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Abstract—The advances in the field of machine learning using
neuromorphic systems have paved the pathway for extensive re-
search on possibilities of hardware implementations of neural net-
works. Various memristive technologies such as oxide-based de-
vices, spintronics, and phase change materials have been explored
to implement the core functional units of neuromorphic systems,
namely the synaptic network, and the neuronal functionality, in
a fast and energy efficient manner. However, various nonideali-
ties in the crossbar implementations of the synaptic arrays can
significantly degrade performance of neural networks, and hence,
impose restrictions on feasible crossbar sizes. In this paper, we
build mathematical models of various nonidealities that occur in
crossbar implementations such as source resistance, neuron resis-
tance, and chip-to-chip device variations and analyze their impact
on the classification accuracy of a fully connected network (FCN)
and convolutional neural network (CNN) trained with Backprop-
agation algorithm. We show that a network trained under ideal
conditions can suffer accuracy degradation as large as 59.84% for
FCNs and 62.4% for CNNs when implemented on nonideal cross-
bars for relevant nonideality ranges. This severely constrains the
sizes for crossbars. As a solution, we propose a technology aware
training algorithm, which incorporates the mathematical models
of the nonidealities in the backpropagation algorithm. We demon-
strate that our proposed methodology achieves significant recovery
of testing accuracy within 1.9% of the ideal accuracy for FCNs and
1.5% for CNNs. We further show that our proposed training algo-
rithm can potentially allow the use of significantly larger crossbar
arrays of sizes 784 × 500 for FCNs and 4096 × 512 for CNNs with
a minor or no tradeoff in accuracy.

Index Terms—Neural networks, memristive crossbar,
backpropagation, neuromorphic, image recognition.

I. INTRODUCTION

R ECENT developments in computational neuroscience
have resulted in a paradigm shift away from Boolean
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computing in sequential von-Neumann architectures as the re-
search community strives to emulate the functionality of the hu-
man brain on neurocomputers. Although extensive research has
been done to accelerate computational functions such as ma-
trix operations on general-purpose computers, the parallelism
of the human brain has remained elusive to von-Neumann ar-
chitecture, thus engendering high hardware cost and energy
consumption [1]. This has resulted in the exploration of non-
von Neumann architectures with ‘massively parallel operations
in-memory’, thus avoiding the overhead cost of exchanging
data between memory and processor. Especially with the re-
cent advances in machine learning in various cognitive tasks
such as image recognition, natural language processing etc, the
search for such energy-efficient ‘in-memory computing’ plat-
forms has become quintessential. Although standardized hard-
ware implementations of neuromorphic systems like CAV IAR
[2], IBM TrueNorth [3], SpiNNaker [4] have primarily
been dominated by CMOS technology, the memristor-based
non-volatile memory (NVM) technology [5]–[9] has naturally
evolved into an exciting prospect. To that end, various technolo-
gies such as spintronics [10], oxide-based memristors [11], [12],
phase change materials (PCM) [13], etc., have shown promising
progress in mimicking the functionality of the core computa-
tional units of a neural network, i.e., neurons and synapses.

The core functionality of a neuromorphic system is a paral-
lelized dot product between the inputs and the synaptic weights
[14]. This has been demonstrated to be efficiently realized by
a dense resistive crossbar array [15], [16]. The ability to natu-
rally compute matrix multiplications makes crossbar arrays the
most convenient way of implementing neuromorphic systems.
However, real crossbars could suffer from various non-idealities
including device variations [17], [18], parasitic resistances, non-
ideal sources, and neuron resistances. Although neural networks
are generally robust against small variations in the crossbar, the
aforementioned technological constraints can severely impact
accuracy of recognition tasks as well as restrict the crossbar size.
Several techniques such as redundancy schemes [19], technol-
ogy optimization [20] and modified training algorithms [21]–
[23] have been explored for both on-chip and ex-situ learning
to mitigate specific non-ideal effects such as IR drops, synap-
tic device variations. However, mathematical modeling of non-
idealities and its incorporation in standard training algorithm
needs further exploration.
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Fig. 1. (a) Fully connected 3-layered neural network showing the input layer, hidden layer, and an output layer. Each neuron in a particular layer is fed by
weighted sum of all inputs of the previous layer and it performs a sigmoid operation on the sum to provide the inputs for the next layer. (b) CNN Architecture with
different convolutional and pooling layers terminated by a fully connected layer.

