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Machine learning (ML) algorithms are moving  
to the IoT edge due to various considerations such  
as latency, power consumption, cost, network  
bandwidth, reliability, privacy and security. Hence, there  
is an increasing interest in developing neural network  
(NN) solutions to deploy them on low-power edge devices 
such as the Arm Cortex-M microcontroller systems.  
To enable that, we present CMSIS-NN, an open-source 
library of optimized software kernels that maximize  
the NN performance on Cortex-M cores with minimal 
memory footprint overhead. We further present methods 
for NN architecture exploration, using image classification 
on CIFAR-10 dataset as an example, to develop models 
that fit on such constrained devices.

— Keywords: Machine learning, deep learning, neural networks, embedded systems, IoT,  

energy-efficiency, Cortex-M. 

I. Introduction
Connected devices or Internet of Things (IoT) have been rapidly proliferating over the past 

few years and are predicted to reach 1 trillion across various market segments by 2035 

[1]. These IoT edge devices typically consist of various sensors collecting data, including 

audio, video, temperature, humidity, GPS location and acceleration etc. Typically, most data 

collected from the sensors are processed by analytics tools in the cloud to enable a wide 

range of applications, such as industrial monitoring and control, home automation  
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and health care. However, as the number of the IoT nodes increases, this places  

a considerable burden on the network bandwidth, as well as adds latency to the IoT 

applications. Furthermore, dependency on the cloud makes it challenging to deploy  

IoT applications in regions with limited or unreliable network connectivity. One solution 

to this problem is edge computing, performed right at the source of data, i.e. the IoT edge 

node, thus reducing latency as well as saving energy for data communication. 

Neural network (NN) based solutions have demonstrated human-level accuracies for many 

complex machine learning applications such as image classification, speech recognition 

and natural language processing. Due to the computational complexity and resource 

requirements, the execution of NNs has predominantly been confined to cloud computing 

on high-performance server CPUs or specialized hardware (e.g. GPU or accelerators), which 

adds latency to the IoT applications. Classification right at the source of the data – usually 

small microcontrollers – can reduce the overall latency and energy consumption of data 

communication between the IoT edge and the cloud. However, deployment of NNs  

on microcontrollers comes with following challenges: 

Limited memory footprint: Typical microcontroller systems have 10’s-100’s of KB 

memory available. The entire neural network model, including input/output, weights 

and activations, has to fit and run within this small memory budget.

Limited compute resources: Many classification tasks have always-on, and real-time 

requirement, which limits the total number of operations per neural network inference.

These challenges can be addressed from both the device and the algorithm perspectives. 

On one hand, we can improve the machine learning capabilities of these microcontrollers 

by optimizing the low-level computation kernels for better performance and smaller 

memory footprint when executing neural network workloads. This can enable  

the microcontrollers to handle larger and more complex NNs. On the other hand,  

NNs can be designed and optimized with respect to the targeting hardware platform  

by NN architecture exploration. This can improve the quality (i.e., accuracy)  

of the NNs under fixed memory and computation budgets. 

In this paper, we present CMSIS-NN [2] in Section II. CMSIS-NN is a collection of efficient 

neural network kernels developed to maximize the performance and minimize the memory 

footprint of neural networks on Arm Cortex-M processor cores targeted for intelligent  

IoT edge devices. Neural network inference based on CMSIS-NN kernels achieves  

4.6X improvement in runtime/throughput and 4.9X improvement in energy efficiency.  

In Section III, we present techniques for searching the neural network architectures  

for the microcontroller memory/compute constraints using image classification application 

on CIFAR-10 dataset as an example.
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II. CMSIS-NN
The overview of CMSIS-NN neural network kernels is shown in Fig. 1. The kernel code 

consists of two parts: NNFunctions and NNSupportFunctions. NNFunctions include  

the functions that implement popular neural network layer types, such as convolution, 

depth wise separable convolution, fully-connected (i.e. inner product), pooling  

and activation. These functions can be used by the application code to implement  

the neural network inference applications. The kernel APIs are intentionally kept simple,  

so that they can be easily retargeted for any machine learning frameworks such  

as TensorFlow, Caffe or PyTorch. NNSupportFunctions include utility functions, such  

as data conversion and activation function tables, which are used in NNFunctions. These 

functions can also be used by the application code to construct more complex NN 

modules, such as Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU) cells. 

