
52

C1C: A Configurable, Compiler-Guided STT-RAM L1 Cache

YONG LI, YAOJUN ZHANG, HAI LI, YIRAN CHEN, and ALEX K. JONES, University
of Pittsburgh

Spin-Transfer Torque RAM (STT-RAM), a promising alternative to SRAM for reducing leakage power
consumption, has been widely studied to mitigate the impact of its asymmetrically long write latency.
Recently, STT-RAM has been proposed for L1 caches by relaxing the data retention time to improve
write performance and dynamic energy. However, as the technology scales down from 65nm to 22nm, the
performance of the read operation scales poorly due to reduced sense margins and sense amplifier delays.
In this article, we leverage a dual-mode STT memory cell to design a configurable L1 cache architecture
termed C1C to mitigate read performance barriers with technology scaling. Guided by application access
characteristics discovered through novel compiler analyses, the proposed cache adaptively switches between
a high performance and a low-power access mode. Our evaluation demonstrates that the proposed cache
with compiler guidance outperforms a state-of-the-art STT-RAM cache design by 9% with high dynamic
energy efficiency, leading to significant performance/watt improvements over several competing approaches.

Categories and Subject Descriptors: [CCS Concepts]: Computer Systems Organization—Multicore
architectures

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: STT-RAM, configurable, compiler, cache, differential

ACM Reference Format:
Li, Y., Zhang, Y., Li, H., Chen, Y., and Jones, A. K. 2013. C1C: A configurable, compiler-guided STT-RAM L1
cache. ACM Trans. Architec. Code Optim. 10, 4, Article 52 (December 2013), 22 pages.
DOI: http://dx.doi.org/10.1145/2555289.2555308

1. INTRODUCTION

Spin-Transfer Torque RAM (STT-RAM) has been proposed for use in Chip MultiPro-
cessor (CMP) cache hierarchies as a potential replacement for SRAM particularly for
Last-Level Cache (LLC). STT-RAM caches can leverage near-SRAM performance for
read accesses, nonvolatility for reduced leakage power, and increased density and ca-
pacity over SRAM. Previous conventional wisdom for STT-RAM is that writes are
slower and require more power than their conventional SRAM counterparts. Thus,
write performance has been considered the fundamental performance bottleneck and
has received the focus of attention for optimization. Several architectural solutions
such as hybrid caches with fast and slow writing memory components [Wu et al. 2009;
Li et al. 2012]; various methods for preempting, avoiding, and bypassing writes [Zhou
et al. 2009; Guo et al. 2010; Qureshi et al. 2010]; and leveraging the asymmetry of
writing different logic values [Qureshi et al. 2012] have been proposed to mitigate the
write performance problem.

This work is supported by the National Science Foundation, under grant CCF-0702452.
Authors’ addresses: Y. Li, Y. Zhang, H. Li, Y. Chen, and A. K. Jones, Department of ECE, University of
Pittsburgh, Benedum Hall, 3700 O’Hara Street, University of Pittsburgh, Pittsburgh, PA 15261, USA.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481 or permissions@acm.org.
c© 2013 ACM 1544-3566/2013/12-ART52 $15.00

DOI: http://dx.doi.org/10.1145/2555289.2555308

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 52, Publication date: December 2013.



52:2 Y. Li et al.

Fig. 1. Application reads versus writes.

A large body of related research, such as those mentioned previously, propose hybrid
STT-RAM caches due to the complementary characteristics of STT-RAM versus SRAM
in an effort to mitigate challenges that prevent the building of an STT-RAM L1 such as
the increased write latency and high dynamic power. Unfortunately, hybrid solutions
are less desirable for caches due to additional complexity added to the design. Thus,
from the perspective of manufacturing, it is preferable to build caches with homoge-
neous memory technologies to reduce the integration, verification, and testing costs.
To address this problem, two recent techniques to improve the inherent write perfor-
mance of STT-RAM by tolerating a reduced data retention time [Smullen IV et al. 2011]
have led to proposals for use of STT-RAM at the L1 level [Sun et al. 2011] where data
access speed is crucial. This makes feasible an all STT-RAM cache hierarchy for use in
CMPs.

Unfortunately, physical effects of technology scaling down to 45nm and below, in par-
ticular process variation, introduce potentially alarming trends in read performance
of STT-RAM due to reduced sensing margins [Zhang et al. 2012b], especially at the L1
level. Our evaluation of this trend reveals that the read performance problem creates
a severe bottleneck for application data reads at higher levels of the cache hierarchy,
which typically dominate an application’s overall data accesses. Figure 1 shows that
for various multithreaded benchmarks, the reads contribute an average of 80% of all
the data accesses. A similar trend exists for single-threaded benchmarks. For example,
approximately three out of four accesses are reads in SPEC2006 [Ould-Ahmed-Vall
et al. 2008].

The goal of this work is to preserve an efficient all-STT-RAM cache hierarchy to avoid
significant design and fabrication overheads. A compiler-guided method is presented
to leverage a dual-mode STT-RAM cell structure, which utilizes differential sensing to
mitigate the increased sense delays and, consequently, the degraded read performance
incurred from the technology scaling in L1 caches. In our proposal, accelerated read
speed is achieved while maintaining a comparable write performance reported by the
state-of-the-art research [Smullen et al. 2011; Sun et al. 2011] that proposes STT-RAM
L1 enhancements.

The dual-mode STT-RAM structure allows the construction of L1 cache memories
in which a cache block can be configured as a Standard Block (SB) or through differ-
ential sensing configured as a Fast read Block (FB) at the expense of higher dynamic
write power and reduced capacity. The proposed compiler techniques analyze cache
read/write accesses and configure memory cells into the appropriate mode to acceler-
ate data reads without incurring excessive write power. In particular, the Consecutively
Read Blocks (CRBs) can be identified by the compiler, and mode switching instructions
can be inserted to configure the corresponding cache blocks as FB to accelerate read op-
erations efficiently. In contrast, transient read/write access patterns are serviced in SB
to retain low power and high density. The proposed compiler techniques avoid the need
for expensive runtime detection techniques in hardware, which can add significant
complexity and power consumption to the system.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 52, Publication date: December 2013.



C1C: A Configurable, Compiler-Guided STT-RAM L1 Cache 52:3

Fig. 2. Illustration of an MTJ and STT-RAM cell.

We make the following contributions compared with prior work:

—We identify and demonstrate that with technology scaling, the read performance
is an important new bottleneck that could prevent STT-RAM from being used in
timing-sensitive components (e.g., L1 caches) in future CMPs.

—We demonstrate a low-overhead Configurable L1 Cache (C1C) architecture in which
a data block can dynamically switch between two modes without data loss. The SB
has high density and consumes standard dynamic write power but suffers from a
lower read access speed at scaled technology nodes compared to SRAM. The FB
offers higher read performance with half the density and double the write power
compared to the SB.

—We present several novel compiler analyses, such as Consecutive Temporal Read
reuse (CTR), Consecutive Spatial Read reuse (CSR), and Read-Write Distance
(RWD). These compiler analyses complement the traditional compiler reuse anal-
ysis to handle new challenges.

—The proposed compiler techniques are combined with the configurable cache struc-
ture to maximize the read accesses at L1 in FB mode while maintaining a low
dynamic write power.

We demonstrate that the proposed C1C brings a 5% performance gain over SRAM
and 10% performance improvement with less than 2% dynamic power increase over
STT-RAM designs without read optimizations in 22nm technology. In addition, C1C
performs closely to (e.g., within 1.5% of) a static all-differential-mode STT-RAM L1
cache with a 26% energy consumption savings. The remainder of the article is orga-
nized as follows: Section 2 introduces the state-of-the-art STT-RAM optimizations for
write operations as well as the read optimization using differential sensing. Section 3
presents the configurable cache architecture to accelerate data read accesses at the L1
cache level. Additionally, the compiler techniques are introduced to analyze applica-
tion read/write characteristics that may benefit the configurable cache. We evaluate
the performance and power impact of the proposed techniques in Section 4. Section 5
lists related efforts. Finally, we draw conclusions in Section 6.

