
0018-8646 (c) 2019 IBM.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1147/JRD.2019.2947011, IBM Journal of
Research and Development

IBM J. RES. & DEV. S. Jain et al.: Neural network accelerator design with resistive crossbars: Opportunities and challenges Page | 1

Neural network accelerator design with resistive crossbars: Opportunities and
challenges
S. Jain, A. Ankit, I. Chakraborty, T. Gokmen, M. Rasch, W. Haensch, K. Roy, A. Raghunathan

Deep neural networks (DNNs) achieve best-known accuracies in many machine learning tasks
involved in image, voice, and natural language processing, and are being used in an ever-increasing
range of applications. However, their algorithmic benefits are accompanied by extremely high
computation and storage costs, sparking intense efforts in optimizing the design of computing
platforms for DNNs. Today, GPUs and specialized digital CMOS accelerators represent the
state-of-the-art in DNN hardware, with near-term efforts focusing on approximate computing through
reduced precision. However, the ever-increasing complexities of DNNs and the data they process have
fueled an active interest in alternative hardware fabrics that can deliver the next leap in efficiency.
Resistive crossbars designed using emerging non-volatile memory technologies have emerged as a
promising candidate building block for future DNN hardware fabrics, since they can natively execute
massively parallel vector-matrix multiplications (the dominant compute kernel in DNNs) in the analog
domain within the memory arrays. Leveraging in-memory computing and dense storage,
resistive-crossbar-based systems cater to both the high computation and storage demands of complex
DNNs, and promise energy efficiency beyond current DNN accelerators by mitigating data transfer
and memory bottlenecks. However, several design challenges need to be addressed to enable their
adoption. For example, the overheads of peripheral circuits (ADCs and DACs) and other components
(scratchpad memories and on-chip interconnect) may significantly diminish the efficiency benefits at
the system level. Additionally, the analog crossbar computations are intrinsically subject to noise due
to a range of device and circuit level non-idealities, potentially leading to lower accuracy at the
application level. In this paper, we highlight the prospects for designing hardware accelerators for
neural networks using resistive crossbars. We also underscore the key open challenges and some
possible approaches to address them.

1. Introduction
The field of artificial intelligence (AI) has witnessed
tremendous growth in recent years with the advent of deep
neural networks (DNNs) that surpass humans in a variety of
cognitive tasks. Consequently, many real-world products and
services such as speech recognition, image analysis, natural
language processing, and search engines use DNNs [1]. The
algorithmic performance of DNNs comes at extremely high
computation and memory costs that pose significant
challenges to the hardware platforms executing them.
Currently, GPUs [2] and specialized digital CMOS
accelerators such as Google’s TPU [3], Microsoft’s
Brainwave [4] and Intel’s Nervana Neural Network
Processor [5] are the state-of-the-art in DNN hardware.
However, the ever-increasing complexity of DNNs and the
data they process have led to a quest for the next quantum
improvement in processing efficiency.

Resistive crossbars, in particular, have attracted significant
interest due to their ability to natively perform vector-matrix
multiplication, i.e., the dominant computational kernel in
DNNs, highly efficiently and compactly. They can be
designed using emerging non-volatile memory (NVM)
technologies including PCM [6], ReRAM [7], [8],
spintronics [9], [10], and Ferroelectric FETs [11], [12].
These devices possess several highly desirable characteristics
such as high density, low voltage operation, low leakage,
and non-volatility. Consequently, there have been many
research efforts that focus on resistive crossbars at the

device, circuit, architecture and algorithmic levels [13], [14],
[15], [16], [17], [18], [19].

Resistive crossbar systems uniquely cater to both the high
computation and the high storage demands of large-scale
DNNs. First, multi-bit NVMs enable highly dense memory
arrays that can achieve at least an order of magnitude higher
storage density than SRAMs (6T cells) [20]. Second, they
enable execution of massively parallel vector-matrix
multiplications (in the analog domain) within the crossbar
array itself. For example, a vector of input voltages applied
at crossbar rows could be multiplied by a 2D matrix of
weights stored as conductances of the crossbar elements to
yield a vector of output currents at the crossbar columns. The
in-memory computing ability of resistive crossbars mitigates
data transfer and memory bottlenecks for the data stored in
the crossbar, and has the potential to achieve efficiency well
beyond multi-cores, GPUs and current DNN accelerators. In
comparison to state-of-the-art DNN accelerators, resistive
crossbar based accelerators are projected to achieve large
improvements in compute density and energy efficiency [9],
[16], [17], [20]. However, the system-level improvements are
highly sensitive to design choices at (i) the algorithmic level
(network topology, precisions of weights and activations),
(ii) the architecture level (micro-architecture of the
crossbar-based processing element, memory hierarchy,
interconnect network, and mapping and scheduling), and (iii)
the circuit and device levels (e.g., crossbar dimensions,
precision of each crossbar element, minimum-to-maximum



0018-8646 (c) 2019 IBM.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1147/JRD.2019.2947011, IBM Journal of
Research and Development

IBM J. RES. & DEV. S. Jain et al.: Neural network accelerator design with resistive crossbars: Opportunities and challenges Page | 2

conductance ratio, variations).

Resistive crossbar based neural fabrics are still a nascent
technology with several design challenges that need to be
addressed. For example, a key challenge with resistive
crossbars is that they suffer from various device and
circuit-level non-idealities that manifest as errors in the
realized vector-matrix multiplications. These computational
errors can accumulate and propagate across a deep network,
degrading the application-level accuracy [21]. Although
DNNs do possess some intrinsic error resilience, it is still
essential to model, evaluate, and mitigate the impact of
crossbar non-idealities. In this paper, we highlight design
challenges in realizing inference and training systems for
DNNs using resistive crossbars along with some approaches
to address them.

The rest of the paper is organized as follows. In
Section 2, we provide a brief background on resistive
crossbar arrays designed for executing vector-matrix
multiplications. Section 3 discusses the architecture and
system-level challenges and design choices for resistive
crossbar based neural fabrics. Section 4 presents modeling
frameworks to evaluate and train large-scale DNNs on
resistive crossbar systems. It also highlights the challenge
posed by crossbar non-idealities to the accuracy of
large-scale DNNs and presents a few compensation schemes
to address the issue. Finally, Section 5 concludes the paper.

2. Designing resistive crossbar arrays for DNNs
Figure 1 illustrates a resistive crossbar array (RCA) designed
for executing DNN inference and training functions during
forward-pass, backward-pass, and weight update operations.
As shown, an RCA consists of synaptic elements arranged
into ‘M’ rows and ‘N’ columns, Digital-to-Analog (DAC),
and Analog-to-Digital (ADC) converters, and write circuitry.
The synaptic elements may be realized using non-volatile
memory (NVM) technologies such as PCM [22], [23],
ReRAM [24], [25], [26], Spintronics [27], Ferroelectric
FETs [11], [12], and embedded Flash [28], [29], [30].
Further, the synaptic elements in the same row share a
wordline (WL), and those in the same column share a bitline
(BL). RCA supports three main operations (i) Serial
programming, (ii) vector-matrix multiplications, and (iii)
parallel updates. The programming operations, i.e., write
operations on synaptic elements, are performed row-wise,
wherein, the write circuitry applies the necessary current and
set them to the desired conductance. In contrast,
vector-matrix multiplications are executed by simultaneously
driving all WLs (BLs) using DACs and sensing the resulting
current flowing through each BL (WL) using ADCs. In a
single array access, RCAs can realize massively parallel
vector-matrix multiplications, i.e., the primitive compute
kernel in DNNs during the forward and the backward pass.
The realized vector-matrix multiplications during forward-
and backward-pass are represented by Iout = Vin ×G and
Iout = Vin ×GT , respectively, where Vin represents the
input voltages, Iout the output currents, and G denotes the
programmed synaptic conductances. For example, the
vector-matrix multiplications during the forward-pass are

Figure 1 Resistive crossbar array designed for executing DNN
primitives. During the forward-pass, inputs (Inp-act) are applied using
the DACs on the left, and the outputs (Out-act) are received at the
bottom. During the backward-pass, inputs (Inp-Err) are applied using
the DACs on the top, and the outputs (Out-err) are obtained on the
right. Updates are achieved by applying both inputs (Inp-act, Inp-Err)
simultaneously using DACs on the left and the top.

executed by applying the input activations (Inp-Act) on WLs
as voltages (Vin) to obtain currents (Iout) on BLs.
Subsequently, the currents are converted to digital output
activations (Out-Act). Finally, the parallel update operation
is performed by driving DACs along both BLs and WLs.
The errors (Inp-Err) and activations (Inp-Act) are applied on
BLs and WLs, respectively, resulting in local updates in all
synaptic elements.

2.1. Design considerations for vector-matrix
multiplications
Vector-matrix multiplications (VMMs) can be executed on
RCAs using a variety of input and weight encoding
schemes. We briefly discuss these choices in turn below.