In this work, we analyze the impact of non-idealities such
as source resistance, neuron resistances, and synaptic weight
variations in hardware implementations of neuromorphic cross-
bars. We show how such non-idealities can significantly degrade
the accuracy when traditional training methodologies are em-
ployed. The presence of these parasitic elements also severely
limits the crossbar sizes. As a solution, we propose an ex-situ
technology aware training algorithm that mathematically mod-
els the aforementioned non-idealities and accounts for the same
in the traditional backpropagation algorithm. Such a technique
not only preserves the accuracy of an ideal network appreciably
but also allows us to use larger crossbar sizes without signifi-
cant accuracy degradation. The key highlights of our work are
as follows:

1) We mathematically model the effect of source resistance,
neuron resistance, and variations in synaptic conductance
on the output currents of a neuromorphic crossbar. We
establish the validity of our model by comparing against
SPICE-like simulations of resistive networks.

2) We analyze the impact of these non-idealities on the ac-
curacy of two types of image recognition tasks with vary-
ing amounts of non-ideality within relevant technological
limits.

3) We propose a training algorithm which incorporates the
mathematical models of the crossbar non-idealities and
modifies the standard training algorithm in an effort to
restore the ideal accuracy.

II. CROSSBAR IMPLEMENTATION OF NEURAL NETWORKS

A. Types of Network Topologies

1) Fully Connected Networks: Traditionally, deep neural
networks such as deep belief nets (DBNs) comprise of mul-
tiple layers of interconnected units. Fully connected networks
(FCN) involve a series of neuron layers between the input and
the output layers. The output of each neuron in a layer is con-
nected to the inputs of all the neurons in the subsequent layer.
Fig. 1(a) shows a 3-layered fully connected network consisting
of a single hidden layer between the input and output layers.

2) Convolutional Networks: Complex image recognition
datasets comprise of objectively different classes where global

weight mapping like FCNs prove to be less efficient. As an
alternative, convolutional neural networks (CNN) have been
recognized as a more powerful tool for complex image recog-
nition problems using locally shared weights to learn common
spatially local features. As shown in Fig. 1(b), CNNs consist
of several layers performing operations like convolution, acti-
vation, and pooling, finally terminating with a fully connected
layer. The convolution function can be mathematically repre-
sented by a 4 dimension tensor. Intuitively, a convolution layer
is composed of a number of filter banks. The number of filter
banks is equal to the number of output maps. Each output map
represents a feature. A filter bank is made up of multiple kernels,
one for each input map. Hence each filter bank operates on all
the input maps to extract one output feature map. A kernel is
mathematically represented as a n × n weight matrix. During
convolution, the kernels of a filter bank are convolved with their
respective input maps. The outputs of these convolutions are
then summed together to form the corresponding output map of
that filter bank. Thus a convolution operation captures the spa-
tially local features of an input image. Convolution of a m × m
input map with a kernel of size n × n yields an output map of
size ((m − n + 2p)/s + 1) × ((m − n + 2p)/s + 1), where s
is the stride of the filter and p is the padding. In practice, s and
p are chosen such that the original input size is preserved. The
activation layer which can be RELU [24], sigmoid [25], or other
non-linear functions, introduces a non-linearity in the network
[26]. The pooling layer reduces the dimensionality of the out-
put map. Most commonly used pooling techniques are average
and max-pooling [27]. Finally, the fully connected layer uses
the learned features to classify the images. In essence, a fully
connected layer could also be represented by a convolutional
layer where the kernel size is equal to the input size.

B. Hardware Representations of Neural Networks

In hardware realizations of neural networks based on the non-
Von Neumann architecture framework, the synaptic connections
between the neurons of two adjacent layers are represented us-
ing a resistive crossbar. The weights are represented in terms of
conductance and the inputs are encoded as voltages. Convolu-
tional layers have locally concentrated connections, hence each
filter bank is represented by a crossbar of equivalent size. The
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input to the crossbar is a subset of the image being sampled by
the kernel. Each element of the output map is calculated through
time multiplexing of the outputs from a particular crossbar for
different subsets of the image. This is repeated for each filter
bank to obtain different output maps. In contrast, fully con-
nected layers have all possible connections between input and
the output and the entire connection matrix can be represented
by a crossbar. The basic computational function of any layer is
a dot product and can be seamlessly performed by representing
the weights as the resistances in a crossbar fashion. The output
current of jth neuron of each crossbar is computed as