2. STT-RAM TECHNOLOGY TRENDS AND DESIGN

The building block of STT-RAM is the Magnetic Tunnel Junction (MTJ), which contains
two synthetic ferromagnetic layers (pinned and free layer) and one MgO-based tunnel
barrier layer [Wen et al. 2012; Zhang et al. 2012a], as illustrated in Figure 2. The
magnetic direction of the pinned layer is fixed, while the magnetic direction of the free
layer can vary through the application of an external electromagnetic field or spin-
polarized current through that layer. When the magnetization directions of the two
ferromagnetic layers are parallel, the MTJ is in its low-resistance state (Figure 2(A)).
In contrast, when the directions of the two layers are antiparallel, the MTJ resistance
is high (Figure 2(B)). The low and high MTJ resistances can be used to represent
logic values. In a typical “1T1J” [Hosomi et al. 2005b] STT-RAM cell illustrated in
Figure 2(C), one MTJ is connected with one NMOS transistor, which serves as the
access controller. This NMOS transistor is typically 1.5 times the size of each of the six

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 52, Publication date: December 2013.



52:4 Y. Li et al.

transistors that make up an SRAM cell, leading to the four times density improvement
assumed in SRAM replacements with STT-RAM [Sun et al. 2009].

2.1. Write Optimizations

Writes to the MTJ are completed by applying the write current to the cell for a sufficient
duration to set the magnetic direction of the free layer to a particular direction. This
action is called a “write pulse.” When the write pulse width is longer than 10ns, the
relationship between write current (Ic) and write pulse width (τ ) can be expressed by
Equation (1) [Hosomi et al. 2005a]. Ic0 and τ0 are the critical write current and the write
pulse width, respectively, at 0K; � is the magnetization stability energy barrier, which
determines the data retention performance of STT-RAM cells, that is, Tretain ∝ e� [Diao
et al. 2007]. � is defined in Equation (2), where Ku is the uniaxial anisotropy energy;
V is the volume of a ferromagnetic layer (free layer) of the MTJ; KB is the Boltzmann
constant; and T is the working temperature.

Ic(τ ) = Ic0

(
1 − 1

�
ln

( τ

τ0

))
(1)

� =
(

KuV
kBT

)
(2)

Based on these MTJ design parameters, there are several ways to improve writability
[Li et al. 2011a, 2011b; Smullen IV et al. 2011; Sun et al. 2011]. For example, changing
the saturation magnetization, the effective anisotropy field, or the thickness of the free
layer can lower �. In particular, a significantly faster write speed can be achieved at
the expense of reduced data retention time, and this technique has been demonstrated
to enable L1 STT-RAM caches [Sun et al. 2011]. Thus, we adopt this technique as a
baseline to eliminate the impact of excessive write latency and treat this as the state
of the art for STT-RAM L1 caches.

2.2. Read Optimization Using Differential Sensing

Reads are completed by sensing the voltage differential in the two resistance states
using a read current (Ir) applied for a particular duration, called a read pulse. For all
reads to MTJs, there is a probability of disturbing the stored value (Prdis) that can be
expressed as [Hosomi et al. 2005a; Chen et al. 2010]:

Prdis = 1 − exp
{
− t

τ
exp

[
−�

(
1 − Ir

Ic

)]}
. (3)

Here, t is the read pulse width. Equation (3) shows that Prdis is mainly determined by
the Ir/Ic ratio. STT design usually uses a global read driver to control Ir and supplies a
reference voltage (Vref ) to differentiate the high- and low-resistance states of a memory
cell. The sense margin of the memory cell thereby is proportional to Ir ·�R/2, where �R
is the difference between the high- and the low-resistance states. Improving memory
access speed by leveraging differential circuit design is demonstrated to be feasible by
several prior efforts [Scheuerlein et al. 2000; Kalter et al. 1990].

As the technology scales, the energy required for writing (Ic(τ )) decreases. To avoid
increasing Prdis, Ir/Ic must remain balanced, requiring proportional reductions to Ir,
which in turn reduces the sensing margin (Ir · �R/2). Thus, the typical assumption of
a 100mV sensing margin required to match the read performance of SRAM should be
scaled to more realistic values such as 80mV at 45nm and 40mV at 22nm.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 52, Publication date: December 2013.



C1C: A Configurable, Compiler-Guided STT-RAM L1 Cache 52:5

Fig. 3. Sense amplifier design.

Fig. 4. Voltage mode sense speed distribution with process variation at 22nm.

Sense performance is also heavily impacted by process variation, creating a distribu-
tion of sensing times. Sense delays such as 50ps reported in the literature [Smullen IV
et al. 2011] often assume the typical case (i.e., the peak of the sense delay curve) and
appear quite optimistic, implying no performance difference between the sense mar-
gins. To demonstrate this problem, we conducted Monte-Carlo simulations assuming
a 5% variation in both transistor size and MTJ shape with an additional 2% intradie
variation introduced to account for spatial correlation [Li et al. 2008] of a popular
sense-amplifier design in STT-RAM arrays [Cheng et al. 2010] shown in Figure 3.

Figure 4 shows the sensing time distribution curves with 40mV and 80mV margins
for conventional and differential sensing, respectively. Based on our modeling, the
average sensing times at 40mV and 80mV are 89ps and 99ps, respectively. Therefore,
using the average-case sensing latency in our system results in only 99ps − 89ps =
10ps difference between the 40mV and 80mV margins, which would have a minimal
impact on the system. Unfortunately, the average sensing delay does not account for
a highly reliable read operation, even under variation. In particular, the latency for
the sensing amplifier should cover a high percentage (≥99.9%) of the sensing time
distribution due to variation in order to ensure that read operations are appropriately
reliable. Thus, the performance comparison of sensing requires use of the worse-case
sensing time rather than the average time.

To ensure a 99.9% sensing accuracy, we conducted 10,000 Monte Carlo experiments
to simulate the sense amplifier under process variation. Based on our modeling, the
worst-case sensing delay is around 270ps at a 40mV margin and 170ps at a 80mV
margin. We use the worst-case sensing delay in our architecture design to guarantee

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 52, Publication date: December 2013.



52:6 Y. Li et al.

Fig. 5. Configurable SB/FB memory circuit.

Table I. Peripheral Circuitry and Read Latency for Two L1 Cache Examples at 22nm Technology

Cache Config 32K 4-Way 64K 4-Way
Mem Type/Mode SRAM STT SB STT FB SRAM STT SB STT FB

H-Tree (ns) 0.0338 0.0329 0.0329 0.0378 0.0343 0.0343
Dec+Wordline (ns) 0.1523 0.1343 0.1343 0.1698 0.1406 0.1406
Bitline (ns) 0.096 0.0648 0.0648 0.1643 0.1037 0.1037
SenseAmp (ns) 0.116 0.270 0.170 0.116 0.270 0.170
Total (ns) 0.3981 0.502 0.402 0.4879 0.5486 0.4486

system reliability. In some cases, it may be necessary to ensure a higher reliability
(e.g., ≥99.99% of sensing time coverage). Unfortunately, to simulate error rates with
such high precision requires orders-of-magnitude longer simulation time, becoming
intractable. While it may be possible to improve simulation speed and conduct more
simulations using a statistical approach, such as the work proposed by Singhee and
Rutenbar [2009], this level of device study is beyond the scope of this study and for the
remainder of this article we proceed using the ensured 99.9% read accuracy.

In situations where read performance is critical, it is possible to use differential sens-
ing by storing both the value and its complement in adjacent cells in order to double
the sense margin (Ir ·�R) at the expense of reducing storage capacity. As sensing speed
is a nonlinear function of sense margin, this increase can provide significant improve-
ments in read performance. A reconfigurable circuit (Figure 5) can be configured into
a Standard high-density Block (SB) by comparing the selected cell with Vref or a Fast
access Block (FB) by sensing the voltage difference between adjacent cells. To accom-
plish this, as shown in Figure 5, the mode selection bit Mode can be integrated into the
source line selection logic to avoid any additional latency in the critical path. The red
operation demonstrates an SB read where cell 0 is compared against a threshold Vref .
The blue operation indicates an FB read where cell 2i is compared against cell 2i + 1.

