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Part I. 
Neural Network Models, 
Applications, and Digital 

Hardware
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Neural Network Zoo

Generative Adversarial Network (GAN)

Recurrent Network (RNN)

Hopfield Network (HN)

Multilayer Perceptron (MLP)

Long / Short Term Memory (LSTM)

Deep Belief Network (DBN)

Deep Convolutional Network (CNN)
Liquid State Machine (LSM)

Attention Network (AN)

Boltzmann Machine (BM) 

Restricted BM (RBM) 

Figures adapted from http://www.asimovinstitute.org/neural-network-zoo/

- Networks differ mostly by neuron connectivity & neuron functionality (more complex towards the right)
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The Most Important  Operation in Neural Networks

- Vector-by-matrix multiplication is the most common operation
yj

)(
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jij ywfxi

wij

Generative Adversarial Network (GAN)

Recurrent Network (RNN)

Hopfield Network (HN)

Multilayer Perceptron (MLP)

Long / Short Term Memory (LSTM)

Deep Belief Network (DBN)

Deep Convolutional Network (CNN)
Liquid State Machine (LSM)

Attention Network (AN)

Boltzmann Machine (BM) 

Restricted BM (RBM) 
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Practically Useful Neural Network Models

- Only firing-rate (non-spiking) feedforward & 
recurrent networks used commercially

- Weight sharing for CNN and LSTM   

Generative Adversarial Network (GAN)

Recurrent Network (RNN)

Hopfield Network (HN)

Multilayer Perceptron (MLP)

Long / Short Term Memory (LSTM)

Deep Belief Network (DBN)

Deep Convolutional Network (CNN)
Liquid State Machine (LSM)

Attention Network (AN)

Boltzmann Machine (BM) 

Restricted BM (RBM) 

Speech

Google cloud workload from N. Jouppi et al., ISCA’17

Image
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Largest Neural Network Models

- >8B weights / >1019 FLOPs training cost in the state-of-the-art attention (transformer) networks
- Larger network  better quality

Generative Adversarial Network (GAN)

Recurrent Network (RNN)

Hopfield Network (HN)

Multilayer Perceptron (MLP)

Long / Short Term Memory (LSTM)

Deep Belief Network (DBN)

Deep Convolutional Network (CNN)
Liquid State Machine (LSM)

Attention Network (AN)

Boltzmann Machine (BM) 

Restricted BM (RBM) 

Example of talking to 1.5B-weight GPT-2 transformer (https://talktotransformer.com/):

custom prompt

ANN- generated
completion

The main challenges for memristors are …

… their low power consumption (unlike micro-transistors) and high initial 
operating voltage. They have a low dynamic range due to low switching 
frequency and high currents. The current flow in a memristor will decrease 
at higher switching frequencies than low-voltage transistors. Some 
memristors are expected to have lower resistance than the values that are 
currently used. High dynamic range capability will eventually be overcome 
with improvements in energy dissipation. Typical memristors can currently 
be specified to more than 2 nanovolts (billionths of a volt)…
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Source: NVIDIA 

Training

Inference
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Training

Inference

Importance Key differences 
in HW specs(world total in 2020, 

Source: NVIDIA)

Where 
deployed 

Medium-to-high 
(8÷32 bit) computing 

precision

Throughput per 
chip area

Energy efficiency

~55 ExaFLOP/s

~450 ExaIOP/s

Low-to-medium  
(4÷8 bit) computing 

precision

Persistent 
(nonvolatile) 

weights 

cloud

edge

cloud

FLOP  =  floating point op
IOP  =  integer op
Exa  = 1018

Primary HW 
metric

Throughput per 
chip area
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State-of-The-Art Deep Learning Hardware

10 of 62

commercial digital systems for high performance and mobile applications   

Google’s 
Tensor 

Processing 
Unit

NVIDIA’s 
Turing 
(12 nm)

Google 
Edge TPU

Intel’s Movidius

NVIDIA’s Jetson 

100s W, $$$$ few W, $$
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State-of-The-Art Deep Learning Hardware
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Envision (2017) UNPU (2018) NVidia (2019)

Technology (nm) 28 UTBB FD-SOI 65 16

Peak performance [GOPS] (1 to 4) × 102 1382 (4) /345 (16) 4010 (8 bit)

Active area [mm2] 1.87 16 3.1

Precision [b] 4-16 1-16 8

Power [mW] @ frame rate [fps] 44 @ 47* 297 @ ? * ?