Ij =
∑

V +
i G +

j i + V −
i G −

j i (1)

where Vi is the input voltage corresponding to ith input neu-
ron and Gji represents the conductance corresponding to the
synaptic weights between the neurons. Two resistive arrays are
deployed to account for bipolar weights. The input to the pos-
itive array is +Vi whereas the input to the negative array is
−Vi . The weight matrix [wji] is mapped to a corresponding
conductance range [Glow , Ghigh ] ⊂ [Gon , Goff ]. To represent
bipolar weights, the conductance of the synapse connecting the
jth neuron in the next layer to the ith input is denoted by a pos-
itive (G +

j i ) component and a negative (G −
j i ) component. For

positive (negative) weights, the programming is done such that
G +

j i (G −
j i ) = |wji |Ghigh and G −

j i (G +
j i ) = 0 (no connection).

Fig. 2(a) shows a crossbar implementation of a fully connected
neural network.

As mentioned earlier, crossbar arrays could suffer from non-
ideal effects and incur limitations on their sizes. As a result,
larger crossbars are divided into smaller crossbars and the out-
put of each crossbar is time-multiplexed to obtain the desired
functionality of the entire crossbar. Fig. 2(b) shows how mul-
tiple small crossbars can be efficiently mapped to realize the
functionality of a large crossbar in a particular layer. The small
size of the crossbar reduces fan-out and fan-in, thus minimizing
the impact of non-idealities. FCNs, being densely connected, are
severely affected by hardware imperfections, especially when
implemented on large crossbars. Convolutional layers in CNNs
are usually implemented on very small crossbars and are thus in-
sensitive to non-ideal effects. However, the final fully connected
layers which acts as a classifier can be significantly affected by
these non-idealities due to their large sizes. In this work, we are
thus considering the impact of non-idealities on FCNs, and fully
connected layers of CNNs.

C. Training

The training of Artificial Neural Networks (ANN) are tra-
ditionally done off-chip through the standard backpropagation
algorithm which updates weight matrices using gradient de-
scent technique [28]. It is important to note down the vital
aspects of the algorithm here in relevance to the later sections.
The basic algorithm updates weights based on the gradients of
a cost function. The cost function depends on the error com-
puted from the feed-forward network which assumes a form :
C = 1

2

∑
(yj − aj )2 , where yj is the expected output and aj

is actual output from the jth neuron in the output layer. The

Fig. 2. (a) Hardware implementation of a single fully connected network
layer represented by two resistive crossbar arrays. The output of the crossbar
will be fed to another crossbar representing the next layer. (b) An arrangement
of multiple sub-crossbars to realize the functionality of a large crossbar.

sensitivity of the errors for each layer are calculated from the
derivatives of the cost function with respect to the outputs and
weights and after each iteration, the weights are updated based
on those of the corresponding layer. The detailed description
of the algorithm is well documented [28]. In this work, we fo-
cus on the aspects of the algorithm pertinent to fully connected
layers and we build mathematical models to account for the
non-idealities experienced by the hardware implementation of
neuromorphic crossbars.

D. Technologies

Various technologies have been explored for crossbar im-
plementations of neural networks. Memristive crossbars based
on different material systems (like TaOx [29], TiO2 [30],
Ag/Si [31] etc) have been proposed to realize neuromor-
phic functionality in an energy efficient manner. Phase change
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TABLE I
RESISTANCE RANGES FOR VARIOUS TECHNOLOGIES

materials (PCM) [13] have also been investigated as potential
candidates for neuromorphic computing due to their high scal-
ability. More recently, neurons and synapses implemented with
spintronic devices [10], [16] have shown great promise in per-
forming ultra-low power neuromorphic computing. However,
each technology suffers from specific drawbacks. An important
metric in regard of resistive crossbars for neuromorphic sys-
tems is the ratio of the high resistance state (Roff ) and the low
resistance state (Ron ) of the synaptic device. Usually, a high
Roff /Ron ratio is desired for a near-ideal implementation of the
weights in a neuromorphic crossbar. Moreover, in the light of
non-ideal systems, higher values of Ron , Roff may be less signif-
icantly impacted by parasitic resistances. In this work, we have
chosen a maximum to minimum conductance (Glow = α/Roff ,
Ghigh = 15Glow , α is a parameter of choice) ratio of 15 which
is a potentially realizable predictive measure for all memory
technologies [13], [32], [33].