Input encoding. Inputs can be applied to RCAs using
various encoding schemes including voltage, time, bit-serial
and stochastic encodings [14], [15], [31], [32], as shown in
Figure 1. In voltage and time encoding schemes, the voltage
magnitude (V) and the pulse width (T) are modulated,
respectively, in proportion to the digital inputs. In contrast,
the bit-serial and stochastic encoding schemes utilize
multiple voltage pulses, each of fixed time and width, to
convert digital inputs. In bit-serial and stochastic encoding, a
vector-matrix multiplication operation is executed for each
voltage pulse, leading to multiple partial outputs. These
partial outputs are combined either using shift-and-add logic
for the bit-serial scheme or by simply adding them for the
stochastic scheme [15]. The stochastic and bit-serial
encodings differ based on the method used for converting
digital values to voltage pulses. The pulses are generated
deterministically in bit-serial encoding using standard
parallel-to-serial conversion. In contrast, the pulses are
generated randomly in stochastic encoding such that the total
number of pulses in the pulse-train is on average
proportional to the magnitude of the encoded digital number.
The input encoding schemes present interesting design
trade-offs. For example, the bit-serial encoding simplifies the



0018-8646 (c) 2019 IBM.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1147/JRD.2019.2947011, IBM Journal of
Research and Development

IBM J. RES. & DEV. S. Jain et al.: Neural network accelerator design with resistive crossbars: Opportunities and challenges Page | 3

DAC design substantially, leading to energy and area
efficiency. However, it requires multiple VMM operations
and thereby incurs higher latency in comparison to the
voltage and time encoding schemes.

Weight encoding. DNNs have both positive and negative
weights. However, RCAs consist of only positive
conductances. To encode signed weights in RCAs two
schemes have been proposed. (i) A range shifting approach,
wherein half of the synaptic device’s dynamic range is
reserved for representing positive values and the other half
for negative values [32], [31]. In this scheme, an offset is
generated to partition the dynamic range and to determine
the numerical ‘0’. (ii) Using separate (two) devices to store
positive and negative weights [16]. Both these schemes have
unique advantages; the second scheme provides higher
precision, while the first offers superior area efficiency [32].
Another challenge posed by RCAs is that the practical
synaptic device precision is limited to 2-6 bits [33].
Therefore, to realize higher precision (8-16 bits)
vector-matrix multiplications, the weights are split based on
bit significance and mapped to multiple crossbar columns or
multiple crossbars. For example, mapping an 8-bit weight to
RCAs with 2-bit synaptic elements requires four RCA
columns, and the final output is obtained by shifting and
adding the individual column outputs based on bit
significance. Programming a synaptic element to the desired
conductance level is also quite challenging, and often
requires program-read-verify or closed-loop programming,
wherein a read operation is performed after every write
operation to verify the success of the write operation.
Subsequently, we repeat the write-read cycle in a loop to
precisely program the synaptic device to the desired
conductance state. To mitigate such expensive writes (that
may require 10s-100s of pulses), parallel write techniques
that perform smaller updates on the entire crossbar in a
single cycle have been demonstrated [15], [32], [31].
However, parallel writes are imprecise and have been shown
to work only for simple tasks (MNIST). Therefore, the
impact of such fast but imprecise technique on large-scale
DNNs that perform complex tasks (e.g., ImageNet
classification using ResNets) remains an open question.
Further, device-to-device variations in the synaptic devices
also pose functional challenges, as they impact the
application-level accuracy of DNNs on crossbar based
hardware.

2.2. Design considerations for weight update
Implementing the weight update on a 2D crossbar array of
resistive devices in parallel is challenging. It requires
calculating a vector-vector outer product which consists of a
multiplication operation and an incremental weight update to
be performed locally at each synaptic element. There are at
least three different schemes proposed to perform a fully
parallel update on crossbar arrays that rely on some sort of a
coincidence detection at the cross-point and generation of
either deterministic [34], [35] or stochastic pulses [36], [14]
from the periphery. All three schemes are shown to work for
a small fully-connected network using the MNIST dataset,

Figure 2 (a) Area and power breakdown of a 64x64 RCA with 10-
bit ADCs [39] and 6-bit DACs [40], (b) Latency-power trade-off in
a 128x128 RCA with 8-bit ADCs [39], and (c) Power optimization
by exploiting the relationship between synaptic precision and ADC
power.

and the stochastic pulsing scheme has been shown to work
for medium scale networks [15], [37]. It is important that
these update schemes be tested on large-scale networks to
determine their viability.

Material and device design. In order to achieve a successful
training there is also a set of characteristics that has to be
realized by the crossbar elements performing the update. A
key requirement is that these crossbar elements must change
conductance symmetrically when subjected to positive or
negative pulse stimuli [14]. Indeed, this requirement differs
significantly from standard memory and therefore requires a
systematic search for new physical mechanisms, materials
and device designs to realize a desirable resistive element
for DNN training. It is also appreciated that accomplishing
such symmetrically switching analog devices is a difficult
task. Besides material engineering, circuit assisted
solutions [38] combined with algorithmic modifications
might, conceivably, relax the device requirements and hence
possibly enable the realization of crossbar-based DNN
training accelerators in the near future. We note that the
switching symmetry is not an important parameter for
inference-only accelerators as the weight initialization is
done only once using closed loop programming.

2.3. Peripheral design
Next, we discuss the impact of peripherals such as ADCs
and DACs on the efficiency (power, area, and latency) of
RCAs. Figure 2(a) shows the area and the power breakdown
of an example RCA design that assumes the crossbar
dimension to be 64x64, and ADC and DAC precisions to be
10-bit and 6-bit, respectively. The ADC and DAC circuits
utilized in this design are proposed in [39], [40]. For this



0018-8646 (c) 2019 IBM.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1147/JRD.2019.2947011, IBM Journal of
Research and Development

IBM J. RES. & DEV. S. Jain et al.: Neural network accelerator design with resistive crossbars: Opportunities and challenges Page | 4

specific design, ∼65% and ∼85% of the total RCA area and
power, respectively, are consumed by the ADCs. Therefore,
ADCs are one of the most critical design components in
crossbar based hardware. Various trade-offs may be explored
to reduce the total ADC power/area and increase the
efficiency of DNNs on crossbar-based systems. We highlight
some of these trade-offs in Figure 2 (b) and (c). Sharing
ADCs across RCA columns is the most popular approach to
reduce ADC power/area. However, sharing ADCs can
increase the latency of vector-matrix multiplication
operations. Figure 2(b) shows the latency-power trade-off of
a 128x128 RCA. Using one ADC per crossbar (i.e., 1 ADC
per 128 columns) in a time-multiplexed manner requires the
least power, and many recently proposed crossbar based
accelerators [17], [20] favor this design choice. Further,
there also exists a trade-off between synaptic precision and
ADC power, as shown in Figure 2(c). For a crossbar of fixed
size, reducing synaptic precision (i) increases the number of
crossbars required (as we need to slice the weights and map
it to proportionally more synaptic elements), but (ii) lowers
the precision requirement of each ADC linearly. A linear
decrease in ADC precision causes a superlinear reduction in
ADC power, creating opportunities for optimizing power by
changing the synaptic precision. Exploring such
area-power-latency trade-offs is key to the design of energy
and area efficient RCAs.

3. Crossbar-based DNN architectures
3.1. Inference accelerators
The key features of a resistive crossbar that drive the design
of an inference accelerator are (i) high storage density, and
(ii) high write cost (energy and latency). First, the compact
cell structure (4F 2 cell area for the in-line two terminal
selector configuration) [32] and the multi-bit storage device
(2-6 bits) [33] enable resistive crossbars to achieve
order-of-magnitude higher on-chip storage density compared
to SRAM. A large on-chip memory can enable efficient data
reuse to optimize the inference efficiency. Second, the high
write voltage [32] and multiple programming cycles
(program-verify approach [41]) result in much higher write
cost (energy and latency) than SRAM. Expensive memory
writes limit the applicability of a time-multiplexed
architecture, where the crossbars are reused across layers by
re-programming weight matrices and executing the
corresponding VMM operations. Consequently, a spatial
architecture where the DNN is partitioned such that the
weights (stationary data) are pinned to crossbars located
across multiple cores is more efficient as it leverages the
benefits of high storage density while alleviating the costly
writes. Note that the benefits of spatial architectures rely on
the premise of pinning of weights under the assumption that
the weights do not change during a DNN inference.
However, crossbars written once during the configuration
time, may be subject to resistance drifting over time [42].
This might require repeating write cycles for restoration of
weights in order to ensure accurate functionality.

Recall that, crossbars typically perform VMM operations
with stationary matrices, i.e., DNN weights (Section 2).

However, DNNs require several other operations such as
vector additions, vector multiplications, scalar and non-linear
operations. Additionally, other non-stationary data such as
inputs and partial sums need to be stored and moved.
Consequently, designing a computation core requires
augmenting the resistive crossbar with CMOS based digital
logic units as well as memory units to provide the required
generality for DNN workloads. A naive approach towards
integrating the CMOS and resistive technologies is not
viable because of the huge disparity in compute and storage
density between the two technologies. CMOS digital logic
(multiply-and-accumulate) has an order of magnitude higher
area requirement than a crossbar of equal output width
(∼20×) [17]. Moreover, a crossbar’s storage density (2-bit
cells) is 160MB/mm2, which is at least an order of
magnitude higher than SRAM (6T, 1-bit cell) [20].