Min/max energy efficiency [TOps/J] 0.26–10 (~2.5 @ 4-bit) 11.6(4 bit) / 3.08(16 bit) ~ 9.09 (8 bit)

Envision

B. Moons et al., ISSCC’17

* AlexNet convolutional layers only

Nvidia’s MCM

J. Lee et al., ISSCC’18

UNPU

B. Zimmer et al., VLSISymp’19

- Saturating performance/energy efficiency, limited on-chip memory, expensive ($300M design cost in 7 nm)  
- Biology is many orders of magnitude more energy efficient

custom experimental digital systems  

Startups: Cerebras, Habana, 
Wave Computing, Graphcore, 
Groq …

Cerebras (largest chip ever built)

46,225 mm2 1.2T trans @ 16 nm
18 GB on-chip memory
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Problems with Digital Accelerators

12 of 62

Source: W.Dally, Stanford

Large energy / latency overhead 
for moving data due to 

- out of / near memory 
computing and bulky VMM 
circuitry

- off-chip weights

off-chip
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Part II. 
Neurocomputing with 

Memory Devices 
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Dot-Product Computation …
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synapses

Implementing Basic Neuromorphic Operation
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Dot-Product Computation … … by Analog Circuit
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Implementing Basic Neuromorphic Operation

- Utilize fundamentally accurate Ohm’s and Kirchhoff’s laws
- In-memory computing (no need to move around synaptic weights)
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NG ,1

1,1G

2,1G

...

1V

2V

NV

... ...

Vector-by-Matrix Multiplication (VMM) … by Analog Circuit

NG ,2

1,2G

2,2G

NKG ,

1,KG

2,KG

1I 2I KI

...

...

...

- No dense adjustable-conductance nonvolatile devices until recently

Implementing Basic Neuromorphic Operation
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Earlier Work on Analog Neurocomputing

17 of 62

 “Extended drain” NMOS structure

 Hasler’s recent FPAA chip

>1000 F2

per synaptic 
weight!

“Synaptic Transistor”
(from the late 1980s: C. Mead, C. Diorio, J. Hasler,…)

Widrow’s “Memistor”

PRO: allow using common CMOS foundries
CON: large cells  low speed  low energy efficiency

 AdaLiNe concept and its hardware implementation

B. Widrow and M.E. Hoff, Jr., IRE WESCON 
Convention Record, 4:96 1960

- Automated 4×4 b/w image classification 
in follow-up early 1970s work

- Coincided with the rise of digital 
processors (Intel 4004) 

S. George et al. 
IEEE Trans. VLSI, 
2016
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Analog VMM Circuit

New Life for Old Concept

NG ,1

1,1G

2,1G

...

1V

2V

NV

... ...

NG ,2

1,2G

2,2G

NKG ,

1,KG

2,KG

1I 2I KI

...

...

...

Metal-Oxide Memristors

V

metallic electrode

metallic 
electrode

insulator

A

S

current

0

VW-

VW+VR

ON 
state

OFF 
state

intermediate 
state

voltage

Applying |V | ≤ VR does not disturb the memory state for nonvolatile memristors
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1V

2V

4V

1I 2I 4I
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Analog VMM Circuit

New Life for Old Concept

Metal-Oxide Memristors

V

metallic electrode

metallic 
electrode

insulator

A

S

current

0

VW-

VW+VR

ON 
state

OFF 
state

intermediate 
state

voltage

Tunable conductance, nonvolatile, extremely compact footprint when using passive memristors
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Different Options for Analog / Mixed-Signal VMMs
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 Instant  Exponential

(classification based on how P-bit inputs are encoded)

Encoding in biology is closer to the fixed-amplitude / variable duration scheme
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M. Bavandpour et al, IEEE S3S, 2019
M. Bavandpour, S. Sahay et al, IEEE TVLSI, 2019
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- Inputs are encoded in voltage amplitudes
- Dot-product is proportional to the output 

current 

- Digital inputs are presented bit-by-bit 
- Dot product is accumulated in P steps by 

successive integration and re-scaling
- Or accumule in digital domain (HP’s ISAAC) 

- Digital inputs are encoded in duration of  
fixed-amplitude pulses 

- Dot product is proportional to the output 
pulse duration

a2t

0
1

0
1

0
1
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Approximate Content Addressable Memory (CAM)