Memristor based neuromorphic crossbar designs leverages
its inherent capability of matrix multiplication to provide high
accuracy at a relatively modest computational cost [34].

However, the memristor technology is still in its nascent stage.
Thus, the hardware implementation of such crossbars may suf-
fer various kinds of non-ideal effects arising from memristor
device variations, parasitic resistances as well as non-idealities
in sources, and sensing neurons.

III. MODELING THE NON-IDEALITIES

In this work, we have considered three kinds of non-idealities
that arise in crossbar implementations, namely,

1) Neuron Resistance (Rneu )
2) Source Resistance (Rs)
3) Memristive resistance variations
To perform an analysis of the impact non-idealities might have

on accuracy of recognition task, it is important to note the ratio of
non-ideal resistances to the synaptic resistances for a particular
technology. Table I shows the range of considered resistance
ratios to synaptic resistances Rs/Rhigh and Rneu/Rhigh for
various technologies, considering relevant values of source (Rs)
and neuron (Rneu ) resistances.

A. Neuron Resistance

The resistance offered by the neuron in a neuromorphic cross-
bar varies from technology to technology. In many cases, such
as, PCM technology, the resistance of the neuron is not a hard-
ware issue as the crossbar outputs are sensed through a sense

Fig. 3. Crossbar Architecture showing non-ideal elements like source and
neuron resistances. The final output current equation is modified by the impact
of these non-ideal elements.

amplifier, where virtual ground at the input eliminates the volt-
age drop across the neuron. However, in spintronic crossbars
[10], crossbar outputs are fed to the neuron as a current stim-
ulus and thus, the resistance of the neuronal device becomes
relevant. Fig. 3 shows the effect of neuron resistance on the
crossbar output. This can be mathematically modeled to modify
(1) as:

Ij =

∑
V +

i G +
j i + V −

i G −
j i

1 + Rneu
∑

G +
j i + G −

j i

(2)

Here, Ij , V
+/−
i , G

+/−
j i and Rneu carry the same meaning as

described in earlier sections. (1) can be derived by applying
Kirchoff’s law at the output nodes of the crossbar and consider-
ing the voltage drop across the neuron to be Vj,neu = Ij × Rneu .
It is evident that the denominator is close to 1 for smaller arrays
as Gji s are much smaller than neuron conductances (resistances
of the order of a few hundred ohms [10]). However, larger ar-
rays could lead to Gneu = 1/Rneu being comparable to sum of
the conductances in a particular column. More specifically, a
higher number of rows in the crossbar lead to enhanced impact
of neuron resistance.
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B. Source Resistance

The source resistance (Rs) in a neuromorphic crossbar could
arise due to non-ideal voltage sources and input access selec-
tors lumped together. The input voltages to crossbar gets de-
graded due to Rs and the degradation can be mathematically
modeled as:

V +
i,deg = V +

i

1/Rs

1/Rs +
∑ 1

R+
i j +Rn e u

(3)

V −
i,deg = V −

i

1/Rs

1/Rs +
∑ 1

R−
i j +Rn e u

(4)

Here R
+/−
ij is the resistance of the synaptic element between

the ith row and jth column in the positive or negative array.
The model ignores the effect of sneak paths. In neuromorphic
crossbars, all the inputs are simultaneously active. As the IR
drops in the metal lines are negligible, all the nodes in a par-
ticular row are supplied by the degraded source voltage of that
row. As all the rows are supplied by voltages of same polarity,
even the shortest possible current sneak path will experience
a low potential difference. Thus, the current through the series
connection of the synaptic memristor and neuron would be pri-
marily dependent on the degraded supply voltage and effective
series resistance. We have verified the validity of the model by
comparing against SPICE-like simulations, which is described
in more detail in Section IV-B.