For some kernels, such as fully-connected and convolution, different versions of the kernel 

functions are implemented. A basic version is provided that works universally, ‘as-is’,  

for any layer parameters. We have also implemented other versions which include further 

optimization techniques with either transformed inputs or with some limitations  

on the layer parameters. 

A. Fixed-Point Quantization
Research has shown that NNs work well even with low-precision fixed-point representation 

[3]. Fixed-point quantization helps to avoid the costly floating-point computation  

and reduces the memory footprint for storing both weights and activations, which is critical 

for resource-constrained platforms. Although precision requirements for different networks 

or network layers can vary [4], it is hard for the CPU to operate on data types with varying 

bit-width. In this work, we develop the kernels that support both 8-bit and 16-bit data. 

Neural Network Application Code

Convolution Data type conversion

NNFunctions

Activation tables

NNSupportFunctions

Pooling

Fully-connected Activations

Fig 1: Overview  
of CMSIS-NN neural 
network kernels.
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The kernels adopt the same data type format as used in CMSIS-DSP, i.e. q7_t as int8, q15_t 

as int16 and q31_t as int32. The quantization is performed assuming a fixed-point format 

with a power-of-two scaling. The quantization format is represented as Qm.n, where  

the represented value will be   A×2-n, where A is the integer value and n is part of Qm.n that 

represents the number of bits used for the fractional portion of the number, i.e., indicating 

the location of the radix point. We pass the scaling factors for the bias and outputs  

as parameters to the kernels and the scaling is implemented as bitwise shift operations 

because of the power-of-two scaling. 

During the NN computation, the fixed-point representation for different data, i.e.,  

inputs, weights, bias and outputs, can be different. The two input parameters, bias_shift  

and out_shift, are used to adjust the scaling of different data for the computation.  

The following equations can be used to calculate the shift values:

	 bias_shift = ninput + nweight − nbias	  (1)

	 out_shift = ninput + nweight − noutput 	  (2)

where ninput, nweight, nbias and noutput are the number of fractional bits in inputs, weights, bias 

and outputs, respectively.

B. Software Kernel Optimization
In this section, we highlight some of the optimizations implemented in CMSIS-NN  

for improving the performance and reducing the memory-footprint.

1) Matrix Multiplication: Matrix multiplication is the most important computation kernel  

in neural networks. The implementation in this work is based on the mat_mult kernels  

in CMSIS-DSP. Similar to CMSIS implementation, the matrix multiplication kernel  

is implemented with 2×2 kernels, illustrated in Fig. 2. This enables some data reuse  

and saves on the total number of load instructions. The accumulation is done with  

the q31_t data type and both operands are of q15_t data type. We initialize  

the accumulator with the corresponding bias value. The computation is performed  

using the dedicated SIMD MAC instruction_SMLAD.

2) Convolution: A convolution layer extracts a new feature map by computing a dot product 

between filter weights and a small receptive field in the input feature map. Typically, a CPU 

based implementation of convolution is decomposed into input reordering and expanding 

(i.e. im2col, image-to-column) and matrix multiplication operations. im2col is a process  

of transforming the image-like input into columns that represent the data required by each 

convolution filter. An example of im2col is shown in Fig.3.
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One of the main challenges with im2col is the increased memory footprint, since  

the pixels in the input image are repeated in the im2col output matrix. To alleviate  

the memory footprint issue while retaining the performance benefits from im2col,  

we implemented a partial im2col for our convolution kernels. The kernel will expand only 

2 columns at a time, sufficient to get the maximum performance boost from the matrix-

multiplication kernels while keeping memory overhead minimal. The image data format 

can also affect the performance of convolution, especially im2col efficiency. The two most 

common image data formats are Channel-Width-Height (CHW), i.e. channel last,  

and Height-Width-Channel (HWC), i.e. channel first. The dimension ordering is the same  

as that of the data stride. In an HWC format, the data along the channel is stored with  

a stride of 1, data along the width is stored with a stride of the channel count, and data 

along the height is stored with a stride of (channel count × image width).

The data layout has no impact on the matrix-multiplication operations, as long  

as the dimension order of both weights and images is the same. The im2col operations  

are performed along the width and height dimensions only. The HWC-style layout  

enables efficient data movement, as data for each pixel (i.e. at the same x,y location)  

is stored contiguously and can be copied efficiently with SIMD instructions. To validate  

this, we implemented both CHW and HWC versions and compared the runtime  

on an Arm Cortex-M7. The results are highlighted in Fig. 4, where we fixed the HWC input 

to be 16x16x16 and swept the number of output channels. When the output channel 

Image
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value is zero, it means that the software performs only im2col and no matrix-multiplication 

operation. Compared to CHW layout, HWC has less im2col runtime with the same matrix-

multiplication performance. Therefore, we implement the convolution kernels with HWC 

data layout. 