Resistive crossbars have been used to build
special-purpose ML accelerators such as SPINDLE [9],
RENO [43], PRIME [16], ISAAC [20] for Convolutional
Neural Networks (CNN) and Multi Layer Perceptrons
(MLP). Past research has also proposed using memristive
crossbars for Spiking Neural Networks [44], [45],
Boltzmann Machine [46] and BSB [47]. These efforts have
shown substantial improvements compared to CMOS-based
general-propose architectures (CPU, GPU) and ASICs,
thereby demonstrating the potential of resistive crossbar
based systems. However, there are important challenges to
be addressed for enabling the adoption of resistive crossbar
based systems for general-purpose ML workloads. Each
design supports limited (one or two) types of neural
networks, where layers are encoded (hardwired) as state
machines. The increasing pervasiveness of ML workloads in
different application domains has given rise to large varieties
of DNNs owing to their task-specific nature. Consequently,
there is a need to think in terms of instruction set
architecture (ISA) programmability as the hardwired
approach can lead to increased decoding overhead and
complexity. Further, supporting flexible data movement and
control operations to capture the variety of access and reuse
patterns in different DNNs is important. Since crossbars
have high write latency, they typically store constant data
while variable inputs are routed between them in a spatial
architecture. This data movement can amount to a significant
energy consumption which calls for flexible operations to
optimize the data movement.

PUMA [17], a recently proposed inference accelerator
addresses the needs by proposing a general-purpose and
ISA-programmable accelerator built with resistive crossbars.
It is a spatial architecture organized in three hierarchies:
cores, tiles and nodes, and features a microarchitecture, ISA
and compiler co-designed to optimize data movement and
maximize energy and area efficiency. Figure 3 shows a
PUMA core, which consists of an instruction execution
pipeline, functional units and analog crossbars. The
instruction execution pipeline and specialized ISA enable
compact representation of ML workloads with low decoder
complexity. This is based on the observation that despite the
large variety of ML workloads, these workloads share many



0018-8646 (c) 2019 IBM.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1147/JRD.2019.2947011, IBM Journal of
Research and Development

IBM J. RES. & DEV. S. Jain et al.: Neural network accelerator design with resistive crossbars: Opportunities and challenges Page | 5

PC

Instruction 
Memory

D
E
C
O
D
E

DAC
array

XbarIn
Registers

ADC

Pipelined MVMU

XbarOut
Registers

Register File
(ROM-Embedded RAM)

Operand Steer Unit

FU FU FU

VFU
MU

Data writeback

D
ec

o
d

ed
 i

n
st

ru
ct

io
n

SFU

Stall/KillControl
Unit

to/from 

tile 

memory

FETCH EXECUTE

MVMU

DAC

ADC

VFU

SFU

MU

Matrix vector multiplication unit

Digital to analog converter

Analog to digital converter

Vector functional unit

Scalar functional unit

Memory unit

Figure 3 Core architecture based on hybrid CMOS-memristive tech-
nology. The VFU is 4-lane wide. The MVMU is comprised of eight
128 × 128 RCAs with each crossbar cell representing 2-bits. The
RCA receives inputs from 1-bit DAC array and sinks its output to a
8-bit ADC, shared across all 128 columns. [17]

low-level operations (instructions). PUMA cores employ
temporal SIMD (single instruction multiple data) based
VFUs for linear and non-linear vector operations, where a
narrow-width VFU executes wide vector operations over
multiple cycles. Since ML workloads have high data
parallelism, they execute wide vector operations, which
motivates having wide vector instructions. On the other
hand, hardware considerations motivate having narrow VFU
vector width to avoid offsetting the area efficiency of
crossbars (discussed in Section 2.1). Therefore, temporal
SIMD balances the tradeoff between workloads favoring
wide vector width and hardware favoring narrow vector
width. The VMM operations are executed using the analog
crossbars present in the MVMU (shown in Figure 3). DAC
reuse across crossbars that share the inputs and ADC reuse
across a crossbar’s columns reduce the area overhead from
peripherals to enable an efficient MVMU design. PUMA
cores use a special register file designed with
ROM-Embedded RAM [48], which provides regular operand
buffering (RAM mode) as well as an in-memory primitive to
realize transcendental (e.g., sine, logs, tanh, etc.) functions
(ROM mode). In summary, a PUMA core colocates different
kinds of execution units: VFU, MVMU and Register File
(ROM-Embedded RAM) to leverage near-memory
processing for reducing the inference cost and employs
techniques to appropriately size the execution units for
preserving the high storage density from crossbars.

Figure 4 illustrates the architecture of a PUMA tile, which
consists of multiple cores connected together with a shared
memory. The shared memory consists of the attribute buffer
which tracks the producer-consumer relationships between
cores to enable inter-core synchronization. Subsequently,
optimizing the DNN mapping to reduce the communication
between cores reduces the data movement cost. The receive
buffer enables data to be received through the network
irrespective of the underlying receive-instruction ordering in
the program. This independence is important because receive
instructions are executed in program order in a blocking

Data

Memory Controller

Attribute 

Buffer

Instruction 

Memory

W
ri

te
 m

u
x R

ead
 m

u
x

FIFO

FIFO

Tile 

Control 

Unit

Receive Buffer

to/from 

Router

Shared Memory

CORE 0 CORE 1 CORE 2 CORE N

Figure 4 PUMA Tile Architecture [17]

manner for hardware simplicity. It is worth noting that the
data movement in a spatial architecture can be seen as
analogous to the conventional data movement within the
memory hierarchy in temporal architectures (CPU, GPU),
where the cost increases from intra-core communication to
inter-tile communication. In summary, PUMA tiles enable
efficient inter-core communication to improve the inference
efficiency by reducing data movement costs.

Multiple tiles are connected together using an on-chip
network to form a PUMA node. Further, multiple PUMA
nodes can be connected using suitable chip-to-chip
interconnect, such as CCIX, Gen-Z or OpenCAPI to execute
DNNs larger than the node’s storage capacity. Figures 5 and
6 show the inference energy and inference latency (at equal
area) respectively for PUMA compared to a CPU (Intel
Skylake) and a GPU (NVIDIA Pascal). The PUMA node
used in evaluations consists of 138 tiles in a ' 90mm2 area,
and can store upto ' 69MB of weight data. Note that
Pascal obtains lower energy and latency than Skylake for all
benchmarks. It can be seen that across all benchmarks
PUMA achieves significant energy reductions at lower or
comparable latency than Pascal. CNNs show the least energy
reductions (upto 13×) owing to the abundant weight and
input reuse which is leveraged well by CMOS systems
(CPU, GPU) to amortize the expensive memory accesses.
MLPs show upto 80.1× energy reductions, while LSTMs
show the highest energy reductions of upto 2446×. While
both LSTMs and MLPs have little to no weight reuse, MLPs
show lower savings than LSTMs owing to their smaller
model sizes. A small model (few million parameters) that
can be fit on the on-chip memory (last-level cache) on CPUs
or GPUs does not expose the high off-chip memory energy
consumption. For similar reasoning as energy comparisons,
PUMA’s inference latency reductions are lower for CNNs
than LSTMs. However, PUMA’s latency is higher than GPU
for MLPs. This is because the small model size of MLPs
does not expose the high off-chip memory latency.
Compared to the Google TPU (CMOS ASIC), PUMA
demonstrates peak area and power efficiency improvements
of more than 9.7× and 1.8× respectively across all ML
workloads. While PUMA’s peak efficiency does not get
affected with data-batching, TPU’s efficiency is almost an
order lower for lower data-batching (batch-size=1) due to its
inability to amortize the weight data movement. Note that



0018-8646 (c) 2019 IBM.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1147/JRD.2019.2947011, IBM Journal of
Research and Development

IBM J. RES. & DEV. S. Jain et al.: Neural network accelerator design with resistive crossbars: Opportunities and challenges Page | 6

 0.10

 1.00

 10.00

 100.00

 1,000.00

 10,000.00

 100,000.00

 1,000,000.00

 10,000,000.00

L4 L5 L3 L5 Big
LSTM

LSTM-
2048

Vgg16 Vgg19

MLP Deep LSTM Wide LSTM CNNN
o

rm
al

iz
e

d
 E

n
e

rg
y

(l
o

w
er

 is
 b

et
te

r)
Skylake Pascal PUMA

Figure 5 PUMA inference energy comparison with respect to CPU
(Skylake) and GPU (Pascal) for batch size 1 [17]

 0.10

 1.00

 10.00

 100.00

 1,000.00

 10,000.00

 100,000.00

L4 L5 L3 L5 Big
LSTM

LSTM-
2048

Vgg16 Vgg19

MLP Deep LSTM Wide LSTM CNNN
o

rm
al

iz
e

d
 L

at
e

n
cy

(l
o

w
er

 is
 b

et
te

r)

Skylake Pascal PUMA

Figure 6 PUMA inference latency comparison with respect to CPU
(Skylake) and GPU (Pascal) for batch size 1 [17]

the common use-case of inference applications has little to
no data batching [49].