As we move to the 22nm technology node, we have created STT-RAM device models
and conducted SPICE simulations of our circuit design to determine the performance
and power consumption of individual cells. At 22nm, we assume that the sense margins
of the sense amplifier in SB and FB are 40mV and 80mV, respectively. To study the
architectural impact of the proposed circuit design, we compare the latencies of SRAM
with those of STT-RAM in SB and FB for two potential L1 cache configurations, as
shown in Table I.1 A scaled version of CACTI [Shivakumar and Jouppi 2001] is used

1As the STT-RAM caches are configurable between SB/FB but two lines are required for FB mode, the
capacity reported in the table assumes all blocks are in SB mode.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 52, Publication date: December 2013.



C1C: A Configurable, Compiler-Guided STT-RAM L1 Cache 52:7

Fig. 6. Configurable L1 cache architecture (C1C).

to derive the peripheral circuitry latencies. The sense amplifier was tuned for best
possible performance by sizing of the transistors and timing was derived from an
HSPICE simulation.

From Table I, we can see the sensing delay makes up a significant portion of the
total cache read latency. Although STT-RAM cells are smaller and thus have faster
peripheral circuitry than SRAM, for small caches (e.g., L1), this superiority is negligible
and cannot offset the negative impact of the larger sense delay. A large sense delay is
a prohibitively expensive penalty and would prevent STT-RAM from being used in L1
caches, for which the access speed is extremely important. By adopting FB, the read
access latency of STT-RAM once again becomes comparable with SRAM at L1, making
it viable in an all-STT-RAM cache hierarchy.

However, for such a configurable cache to be successful, care must be given to the
control of the blocks between SB/FB to balance performance, dynamic power consump-
tion, and capacity. In the following sections we describe a configurable cache design
and a compiler-guided method to ensure that differential sensing is used effectively.

3. DUAL-MODE CACHE DESIGN WITH COMPILER SUPPORT

Based on the STT-RAM technology trends and the configurable STT-RAM memory
cell from Section 2.2, we present a Configurable L1 Cache (C1C) architecture that
can be adapted dynamically at the cache block granularity to offer fast read accesses
while minimizing dynamic power overheads. The operational mode of the cache lines
will be modified based on application needs determined through compiler analysis.
The information will be passed from the compiler to the runtime system via mode
configuration instructions instrumented into the code by the compiler. The next several
subsections describe these elements in detail.

3.1. C1C Architecture

Our proposed C1C design is shown in Figure 6. In the C1C design, two adjacent cache
lines are grouped to form one superline that can operate as an FB line. Each of the
two cache lines of the superline can also independently operate in standard (SB) mode
(i.e., SB1 and SB2). To accomplish this, each superline contains two respective tags (T1
and T2) and valid bits (V1 and V2) to allow independent SB operation. A mode bit (M)
indicates whether the line is storing one FB value or two independent SB values.

Standard cache operations for a statically designed STT-RAM cache can be accom-
plished in the C1C architecture with only minimal modification. For example, a cache
lookup starts by comparing the tags. In C1C, the M bit can be accessed in parallel with
the tag lookup such that the resulting data access is conducted in the appropriate SB
or FB mode. If the cache access is a read and the M bit indicates the target block is FB,

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 52, Publication date: December 2013.



52:8 Y. Li et al.

differential sensing will be used to more quickly read out the value stored in the two
adjacent SB blocks.

The C1C cache assumes Least Recently Used (LRU) eviction policy. However, the
use of two adjacent lines to store a single FB value requires a slight modification to
this policy. If a superline wishes to promote an SB line into FB, an eviction is required.
First, the LRU line within the set is identified. If this block is the adjacent SB value
in the superline, it is evicted. Otherwise, the LRU line from a different superline is
evicted and the adjacent SB value is migrated to the LRU value’s previous location.
Then the promoted SB line’s complementary value is written to the adjacent line as
depicted in Figure 6. In contrast, when a line is demoted from FB to SB (often from a
period of heavy write behavior), the adjacent SB line becomes vacant and can be used
to host a new value without requiring an eviction.

3.2. Design Considerations

The mode change operations described in the previous section result in some opera-
tional overheads that must be considered. A write on the same FB block requires twice
the amount of dynamic power as a standard write operation due to the writing of the
value and its complement. Therefore, it is desirable that an FB line services as many
reads but as few writes as possible. Additionally, promoting an SB line to an FB line
also results in the overhead of two additional writes (in the worst case) and should only
be done when there is high confidence that many successive reads will utilize the line.

From our analysis of applications, L1 caches are particularly sensitive to access la-
tency and dynamic power rather than capacity. To build an effective high-performance
and low-power L1 cache, nearly all read accesses in L1 must occur in FB to be competi-
tive with the performance of SRAM. FB reads do not require additional dynamic power
as the read current is still only injected once for a differential comparison. However,
unlike lower levels in the cache, the number of L1 writes is significant—nearly 20%
of accesses, on average. While the write performance in FB is not degraded in com-
parison with SB as both the cell and its complement can be written in parallel, writes
to STT-RAM, even with reduced retention times, still require a significantly higher
dynamic power than equivalent technology SRAM and about twice as much dynamic
power as SB writes. An effective configurable L1 design should maximize the number
of writes completed in SB and reads in FB to avoid dynamic power overheads and
improve performance, respectively.

According to our study of various benchmarks, even for heavily written data locations,
small numbers of writes are typically interspersed with small numbers of reads. During
other application phases, the same location is often extremely heavily read. Thus, to
avoid excessive dynamic power for complementary writes and mode reconfigurations,
a line should be configured into FB only if the subsequent access pattern exhibits a
large amount of consecutive reads without frequently interleaved writes. Thus, the
optimization criteria to control the mode of the cache superline is to maximize the
number of reads using differential mode (FB) while maximizing the number of writes
to standard mode (SB) while minimizing the number of mode switches from SB to FB.
Thus, only with a high level of confidence that a number of consecutive reads to the
same location will occur (e.g., greater than a particular threshold T) should the line
be promoted to FB, with an understanding that this promotion results in an energy
overhead for writing the complement and potentially relocating the partner line in
the set. If a series of writes intercepts the consecutive read region, the line may be
switched back to SB to save dynamic power. This allows the observed intermittent
reading and writing pattern to predominantly occur in SB, but many successive reads
will be serviced in FB.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 52, Publication date: December 2013.



C1C: A Configurable, Compiler-Guided STT-RAM L1 Cache 52:9

Fig. 7. Sparc V9 prefetch instruction format.

Thus, the C1C configuration policy relies on an accurate prediction of CRBs in the
applications during execution. The cache block mode is controlled by Mode Switch
Instructions (MSIs) inserted by the compiler, whose operands represent the target
address for the mode configuration. By utilizing compiler analysis to determine the
operational mode for lines, it is possible to circumvent considerable extra hardware
overheads required by runtime solutions such as per-line counters, comparators, and
mode-switch logic while avoiding potential thrashing possible in runtime solutions.
The compiler-guided mode switch instruction can be implemented using the unused
bits in an existing instruction,2 thus avoiding modification to the standard instruction
set architecture. For example, the Sparc V9 processor’s prefetch instruction contains
an fcn field in its instruction code that is used to implement prefetch variants. As
Figure 7 illustrates, each fcn value indicates a different operation and the values
5–15 are reserved for future usage. These bits can also be used to implement the mode
switch instruction. In the next section, we describe a compiler analysis methodology
that enables accurate insertion of these MSIs into the code.

3.3. Compiler Analysis

In order to accurately identify CRBs to enable appropriate mode switching in the C1C,
we can leverage source-code-level information exposed by compile time techniques such
as data reuse analysis. Data reuse analysis provides confidence that the data element
stored in a particular location will be heavily read, indicating it will be a good candidate
for caching in the L1. Unfortunately, this analysis is insufficient to determine if this
location should use an FB line. Heavily written locations stored in FB mode induce a
significant dynamic write energy overhead. Thus, in this section, we develop compiler
techniques based on data reuse analysis to determine patterns of Consecutive Reads
(CRs) as an indicator of heavily read locations that are candidates for FB promotion.
Given that application behavior changes during execution, the same location could
exhibit CR behavior in one phase of the application and interleaved read/write behavior
during other phases. The compiler analysis indicates where, within the source code, to
insert MSIs as described in detail in the following sections.