C. Memristive Conductance Variations

The weights obtained from the training algorithm are usually
discretized in order to be represented as memristive synapses. In
this work, we have used a 4-bit discretization technique where
we have used a Rhigh/Rlow ratio of 15, relevant to the tech-
nologies considered. We have mapped the weights such that
the maximum weight always maintains the Rhigh/Rlow ratio
to the minimum weight. We have chosen the maximum and
minimum weight limits so as to minimize the accuracy degra-
dation due to discretization. To analyze the impact of chip-to-
chip variation of weights, we have introduced weight variations
in terms of standard deviation (σ) errors, ranging from −2σ
to +2σ after discretization. This implies that all the memris-
tive devices on a neuromorphic chip suffer the same variation
at a particular process corner. The weight variations are in-
corporated in the mathematical model as a Δ variation to the
conductances.

D. Proposed Training Algorithm

The mathematical representations of the non-idealities are
finally collated and incorporated in the feed-forward path and
the backpropagation algorithm for training the ANN. Weights
wji and inputs ai replaces the conductances Gji and voltages Vi

respectively in (1) and (2). The symbol zj is used to represent the
current output of the crossbars Ij corresponding to jth neuron
of the next layer. We assume that the neuronal function receives
a current input and provides a voltage output. For the sake
of simplicity, we assume ideal mathematical representations

of activation functions like RELU [24] and sigmoid [25]. As
described in Section II-A, the ideal crossbar output of the jth
column in any layer is given by zj =

∑
i

ai × wji . The modified

crossbar output can be computed as follows:

zl
j =

∑
a+

i,degw
+
j i,vary + a−

i,degw
−
j i,vary

γj

γj = 1 + Rneu

∑

i

w+
j i,vary + w−

j i,vary (5)

where,

a+
i,deg = ai

1/Rs

β+
i

a−
i,deg = −ai

1/Rs

β−
i

w
+/−
ij,vary = w

+/−
ij + Δ

β
+/−
i = 1/Rs +

∑ 1

R
+/−
ij + Rneu

R
+/−
ij = 1/w

+/−
ij,vary

As described earlier, two weight matrices are deployed to
account for bipolar weights in the original weight matrix
W = [wji ]. Positive (Negative) inputs are fed to the positive
(negative) weight array. The weight matrices are created such
that w +

j i (w −
j i ) = 0 for all i,j for which Wji < 0(>0) and

w +
j i (w −

j i ) = Wji for all i,j for which Wji > 0(<0). Note that
mapping the weights to a particular conductance range is equiv-
alent to multiplication by a scaling factor as we have already
discretized the weights based on a maximum to minimum weight
ratio equal to Ghigh/Glow = 15. Thus an equivalent represen-

tation in terms of conductance would be G
+/−
j i = WjiGhigh .

The output of each crossbar is passed as inputs to the next
crossbar through a sigmoid function such that aL+1

i = σ(zL
i )

(where L is the layer index). The backpropagation algorithm
is modified to account for the modified crossbar functionality.
As described earlier, learning in neural networks relies on com-
putation of gradients of a cost function. Here, it is calculated
from the error between the expected and the actual output of
the output layer neurons in the form of C = 1

2

∑
(yj − aL

j )2 .
The delta-rule in the backpropagation algorithm [38] involves
calculation of δ for each layer accounting for the change in the
cost function for unit change in inputs to that particular layer.
Thus, δ for layer l can be written as:

For output layer,

δL
j =

∂C

∂zL
j

=
∑ ∂C

∂aL
j

∂aL
j

∂zL
j

= (aL
j − yj )σ

′
(aL

j ) (6)
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For other layers,

δl
j =

∂C

∂zl
j

=
∑

k

∂C

∂zl+1
k

∂zl+1
k

∂zl
j

=
∑

k

δl+1
k

∂zl+1
k

∂zl
j

∂zl+1
k

∂zl
j

=
∂zl+1

k

∂al
j

∂al
j

∂zl
j

=
∂zl+1

k

∂al
j

σ
′
(al

j ) (7)

∂zl+1
k

∂al
j

=

a+ , l
j , d e g

al
j

w +
jk ,vary − a−, l

j , d e g

al
j

w −
jk ,vary

γj
(8)

Finally, the δ s of each layer are used to compute the weight
updates as:

dwl
jk =

∂C

∂wl
jk

=
∂C

∂zl
j

∂zl
j

∂wl
jk

= δl
j

∂zl
j

∂wl
jk

(9)

∂zl
j

∂wl
jk

=
γj (a+

k,deg(1 − w+
k j

β+
k

) + a−
k,deg(1 − w−

k j

β−
k

)) − Rneuzl
j γj

γ2
j

(10)