3.2. Training accelerators
The system-level considerations for training differ
considerably from inference. For instance, during inference,
the computed activations can be discarded once they are fed
to the following layers. However, during training, these
computed activations should be stored, as they are also
required during the weight update operations for computing
the gradients. Therefore, a system for DNN training has
much higher storage requirements than a system for DNN
inference. For example, a relatively simple ResNet-50 DNN
model operating on the ImageNet dataset generates ∼50
million activations during the forward pass, resulting in a
100 Mbytes (2 bytes/activation) storage requirement per
image. The storage requirement further increases for larger
networks, bigger datasets, higher resolution inputs, and
concurrent processing of multiple images due to pipeline
parallelism. For even larger DNNs, the storage requirements
can be multiple gigabytes. Thus, the on-chip memory of
crossbar-based inference accelerators is often insufficient,
and these accelerators have to be accompanied with high
bandwidth and high capacity external memory to enable a
training system that is capable of handling large-scale
DNNs. Consequently, a training system also requires the
traditional memory hierarchy (with multiple levels), to

efficiently hide the main memory latency. Lastly, it is also
challenging to achieve data parallelism in crossbar-based
training accelerators due to weight synchronization
issues [50]. In data parallelism, weights are replicated across
multiple crossbars, and after every forward and backward
pass, the stored weight copies are updated by the same
values. However, errors during the update operations cause
different crossbars to obtain different updates, leading to
convergence issues. Alternatively, crossbar-based training
accelerators can utilize pipeline parallelism [51], [52] that
also naturally fits weight stationary data-flows. In pipeline
parallelism, the whole network is partitioned into a set of
pipeline stages, each of which is responsible for only a small
part of the network. Activations flow through the pipeline
stages, while the weights are kept stationary.

4. Modeling and compensation of non-idealities
4.1. Crossbar non-idealities: Overview
One of the key challenges with resistive crossbars is that the
computed function differs from the desired vector-matrix
multiplication operation (Iout = VinGideal) due to a range of
circuit and device level non-idealities, viz., wire resistances,
non-linearities in peripheral circuits (DACs and ADCs),
sensing resistance, driver resistance, sneak paths, imperfect
write operations, non-linearities in synaptic conductances,
and process variations, as shown in Figure 7. The cumulative
effect of all these crossbar non-idealities manifests as errors
in the VMM operations computed using RCAs. These errors
in VMMs accumulate and propagate through the DNN,
causing significant degradation in application-level accuracy.
Therefore, it is essential to model, evaluate, and compensate
for the impact of crossbar non-idealities to enable the
adoption of resistive crossbar systems.

4.2. Modeling and simulating crossbar
non-idealities
To evaluate the impact of crossbar non-idealities on
large-scale DNNs a fast as well as accurate simulation
framework is required. Device and circuit simulation models
are very accurate but extremely slow and hence not feasible
for large-scale network evaluation. On the other hand, fast
architectural models [53], [54], [55] that target design space
exploration use highly simplified error models that are
inadequate for evaluating DNN accuracy on resistive
crossbar systems.

A promising approach for evaluating and training DNNs
on crossbar-based hardware is to utilize existing machine
learning frameworks (e.g., Caffe/2, PyTorch, TensorFlow)
and enhance them with fast crossbar models. To simulate
DNN inference, we can adopt a weight-transformation based
approach, wherein the weight matrices are first transformed
to non-ideal weight matrices by abstracting the effect of all
crossbar non-idealities. Next, the original weight matrices
are replaced with these non-ideal weight matrices.
Subsequently, the VMMs are evaluated using the non-ideal
weight matrices and peripheral models (DACs and ADCs)
that are invoked as pre- and post-processing steps on input
and output activations, respectively. To simulate DNN



0018-8646 (c) 2019 IBM.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1147/JRD.2019.2947011, IBM Journal of
Research and Development

IBM J. RES. & DEV. S. Jain et al.: Neural network accelerator design with resistive crossbars: Opportunities and challenges Page | 7

Figure 7 Crossbar non-idealities

training, a more complex approach is required wherein the
VMM operations are replaced by a simulated crossbar model
that captures the non-idealities of the RCA including
analog-digital conversions. Although this approach involves
re-implementing the convolution and fully-connected
operations, it is closer to the actual hardware and can
capture static as well as dynamic non-idealities that include
cycle-to-cycle variations, non-ideal switching characteristics,
generation of stochastic pulse trains for updating, and
temporal dependencies of the device. Next, we introduce
recent examples of the two approaches in turn below.

Simulation of DNN inference. RxNN [21] is a recently
proposed software framework that addresses the need for a
fast and accurate functional simulator for evaluating
large-scale DNNs on crossbar systems. RxNN is obtained by
modifying the Caffe [56] deep learning framework. Like
Caffe, RxNN models the convolution and fully-connected
layers of DNNs as matrix-matrix and vector-matrix
multiplications. It maps these operations to RCAs and
emulates the non-ideal vector-matrix multiplications by
transforming weight matrices into “non-ideal” weight
matrices that reflect all non-idealities. It takes a resistive
crossbar system description, RCA parameters, and a trained
DNN model as inputs, and computes the DNN accuracy
using embedded Fast Crossbar Models (FCMs) [21]. RxNN
focuses on DNN inference and can model the impact of
device and circuit-level non-idealities on the vector-matrix
multiplications executed during the forward-propagation. The
device-level non-idealities modeled include
process-variations, non-linear synaptic devices, and imperfect
write operations. The circuit-level non-idealities modeled are
wire resistances, sensing and driver resistances, non-linear
ADCs and DACs, and sneak paths. Since RxNN targets
DNN inference, it assumes that weight programming is
performed one-time. Therefore, it abstracts the impact of all
device-level non-idealities into a single programming phase.
However, RxNN can also handle temporal variations (e.g.,
drift) in synaptic devices during inference operations by
periodically repeating the steps involving the programming
phase. RxNN’s models are five orders of magnitude faster
than SPICE models and accurate to within 0.26%. RxNN
also enables DNN re-training to improve inference accuracy.

Figure 8 RxNN framework for modeling the impact of crossbar non-
idealities on large-scale DNNs [21]

The RxNN flow, shown in Figure 8, comprises of 3 major
steps. First, RxNN maps the DNN to the target architecture.
It reads weights from the trained model and virtually
programs them into RCA instances. Subsequently, the ideal
conductance matrices (G) are transformed to non-ideal
matrices (Gnon−ideal) by abstracting crossbar non-idealities
using RxNN’s crossbar model generator. Next, the
Gnon−ideal matrices associated with the convolution (Conv)
and fully-connected (FC) DNN layers are incorporated back
into the Caffe’s original weight data structure. The key to
RxNN’s performance and scalability is its ability to
transparently utilize Caffe’s underlying data structures and
optimized BLAS libraries. Finally, RxNN evaluates DNNs
using embedded Gnon−ideal matrices and invoking peripheral
(ADC and DAC) models as pre- and post-processing steps
on the inputs/outputs of each Conv and FC layer.

Using the RxNN framework, we evaluate the impact of
limited precision and device and circuit-level non-idealities
on inference accuracy for simple and complex DNNs (shown
in Figure 9) [21]. In the figure, FP32 is a floating-point
implementation, Cross-Ideal6 is an “ideal” crossbar
implementation that only considers limited precision (6 bits),
and Cross-NI6-64x64 is an implementation with 64x64
crossbars that considers all crossbar non-idealities. In our
evaluation, we observe the accuracy degradation to be
minimal for simple networks (LeNet and ConvNet) with
smaller and fewer layers. However, we find the accuracy
degradation to be drastic (19.8%-57.8%) for large-scale
ImageNet DNNs such as VGG-16, GoogleNet, and
ResNet-50. Therefore, it is essential to address the
challenges posed by crossbar non-idealities to enable future
adoption of resistive crossbar systems.

Simulation of DNN inference and training. In recent
years, some of the present authors have developed a fast
C++ library that simulates the forward, backward, and
update operations on RCAs in modular fashion, i.e. different
RCA hardware designs and material properties can be used
with the same user-interface [14], [15], [37]. The simulation
comprises of abstract models of hardware realistic
components, such as generating stochastic update pulses,
implementing device specific weight ranges and saturation,
various types of noise, and update non-linearities and



0018-8646 (c) 2019 IBM.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1147/JRD.2019.2947011, IBM Journal of
Research and Development

IBM J. RES. & DEV. S. Jain et al.: Neural network accelerator design with resistive crossbars: Opportunities and challenges Page | 8

Figure 9 Accuracy degradation due to crossbar non-idealities during
DNN inference evaluated using RxNN. In this evaluation, we use
64x64 crossbar arrays designed using 6-bit synaptic devices with
Rmin = 200KΩ and Rmax = 1.4MΩ, and 6-bit DACs and ADCs.
The modeling details are provided in [21].

asymmetries, as well as incorporating compensatory
measures, such as noise management schemes ([15]; see also
below). More recently, the C++ library was wrapped into the
Caffe2 machine learning framework by re-implementing
Conv and FC layers. We also added highly optimized GPU
kernels for speeding up the run time of the simulations on
large scale networks, and now typical large-scale DNNs
using RCA simulations run only 2-3x longer than native
floating point training of the DNN with Caffe2.