- CAM’s essential operation is Hamming distance calculation

- Hamming distance between two vectors = dot-product of two vectors

Hyperdimensional computing is VMM with binary weights/inputs followed by winner-take-all circuit

also known as “hyperdimensional” memory

Binary-input 
binary-weight 

VMM 

Winner-
take-all

(determine 
the largest 

output)

Binary input vector

VMM output 
(analog vector)

Row position corresponding to 
the largest VMM output (while 
discarding all other outputs) 
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Memory Array Options
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very dense less dense due to bulky transistor 

need very uniform devices relaxed d2d requirement 

Passive (“0T1R”) Active (“1T1R”)

memory cell

memory cell



Dmitri Strukov – Nature Conference, Beijing 2019 

Tunable Non-Volatile Memory Device Options

23 of 62
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General Philosophy for System Level Demo
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- Focus on ex-situ-trained neuromorphic inference 
- the simplest, yet very practical

- Has to be flexible enough 
- to run all recent practical NN models for image and language processing, e.g. those 

Google reported as workloads on their data centers

- Mixed-signal design 
- Most of the NN models rely on the weight reuse, which implies producing and storing 

some intermediate temporary data in the network. Temporary data are better to store 
in digital domain 

- Digital for more exotic (e.g. vector-by-vector outer product computations, different 
activation functions)

- Analog circuits to implement dense VMMs, which dominate inference in all models
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Details:
- Custom (energy-optimized) mixed-

signal architecture, with estimates 
shown for NOR flash (projected from 
100k-weights experimental chip)

- Analog neuron input bus

- Digital interfaces (DACs/ADCs)

Chip area 
(mm2)

Latency 
(ms)

EE
(TOp/J)

Digital CMOS 257 749 0.14

Analog FG 293 0.59 283

 System-level estimates for 55 nm NOR flash 4-bit and comparison with 
digital counterpart at the same compute precision / process node 

INC-V1 ResNet GNMT
Network specifications

# parameters  7.2e06 1.1e07 1.3e08
# operations 5.2e09 2.0e10 2.6e09

Area breakdown (%)
MM 18.1 4.53 2.2

Sensing 15.5 23.3 25.1
FG arrays 24.2 36.5 39.3

P/E 26.3 14.7 11.3
Others 16 23 22.1

Energy breakdown (%)
MM 38.8 23.9 8.3

Sensing 16.2 11.4 23.8
FG arrays 3.03 2.13 4.45

Buses 31.6 41.3 12.4
Leakage (buses) 4.4 17.4 46.7

Others 6.9 4 4.4
Performance summary

Area (mm2) 35.4 142 293
Power (mW) 14.9 19.8 16.1
Latency (ms) 3.1 8.75 0.59

EE (TOp/J) 114 120 283
Throughput (TOp/s) 1.69 2.37 4.54

- System-level efficiency 
for EE-optimized 
designs is mainly 
limited by memory 
density 

- Small networks (e.g. 
with <~104 Op / pixel in 
55 nm) will be 
dominated by I/O  

M. Bavandpour et al, IEDM, 2018

2

1

3

2

 aCortex architecture (one tile)

UC Santa Barbara’s Inference Accelerator

Neuron
ADC

Auxiliary

DAC
FG array
Sensing

Buffer
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Conductance Tunability at Rescue from Process Variations

J. Hasler, J. Low 
Power Electron. 
Appl. 7, 17, 2017

Memory state tunability  low overhead for dealing with process variations

30x improvement

Analog circuits’ transistors are scaled up to properly 
operate with worst-case process variations 

minimum 
feature size 
transistor 
(25F2) multi-finger scaled up transistor 

(could be >1000 F2)
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Tradeoff between Energy-Efficiency and Throughput

Analog memory array 

Peripheral circuitry  
(ADC/DAC/sensing)

digital memory / controller

Energy-efficient design (for edge) High-throughput design (for cloud)
more VMM computations in parallelless periphery / more compact
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Tradeoff between Energy-Efficiency and Throughput

Log[Throughput]

low-precision A/MS

low-precision D

Log[Energy Efficiency] 

>10^4 better in EE-delay at 
system level at 4 bit (M. 
Bavandpour et al, IEDM’18, 
S3S’19)

crossover at high 
throughputs

Natural tradeoff between energy efficiency and throughput  (at device, circuit, architecture levels)
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Mixed-signal for low-to-medium precision & EE optimal, digital for higher precision & throughput-optimal