To simulate the impact of non-idealities on varying crossbar size,
we divide the large crossbars of size M × N into several smaller
crossbars of size m × n. Fig. 1(c) shows the network architec-
ture of combining smaller crossbars to realize the neuromorphic
functionality of larger crossbars. The source degradation factor
βi is more prominent for larger number of columns as it depends
on the term

∑
j

1/(Rij + Rneu) summed over the columns. The

neuron resistance degradation factor γj , on the other hand, in-
creases with the number of rows due to its dependence on the
term

∑
i

wji , summed over the rows. Thus, the combined effect

of these two non-idealities is expected to have a higher impact
on the network for larger crossbars.

IV. SIMULATION FRAMEWORK

A. Model Simulations

The model described in the previous section was implemented
on FCNs using the MATLAB Deep Learning Toolbox [39] and
CNNs using MatConvNet [40].

1) FCN: A 3-layered neural network was employed to rec-
ognize digits from the MNIST Dataset. The training set consists
of 60000 images, while the testing set consists of 10000 images.
The input layer consists of 784 neurons designated to carry the
information of each pixel of each 28 × 28 image. The hid-
den layer consists of 500 neurons and the output layer has 10
neurons to recognize 10 digits. The neuron transfer function
was chosen to be the sigmoid function which can be written as
σ(x) = 1

1+e−x .
2) CNN: For the classification of more complex dataset

CIFAR-10, we have used a network with RELU-activated
convolutional layers and a sigmoid-activated fully connected
layer. The architecture is represented as 32 × 32 × 3-64c5-
2s-128c5-2s-256c3-2s-512o-10o.The details of the layers are
provided in Table II. Essentially, the different layers repre-
sent subsequent operations such as convolution, max-pooling or

TABLE II
CNN ARCHITECTURE

average-pooling and activation. The operations are described in
detail in Secton II-A. Each convolutional layer is followed by a
batch-normalization layer for better performance. We concen-
trate our analysis on the fully connected layers of the network
as the initial convolutional layers possess local connections im-
plemented on small crossbars equal to the kernel sizes.

B. SPICE-Like Simulations for Validation

Each fully connected layer for both FCNs and CNNs can be
implemented in a crossbar architecture comprising of all pos-
sible connections. A SPICE-like framework was implemented
in MATLAB by creating a netlist of all connections, voltage
source, source and neuron resistances in such resistive crossbars
and evaluating the voltages at each node by solving the con-
ductance matrix: [V ] = [G]−1 [I]. The framework was bench-
marked with HSPICE. This framework was used to calculate
the output of non-ideal crossbars on application of the inputs
from the MNIST dataset as voltages. The resistances of the
crossbar elements Rji were determined such that Rji = 1/wji ,
where wji are the weights determined by the ideal training
scheme described in the previous section. The output obtained
by showing 100 images of the testing set was averaged and
the distribution was compared with the mathematical model
simulations. Fig. 4(a) shows the comparison in the distribu-
tion of output currents of a crossbar where the approximate
model shows good agreement with the exact SPICE-like simu-
lations. Fig. 4(b) shows that the normalized root mean square
deviation (NRMSD) between the two techniques for various
(Rs + Rneu)/Rhigh combinations remains very close to zero
for relevant values. As SPICE simulations automatically takes
account of possible sneak paths, the agreement of our model to
SPICE simulations means that the effect of sneak paths, even if
not absolutely zero, is insignificant. Thus, the dominant issues
in the crossbar to be considered are source and neuron resis-
tances. It is to be noted that the validation of our approximate
model was important in the context of reducing the time required
for simulating the training and inferencing of each network for
the entire dataset as the matrix operations could be more ef-
ficiently performed using the mathematical model. This elimi-
nated simulating the network for each input image in HSPICE
and the subsequent iterative steps involving MATLAB-SPICE
interfacing.
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Fig. 4. (a) Distribution of output currents (Imean), averaged over 100 images,
across 500 neurons in the hidden layer comparing the approximate model to
SPICE-like simulation framework. (b) Variation of Normalized Root Mean
Square Deviation (NRMSD) with non-ideality ratio. NRMSD is close to zero
for the relevant range of non-idealities.