3.3.1. CR Analysis for Arrays. Since a precondition for promotion of a location in L1 to an
FB line is demonstrable heavy reads, we start with a preliminary data reuse analysis
as a basis of our CR analysis. Then, given the heavy reuse candidates, we identify those
blocks that have CRs.

2Several instruction sets now provide extensibility in the ISA to specifically support custom instructions
such as the ones proposed in this work. An example is the undefined instruction in the ARM ISA.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 52, Publication date: December 2013.



52:10 Y. Li et al.

Fig. 8. Array accesses and the corresponding matrix representations: (a) array accesses and (b) matrix
representation.

Data Reuse Analysis. Data reuse analysis aims to identify array accesses to the
same or nearby locations/elements in nested loops and has been used to detect data
dependency and promote locality. One approach to analyze data reuse in nested loops
is to represent array accesses as matrix multiplication [Aho et al. 2006]. Consider
Figure 8 as an example. Given the array accesses A[i+2][j] and B[2][i][2*i+1] in
the nested loop shown in Figure 8(a), we first convert the subscript functions to the
matrix expressions, as illustrated in Figure 8(b). The accessed array elements now
can be represented as C ∗ k + O, where C is the coefficient matrix, k is the loop index
vector, and O denotes the offset vector.

For the array access to have temporal access reuse, different loop iterations (i.e., dif-
ferent k) need to reference the same array element (the matrix expression C ∗ k + O).
Therefore, determining whether the array access has temporal reuse now is equiv-
alent to deriving the condition under which the equation C ∗ k′ + O = C ∗ k′′ + O
has solutions [Wolf 1992] (k′ and k′′ represent two different index vectors in the
iteration space). The necessary and sufficient condition under which this equation
has solutions is that C is not fully ranked. In our example, the coefficient matrix of
A[i+2][j] has a rank of two, indicating no temporal reuse. B[2][i][2*i+1] has tem-
poral reuse since the rank of its coefficient matrix is one, which is smaller than its
dimension.

A read access exhibits spatial access reuse when the innermost enclosing loop index
varies only the last coordinate of that array. To discover spatial reuse, we use a trun-
cated coefficient matrix by dropping the last row of the original coefficient matrix, as
illustrated in Figure 8(b). If the rightmost column in the truncated coefficient matrix
(the coefficients that correspond to the innermost loop index) is a null vector and the
rightmost element in the dropped row is nonzero, it is assured that the innermost loop
only varies the last coordinate of the corresponding array.

In the aforementioned example, A[i+2][j] exhibits spatial reuse because the right-
most column in the truncated matrix (the coefficient corresponding to the innermost
loop index j) is a null vector and the rightmost element in the dropped row is nonzero.
Using the same rule, we can determine that B[2][i][2*i+1] does not have spatial
reuse since the innermost loop index j does not vary in the last coordinate of array B.

In our analysis, it is necessary to distinguish between read and write accesses within
a data block to determine the correct operation mode of the cache (i.e., cache lines with
heavy read reuse without heavy write reuse). This distinction between reads and writes
is easily extracted from the source as it is used to generate loads and stores in the
resulting code. However, in the compiler analysis, it is both the locality of read access
and the interaction of reads and writes that must be determined. This is accomplished
using CR analysis.

CR Analysis. Given a location with heavy read reuses, it is necessary to determine
if these read reuses are consecutive. Read reuses become consecutive if there are

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 52, Publication date: December 2013.



C1C: A Configurable, Compiler-Guided STT-RAM L1 Cache 52:11

no interleaved writes among the reuses. We discuss how consecutive reads can be
identified by adding additional constraints on the basic temporal and spatial read
reuse analyses.

First, we define that a data block has Consecutive Temporal Read reuse (CTR) if the
same address in the block is read multiple times without interleaved writes on the same
block. Similarly, a data block is defined to have Consecutive Spatial Read reuse (CSR)
if nearby addresses within the block are read with no interleaved writes on the same
block. A block exhibiting either CTR or CSR is a good candidate for being promoted to
FB for read optimizations without causing high dynamic write power. Next we present
the compiler analyses for identifying CTR and CSR for array accesses.

CTR Analysis: Identifying CTR is similar to analyzing temporal read reuse ex-
cept that writes that potentially break CTR should be taken into consideration.
A read to an n-dimensional array A within an m-deep loop nest has the form of
. . . = A[ f r1(L)] . . . [ f rn(L)], where f r∗(L) are the subscript functions for the array read
defined on a set of loop indices L = i1, . . . , im, from the outermost to the innermost.
The corresponding lower bounds and upper bounds of these indices are l1, . . . , lm and
u1, . . . , um, respectively. We now consider a special scenario of temporal read reuse:
array accesses that exhibit temporal read reuse over the innermost loop nest. This is
the case when the same address is accessed many times because the innermost loop
iterates over its index im and the reuse distance [Ding and Zhong 2003] is smaller than
um − lm. We denote this special type of read reuse as i-reuse and other temporal reuse
(over outer loops) as o-reuse. An i-reuse can be identified by examining whether the
rightmost column of the coefficient matrix of an array access is all zeros, indicating that
the array access is invariant to the innermost loop index. Take Figure 8 as an example;
the array access B[2][i][2*i+1] exhibits i-reuse because its coefficient matrix has an
all-zero rightmost column and thus the same element of B is accessed repeatedly as the
innermost loop index j iterates.

This definition implies that array reads with i-reuse are temporally close to each
other as the same array element is reused multiple times during innermost loop
iterations. Thus, the read reuse distance (RRD), essentially the number of loop it-
erations between read accesses, is small for reads with i-reuse. In other words, it
is less common for this type of read reuse to be interleaved by a write and thus
i-reuse tends to result in CTR. However, it is still possible for a write, with the form
of A[ f w1(L)] . . . [ f wn(L)] = . . ., where f w∗(L) are the subscript functions for an array
write in a similar fashion as described for reads mentioned earlier, to break the CTR
pattern if the following conditions are satisfied:

f w1 = f r1, f w2 = f r2, . . . , f wn−1 = f rn−1 and
| f wn − f rn| ≡ c < T (c is a constant).

(4)

The first condition in Equation (4) ensures that the read and the write index the same
locations at all but the last dimension (nth) of the array A. Given the first condition is
met, the second condition | f wn − f rn| calculates the read-write distance (RWD) over
the last dimension and examines if this distance is a constant whose absolute value
is smaller than T . If the absolute value of RWD is a constant smaller than T , then
the write consistently occurs less than T elements on the array away from the read
and, thus, is likely to break the CTR on a cache block at runtime. If the RWD is not a
constant or larger than T , then there is typically CTR as the write will be far enough
away from the consecutive reads, which are sufficiently close together as in the case of
i-reuse. For example, consider the array accesses in Figure 9 assuming a value T = 3.
In Figure 9(a), the value | f wn − f rn| is a constant 4 and the analysis would determine
that CTR does exist, as illustrated in Figure 10(a). In Figure 10(a), a read on the

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 52, Publication date: December 2013.



52:12 Y. Li et al.

Fig. 9. CTR and CSR code examples.

Fig. 10. CTR and CSR access patterns.

data element is always four iterations away from a corresponding write on the same
element. In contrast, Figure 9(b) produces a constant | f wn − f rn| value of 1, indicating
CTR is broken by a nearby write, as illustrated in Figure 10(b).