Tradeoff between Energy-Efficiency and Throughput

high-precision A/MS

high-precision (e.g. 16 bit) digital (near memory)

Log[Throughput]

low-precision A/MS

low precision (e.g. 4 bit) 
analog/mixed-signal (in-memory)

high-precision D

low-precision D

Log[Energy Efficiency] 
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Proper Way to Compare Performance Metrics 

30 of 62

Report chip or system level 
metrics, e.g.
- Frames per seconds per area 

at certain accuracy
- Energy per inference at 

certain accuracy

Oblivious to type of network / 
computing precision / type of 
hardware 

TOP/s/cm2 or TOP/J as proxy 
could be very misleading

Useful applications for lower 
accuracy? 

Source: J. Deguchi et al, IEDM’19

 Tradeoff between energy-efficiency and functional 
performance (image classification accuracy)
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Part II: Key Takeaways

 Memristors are enabling element for VMMs

 >100x better chip-level energy-efficiency for inference 
accelerators due to

– compact footprint & tunability of passively integrated 
memristors

– “in-memory” computing in analog VMM circuits  

 Digital conversion circuits, needed to take advantage of  
weight reuse, reduce processing throughput 

31 of 62
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Part III. 
Device Requirements and 

Challenges
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CMOS Compatibility
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passively back-end integrated 
memristor crossbar (synapses) 

CMOS stack (neurons and other 
peripheral functions)

Hybrid monolithic 3D hybrid circuits using passively integrated devices as an 
ultimate goal 

Device Requirement: Compatible with CMOS backend memristor integration process and memristor operation
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Key Operations on Memristor Crossbar Circuits
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Write Tuning Read Inference

-VW/2 0   0   0   0   0 

0
0

0
0

0
+VW/2 

virtual 
GND

0   0   0   0   0 

0
0

0
0

0
VR

IR

V1
V2

V3

V4

V5

V6

I1    I2    I3 I4    I5    I6

virtual GNDs

|Vi | ≤ VR
Forming

0 float

float

VF

specific to ex-situ training 
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Crossbar Compatible Forming
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Forming

0 float

float

VF current 
compliance

current

voltage

0

VW-

VW+VR

ON 
state

OFF 
state

forming
intermediate 

state

Device Requirement: Forming process compatible with passive crossbar circuits (relaxed for 1T1R circuits)

Large, potentially 
destructive currents through 
already formed crosspoint 
devices when Vforming>> VwVforming
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Endurance, Switching Speed/Energy
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Tuning Write Tuning Read

-VW/2 0   0   0   0   0 

0
0

0
0

0
+VW/2 

virtual 
GND

0   0   0   0   0 

0
0

0
0

0
VR

IR

For ex-situ trained inference accelerators weights are programmed (tuned) infrequently
 Acceptable to use slow / power hungry write-verify algorithm, which adapts to the variations in the device I-Vs

 Example of tuning device to different states 
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Endurance, Switching Speed/Energy
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Tuning Write Tuning Read

-VW/2 0   0   0   0   0 

0
0

0
0

0
+VW/2 

virtual 
GND

0   0   0   0   0 

0
0

0
0

0
VR

IR

Write speed / energy, switching endurance, switching dynamics are not important for inference
Less severe requirements for device variations for inference

 Example of tuning device to different states 
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Static I-V linearity 
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Inference

V1
V2

V3

V4

V5

V6

I1    I2    I3 I4    I5    I6

virtual GNDs

|Vi | ≤ VR

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-600

-400

-200

0

200

400

600

800 R
e

se
t T

h
. -0

.8V

C
u

rr
e

nt
 (
A

)

Voltage (V)

S
et T

h
. +

0
.7

V

read 
(operation) 
voltages

write 
voltages

write 
voltages

 Typical I-V for in-house devices

- Linear I-V is needed for precise multiplication, e.g.  I(VR) / ( 2I(VR/2) ) > 0.95 for 4-bit precision
- I-Vs are typically very linear at small (non-disturbing) voltages 
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Major Challenge #1: Poor Yield of Memory Devices
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- Defect tolerance by searching for good 
sub-array with greedy row/col permutations 
and utilizing redundancy (VMM sparsity 
and provisioned extra rows / columns)

 Impact of bad devices: study of finding the largest fraction of bad devices for 95% successful mapping  