In this new framework, currently under development, any
convolution or fully-connected layer, or any downloaded
pre-trained Caffe2 model, can be flexibly replaced layer-wise
with a simulated hardware crossbar array with user-defined
device characteristics. Moreover, the weight update is
computed in-place, as it would be done in real hardware,
and thus the weight gradient is not available explicitly, as it
would be otherwise in all ML frameworks. Thus, the user is
forced to adhere to hardware-realistic gradient decent and
regularization schemes, and not use optimized software
techniques developed in the ML community that need
explicit access to the gradient values, but could not be used
when training RCAs in hardware.

Since the framework also includes the ability for data and
model parallelism, it is feasible to study hardware-realistic
training and inference on state-of-the-art networks used in
the machine learning community today and drive the
development of algorithmic modifications to compensate for
non-idealities (e.g. see [57]).

4.3. Compensation techniques for DNN inference
In recent years, many efforts propose methods to mitigate
and compensate device and circuit-level non-idealities to
improve the performance of DNN inference on resistive
crossbar systems. These efforts can be broadly grouped into
(i) methods that use re-training to compensate for
errors [58], [21], [59], [60], (ii) mapping to reduce
computational errors [58], [61], [62], [59], [63], and (iii)
closed-loop programming methods to overcome impacts of
IR drop, drift in synaptic conductances, and imperfect

Figure 10 Compensating accuracy degradation due to limited preci-
sion for large-scale DNNs [21]

programming [64]. We detail these techniques in turn below.

Software models of resistive crossbars can be used during
training and re-training to improve inference accuracy by
overcoming the impact of crossbar non-idealities. The
(re-)training approach can be broadly visualized as updating
the weights of DNNs based on information of crossbar
non-idealities using back-propagation. The accuracy
degradation due to conversion of full-precision models to
synaptic conductances with limited precision can be
compensated with limited re-training [21]. Figure 10
illustrates the effectiveness of this re-training algorithm [21],
wherein we achieve considerable (8%-26%) accuracy
improvement for AlexNet, VGG-16, and GoogleNet DNNs
with only 150 re-training iterations. Further, a defect-map
based re-training procedure that judiciously maps crucial
weights to defect-free zones can minimize the effects of
stuck-at-faults on classification accuracy [58]. Similarly,
variation distribution aware re-training avoids highly
variation sensitive cells [59]. Other non-ideal device
characteristics such as non-linearity and asymmetry can be
accounted for by novel programming schemes [61], [62].
Although re-training compensates the effect of non-idealities
to some extent, the training procedure can be further
sophisticated. To that effect, a technology-aware
back-propagation algorithm has been proposed which
account for crossbar non-idealities [60] both in the forward
and backward pass. Moreover, in this approach, the gradient
descent algorithm is modified with functional crossbar
models to compensate for the effects of non-idealities.

Other techniques that do not involve re-training of DNNs
have also been explored. For example, effective mapping of
weight matrices to synaptic conductances can account for
computational errors due to device physics and circuit
effects [63]. Gradient search has also been used to alleviate
circuit-level non-idealities by obtaining weight matrices that
resemble the ideal weight matrices [65]. Another popular
approach to mitigate crossbar non-idealities involves
closed-loop programming, wherein we perform a read
operation after every write operation to verify the success of
the write operation. Subsequently, we repeat the write-read
cycle in a loop to precisely program the synaptic devices to
the desired conductance states. This approach has been
extended to compensate for synaptic drifts in real-time [64].



0018-8646 (c) 2019 IBM.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1147/JRD.2019.2947011, IBM Journal of
Research and Development

IBM J. RES. & DEV. S. Jain et al.: Neural network accelerator design with resistive crossbars: Opportunities and challenges Page | 9

Figure 11 Effect of noise management on AlexNet training. The
panels show the average relative deviation between the perfect
(floating point) and hardware-aware simulated model of activations,
gradients, and weight update that occurred during the training of
one mini-batch. If no compensatory measure is taken, deviations due
to imprecision in the analog compute, accumulate dramatically with
layer depth, in particular for the backward pass. Noise management
reduces the magnitude of the deviations drastically, however, a certain
level of inaccuracies remain.

Error correction circuits can further eliminate the erroneous
crossbar outputs. A scaling factor based approach for
correcting RCA outputs has also been proposed [66].

Despite considerable progress in mitigating the
undesirable characteristics of memristive crossbars, there is
still a need for further research in cross-layer error
mitigation and compensation techniques to enable future
adoption of resistive crossbar based hardware.

4.4. Compensation techniques for DNN Training
In principle, training a DNN directly on the available analog
hardware automatically solves many of the problems faced
by an analog inference engine, namely the discrepancy
between the architecture used for training the weights
(floating point) and inference. In fact, when using the same
architecture for both training and inference, many
non-idealities of the RCAs as described above can be
compensated by the DNN training itself. This is possible,
because, by training in-situ on the RCA, an adapted solution
in the weight space of the DNN is found, that takes the
non-idealities into account. Indeed, simulations show that the
neural network training process accounts for corrupt devices,
device-to-device variations of the saturation levels and other
RCA non-linearities, and can generate a more noise-robust
DNN when trained on RCAs. However, simulations also
show that not all hardware constraints are readily
compensated without some algorithmic improvements. For
instance, the limited dynamic range of input and outputs, as
well as limited ranges of the resistive values in the RCA,
require algorithmic adaptions during the training process. It
turns out that normalization of the activations, as well as
scaling the limited weight ranges properly, proves crucial for
successful training with limited weight and input/output
ranges of the RCA [57]. Moreover, the input vectors to the
RCA during the forward pass (previous layer activations) are
typically very different in magnitude when compared to the
inputs during the backward pass (the back-propagated error
vectors). If the magnitude of the inputs to the RCA are too
small, outputs are buried in the noise floor and the DNN
cannot be trained, as further propagated signals do not

contain any useful information. This is illustrated in
Figure 11 (blue curves) in case of the AlexNet DNN [67].
With increasing depth, activations or gradients become vastly
different from the correct values, if no noise reduction
technique is used. One way to account for the vastly
different amplitudes of activations and error signals using
the same dynamic range of the hardware design is to divide
every input vector element by the (absolute) maximum of
the input values and re-scale the output to recover the
original magnitude (noise management, see [15]). This
normalization also has the advantage of increasing
amplitudes above the analog noise floor. Figure 11 (green
curves) shows that this technique is very effective in
reducing the overall amount of noise in the DNN trained on
RCAs in comparison to the floating point reference.

These results show that algorithmic modifications and
compensatory measures are essential for training DNNs on
RCAs. Note that a straightforward way to implement such
algorithmic modifications is to leverage the digital domain
before and after the RCA digital-analog conversions. We
believe that a successful design of an analog accelerator for
DNN training should have such algorithmic compensations
seamlessly embedded into its digital fabric and therefore
introduces additional design challenges.

Finally, the switching characteristics of the device
materials need to be balanced in the up and down directions
and device materials need to show a sufficient number of
resistive states for the stochastic gradient descent to work (as
discussed in [14]). We expect that together with material and
devices, significant algorithmic modifications or
compensatory measures need to still be developed, to
successfully realize DNN training accelerators using RCAs.

5. Discussion
Resistive crossbars have garnered great interest as a
hardware building block for the next generation of neural
network hardware. The native in-memory evaluation of
vector-matrix multiplications performed by resistive
crossbars has the potential to provide considerable benefits
in area and energy efficiency. In this paper, we provide a
system-level perspective on resistive crossbar based systems
designed for executing DNN inference and training
operations. We present a variety of design considerations,
opportunities, and challenges associated with resistive
crossbar based systems. These challenges can be broadly
summarized into five key directions:

• Preserving the efficiency of crossbar-based
computation at the system level: Peripheral circuits such
as ADCs and DACs, and other components such as the
memory hierarchy and interconnect network, required for
a complete system, diminish the benefits of
crossbar-based computation. New circuit and architectural
techniques (e.g., low-cost peripheral circuits and
time-multiplexing of non-crossbar components) may be
required to ensure that the intrinsic efficiency of resistive
crossbars is preserved at the system level.