For o-reuse, the RRD is typically much larger than that of an i-reuse. Thus, several
reads with o-reuse are more likely to be interrupted by a write. We determine that an
o-reuse is CTR if there is no write to the same array location during that loop (and all
contained within it) that overlaps with the read using the following conditions:

f w1max < f r1min|| f w1min > f r1max || . . . || f wnmax < f rnmin|| f wnmin > f rnmax.
(5)

In Equation (5), f w∗min, f w∗max , f r∗min, and f r∗max can be calculated from the lower and
upper bounds l∗ and u∗ of the corresponding loops. The condition in Equation (5) guaran-
tees that the indexed locations of the write are entirely out of the scope of the locations
accessed by the read for at least one dimension of the array. An o-reuse-induced CTR
example is shown in Figure 9(c), in which the array write A[2M+4][i+j] falls out of the
range of the array read A[2j+2][j+1] for any possible j value within the loop bounds. In
Figure 9(d), the read and write could potentially interfere with each other and thus no
CTR is detected. The access patterns for the aforementioned two examples are illus-
trated in Figure 10(c) and Figure 10(d), respectively. In Figure 10(c), the reads occur
on one row of the accessed array while the writes occur on an entirely different row,
indicating that CTR exists. On the other hand, in Figure 10(d), reads and writes are
temporarily interleaved on the same data rows, implying no CTR.

CSR Analysis: Analyzing CSR requires identifying writes that interfere with spatial
read reuse. Given an array access with spatial read reuse in a loop nest, CSR exists
if there are no writes on the same array in the loop. In the presence of potential

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 52, Publication date: December 2013.



C1C: A Configurable, Compiler-Guided STT-RAM L1 Cache 52:13

interfering writes, we determine that CSR exists if one of the following two conditions
is met (given the same notation used in CTR analysis):

—The read and write do not overlap as can be verified by Equation (5).
—The subscript functions satisfy:

f w1 = f r1, f w2 = f r2, . . . , f wn−1 = f rn−1 and | f wn − f rn| > T . (6)

In the presence of spatial read reuse, the first condition (Equation (5)) strongly guar-
antees that no writes overlap with the read reuse and, thus, CSR exists. In the second
condition, the term | f wn − f rn| > T in Equation (6) ensures that the RWD is large
enough that the write is never close enough to the read to break the CSR as the
innermost loop iterates. This condition can be verified in the following three cases:

First, when the RWD in the last dimension | f wn − f rn| is a constant, its absolute
value should be larger than the threshold T :

| f wn − f rn| ≡ c > T (c is a constant). (7)

If Equation (7) is satisfied, the RWD for the last dimension of the array is consistently
large enough that as the loop iterates, the write will not occur until at least a sufficient
number of loop iterations occur such that CSR can be ensured. An example of this
scenario is presented in Figure 9(e) and Figure 10(e), where the write A[2*i][j+5] is
four iterations away from the read A[2*i][j+1], which is >T if T = 3.

Next, when f wn is larger than f rn at the innermost loop lower bound lm, | f wn − f rn|
should be a monotonically increasing function on the innermost loop index im:

f wn|im=lm − f rn|im=lm > T and ( f wn − f rn)|im=x > ( f wn − f rn)|im=y ∀x > y. (8)

The first condition in Equation (8) ensures the RWD is larger than T when the inner-
most loop starts to iterate (index im equals the lower bound lm). The second condition
ensures that the RWD keeps increasing as the innermost loop iterates (RWD increases
as im increases) so that the RWD becomes larger and larger than T , resulting in CSR.
An example of this scenario is presented in Figure 9(f) and Figure 10(f). At j = 0, the
last index of the write is 6 and the read is 2 with a distance of 4, and as j increases,
the 2 ∗ j factor increases this distance (5 for j = 1, 6 for j = 2, etc.). Thus, the distance
will always be >T .

Finally, when f wn is smaller than f rn at the innermost loop lower bound lm, essen-
tially the converse of Equation (8), | f wn − f rn| should be a monotonically decreasing
function on the innermost loop index im as in Equation (9).

f wn|im=lm − f rn|im=lm < T and ( f wn − f rn)|im=x < ( f wn − f rn)|im=y ∀x > y (9)

3.3.2. CR Analysis for Linked Structures. Because linked data structures are not typically
allocated consecutively in memory, determining CR can be reduced to identification of
CSR, which is common when several nearby fields in an object are read consecutively.
To analyze the CSR for linked data structures such as linked lists and trees, a Control
Flow Graph (CFG) of the program is constructed. A CFG G = (V, E, r) is a directed
graph, with nodes V, edges E, and an entry node r. Each node v in V is a basic block,
which consists of a sequence of statements that have one exact entry point and exit
point. To simplify the code structure, a series of traditional compiler optimizations such
as expression folding and branch elimination are applied on the CFG. Then the CFG
is traversed while the following rules are examined to determine whether a sequence
of data reads exhibits CSR:

—The analyzed memory reads are common pointer-based dereferences. That is, these
memory reads only differ in their offsets from a common base pointer.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 52, Publication date: December 2013.



52:14 Y. Li et al.

—There are at least T data reads whose offsets fall into a specified address range.3
This is to guarantee the memory reads are within a sufficiently small scope in the
address space.

—There are no function calls or writes within the same block range among the analyzed
reads.

—The reads composing the CSR sequence are either in the same basic block or in a set
of direct successor basic blocks that meet these criteria. If there are conditionals, the
second criterion must be satisfied in all branches.

These rules guarantee that the analyzed reads are mapped to the same memory block
and result in consecutive read behavior at runtime. The pseudocode for identifying CSR
in basic blocks and their successors is presented in Algorithm 1. It iterates over each
basic block and collects relevant information on memory reads (i.e., base pointers and
offsets). It organizes the collected information from different phases into a table, where
each function call initiates a new phase. At the exit of each basic block, the table is
traversed and the corresponding entries are marked to indicate the identified CSR. For
unmarked entries in the table, the first phases of all direct successors of the current
basic block are further analyzed for potential CSR across basic blocks in the CFG.

ALGORITHM 1: Pseudocode for CSR identification of linked data structures in CFG
G(V, E, r)
begin

for each basic block bi ∈ V do
create table H; phase = 0;
for each statement sj ∈ bi do

if sj is function call then
phase + +;

else
get the base pointer bp of RHS(sj); get the offset o of RHS(sj);
if ∃ entry Y ∈ H such that bp = Y.bp &&phase = Y.phase then

append o to Y.r;
else

create a new entry with o, phase and bp and push it into H;
get the base pointer bp′ of LHS(sj);
get the offset o′ of LHS(sj);
if ∃ entry Y ∈ H such that bp′ = Y.bp &&phase = Y.phase then

append o′ to Y.w;

traverse H and mark CSR for each entry Y with more than T − 1 read offsets Y.r in
a single phase that are within the specified range without an interrupting write
offset Y.w;
for each unmarked entry Y ′ ∈ H do

for each block bj ∈ ⋃
SUCC(bi) do

search Y ′.bp in the first phase in bj and compute the total number of offsets
n that are within the specified range;
if n < T then

continue to process next unmarked entry;

mark entry Y ′;

end

3This range depends on the size of the cache block. For example, in a cache with a 64-byte block size, this
range is 64 bytes.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 52, Publication date: December 2013.



C1C: A Configurable, Compiler-Guided STT-RAM L1 Cache 52:15

Fig. 11. Code and control flow graph examples for CSR identification (T = 3): (a) type definition code; (b) CSR
in the same basic block; (c) CSR across one basic block and all its successors; (d) CSR broken by function
call; (e) CSR broken by write; (f) CSR broken by one successor.

Figure 11 provides various cases to explain the CSR identification for linked struc-
tures. As defined in Figure 11(a), the pointer nd is declared to point to a data structure
with the type node_t. Since the data members x, next, and prev have integer/pointer
type and are adjacent fields in the same data structure, they are consecutive in the
address space and, thus, would typically reside in the same memory block such as a
cache line. In the case of Figure 11(b), the three memory reads in the same basic block
(i.e., X=nd->x, A=nd->next, and B=nd->prev) have the common base pointer nd and
there are no interleaved function calls or writes. Thus, Figure 11(b) exhibits CSR. The
program in Figure 11(c) also has CSR since both successors of the basic block X=nd->x
lead to CSR. Figures 11(d) and 11(e) do not exhibit CSR due to the presence of the
function call foo() and write nd->next=0. In Figure 11(f), one of the direct successors
A=nd->next only has one common pointer- based read and, thus, will not be marked
as having CSR.