< 0.5% bad 
devices 
with 60% 
redundancy 
for 128×128 
VMM 

xbar

N + a

N + a

VMM

N

N

a
extra columns

a extra 
rows

bad
cell

good 
cell

non-zero
weight

zero
weight

no redundancy

greedy, 20% zeros 
in VMM

greedy, 20% zeros in VMM + 
extra 20% row/col  

greedy, 20% zeros in VMM + extra 
40% row/col  

- Simplified model assuming stuck-on-off bad devices (failed to form) or out-of-spec (with poor retention, high noise)
- Some overhead for permuting block’s input/output 
- Higher tolerance with chip-in-the-loop / defect-aware ex-situ training (F. Merrikh Bayat et al, ICCAD’19) but less viable 

commercially 



Dmitri Strukov – Nature Conference, Beijing 2019 

Major Challenge #2: Switching Threshold Variations
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- Disturbance of half-selected devices when tuning 
devices with the largest voltage threshold

- at least c.v. < 0.3 for “V/2–biasing” scheme, with σ
margins, and naïve algorithm to avoid disturbance 

- No such problem for 1T1R memories (at the cost of 
100-1000x larger cell so far)

 Switching voltage threshold variations

+Vset/2

-Vset/2Vselect

-Vset/2

Vset count

+Vset/2

-Vset/2

passive (0T1R): active (1T1R):

D. Strukov, Nature Materials, 2019

 Half-select disturbance 

selected 
device

no half-
selected 
devices

selected 
device

half-
selected 
devices

Current

Voltage

Vreset

count set

reset

<Vset>

<Vreset>

S
time

V
=

- Switching threshold = voltage at which current 
changes by > 10% when applying voltage ramp
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Weight Tuning Requirements for Inference Applications
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T.-J-Yang 
and V. Sze 
IEDM’19

Further improvements 
possible, e.g. perform 
some critical operations 
in digital domain

Impact of weight precision on ImageNet classification   

5 ÷ 9 bits 

No loss in performance for ~ 3 % ÷ 0.2 % tuning precision in the dynamic range
Tuning Precision = 100% ×
|Gdesired – Gactual| / (Gmax-Gmin)
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Major Challenge #3: High Cell Current
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Why it is a problem?
- larger operating (read) currents  smaller input/output array impedance 
 larger DAC/sensing overhead

- large write currents limits the size of the passive crossbar arrays due to 
IR drop or swells access transistor in active arrays 

Pros of some active cells: 
- high input/output array impedance for all 1T schemes

- high input impedance for 1T1R schemes with linear encoding

- no leakages/IR drops problem during forming/write

Optimal for operation: 100s pAs to 10s nAs

- too low SNR (compute precision) for smaller currents  VMM

DAC

Sensing

Typical 
VMM layout 

with large 
cell currents
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Part III: Key Takeaways
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 For the simplest, yet most practical neuromorphic inference applications, the 
most important metrics: 

– CMOS and crossbar compatibility

– density, especially for energy-efficiency optimal designs  

– multi-level analog memory (4 ÷ 8 bits or 32 ÷ 256 states)

– high retention (~ months)

 Key challenges are 

- poor device yield and I-V uniformity (need < 1% bad devices, sigma Vsw << Vsw / 2 )

- high switching / operating currents  (need 100s pAs to 10s nAs for operation)

 Less important / desired specs ease to achieve: dynamic / static  I-V linearity, write speed/energy, 
endurance, noise (RTN could be too high for some devices), ON/OFF ratio 

 Much more demanding device uniformity requirements for on-line/in-situ learning, e.g. SNN with 
STDP learning, though relaxed retention requirements for training accelerators

< 3% tuning 
accuracy in the 
dynamic range
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Part IV. 
Examples of Recent Mixed-

Signal Neuromorphic 
Hardware Prototypes
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UMich’s Chip with Backend-Integrated Metal-Oxide Memristors
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- The first fully-integrated CMOS / 0T1R memristor chip of its kind
- Poor ~ min-scale retention, only small fraction (16×14) of memristors used at demo, very limited statistics, poor 

600 µm2 per cell density, small ~2.5 ON/OFF range

F. Cai et al. Nature 
Electronics 2019

126 6x8 subarrays

WOx

memristors
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UCSB’s Metal-Oxide Memristor Chip
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Ti (15 nm)

TiO2-x (30 nm)

Ta (5 nm)