V. RESULTS AND DISCUSSION

We analyzed the impact of technological constraints in cross-
bar implementations on both FCNs and CNNs. As fully con-
nected layers form the crux of classification in both network
topologies, it is expected that such non-ideal conditions will
have similar detrimental effects on both. We present the de-
tailed impact of each non-ideality on FCNs and CNNs for better
understanding.

We consider a 3-layered FCN and a CNN architecture de-
scribed in Table II to analyze the impact of the non-idealities
on the accuracy of recognition task on MNIST and CIFAR-10
datasets respectively. The other convolutional layers in the CNN
are usually implemented using small crossbars and hence do not
suffer significant effects of non-ideal resistances.

First, the neural networks were trained under ideal condi-
tions using the training set. Then, the non-ideal model was in-
cluded in the feed-forward path and the ideally trained network
was tested using the testing set to determine the performance
degradation due to the non-idealities. Next, the technology
aware training algorithm was implemented by incorporating the
mathematical formulation of the non-idealities in the standard
training iterations of feed-forward and backpropagation as de-
scribed in the Section III-D. For each iteration, the weights were

Fig. 5. Accuracy degradation v/s varying Rneu /Rhigh ratio for different
Rs /Rhigh combinations comparing technology aware training scheme with
normal training for (a) FCN and (b) CNN.

discretized as described in Section III-C. The testing accuracy
of an ideally trained FCN with a sigmoid neuronal function
was 98.12% on MNIST and that of an ideally trained CNN was
85.6% on CIFAR-10 datasets. The accuracy degradations dis-
cussed in this section has been calculated with respect to these
ideal testing accuracies such that Accuracy Degradation (%) =
Ideal Accuracy (%) − Accuracy Obtained (%).

We use the parameters Rs/Rhigh and Rneu/Rhigh to denote
the ratios of the non-ideal resistances and the maximum synaptic
resistance.

1) Source and Neuron Resistance: Fig. 5(a) and (b) shows the
accuracy degradation for different Rneu/Rhigh and Rs/Rhigh
combinations in FCN and CNN, respectively. The effect of
the non-ideal resistances on the performance of the network
predictably worsens monotonically with higher Rs/Rhigh and
Rneu/Rhigh ratios. It can be observed that with normal train-
ing methods, the non-ideal resistances result in accuracy degra-
dation for FCN: up to 41.58% for Rneu/Rhigh = 0.07% and
Rs/Rhigh = 0.27%. Our proposed training scheme incorporates
the impact of non-idealities and achieves significant restoration
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Fig. 6. Accuracy degradation v/s σ variations in weights for various
Rs /Rhigh and Rneu /Rhigh combinations comparing the technology aware
training scheme with normal training for (a) FCN and (b) CNN.

of accuracy, within 1.9% of the ideal accuracy, for the worst
case combination of resistances considered, shown in Fig. 5(a).

In case of CNNs, we show that due to the large crossbar
sizes of the fully connected layers in the CNN, it can suffer
up to 59.3% degradation in accuracy for the worst case non-
ideal resistances considered. Our proposed algorithm, on the
other hand, achieves an accuracy within 1.5% of the ideal ac-
curacy [Fig. 5(b)], considering the largest crossbar sizes for the
architecture.

2) Weight Variations: On-chip crossbar implementations suf-
fer from chip-to-chip device variations. To account for such
variations, we form a defect weight matrix, and include it in the
feed-forward network, as described in detail in Section III-C.
We have considered up to±2σ variation in the synaptic weights.
Fig. 6 shows the impact of such device variations on the accu-
racy of FCN and CNN for different combinations of Rs/Rhigh
and Rneu/Rhigh . Predictably, changes in the positive direc-
tion reduces the accuracy degradation from the nominal (no

variation) case as it enhances the significance of the neurons.
However, changes in the negative direction slightly degrades
the accuracy from the nominal case. It is observed that a −2σ
variation can result in an accuracy degradation of up to 59.9%
for Rneu/Rhigh = 0.067% and Rs/Rhigh = 0.27% in FCN. By
accounting for these variations in the backpropagation algo-
rithm, our proposed training methodology successfully restores
the accuracy within 2.34% of the ideal accuracy for worst case
of non-idealities considered, as shown in Fig. 6(a).