4. EVALUATION

To evaluate the effectiveness of the configurable cache C1C, we use Wind River Simics
[Magnusson et al. 2002] to simulate a 16-core CMP with the cache architecture as
described in Table IV. We compare the C1C scheme with an SRAM-only design and the
leading STT-RAM technique with reduced retention time (26.5μs) and dynamic data
refresh in the L1 cache but without differential sensing (STT-RR) [Sun et al. 2011].
All STT-RAM designs use a 64M (4M/core) LLC, while the SRAM cache uses a 16M
(1M/core) LLC for a same die area comparison, similar to the architecture evaluated in
Sun et al. [2011]. The scheme FL1 is statically configured with all differential blocks
(i.e., FB blocks) on top of STT-RR to optimize read performance for L1. C1C is the
proposed configurable L1. Just as with STT-RR, both FL1 and C1C include standard
STT-RAM at the L2 and L3 cache levels. The mode configuration information is in-
serted into the source code using source-to-source compilation passes as described in
Section 3.3. This information can be inserted into the source using special reserved
instructions in the instruction set or extensible instructions with reserved fields from
standard instructions (see Section 3.2). In our experiments, the compilation flow inserts
a new instruction—simulated using a Simics MAGIC instruction—to notify the run-
time system of consecutive read addresses prior to the actual write/read operations.
This technique is similar to the mechanism used by existing compiler-instrumented
prefetching techniques that insert special instructions [Luk and Mowry 1999]. Our in-
put workloads consist of parallel benchmarks from the SPLASH-2 [Arnold et al. 1992]
and PARSEC [Bienia et al. 2008] benchmark suites, as detailed in Table II.

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 52, Publication date: December 2013.



52:16 Y. Li et al.

Table II. Benchmarks

Benchmark Suites Benchmark Description Input
barnes Simulation 1048576 particles
cholesky Matrix Calculation tk29.O
fft FFT Algorithm 226 integers
lu Matrix Calculate 2048×2048 matrix

SPLASH-2 ocean Simulation 1026×1026 matrix
raytrace Rendering teapot input
radix Integer Sort 104857600 radix
water Simulation 3375 molecules
blackscholes Financial Analysis 200000 options

PARSEC fluidanimate Animation in-35K.fluid
streamcluster Data Mining 1024 data points
swaptions Financial Analysis 256 swaptions

Table III. Overheads for Ocean with Different T Values

T 2 3 4 5 6

Optimized Reads 5.12e+7 5.10e+7 5.08e+7 5.07e+7 5.06e+7
Standard Reads 782107 969789 1136674 1262467 1388100
Optimized Reads (%) 98.50% 98.14% 97.81% 97.57% 97.33%
Complement Writes 187682 166885 125793 125633 125395
Original Writes 1866391 1866391 1866391 1866391 1866391
Write Overhead (%) 10.06% 8.94% 6.74% 6.73% 6.72%

4.1. Effectiveness of the Threshold Analysis

As described in Section 3.3, the compiler analysis determines CRBs by examining use
distance threshold T between reads and writes. The determination of a reasonable
distance requires some consideration of application characteristics. As we mentioned
in Section 3.2, heavily accessed data locations tend to have periods of heavy read access
and possibly periods of intermittent reads and writes. We examined this behavior in
more detail for a subset of our benchmarks. Table III shows the results in varying T, in
effect ensuring that a minimum of T consecutive reads must be present to form a CRB
and promote the line to FB. First, we note that even for T = 2, the classification mech-
anism is generally effective and identifies a dominant percentage of the application
data reads while only incurring a fairly small number of complementary writes due to
mode switches or FB writes. A larger T value guards more consecutive reads for an FB
promotion, yielding a configuration with fewer optimized reads but also lower write
overhead. By comparing the achieved read optimization and the write cost for four
benchmarks, ocean, swaptions, blackscholes, and radix, across different thresholds, a
value of T = 4 was selected for our final evaluation (Table IV) and it seems to work
well for the SPLASH and PARSEC benchmarks.

Given this threshold, Figure 12 reports the percentage of consecutive read regions
that can be identified by the proposed compiler analyses (CTR and CSR) compared
with all of the CRBs present in a runtime trace. For various applications, from 70% to
over 95% and an average of 85% of consecutive reads can be detected by the compiler
techniques. This guarantees a high percentage of application data reads to be serviced
in fast mode blocks (FBs). We verified this in Figure 13, which shows the number
of reads conducted in standard mode (S Reads) and differential mode (F reads) by
employing FB mode switching with a threshold of four consecutive reads. In the C1C
L1 cache, all the benchmarks have more than 80% of their data reads optimized in FBs.
Many benchmarks have over 90% optimized reads, leading to 91% read optimizations

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 52, Publication date: December 2013.



C1C: A Configurable, Compiler-Guided STT-RAM L1 Cache 52:17

Table IV. Architectural Parameters
The read/write latency for LLC shown in this table is the raw access time excluding the network traversal latency.

4 × 4 mesh network with
3-cycle latency per hop,

16 cores, 2 issue width, 64-bit Solaris 4GB main memory,
Basics 3.5GHz CPUs 10 OS 150-cycle latency

Caches Private L1 Cache (MESI) Private L2 Cache Shared L3 Cache
256K 8-way 16M 16-way 64M 16-way

32K 4-way 64B blk 64B blk 64B blk 64B blk
SRAM STT S STT F SRAM STT SRAM STT

Size (mm2/core) 0.048 0.031 0.233 0.085 0.96 1.006
Read Latency (cycles) 2 3 2 4 4 5 6
Write Latency (cycles) 3 5 5 3 26 4 27
Read Energy (nJ) 0.029 0.014 0.014 0.032 0.022 0.054 0.046
Write Energy (nJ) 0.031 0.094 0.188 0.036 0.117 0.06 0.26
Leakage Power (mW) 149 63 63 664 138 1,249 471

Fig. 12. Percentage of identified consecutive read reuse.

Fig. 13. Reads in different modes (optimized reads).

on average. Since the L1 cache absorbs most of the reads issued by an application,
the accelerated reads in C1C are likely to bring a significant performance gain for the
entire cache hierarchy.

Due to the effectiveness of the mode configuration control, C1C accelerates a high
percentage of application reads while only a tiny fraction of the writes occur in FBs,
which incur additional write energy for complementary writes. Figure 14 shows that
the percentages of complementary writes (i.e., FB writes) are low for all the tested
applications using the same configuration for Figure 13. For many applications such
as RAYTRACE and FLUIDANIMATE, the write overheads are almost negligible. On
average, there is only 7% of write operations that need complementary writing. This
drastically reduces the L1 dynamic power overhead since STT-RAM’s write power

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 52, Publication date: December 2013.



52:18 Y. Li et al.

Fig. 14. Writes in different modes (write overhead).

Fig. 15. Performance (IPC) comparison (norm. to SRAM).

Fig. 16. Energy consumption (norm. to SRAM).

is typically high and a dominating factor of the entire dynamic cache power. The
remaining results presented assume use of a mode switch threshold of T = 4.

4.2. Performance Evaluation

To conduct performance evaluations, we use the architectural parameters from
Table IV that are derived from HSPICE simulation of 22nm STT-RAM sensing times
from Table I and scaled versions of CACTI [Shivakumar and Jouppi 2001] for the
SRAM and peripheral circuit latencies. The performance comparison, presented as In-
structions Per Cycle (IPC) normalized to SRAM, is contained in Figure 15. STT-RR
performs poorly compared to SRAM in spite of the capacity advantage due to the high
read latency at L1. For all the benchmarks except OCEAN, which is extremely capacity
sensitive, STT-RR performs worse than SRAM and leads to an average of 4% perfor-
mance degradation. In contrast, by servicing all L1 reads with the read optimization
technique, FL1 provides over 6% improvement over SRAM and 10% improvement over
STT-RR at the expense of double the amount of write power at L1 for complementary
writes. The performance of C1C is within 1.5% of FL1 and 5% higher than SRAM and
nearly 9% higher than STT-RR.