H. Kim et al. 2019 (unpublished) 
Other work on classifier demos: M. Prezioso  Nature‘15, IEDM’15, F. Merrikh Bayat Nat.Comm.18 
Recent work on 3D circuits: I. Kataeva ISCAS’19, B. Chakrabarti Sci. Rep’17, G. Adam TED’17

 Passive 64 × 64 xbar circuit

Highest complexity analog-grade passive xbar demo 
Details:
- Al2O3/TiO2-x active bilayer by reactive sputtering
- ~250 nm wide lines, passive (0T1R) integration, 0.25 µm2 per memory cell 
- CMP/dry etching and TiN/Al electrodes for higher conductance
- Uniform I-Vs (~1% unswitchable devices, ~26% variation in threshold)
Important future steps: 
- 3D monolithic integration with CMOS (ongoing E2CDA work)
- Lowering device resistance (by feature size scaling)

 High precision conductance tuning 
TE

BE

1 5 10 15 20 25 30 40 50
0

20

40

60

80
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Tuning precision [%]

C
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%
] 83.51% software

Measured Data
Simulated Box Chart with 100 Trials
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25
 V

 [µ
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desired actual

 MNIST classification demo 

Benchmarked on 
down-sampled 8x8 
images

TiN (80 nm)
Al (90 nm)
Ti (15 nm)

Ti (10 nm)

TiN (45 nm)
Al (70 nm)

SiO2/Si

Al2O3(1.5 nm)
TiO2-x(30 nm)

- Dark dots: ~1% devices 
that cannot be switched
-Color encoding: 256 
levels from white (10 µS) 
to black (100 µS) @ 0.2V
-< 5% / < 3% absolute / 
relative tuning error using 
automated algorithm, 
with reserves for 
improvement
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HPL / UMass 1T1R Metal-Oxide Memristor Chip
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- The first fully integrated CMOS / 1T1R HfO2

memristor chip of its kind
- Very high >99% yield, linear I-V, excellent analog 

properties  
- Used in many impressive demos (inference, training, 

reinforcement learning, unsupervised learning)

- Extremely bulky ~2,500 µm2 cells, High (~ 1 mA for 
ON state) currents 

128x64 1T1R array
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Tsinghua U’s 1T1R Memristor Chip for Neurocomputing
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- Largest scale demo of its kind

- Board-level integrated CMOS 
neural nework circuitry with 8 
1T1R memristor chipw

- Each chip is 128x16 1T1R array 
of  TiN/TaOx/HfOx/TiN devices

- Used to demonstrate  
convolutional neural network

- Extermely bulky ~ 200 µm2 cell 
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Neuromorphic Inference with 2D NOR flash
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 NOR eFlash chip
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 Measured results
(10,000 MNIST test patterns)

Summary:
- 28x28 B/W input, 10-class output, >100,000 NOR flash synapses, 64 hidden layer CMOS neurons, 180-nm process with eFlash
- 94.65% experimental fidelity (96.5% theoretical) 
- < 1-µs latency, < 20 nJ energy per pattern (reserves for improvement for both with better neuron design)
- Much better in speed and energy efficiency over digital circuits at comparable MNIST fidelity (106 better energy-delay than IBM TrueNorth)
- Reproducible, temperature insensitive, no change in performance after 7 months
- More recent work using 55-nm ESF3 NOR-flash technology (CICC’17, IEDM’18’19), scalable to 28 nm 
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 High-level architecture

X. Guo. et al., IEDM, 2017; F. Merrikh Bayat, IEEE TNNLS, 2018
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Stochastic dot-product circuit:
add intrinsic/extrinsic noise from memory array to 
dot-product current and feed it to comparator 

- Sigmoid slope (i.e. SNR or compute temperature T) controlled dynamically by the applied voltage VON

- Estimated >10,000x improvement for energy-delay metric over competitive approaches

Basic idea of the demo:

compute
temperature 

T
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0.25

1
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Epoch #

 baseline     

 stochastic  

 adjustable 

 chaotic     

 baseline    

 stochastic 

 adjustable 

 chaotic      

ground state

experiment     vs.     simulation More results using 64×64 
passive memristor xbar

- weighted max-clique
- weighted vertex cover
- independent set 
- weighted graph 

partitioning

Solving Optimization Problems with Hopfield Network
Hopfield Network (HN)

M.R. Mahmoodi et al. Nature Communications, 2019

M.R. Mahmoodi et al. IEDM’19

Experimental results for weighted graph partitioning
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TPU 3D NAND 
(64 layers)

