wrong/stale values.
There are several ways to solve such issues in accelerators,
the most common one is to rely on operating system (OS)
to unmap the physical pages accessible by MRIMA from

2Y-axis in Fig. 20a: Log scale.
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Table V: Related works comparison.
Features DRISA [5] Ambit [10] Prime [4] HieIM [35] MPIM [18] ISAAC [17] Pinatubo [12] RIMPA [34] STT-CiM [37] MRIMA

technology DRAM DRAM ReRAM STT-MRAM ReRAM ReRAM PCM/ReRAM/... DWM STT-MRAM STT-MRAM
volatility volatile volatile non-volatile non-volatile non-volatile non-volatile non-volatile non-volatile non-volatile non-volatile

in-memory logic
AND/NAND

OR/NOR
Maj-logic

AND/NAND
OR/NOR
MAj-logic

N/A AND/NAND
OR/NOR

AND/NAND
OR/NOR

XOR/XNOR
N/A

AND/NAND
OR/NOR

XOR/XNOR

AND/NAND
OR/NOR
Maj-logic

AND/NAND
OR/NOR

XOR

AND/NAND
OR/NOR

XOR/XNOR
Maj-logic

in-memory convolver 3T1C/1T1C-NOR/
1T1C-mixed/1T1C-adder N/A crossbar N/A crossbar crossbar N/A N/A N/A bit-wise adder/

bit-wise convolver

any process that can run while computing in MRIMA. The
other solution, which tends to be more expensive hardware-
wise, is to allow the memory controller to snoop coherence
transactions and pass them to MRIMA architecture, i.e., adding
MRIMA to the coherence domain. We believe that the decision
on how to implement coherence with MRIMA is highly-
dependant on its usecase and can evolve with time similar
to coherence with GPUs.
•Virtual memory: MRIMA has its own ISA with operations

that can potentially use virtual addresses. To use virtual
addresses, MRIMA’s Ctrl must have the ability to translate
virtual addresses to physical addresses. While in theory this
looks as simple as passing the address of the page table root
to MRIMA and giving MRIMA’s Ctrl the ability to walk the
page table, it is way more complicated in real-world designs.
The main challenge here is that the page table can be scattered
across different DIMMs and channels, while MRIMA operates
within a memory module. To avoid the complexity of virtual
memory when using MRIMA, system architects can opt for
designating a continuous physical range that can be used by
MRIMA and the user/application can use physical addresses for
operands. Directly operating on physical addresses can limit
multi-tasking on MRIMA, however, we leave supporting multi-
tasking in MRIMA through virtual memory support as future
work.
•Memory layout and interleaving: MRIMA strives to op-

timize for performance and power-efficiency. While high-
performance memory systems rely on channel interleaving to
maximize the memory bandwidth, MRIMA adopts a different
approach through maximizing spatial locality and allocating
memory as close to their corresponding operands as possible.
The main goal is to reduce the data movement across memory
modules and hence reducing operations latency and energy
costs. As exposing a programmer directly to the layout of
memory is challenging, MRIMA architecture can rely on
compiler passes that take memory layout and the program as
input, then assign physical addresses that are adequate to each
operation without impacting the symantics of the application.
•Reliability: Many ECC-enabled DIMMs rely on calculat-

ing some hamming code at the memory controller and use it
to correct any soft errors. Unfortunately, such a feature is not
available for MRIMA as the data being processed are not vis-
ible to the memory controller. Note that this issue is common
across all PIM designs. To overcome this issue, MRIMA can
potentially augment each row with additional ECC bits that
can be calculated and verified at the memory module level or
bank level. Augmenting MRIMA with reliability guarantees is
left as future work.

VII. RELATED WORKS

There is a great deal of PIM accelerators that present
reconfigurable platforms or application-specific logics in or

close to memory die [9], [11], [31], [60], [61], [62], [63],
[64]. Due to the lack of space, we shall restrict our compar-
ison (provided in Table V) to nine different platforms given
four important features, i.e. fabrication technology, volatility,
supporting in-memory logic and in-memory convolver. Table
V includes: DRISA [5] and Ambit [10] as DRAM-based PIM
architectures, PRIME [4] and ISAAC [17] as only crossbar-
based dot-product engines for Neural Network acceleration
based on ReRAM not supporting in-memory-logic, Pinatubo
[12] as a general architecture capable of doing bulk bit-
wise operations, MPIM [18] as a multi-purpose ReRAM-based
PIM, RIMPA [34] as a threshold logic PIM architecture based
on Domain Wall-RAM (DW-RAM) as well as HieIM [35] and
STT-CiM [37] as recent STT-MRAM-based PIM platforms. To
the best of our knowledge, this is the first work that proposes
an STT-MRAM PIM as an accelerator for a wide variety of
tasks such as CNN acceleration and data encryption. Based on
Table V, MRIMA is the only PIM architecture that not only
benefits from non-volatility, but also can implement a full set
of 2- and 3-input Boolean in-memory logic functions as well
as majority-based logic operations using its distinct computing
methods. Additionally, it can be as powerful as DRISA [5]
and MPIM [18] to accelerate in-memory convolution very
efficiently using different bit-wise methods.

VIII. CONCLUSION

In this paper, we proposed MRIMA, as a novel MRAM-
based In-Memory Accelerator for multipurpose, highly flexible
and efficient computation. MRIMA was developed based on
STT-MRAM array and optimized to achieve high performance.
It can be reconfigured to efficiently perform non-volatile mem-
ory operations and in-memory logic. Our simulation results on
CNN acceleration task demonstrate that MRIMA can obtain
1.7× better energy-efficiency and 11.2× speedup compared
to ASICs, and 1.8× better energy-efficiency 2.4× speedup
over the best DRAM-based PIM solutions. As an AES in-
memory encryption engine, MRIMA shows ∼77% and 21%
lower energy consumption compared to CMOS-ASIC and
recent domain wall-based design, respectively.
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