0018-8646 (c) 2019 IBM.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1147/JRD.2019.2947011, IBM Journal of
Research and Development

IBM J. RES. & DEV. S. Jain et al.: Neural network accelerator design with resistive crossbars: Opportunities and challenges Page | 10

• Acceleration of sparse DNNs: Sparsifying DNNs has
emerged as a powerful approach to obtain optimized
DNNs particularly for resource-constrained systems [68].
However, sparse DNNs can lead to inefficient crossbar
realizations as a pruned connection in a DNN merely
translates to an unused crosspoint in the crossbar, leading
to energy and area inefficiency [69]. Unlike a CMOS
system, where sparsity can be leveraged by adding
indirection logic between the storage and compute units,
resistive crossbar based systems lose this flexibility due to
the in-memory nature of VMM. Recent research has
explored techniques to exploit sparsity at row, column and
crossbar granularities to improve the execution of sparse
DNNs on crossbars [69], [70], [71]. Further research to
achieve energy savings commensurate to the algorithmic
sparsity will improve the inference efficiency for sparse
DNNs on crossbar based systems.

• Supporting algorithmic optimizations: Several
algorithmic optimizations such as model compression,
lower-complexity convolutions (FFT and Winograd
convolution), etc. have been explored to reduce the
computation and storage requirements of DNNs. However,
it is challenging to realize them on crossbar-based
hardware.

• Programming frameworks: The success of deep neural
networks has been facilitated by the availability of
easy-to-use open-source programming frameworks such as
PyTorch, TensorFlow and Keras. For broad adoption,
crossbar-based hardware must be just as easy to program
as current GPUs and digital CMOS accelerators.

• Maintaining accuracy in the presence of crossbar
non-idealities: Device and circuit-level non-idealities
cause errors in crossbar operations during DNN inference
and training, leading to accuracy degradation. Most efforts
addressing this challenge have focused on smaller
networks and simpler problems such as MNIST, where
the degradation in accuracy is very minimal. However,
accuracy evaluations on large-scale networks tell a very
different story, indicating drastic accuracy degradation.
We believe that cross-layer error mitigation and
compensation techniques are needed to bridge the
accuracy gap due to crossbar non-idealities.

• DNN training: Training with resistive crossbars poses
two primary challenges. First, unlike inference which is
done with fixed-point arithmetic, training requires
floating-point arithmetic to achieve convergence. While
past work has explored fixed-point arithmetic for training
CNNs on simpler datasets [72], it is not clear how this
would scale to other models and more complex
datasets [73]. This is because the magnitudes of updates in
DNN training are much smaller than what can be captured
by fixed-point representations. However, crossbar based
systems are naturally suited for fixed-point computations.
Second, writes to resistive crossbars are highly expensive
(discussed in Section 3.1). Since DNN training requires
frequent writes, the energy benefits of efficient VMM can
be outweighed by the cost increase from crossbar writes.
Research directions encompassing technology, circuits and
systems towards enabling floating-point arithmetic and

efficient crossbar writes can pave the way for the adoption
of resistive crossbars for DNN training.

In summary, a comprehensive approach involving device,
circuit, architecture, and algorithm co-design may be
required to realize the potential of crossbar based hardware
fabrics.



0018-8646 (c) 2019 IBM.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1147/JRD.2019.2947011, IBM Journal of
Research and Development

IBM J. RES. & DEV. S. Jain et al.: Neural network accelerator design with resistive crossbars: Opportunities and challenges Page | 11

References
1. R. Parloff, “The AI Revolution: Why Deep Learning Is
Suddenly Changing Your Life.
http://fortune.com/ai-artificial-intelligence-deep-machine-learning ,”
Online. Accessed Sept. 17, 2017. [Online]. Available:
http://fortune.com/ai-artificial-intelligence-deep-machine-learning/

2. NVIDIA Turing architecture based GPUs,
“https://www.nvidia.com/en-us/design-
visualization/technologies/turing-architecture/ ,” Online. Accessed
Sept. 23, 2019. [Online]. Available: https://www.nvidia.com/en-us/
design-visualization/technologies/turing-architecture/

3. N. P. Jouppi et al. , “In-Datacenter Performance Analysis of a
Tensor Processing Unit,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, ser. ISCA ’17.
New York, NY, USA: ACM, 2017, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/3079856.3080246

4. J. Fowers et al., “A Configurable Cloud-scale DNN Processor
for Real-time AI,” in Proceedings of the 45th Annual International
Symposium on Computer Architecture, ser. ISCA ’18. Piscataway,
NJ, USA: IEEE Press, 2018, pp. 1–14. [Online]. Available:
https://doi.org/10.1109/ISCA.2018.00012

5. Intel Nervana Neural Network Processors,
“https://www.intel.ai/nervana-nnp/ ,” Online. Accessed Sept. 23,
2019. [Online]. Available: https://www.intel.ai/nervana-nnp/

6. H.-S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg,
B. Rajendran, M. Asheghi, and K. E. Goodson, “Phase change
memory,” Proceedings of the IEEE, vol. 98, no. 12, pp.
2201–2227, 2010.

7. S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and
W. Lu, “Nanoscale memristor device as synapse in neuromorphic
systems,” Nano letters, vol. 10, no. 4, pp. 1297–1301, 2010.

8. H. Wong, H. Lee, S. Yu, Y. Chen, Y. Wu, P. Chen, B. Lee,
F. Chen, and M. Tsai, “Metal-oxide RRAM,” Proceedings of the
IEEE, vol. 100, no. 6, pp. 1951–1970, 6 2012.

9. S. G. Ramasubramanian, R. Venkatesan, M. Sharad, K. Roy,
and A. Raghunathan, “Spindle: Spintronic deep learning engine for
large-scale neuromorphic computing,” in Proceedings of the 2014
international symposium on Low power electronics and design.
ACM, 2014, pp. 15–20.

10. A. Sengupta and K. Roy, “Encoding neural and synaptic
functionalities in electron spin: A pathway to efficient
neuromorphic computing,” Applied Physics Reviews, vol. 4, no. 4,
p. 041105, 2017.

11. M. Jerry, P. Chen, J. Zhang, P. Sharma, K. Ni, S. Yu, and
S. Datta, “Ferroelectric fet analog synapse for acceleration of deep
neural network training,” in 2017 IEEE International Electron
Devices Meeting (IEDM), Dec 2017, pp. 6.2.1–6.2.4.

12. M. Jerry, S. Dutta, A. Kazemi, K. Ni, J. Zhang, P.-Y. Chen,
P. Sharma, S. Yu, X. S. Hu, M. Niemier, and S. Datta, “A
ferroelectric field effect transistor based synaptic weight cell,”
Journal of Physics D: Applied Physics, vol. 51, no. 43, p. 434001,
aug 2018. [Online]. Available:
https://doi.org/10.1088%2F1361-6463%2Faad6f8

13. W. Haensch, T. Gokmen, and R. Puri, “The next generation of
deep learning hardware: Analog computing,” Proceedings of the
IEEE, vol. 107, no. 1, pp. 108–122, Jan 2019.

14. T. Gokmen and Y. Vlasov, “Acceleration of deep neural
network training with resistive cross-point devices: Design
considerations,” Frontiers in Neuroscience, vol. 10, p. 333, 2016.
[Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2016.00333

15. T. Gokmen, O. M. Onen, and W. Haensch, “Training deep
convolutional neural networks with resistive cross-point devices,”
Frontiers in Neuroscience, vol. 11, p. 538, 2017. [Online].
Available:

https://www.frontiersin.org/article/10.3389/fnins.2017.00538

16. P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and
Y. Xie, “Prime: A novel processing-in-memory architecture for
neural network computation in reram-based main memory,” in
Proceedings of the 43rd International Symposium on Computer
Architecture. IEEE Press, 2016, pp. 27–39.

17. A. Ankit, I. El Hajj, S. R. Chalamalasetti, G. Ndu, M. Foltin,
R. S. Williams, P. Faraboschi, W.-m. Hwu, J. P. Strachan, K. Roy,
and D. Milojicic, “PUMA: A programmable ultra-efficient
memristor-based accelerator for machine learning inference,” in
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2019.

18. X. Sun, X. Peng, P. Chen, R. Liu, J. Seo, and S. Yu, “Fully
parallel RRAM synaptic array for implementing binary neural
network with (+1, -1) weights and (+1, 0) neurons,” in 2018 23rd
Asia and South Pacific Design Automation Conference (ASP-DAC),
Jan 2018, pp. 574–579.

19. A. Ranjan, S. Jain, J. R. Stevens, D. Das, B. Kaul, and
A. Raghunathan, “X-mann: A crossbar based architecture for
memory augmented neural networks,” in Proceedings of the 56th
Annual Design Automation Conference 2019, ser. DAC ’19. New
York, NY, USA: ACM, 2019, pp. 130:1–130:6. [Online].
Available: http://doi.acm.org/10.1145/3316781.3317935

20. A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian,
J. P. Strachan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A
convolutional neural network accelerator with in-situ analog
arithmetic in crossbars,” in Proceedings of the 43rd International
Symposium on Computer Architecture. IEEE Press, 2016.