Technology node (nm) 28 55 
Precision (bit) 8 4

Area (mm2) 330 18
Energy efficiency (TOp/J) 0.43 70

Throughput (TOp/s) 92 11

• Experimental results, excluding the off-chip weight transfer 
overhead. Google’s Tensor Processing Unit (TPU) is optimized 
for throughput

• #Results of computer simulations of 3D aCortex architectures, 
with all weights stored on chip, optimized for energy efficiency
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3D NAND Inference Accelerator for Large-Scale Models
 Vector-by-matrix multiplier with native 3D NAND memory blocks  Mapping common neural models
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Summary of Recent Memristor Prototypes
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based on filamentary (nonvolatile) memristors
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Part V. 
Concluding Remarks
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 Is the brain structure a result of a fortunate fluke? Or it represents 
the best solution among different possibilities?

 Are all principles behind brain operation useful for algorithm / HW 
design? 

54 of 62

Drawing Inspiration from Human Brain for Future 
Neuromorphic Hardware Systems
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 Human brain is 
– not superfast

– efficient only in tasks that help to survive (e.g., cannot do number 
crunching)

- outperformed by latest algorithms in speech and image (by ~4%) 
recognition on well defined benchmarks 
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Drawing Inspiration from Human Brain for Future 
Neuromorphic Hardware Systems



Dmitri Strukov – Nature Conference, Beijing 2019 

 Signal propagation in neuronal axons compared to integrated 
circuits is 

• much slower (<100 m/s cf. ~107 m/s)

• much less energy efficient (> 1µJ cf. <50 fJ per bit per mm)

 Spike encoding is the necessity rather than useful feature?

 Brain has huge variability (because it is the most energy-efficient 
way to reproduce?) which is tolerated by massive space/time 
redundancy with unique and slow “chip-in-the-loop retraining”

 Sparse encoding is the necessity rather than useful feature?
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Drawing Inspiration from the Human Brain for 
Future Neuromorphic Hardware Systems
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 Is the brain structure a result of a fortunate fluke? Or it represents 
the best solution among different possibilities?  (looks like a fluke)

 Are all principles behind brain operation useful for algorithm / HW 
design? (definitively no)

 Not all tricks the brain uses for computing are useful

 However, we are still missing the holy grail human-intelligence 
algorithm 
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Drawing Inspiration from Human Brain for Future 
Neuromorphic Hardware Systems
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Brain simulators 

spiking

AI/ML accelerators 

mostly non-spiking Hybrid

`

Artificial Intelligence / Machine Learning Hardware

e.g. dynamic vision 
sensors with spiking 
frontend and non-
spiking backend  

just like GPUs helped the 
revolution in ML, efficient spiking 
HW could lead to breakthrough 
in advanced AI algorithms  

practical (boring) HW for 
today’s ML/AI algorithms 
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need efficient implementation of vector-by-matrix operation for all
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Summary (I) 

 Major memristor challenges: 
– poor yield

– poor device uniformity

– high cell currents

 Much more severe uniformity requirements and 
additional device challenges (endurance, write 
energy) for training accelerators and on-line/in-situ 
learning, e.g. SNN with STDP learning 
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Summary (II) 

 Neuromorphic inference with ex-situ training as natural entry-level application of 
mixed-signal neural networks
– the simplest in terms of device requirements, yet very practical 

– at least 100x better in energy-delay over purely digital system  according to the experimental 
results for small-scale system, and system-level projections to bigger systems 

 Most promising memory technologies 
– Long term: passive 3D memristors, 3D NAND

– Short term: embedded NOR flash, 1T1R memristors

 More advanced networks:
– Straightforward extension to inference accelerators for more advanced approaches 

(stochastic neural networks, neurooptimization, spiking neural networks)

 Need biologically plausible neuromorphic hardware for brain simulations

 Novel applications driven by analog circuits? 
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When Will AI Take Over Humans?
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(survey of 352 expert researchers published at NIPS’15 and ICML’15)

- 50% chance of automating all human jobs (better or more cheaply with AI) in 120 years
- Most optimistic AI progress predictions in Asia, least optimistic in North America

K. Grace et al., “When will AI exceed human 
performance? Evidence from AI experts”, J. 

Artificial Intelligence Research 2018already happened!

AI won’t replace but rather empower human kinds! (hopefully ;) 
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