Weight variations in the negative direction also adversely af-
fect CNNs where −2σ variation can result in an accuracy degra-
dation of 62.4% considering the non-ideal resistances mentioned
above. Our proposed algorithm achieves an accuracy within
0.8% of the ideal testing accuracy as shown in Fig. 6(b).

3) Crossbar Size: Non-idealities in crossbars usually establish
restrictions on the allowable crossbar sizes due to the depen-
dence of their performance on fan-in and fan-out. For example,
the impact of Rs on the crossbar depends on the parallel com-
bination of column resistances and a higher number of columns
(and hence, higher fan-out) result in severe performance degra-
dation. Also, the impact of Rneu intensifies with increasing
number of rows in the crossbar as it leads to more fan-in. As
observed in Fig. 7(a), the combined effect of these resistances
and variations can result in significant accuracy degradation
(41.58%) when the network is implemented on crossbars of
sizes 784 × 500 and 500 × 10 for the respective layers in the
FCN. Under the same non-ideal conditions, accuracy degrada-
tion drops to 1.2% when smaller crossbars of sizes 112 × 100
and 100 × 10 are used to represent the functionality of the
network. In contrast, considering the same Rs and Rneu , our
proposed training algorithm achieves an accuracy degradation
within ∼1.89% for sizes 784 × 500, 500 × 10 and ∼0.3% for
sizes 112 × 100, 100 × 10. Thus, the proposed algorithm en-
sures that a network implemented on larger crossbars can par-
allel the performance of ideally trained networks implemented
on smaller crossbars with minimal degradation.

The convolutional layers in CNNs are implemented on
smaller crossbars. For the fully connected layers in the CNN
architecture, we have considered significantly larger cross-
bars of sizes 4096 × 512 and 512 × 10. Due to large sizes
of the last 2 layers of the considered architecture, we show
in Fig. 7(b), that the network, when trained under ideal con-
ditions, can suffer as large as 59.3% degradation in accuracy
for the worst case resistance constraints considered. On the
other hand, using smaller crossbars of sizes 512 × 64, 64 × 10
reduces the accuracy degradation to 2.4% for the same con-
ditions. In comparison, a network trained with the proposed
technology aware training algorithm restores the accuracy to
within ∼1.5% of the ideal accuracy even for the highest cross-
bar sizes (4096 × 512, 512 × 10). Thus, the proposed algorithm
ensures that a CNN with fully connected layers implemented on
crossbars of size in the order of 4096 × 512 can achieve better
performance than for crossbars of size 512 × 64 with standard
training algorithms. Such a provision of using large crossbars
for implementing neuromorphic systems could potentially re-
duce overheads of repeating inputs, time multiplexing outputs,
thus ensuring faster operations.
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Fig. 7. Accuracy degradation v/s crossbar size for various Rs /Rhigh and
Rneu /Rhigh combinations comparing the technology aware training scheme
with normal training for (a) FCN and (b) CNN. Larger crossbars show higher
accuracy degradation.

VI. CONCLUSION

Hardware implementations of neuromorphic systems in
crossbar architecture could suffer from various non-idealities
resulting in severe performance degradation when employed in
machine learning applications such as recognition tasks, natural
language processing, etc. In this work, we analyzed, by means
of mathematical modeling, the impact of non-idealities such
as source resistance, neuron resistance and chip-to-chip device
variations on performance of a 3-layered FCN on MNIST and a
state-of-the-art CNN architecture on CIFAR-10. Severe degra-
dation in recognition accuracy, up to 59.84%, was observed in
FCNs. Although convolution layers in CNN can be implemented
on smaller crossbars, the large fully connected layers at the end
made them prone to performance degradation (up to 62.4% for
our example). As a solution, we proposed a technology aware
training algorithm which incorporates the mathematical mod-
els of the non-idealities in the training algorithm. Considering
relevant ranges of non-idealities, our proposed methodology
recovered the performance of the network implemented on non-
ideal crossbars to within 2.34% of the ideal accuracy for FCNs

and 1.5% for CNNs. We further show that the proposed technol-
ogy aware training algorithm enables the use of larger crossbars
of sizes in the order of 4096 × 512 for CNNs and 784 × 500
for FCNs without significant performance degradation. Thus,
we believe that the proposed work potentially paves the way
for implementation of neuromorphic systems on large crossbars
which otherwise is rendered unfeasible using standard training
algorithms.
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