21. S. Jain, A. Sengupta, K. Roy, and A. Raghunathan, “Rx-Caffe:
Framework for evaluating and training Deep Neural Networks on
Resistive Crossbars,” CoRR, vol. abs/1809.00072, 2018. [Online].
Available: http://arxiv.org/abs/1809.00072

22. G. W. Burr, R. M. Shelby, S. Sidler, C. Di Nolfo, J. Jang,
I. Boybat, R. S. Shenoy, P. Narayanan, K. Virwani, E. U.
Giacometti et al., “Experimental demonstration and tolerancing of
a large-scale neural network (165 000 synapses) using
phase-change memory as the synaptic weight element,” IEEE
Transactions on Electron Devices, vol. 62, no. 11, pp. 3498–3507,
2015.

23. G. Burr, P. Narayanan, R. Shelby, S. Sidler, I. Boybat,
C. di Nolfo, and Y. Leblebici, “Large-scale neural networks
implemented with non-volatile memory as the synaptic weight
element: Comparative performance analysis (accuracy, speed, and
power),” in Electron Devices Meeting (IEDM), 2015 IEEE
International. IEEE, 2015, pp. 4–4.

24. C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang,
W. Song, N. Dávila, C. E. Graves et al., “Analogue signal and
image processing with large memristor crossbars,” Nature
Electronics, vol. 1, no. 1, p. 52, 2018.

25. M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. C. Adam, K. K.
Likharev, and D. B. Strukov, “Training and operation of an
integrated neuromorphic network based on metal-oxide
memristors,” Nature, vol. 521, no. 7550, p. 61, 2015.

26. S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat,
C. Nolfo, S. Sidler, M. Giordano, M. Bodini, N. C. Farinha et al.,
“Equivalent-accuracy accelerated neural-network training using
analogue memory,” Nature, vol. 558, no. 7708, p. 60, 2018.

27. A. Sengupta, Y. Shim, and K. Roy, “Proposal for an all-spin
artificial neural network: Emulating neural and synaptic
functionalities through domain wall motion in ferromagnets,” IEEE
transactions on biomedical circuits and systems, vol. 10, no. 6, pp.
1152–1160, 2016.

28. P. Wang, F. Xu, B. Wang, B. Gao, H. Wu, H. Qian, and S. Yu,
“Three-dimensional nand flash for vector–matrix multiplication,”
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 27, no. 4, pp. 988–991, April 2019.

http://fortune.com/ai-artificial-intelligence-deep-machine-learning/
https://www.nvidia.com/en-us/design-visualization/technologies/turing-architecture/
https://www.nvidia.com/en-us/design-visualization/technologies/turing-architecture/
http://doi.acm.org/10.1145/3079856.3080246
https://doi.org/10.1109/ISCA.2018.00012
https://www.intel.ai/nervana-nnp/
https://doi.org/10.1088%2F1361-6463%2Faad6f8
https://www.frontiersin.org/article/10.3389/fnins.2016.00333
https://www.frontiersin.org/article/10.3389/fnins.2017.00538
http://doi.acm.org/10.1145/3316781.3317935
http://arxiv.org/abs/1809.00072


0018-8646 (c) 2019 IBM.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1147/JRD.2019.2947011, IBM Journal of
Research and Development

IBM J. RES. & DEV. S. Jain et al.: Neural network accelerator design with resistive crossbars: Opportunities and challenges Page | 12

29. D. F. et al., “Analog computation in flash memory for
datacenter-scale ai inference in a small chip,” Online. Accessed
Aug. 21, 2018. [Online]. Available: https://www.hotchips.org/hc30/
2conf/2.05 Mythic Mythic Hot Chips 2018 V5.pdf

30. X. Guo, F. M. Bayat, M. Bavandpour, M. Klachko, M. R.
Mahmoodi, M. Prezioso, K. K. Likharev, and D. B. Strukov,
“Fast, energy-efficient, robust, and reproducible mixed-signal
neuromorphic classifier based on embedded nor flash memory
technology,” in 2017 IEEE International Electron Devices Meeting
(IEDM), Dec 2017, pp. 6.5.1–6.5.4.

31. S. Agarwal, S. J. Plimpton, D. R. Hughart, A. H. Hsia,
I. Richter, J. A. Cox, C. D. James, and M. J. Marinella, “Resistive
memory device requirements for a neural algorithm accelerator,” in
Neural Networks (IJCNN), 2016 International Joint Conference
on. IEEE, 2016, pp. 929–938.

32. M. J. Marinella, S. Agarwal, A. Hsia, I. Richter,
R. Jacobs-Gedrim, J. Niroula, S. J. Plimpton, E. Ipek, and C. D.
James, “Multiscale co-design analysis of energy, latency, area, and
accuracy of a reram analog neural training accelerator,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 8, no. 1, pp. 86–101, 2018.

33. M. Hu, C. Graves, C. Li, Y. Li, N. Ge, E. Montgomery,
N. Davila, H. Jiang, R. S. Williams, J. J. Yang, Q. Xia, and J. P.
Strachan, “Memristor-based analog computation and neural
network classification with a dot product engine,” Advanced
Materials, 2018.

34. G. W. Burr, P. Narayanan, R. M. Shelby, S. Sidler, I. Boybat,
C. di Nolfo, and Y. Leblebici, “Large-scale neural networks
implemented with non-volatile memory as the synaptic weight
element: Comparative performance analysis (accuracy, speed, and
power),” in 2015 IEEE International Electron Devices Meeting
(IEDM), Dec 2015, pp. 4.4.1–4.4.4.

35. Z. Xu, A. Mohanty, P.-Y. Chen, D. Kadetotad, B. Lin, J. Ye,
S. Vrudhula, S. Yu, J.-s. Seo, and Y. Cao, “Parallel programming
of resistive cross-point array for synaptic plasticity,” Procedia
Computer Science, vol. 41, 12 2014.

36. S. Kim, T. Gokmen, H. Lee, and W. E. Haensch, “Analog
cmos-based resistive processing unit for deep neural network
training,” in 2017 IEEE 60th International Midwest Symposium on
Circuits and Systems (MWSCAS), Aug 2017, pp. 422–425.

37. T. Gokmen, M. J. Rasch, and W. Haensch, “Training lstm
networks with resistive cross-point devices,” Frontiers in
Neuroscience, vol. 12, p. 745, 2018. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fnins.2018.00745

38. S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat,
C. di Nolfo, S. Sidler, M. Giordano, M. Bodini, N. C. P. Farinha,
B. Killeen, C. Cheng, Y. Jaoudi, and G. Burr,
“Equivalent-accuracy accelerated neural-network training using
analogue memory,” Nature, vol. 558, 06 2018.

39. L. Kull, T. Toifl, M. Schmatz, P. A. Francese, C. Menolfi,
M. Braendli, M. Kossel, T. Morf, T. M. Andersen, and
Y. Leblebici, “A 3.1mW 8b 1.2GS/s single-channel asynchronous
SAR ADC with alternate comparators for enhanced speed in 32nm
digital SOI CMOS,” in 2013 IEEE International Solid-State
Circuits Conference Digest of Technical Papers, Feb 2013, pp.
468–469.

40. J. Zhang, Z. Wang, and N. Verma, “A machine-learning
classifier implemented in a standard 6t sram array,” in VLSI
Circuits (VLSI-Circuits), 2016 IEEE Symposium on. IEEE, 2016,
pp. 1–2.

41. E. J. Merced-Grafals, N. Dávila, N. Ge, R. S. Williams, and
J. P. Strachan, “Repeatable, accurate, and high speed multi-level
programming of memristor 1t1r arrays for power efficient analog
computing applications,” Nanotechnology, vol. 27, no. 36, p.
365202, 2016.

42. D. Ielmini, S. Lavizzari, D. Sharma, and A. L. Lacaita,
“Physical interpretation, modeling and impact on phase change

memory (pcm) reliability of resistance drift due to chalcogenide
structural relaxation,” in 2007 IEEE International Electron Devices
Meeting. IEEE, 2007, pp. 939–942.

43. X. Liu, M. Mao, B. Liu, H. Li, Y. Chen, B. Li, Y. Wang,
H. Jiang, M. Barnell, Q. Wu et al., “Reno: A high-efficient
reconfigurable neuromorphic computing accelerator design,” in
Design Automation Conference (DAC), 2015 52nd
ACM/EDAC/IEEE. IEEE, 2015, pp. 1–6.

44. A. Ankit, A. Sengupta, P. Panda, and K. Roy, “Resparc: A
reconfigurable and energy-efficient architecture with memristive
crossbars for deep spiking neural networks,” in Proceedings of the
54th Annual Design Automation Conference 2017. ACM, 2017,
p. 27.

45. Y. Kim, Y. Zhang, and P. Li, “A reconfigurable digital
neuromorphic processor with memristive synaptic crossbar for
cognitive computing,” J. Emerg. Technol. Comput. Syst., vol. 11,
no. 4, pp. 38:1–38:25, Apr. 2015.

46. M. N. Bojnordi and E. Ipek, “Memristive boltzmann machine:
A hardware accelerator for combinatorial optimization and deep
learning,” in High Performance Computer Architecture (HPCA),
2016 IEEE International Symposium on. IEEE, 2016, pp. 1–13.