C. CMSIS-NN Results
We tested the CMSIS-NN kernels on a CNN trained on the CIFAR-10 dataset, consisting 

of 60,000 32x32 color images divided into 10 output classes. The network topology  

is based on the built-in example provided in Caffe, with three convolution layers  

and one fully-connected layer. All the layer weights and activation data are quantized  

to q7_t format. The runtime is measured on a STMicroelectronics NUCLEO-F746ZG  

Mbed board with an Arm Cortex-M7 core running at 216 MHz.

The entire image classification takes about 99.1 ms per image (the equivalent of 10.1 

images per second). The compute throughput of the CPU is about 249 MOps per second 

for running this network. The pre-quantized network achieves an accuracy of 80.3%  

on the CIFAR-10 test set. The 8-bit quantized network running on Arm Cortex-M7 core 

achieves 79.9% accuracy. Maximum memory footprint using the CMSIS-NN kernels 

is ~133 KB, where convolutions are implemented with partial im2col to save memory, 

followed by matrix-multiplication. Memory footprint without partial im2col would  

be ~332 KB and the neural network would not fit on the board. To quantify the benefits  

of CMSIS-NN kernels over existing solutions, we also implemented a baseline version using 

a 1D convolution function (arm_conv from CMSIS-DSP), Caffe-like pooling and ReLU.  

For the CNN application, Table I summarizes the comparison results of the baseline

R
un

tim
e 

(m
s)

Output channel count

CHW HWC

Layer  
type

Baseline  
runtime

CMSIS-NN 
 runtime

SRAM Flash

Throughput Energy efficiency

Convolution 443.4 ms 96.4 ms 4.6 X 4.9 X

Pooling 11.83 ms 2.2 ms 5.4 X 5.2 X

ReLU 1.06 ms 0.4 ms 2.6 X 2.6 X

Total 456.4 ms 99.1 ms 4.6 X 4.9 X

Fig 4: Comparison  
of convolution execution 
time with CHW vs. HWC 
data layouts. Both layouts 
have the same matrix-
multiplication runtime,  
but HWC has less  
im2col runtime. 

Table I: Throughput 
and energy efficiency 
improvements.
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functions and the CMSIS-NN kernels. The CMSIS-NN kernels achieve 2.6X to 5.4X 

improvement in runtime/throughput over the baseline functions. The energy efficiency 

improvement is also in line with the throughput improvement. 

III. Hardware Constrained NN Models
In this section, we use image classification application as an example to highlight  

the importance of choosing the right neural network architecture for the hardware  

platform (i.e., a microcontroller) on which the application will be deployed on. In order  

to do that, we need to understand the hardware constraints of microcontrollers. 

Microcontrollers typically consist of processor core, an SRAM which acts as a main memory 

and an embedded flash for storing the code and data. Table-II shows some commercially 

available microcontroller development boards with Arm Cortex-M cores with different 

compute and memory capacities.

The amount of memory in the microcontroller system limits the size of the NN model that 

can be run on the system. Apart from memory constraints, large compute requirements  

of neural networks pose another critical constraint for running NNs on microcontrollers, as 

they typically run at low frequencies for low power consumption. Hence NN architectures 

must be chosen to match the memory and compute constraints of the hardware on which 

the NN model will be deployed. In order to evaluate the accuracy of the neural networks 

with different hardware constraints, we choose three system configurations of different 

sizes and derive the neural network requirements for each configuration as shown  

in Table-III. Here, we assume a nominal 10 image classification inferences per second  

(i.e., 10 fps) to derive the NN requirements. 