Figure 16 provides an energy comparison of the relevant schemes normalized to
SRAM. STT-RR provides a 27% energy reduction over SRAM on average, and as

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 52, Publication date: December 2013.



C1C: A Configurable, Compiler-Guided STT-RAM L1 Cache 52:19

Fig. 17. Performance per watt comparison (norm. to SRAM).

previously demonstrated the refresh energy is negligible [Sun et al. 2011]. As expected,
FL1 requires much higher dynamic energy (shown separately as read and write energy
in Figure 16) than SRAM and STT-RR due to the fact that all its L1 writes are conducted
in FBs, incurring a high dynamic write energy overhead. For benchmarks exhibiting
heavily writes such as BARNES, RADIX, and BLACKSCHOLES, the dynamic power
increases are unacceptable. In contrast, C1C drastically reduces the dynamic energy
compared to FL1 and only requires slightly higher energy than STT-RR since there is
still a small portion of writes being serviced in FBs (Figure 14) for the S- to F-mode
switches. Compared to FL1, C1C brings similar performance with 26% less total cache
energy largely due to the write energy reduction, as can be observed from Figure 16.
Because of the leakage and read energy reduction, C1C also brings a 24% total energy
savings over SRAM caches.

The overall benefit of C1C is demonstrated in Figure 17, which presents the IPC/watt
of various schemes normalized to SRAM. STT-RR suffers from degraded performance
but drastically reduced power consumption and thus brings a total of 38% IPC/watt
benefit. FL1 enhances performance but increases the dynamic power leading to only
18% IPC/watt gain over the baseline. C1C brings both a performance and energy benefit
by dynamically configuring the modes based on application needs that results in the
maximum average IPC/watt improvement of 48% compared to the baseline.

5. RELATED WORK

Due to the asymmetric nature of read/write characteristics, intensive research efforts
have been made to mitigate the write-induced penalty for various emerging Non-
Volatile Memory (NVM) technologies. For STT-RAM, the excessive long write delay
can be significantly reduced by relaxing the nonvolatility [Smullen et al. 2011] or re-
ducing data retention time [Sun et al. 2011] with a dynamic data refreshment support
to retain datum. The write energy can be also saved by adopting the early write ter-
mination [Zhou et al. 2009], which avoids unnecessary writes in STT-RAM cells. There
are similar techniques proposed for combating a write-related penalty in Phase-Change
Memory (PCM). Qureshi et al. [2012] recently proposed PreSET, a scheme aimed to
improve read/write performance by leveraging the asymmetry in writing different logic
values. Their earlier effort [Qureshi et al. 2010] attempted to alleviate the penalty of
pending reads caused by long write delay using write cancellation and write pausing.

NVMs have also been substantially explored at the architecture level. Guo et al.
[2010] use STT-RAM to redesign a number of non-write-intensive micro-architectural
components and adopt a subbank write buffering policy with read-write bypassing to
increase write throughput and hide the high write latency. Wu et al. [2009] studied
the Region-based Hybrid Cache Architecture (RHCA) and Level-based Hybrid Cache
Architecture (LHCA) with STT-RAM and PCM. Rasquinha et al. [2010] address the

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 52, Publication date: December 2013.



52:20 Y. Li et al.

high write energy of STT-RAM by adopting a new replacement policy that increases
the residency of dirty lines at the expense of a higher miss rate.

Other related efforts involve compiler-assisted techniques for cache enhancement. In
the work by Lu et al. [2009], a polyhedral model is used to perform localization analysis
based on the Farkas Lemma and Fourier-Motzkin algorithms. The goal is to find a data
layout transformation to promote locality of accesses. Their work assumes a fixed way
of partitioning the iteration space (hence the data space) among parallel threads and
works in a similar way to that of some conventional parallelizing compilers.

Li et al. [2012] propose a compiler-assisted technique to improve the performance and
energy efficiency for embedded systems with STT-SRAM hybrid caches by reducing the
migration overhead. In particular, they identify migration-intensive memory blocks
through compiler analysis and give those blocks higher priority to be placed in the
SRAM component to avoid frequent migration and long write latency on STT-RAM.

Chen et al. [2012] develop a compiler pass that provides data placement hints to re-
duce STT-RAM write frequency on a customized hardware that can correct the compiler
hints based on runtime cache behavior. Similar to our work, their proposed compiler
leverages the concept of memory reuse distance. However, the reuse distance concept
used in their work is a classical one and is not aware of the read-write interleaving pat-
terns. Thus, it cannot identify optimization opportunities brought by consecutive reads.

The uniqueness that sets our work apart from prior efforts is that we address the
emerging read bottleneck from technology scaling and focus on using novel compiler
analysis to improve read performance, rather than tackling the writing problem. We
achieve the goal by leveraging new compiler analysis for the read-write access pattern
and a reconfigurable design.

6. CONCLUSION

In this article, we identify several read performance bottlenecks in scaled STT-RAM
cells. Using a proposed runtime configurable cache design C1C, guided by novel
compiler techniques of consecutive read analysis, we enable an all-STT-RAM cache
design through read optimizations at the L1 cache with performance benefits and
energy efficiency. Experimental results demonstrate that C1C provides a better
than 9% performance gain over the state-of-the-art all-STT-RAM cache without read
optimizations at L1 and a 30% performance-per-watt improvement compared to a
nonconfigurable cache with read optimizations. In our future work, we plan to explore
runtime alternative approaches for configurable caches enabling read optimizations at
different cache levels. Further, a detailed study of refresh times required for relaxed
retention STT-RAM caches may be completed and techniques explored to minimize
this overhead in the context of C1C caches. Finally, to evaluate the potential impact
of the proposed technique on system reliability, we will study sensing errors based on
rare event simulation tools [Singhee and Rutenbar 2009].

REFERENCES

AHO, A. V., LAM, M. S., SETHI, R., AND ULLMAN, J. D. 2006. Compilers: Principles, Techniques, and Tools, 2nd
ed. Addison Wesley.

ARNOLD, J. M., BUELL, D. A., AND DAVIS, E. G. 1992. Splash 2. In Proceedings of 4th Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA’92).

BIENIA, C., KUMAR, S., SINGH, J. P., AND LI, K. 2008. The PARSEC Benchmark Suite: Characterization and
Architectural Implications. Technical Report TR-811-08. Princeton University.

CHEN, Y., LI, H., WANG, X., ZHU, W., XU, W., AND ZHANG, T. 2010. Combined magnetic- and circuit-level enhance-
ments for the nondestructive self-reference scheme of STT-RAM. In Proceedings of the 2010 ACM/IEEE
International Symposium on Low Power Electronics and Design (ISLPED’10).

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 52, Publication date: December 2013.



C1C: A Configurable, Compiler-Guided STT-RAM L1 Cache 52:21

CHEN, Y.-T., CONG, J., HUANG, H., LIU, C., PRABHAKAR, R., AND REINMAN, G. 2012. Static and dynamic co-
optimizations for blocks mapping in hybrid caches. In Proceedings of the 2012 ACM/IEEE International
Symposium on Low Power Electronics and Design (ISLPED’12). ACM, New York, NY, 237–242.

CHENG, C.-T., TSAI, Y.-C., AND CHENG, K.-H. 2010. A high-speed current mode sense amplifier for Spin-Torque
Transfer Magnetic Random Access Memory. In Proceedings of the International Midwest Symposium on
Circuits and Systems (MWSCAS’10). 181–184.

DIAO, Z., LI, Z., WANG, S., DING, Y., PANCHULA, A., CHEN, E., WANG, L.-C., AND HUAI, Y. 2007. Spin-transfer
torque switching in magnetic tunnel junctions and spin-transfer torque random access memory. Journal
of Physics: Condensed Matter 19, 16, 165209.

DING, C. AND ZHONG, Y. 2003. Predicting whole-program locality through reuse distance analysis. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI’03). ACM, New York, NY, 245–257.

GUO, X., IPEK, E., AND SOYATA, T. 2010. Resistive computation: Avoiding the power wall with low-leakage,
STT-MRAM based computing. In Proceedings of the International Symposium on Computer Architecture
(ISCA’10).