47. M. Hu, H. Li, Q. Wu, and G. S. Rose, “Hardware realization of
bsb recall function using memristor crossbar arrays,” in
Proceedings of the 49th Annual Design Automation Conference,
ser. DAC ’12. New York, NY, USA: ACM, 2012, pp. 498–503.

48. D. Lee and K. Roy, “Area efficient rom-embedded sram cache,”
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 21, no. 9, pp. 1583–1595, 2013.

49. E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael,
A. Caulfield, T. Massengill, M. Liu, D. Lo, S. Alkalay,
M. Haselman et al., “Serving dnns in real time at datacenter scale
with project brainwave,” IEEE Micro, vol. 38, no. 2, 2018.

50. M. J. Rasch, T. Gokmen, M. Rigotti, and W. Haensch,
“Efficient convnets for analog arrays,” CoRR, vol. abs/1807.01356,
2018. [Online]. Available: http://arxiv.org/abs/1807.01356

51. A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri, N. R.
Devanur, G. R. Ganger, and P. B. Gibbons, “Pipedream: Fast and
efficient pipeline parallel DNN training,” CoRR, vol.
abs/1806.03377, 2018. [Online]. Available:
http://arxiv.org/abs/1806.03377

52. Y. Huang, Y. Cheng, D. Chen, H. Lee, J. Ngiam, Q. V. Le, and
Z. Chen, “Gpipe: Efficient training of giant neural networks using
pipeline parallelism,” CoRR, vol. abs/1811.06965, 2018. [Online].
Available: http://arxiv.org/abs/1811.06965

53. L. Xia, B. Li, T. Tang, P. Gu, X. Yin, W. Huangfu, P. Y. Chen,
S. Yu, Y. Cao, Y. Wang, Y. Xie, and H. Yang, “MNSIM:
Simulation platform for memristor-based neuromorphic computing
system,” in 2016 Design, Automation Test in Europe Conference
Exhibition (DATE), March 2016, pp. 469–474.

54. P. Gu, B. Li, T. Tang, S. Yu, Y. Cao, Y. Wang, and H. Yang,
“Technological exploration of RRAM crossbar array for
matrix-vector multiplication,” in The 20th Asia and South Pacific
Design Automation Conference, Jan 2015, pp. 106–111.

55. P. Chen, X. Peng, and S. Yu, “Neurosim: A circuit-level macro
model for benchmarking neuro-inspired architectures in online
learning,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pp. 1–1, 2018.

56. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional
Architecture for Fast Feature Embedding,” arXiv preprint
arXiv:1408.5093, 2014.

57. M. J. Rasch, T. Gokmen, and W. Haensch, “Training large-scale
ANNs on simulated resistive crossbar arrays,” arXiv preprint
arXiv:1906.02698, 2019.

58. C. Liu, M. Hu, J. P. Strachan, and H. H. Li, “Rescuing

https://www.hotchips.org/hc30/2conf/2.05_Mythic_Mythic_Hot_Chips_2018_V5.pdf
https://www.hotchips.org/hc30/2conf/2.05_Mythic_Mythic_Hot_Chips_2018_V5.pdf
https://www.frontiersin.org/article/10.3389/fnins.2018.00745
http://arxiv.org/abs/1807.01356
http://arxiv.org/abs/1806.03377
http://arxiv.org/abs/1811.06965


0018-8646 (c) 2019 IBM.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1147/JRD.2019.2947011, IBM Journal of
Research and Development

IBM J. RES. & DEV. S. Jain et al.: Neural network accelerator design with resistive crossbars: Opportunities and challenges Page | 13

memristor-based neuromorphic design with high defects,” in
Proceedings of the 54th Annual Design Automation Conference
2017. ACM Press, 2017. [Online]. Available:
https://doi.org/10.1145%2F3061639.3062310

59. L. Chen, J. Li, Y. Chen, Q. Deng, J. Shen, X. Liang, and
L. Jiang, “Accelerator-friendly neural-network training: Learning
variations and defects in RRAM crossbar,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2017. IEEE,
mar 2017. [Online]. Available:
https://doi.org/10.23919%2Fdate.2017.7926952

60. I. Chakraborty, D. Roy, and K. Roy, “Technology aware training
in memristive neuromorphic systems for nonideal synaptic
crossbars,” IEEE Transactions on Emerging Topics in
Computational Intelligence, vol. 2, no. 5, pp. 335–344, 2018.

61. P.-Y. Chen, B. Lin, I.-T. Wang, T.-H. Hou, J. Ye, S. Vrudhula,
J. sun Seo, Y. Cao, and S. Yu, “Mitigating effects of non-ideal
synaptic device characteristics for on-chip learning,” in 2015
IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE, nov 2015. [Online]. Available:
https://doi.org/10.1109%2Ficcad.2015.7372570

62. I. Kataeva, F. Merrikh-Bayat, E. Zamanidoost, and D. Strukov,
“Efficient training algorithms for neural networks based on
memristive crossbar circuits,” in 2015 International Joint
Conference on Neural Networks (IJCNN). IEEE, jul 2015.
[Online]. Available: https://doi.org/10.1109%2Fijcnn.2015.7280785

63. M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila,
C. Graves, S. Lam, N. Ge, J. J. Yang, and R. S. Williams,
“Dot-product engine for neuromorphic computing: Programming
1t1m crossbar to accelerate matrix-vector multiplication,” in
Proceedings of the 53rd annual design automation conference.
ACM, 2016, p. 19.

64. B. Yan, J. Yang, Q. Wu, Y. Chen, and H. Li, “A closed-loop
design to enhance weight stability of memristor based neural
network chips,” in 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, nov 2017. [Online].
Available: https://doi.org/10.1109%2Ficcad.2017.8203824

65. B. Liu, H. Li, Y. Chen, X. Li, T. Huang, Q. Wu, and
M. Barnell, “Reduction and IR-drop compensations techniques for
reliable neuromorphic computing systems,” in 2014 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD).
IEEE, nov 2014. [Online]. Available:
https://doi.org/10.1109%2Ficcad.2014.7001330

66. Y. Jeong, M. A. Zidan, and W. D. Lu, “Parasitic effect analysis
in memristor-array-based neuromorphic systems,” IEEE
Transactions on Nanotechnology, vol. 17, no. 1, pp. 184–193, jan
2018. [Online]. Available:
https://doi.org/10.1109%2Ftnano.2017.2784364

67. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Advances in Neural Information Processing Systems 25. Curran
Associates, Inc., 2012, pp. 1097–1105.

68. S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights
and connections for efficient neural network,” in Advances in
neural information processing systems, 2015, pp. 1135–1143.

69. A. Ankit, A. Sengupta, and K. Roy, “Trannsformer: Neural
network transformation for memristive crossbar based
neuromorphic system design,” in Proceedings of the 36th
International Conference on Computer-Aided Design. IEEE
Press, 2017, pp. 533–540.

70. Y. Wang, W. Wen, B. Liu, D. Chiarulli, and H. H. Li, “Group
scissor: Scaling neuromorphic computing design to large neural
networks,” in Proceedings of the 54th Annual Design Automation
Conference 2017. ACM, 2017, p. 85.

71. L. Liang, L. Deng, Y. Zeng, X. Hu, Y. Ji, X. Ma, G. Li, and
Y. Xie, “Neural network pruning for crossbar architecture,” IEEE
Access, pp. 1–1, 2018.

72. S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan,
“Deep learning with limited numerical precision,” in Proceedings
of the 32nd International Conference on Machine Learning
(ICML-15), 2015, pp. 1737–1746.

73. P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen,
D. Garcia, B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh
et al., “Mixed precision training,” arXiv preprint
arXiv:1710.03740, 2017.

Shubham Jain School of Electrical and Computer Engineering,
Purdue University (jain130@purdue.edu)

Aayush Ankit School of Electrical and Computer Engineering,
Purdue University (aankit@purdue.edu)

Indranil Chakraborty School of Electrical and Computer
Engineering, Purdue University (ichakra@purdue.edu)

Tayfun Gokmen IBM T.J. Watson Research Center, Yorktown
Heights, NY (tgokmen@us.ibm.com)

Malte Rasch IBM T.J. Watson Research Center, Yorktown
Heights, NY (malte.rasch@ibm.com)

Wilfried Haensch IBM T.J. Watson Research Center, Yorktown
Heights, NY (whaensch@us.ibm.com)

Kaushik Roy School of Electrical and Computer Engineering,
Purdue University (kaushik@purdue.edu)

Anand Raghunathan School of Electrical and Computer
Engineering, Purdue University (raghunathan@purdue.edu)

https://doi.org/10.1145%2F3061639.3062310
https://doi.org/10.23919%2Fdate.2017.7926952
https://doi.org/10.1109%2Ficcad.2015.7372570
https://doi.org/10.1109%2Fijcnn.2015.7280785
https://doi.org/10.1109%2Ficcad.2017.8203824
https://doi.org/10.1109%2Ficcad.2014.7001330
https://doi.org/10.1109%2Ftnano.2017.2784364