Arm Mbed™ 
Platform Processor Frequency SRAM Flash

LPC11U24 Cortex-M0 48 MHz 8 KB 32 KB

nRF51-DK Cortex-M0 16 MHz 32 KB 256 KB

LPC1768 Cortex-M3 96 MHz 32 KB 512 KB

Nucleo F103RB Cortex-M3 72 MHz 20 KB 128 KB

Nucleo L476RG Cortex-M4 80 MHz 128 KB 1MB

Nucleo F411RE Cortex-M4 100 MHz 128 KB 512 KB

FRDM-K64F Cortex-M4 120 MHz 256 KB 1MB

Nucleo F746ZG Cortex-M7 216 MHz 320 KB 1MB

Table II: Off the shelf 
Arm Cortex-M  
Mbed platforms.
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A. NN Architectures for Image Classification
1) Convolutional Neural Networks (CNN): CNNs are the most popular neural network 

architectures that are used in computer vision applications. CNNs consist of multiple 

convolutional layers, interspersed by normalization, pooling and non-linear activation 

layers. The convolution layers decompose the input image to different feature maps 

varying from low-level features such as edges, lines, curves in the intial layers to high-level/

abstract features in the later layers. State of the art CNNs consist of 100’s-1000’s of these 

convolutional layers and the final extracted features are classified to the output classes  

by a fully-connected classification layers. Convolution operation is the most critical 

operation in CNNs and are very time-consuming with more than 90% time spent  

in convolutional layers.

 

2) Recent Efficient NN architectures: To reduce the compute complexity of the CNNs, 

depthwise separable convolution layer have been proposed in [5] as an efficient alternative 

to the standard convolution operation. By replacing a standard 3-D convolution with a 2-D 

depthwise convolution  followed by a 1-D pointwise convolution, an efficient class of NN 

called as MobileNets are proposed in [6]. ShuffleNets [7] utilize depthwise convolutions 

on shuffled channels along with groupwise 1x1 convolutions to improve the accuracy with 

compact models. MobileNets-V2 [8] further improved the efficiency by adding shortcut 

connections, which help in convergence in deep networks. Overall, there have been many 

efficient neural network architectures proposed, which can be leveraged when developing  

a NN model specific for our hardware budget.

B. Hardware constrained NN Model Search
We use MobileNet architecture with shortcut connections similar to those in ResNet  

model for the hardware constrained neural model search. The number of layers,  

number of features in each layer, the convolution filter dimensions, stride are sued  

as the hyperparameters the search. Training all combinations of these hyperparameters 

would be time-consuming and not practical. So, we iteratively perform exhaustive search  

of the hyperparameters, compute the memory/compute requirements of the models  

and train only those models which fit within the hardware budgets. This is followed  

by a selection of hyperparameters from the previous pool to narrow down the search space 

to continue the next iteration of model search. Fig. 5 shows an example of hyperparameter 

search, which shows the accuracy, number of operations and parameters of each model. 

NN Size NN memory limit Ops/inference limit

Small (S) 80 KB 6 MOps

Medium (M) 200 KB 20 MOps

Large (L) 500 KB 80 MOps

Table III: Constraints 
for Neural Networks.
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After a few iterations, the models with the highest accuracy within the hardware budgets 

are shown in Table IV. Note that since this is not an exhaustive search through  

all the hyperparameters, there may be some neural network models with higher accuracy 

within our hardware constraints that aren’t captured during our search space exploration.
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NN model Accuracy Memory Operations

S (80 KB, 6 MOps) 77.8% 58 KB 5.8 MOps

M (200 KB, 20 MOps) 84.7 % 141 KB 19.8 MOps

L (500 KB, 80 MOps) 87.7 % 340 KB 51.9 MOps

IV. Conclusion
Machine learning algorithms are proven to solve some of the complex cognitive tasks 

demonstrating human-level performance. These algorithms are slowly moving to the IoT 

edge aided by the new efficient neural network architectures and optimized NN software 

to enable neural networks to run efficiently on the edge devices. We presented techniques 

to perform NN model search within a set of memory/compute constraints of typical 

microcontroller devices, using image classification as an example. Further we presented 

methods used in optimizing the NN kernels in CMSIS-NN to maximize the performance  

of neural networks on Cortex-M cores with minimal memory footprint. The CMSIS-NN 

library is available at https://github.com/ARM-software/CMSIS_5.

Fig 5: Neural network 
hyperparameter search 
for image classification on 
CIFAR-10 dataset, showing 
accuracy vs. operations with 
the number of parameters 
shown as size of the bubble.

Table IV: Summary of best 
neural networks from 
hyperparameter search.

The results show that the models scale up well and accuracy saturates at different levels  

for the different hardware budgets. For example, for the memory/compute budget  

of 200KB, 20MOps, the model accuracy saturates around ~85% and is bound  

by the compute capability of the hardware. Understanding whether the neural network 

accuracy is bound by compute or memory resources provides key insights into different 

tradeoffs in the hardware platform selection.

https://github.com/ARM-software/CMSIS_5
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