HOSOMI, M. AND OTHERS. 2005a. A novel nonvolatile memory with spin torque transfer magnetization switch-
ing: Spin-RAM. In Proceedings of the IEEE International Electron Devices Meeting (IEDM’05).

HOSOMI, M., YAMAGISHI, H., YAMAMOTO, T., BESSHA, K. AND OTHERS. 2005b. A novel nonvolatile memory with spin
torque transfer magnetization switching: Spin-RAM. IEDM Technical Digest 2, 25, 459–462.

KALTER, H. L., STAPPER, C. H., JR. BARTH, J. E., DILORENZO, J., DRAKE, C. E., FIFIELD, J. A., JR. KELLEY, G. A.,
LEWIS, S. C., VAN DER HOEVEN, W. B., AND YANKOSKY, J. A. 1990. A 50-ns 16-Mb DRAM with a 10-ns data
rate and on-chip ECC. IEEE Journal of Solid-State Circuits 25, 5, 1118–1128.

LI, H., WANG, X., ONG, Z.-L., ZHANG, Y., WONG, W.-F., WANG, P., AND CHENG, Y. 2011a. Performance, Power and
Reliability Tradeoffs of STT-RAM Cell Subjective to Architecture-level Requirement. In Proceedings of
the IEEE International Magnetics Conference (InterMag’11).

LI, H., WANG, X., ONG, Z.-L., WONG, W.-F., ZHANG, Y., WANG, P., AND CHEN, Y. 2011b. Performance, power, and
reliability tradeoffs of STT-RAM cell subjective to architecture-level requirement. IEEE Transaction on
Magnetics 47, 10, 2356–2359.

LI, J., AUGUSTINE, C., SALAHUDDIN, S., AND ROY, K. 2008. Modeling of failure probability and statistical design
of spin-torque transfer magnetic random access memory (STT MRAM) array for yield enhancement. In
Proceedings of DAC. ACM, New York, NY, 278–283.

LI, Q., ZHAO, M., XUE, C. J., AND HE, Y. 2012. Compiler-assisted preferred caching for embedded systems with
STT-RAM based hybrid cache. SIGPLAN Not. 47, 5, 109–118.

LI, Y., CHEN, Y., AND JONES, A. K. 2012. A software approach for combating asymmetries of non-volatile
memories. In Proceedings of the 2012 ACM/IEEE International Symposium on Low Power Electronics
and Design (ISLPED’12).

LU, Q., ALIAS, C., BONDHUGULA, U., HENRETTY, T., KRISHNAMOORTHY, S., RAMANUJAM, J., ROUNTEV, A.,
SADAYAPPAN, P., CHEN, Y., LIN, H., AND NGAI, T.-F. 2009. Data layout transformation for enhancing data
locality on NUCA chip multiprocessors. In Proceedings of the 2009 18th International Conference on Par-
allel Architectures and Compilation Techniques (PACT’09). IEEE Computer Society, Washington, DC,
348–357.

LUK, C.-K. AND MOWRY, T. C. 1999. Automatic compiler-inserted prefetching for pointer-based applications.
IEEE Transactions on Computers 48, 2, 134–141.

MAGNUSSON, P. S., CHRISTENSSON, M., ESKILSON, J., FORSGREN, D., HALLBERG, G., HOGBERG, J., LARSSON, F.,
MOESTEDT, A., AND WERNER, B. 2002. Simics: A Full System Simulation Platform. IEEE Computer 35,
2.

OULD-AHMED-VALL, E.-M., DOSHI, K. A., YOUNT, C., AND WOODLEE, J. 2008. Characterization of SPEC CPU2006
and SPEC OMP2001: Regression Models and their Transferability. In Proceedings of the IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software (ISPASS’08). 179–190.

QURESHI, M., FRANCESCHINI, M., JAGMOHAN, A., AND LASTRAS, L. 2012. PreSET: Improving read-write per-
formance of phase change memories by exploiting asymmetry in write times. In Proceedings of the
International Symposium on Computer Architecture (ISCA’12).

QURESHI, M. K., FRANCESCHINI, M. M., AND LASTRAS-MONTANO, L.-A. 2010. Improving read performance of phase
change memories via write cancellation and write pausing. In Proceedings of the IEEE International
Symposium on High Performance Computer Architecture (HPCA’10).

RASQUINHA, M., CHOUDHARY, D., CHATTERJEE, S., MUKHOPADHYAY, S., AND YALAMANCHILI, S. 2010. An energy
efficient cache design using spin torque transfer STT RAM. In Proceedings of the 2010 ACM/IEEE
International Symposium on Low Power Electronics and Design (ISLPED’10).

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 52, Publication date: December 2013.



52:22 Y. Li et al.

SCHEUERLEIN, R., GALLAGHER, W., PARKIN, S., LEE, A., RAY, S., ROBERTAZZI, R., AND REOHR, W. 2000. A 10 ns read
and write non-volatile memory array using a magnetic tunnel junction and FET switch in each cell. In
Proceedings of the IEEE International Conference on Solid-State Circuits (ISSCC’00). 128–129.

SHIVAKUMAR, P. AND JOUPPI, N. P. 2001. CACTI 3.0: An Integrated Cache Timing, Power, and Area Model.
Technical Report.

SINGHEE, A. AND RUTENBAR, R. A. 2009. Statistical blockade: Very fast statistical simulation and modeling of
rare circuit events and its application to memory design. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 28, 8, 1176–1189.

SMULLEN, C. W., MOHAN, V., NIGAM, A., GURUMURTHI, S., AND STAN, M. R. 2011. Relaxing non-volatility for
fast and energy-efficient STT-RAM caches. Proceedings of the IEEE International Symposium on High
Performance Computer Architecture (HPCA’11).

SMULLEN IV, C. W., MOHAN, V., NIGAM, A., GURUMURTHI, S., AND STAN, M. R. 2011. Relaxing Non-Volatility for
Fast and Energy-Efficient STT-RAM Caches. Proceedings of the 2011 IEEE International Symposium
on High Performance Computer Architecture (HPCA’11).

SUN, G., DONG, X., XIE, Y., LI, J., AND CHEN, Y. 2009. A novel architecture of the 3D stacked MRAM L2
cache for CMPs. In Proceedings of the IEEE International Symposium on High Performance Computer
Architecture (HPCA’09). 239–249.

SUN, Z., BI, X., LI, H., WONG, W.-F., ONG, Z.-L., ZHU, X., AND WU, W. 2011. Multi retention level STT-RAM cache
designs with a dynamic refresh scheme. In Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’11).

WEN, W., ZHANG, Y., CHEN, Y., WANG, Y., AND XIE, Y. 2012. PS3-RAM: A fast portable and scalable statistical
STT-RAM reliability analysis method. In Proceedings of the Design Automation Conference (DAC’12).
1187–1192.

WOLF, M. E. 1992. Improving Locality and Parallelism in Nested Loops. Ph.D. Dissertation. Stanford, CA.
UMI Order No. GAX93-02340.

WU, X., LI, J., ZHANG, L., SPEIGHT, E., RAJAMONY, R., AND XIE, Y. 2009. Hybrid cache architecture with dis-
parate memory technologies. In Proceedings of the International Symposium on Computer Architecture
(ISCA’09).

ZHANG, Y., WANG, X., LI, Y., JONES, A. K., AND CHEN, Y. 2012a. Asymmetry of MTJ switching and its implication
to STT-RAM designs. In Proceedings of the Design, Automation & Test in Europe (DATE’12). 1313–1318.

ZHANG, Y., WEN, W., AND CHEN, Y. 2012b. The Prospect of STT-RAM Scaling from Readability Perspective.
IEEE Transactions on Magnetics 48, 11, 3035–3038.

ZHOU, P., ZHAO, B., YANG, J., AND ZHANG, Y. 2009. Energy reduction for STT-RAM using early write termination.
In Proceedings of ICCAD.

Received June 14, 2013; revised September 13, 2013; accepted November 13, 2013

ACM Transactions on Architecture and Code Optimization, Vol. 10, No. 4, Article 52, Publication date: December 2013.


