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Abstract: As a special case of machine learning, incremental learning can acquire useful knowledge
from incoming data continuously while it does not need to access the original data. It is expected
to have the ability of memorization and it is regarded as one of the ultimate goals of artificial
intelligence technology. However, incremental learning remains a long term challenge. Modern deep
neural network models achieve outstanding performance on stationary data distributions with batch
training. This restriction leads to catastrophic forgetting for incremental learning scenarios since the
distribution of incoming data is unknown and has a highly different probability from the old data.
Therefore, a model must be both plastic to acquire new knowledge and stable to consolidate existing
knowledge. This review aims to draw a systematic review of the state of the art of incremental
learning methods. Published reports are selected from Web of Science, IEEEXplore, and DBLP
databases up to May 2020. Each paper is reviewed according to the types: architectural strategy,
regularization strategy and rehearsal and pseudo-rehearsal strategy. We compare and discuss different
methods. Moreover, the development trend and research focus are given. It is concluded that
incremental learning is still a hot research area and will be for a long period. More attention should
be paid to the exploration of both biological systems and computational models.
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1. Introduction

Incremental learning (IL) refers to a learning system that can continuously learn new knowledge
from new samples and can maintain most of the previously learned knowledge. IL is a special scenario
of machine learning technology, which can deal with applications that are more consistent with
human behavior and thinking. Since the new knowledge and the already learned knowledge do not
always satisfy i.i.d, this puts forward higher requirements for incremental learning. The classical
machine learning model is learned with static, identically distributed and well labeled training data [1].
However, the external environment of the real world is dynamically changing, which needs the
intelligent agent to have the ability of continuous learning and memorizing. An incremental learning
model can learn new knowledge and retain the old one in lifelong time. It works like a brain system of
an organism and it is one of the ultimate goals of artificial intelligence systems. In recent years, it has
played increasingly important roles in fields of intelligent robots, auto-driving and unmanned aerial
vehicles, etc. [2–4].

When learning with new knowledge, the parameter weights are adjusted by a backpropagation
algorithm according to loss on available sequential data. This will significantly lower the model
performance on knowledge that was learned previously. This is known as catastrophic forgetting (CF),
which is the long-standing challenge in incremental learning. To overcome CF, a model must be both
plastic to acquire new knowledge and stable to consolidate existing knowledge, but meeting these
two requirements at the same time is very hard. This phenomenon is called the stability-plasticity
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dilemma [5]. The model requires sufficient plasticity to acquire new tasks, but large weight changes
will cause forgetting by disrupting previously learned representations. Keeping the network’s weights
stable prevents previously learned tasks from being forgotten, but too much stability prevents the
model from learning new tasks [6].

In addition to backpropagation, there is another method based on non-iterative learning for
model construction. It is highly efficient since it is a globally ordered and locally random learning
mechanism [7]. However, for more than 100 related reports reviewed in our work, a non-iterative
learning method has not been taken into consideration. Therefore, this article will not focus on the
impact of non-iterative training on incremental learning.

Humans show a superior (outstanding) capacity of learning in continuous environments.
With long neurophysiological evolutionary progress, the brain has the ability to incrementally acquire
and store knowledge over successively sequential tasks. Therefore, the knowledge processing
principles of the brain studied through biological ways inspire the development of computational
approaches. There exist mechanisms that use to regulate the balance between the stability and
plasticity of brain areas and cognitive systems are developed according to external stimulation [8,9].
Hebbian Plasticity was used to describe how neurons respond to external stimuli [10]. It is assumed
that when one neuron drives the activity of another, the connection between them will be strengthened.
Hebbian plasticity can be enhanced with synaptic constraints and feedback signals [11,12]. The theory
of complementary learning system was proposed in [13]. It shows that the hippocampus learns rapidly
with short term adaptability, and the cerebral cortex could learn slowly with long term memory.
Based on the above hypothesis, many works have been proposed. The influence of catastrophic
forgetting for DNNs was studied by Goodfellow et al. and the dropout method was recommended [14].
Kirkpatrick et al. evaluated the importance of parameter weight and proposed that the model stability
can be ensured based on weight regularization [15]. Distillation was used to integrate new and old
knowledge [16]. Old data was retained and playback was added when necessary [17]. Some researchers
conducted surveys on incremental learning methods. In [18,19], methods are introduced based on
different types of structures and they mainly focus on model description. However, the existing
researches are somewhat dated and lack in-depth (thorough) analysis especially for overcoming CF.

In order to fill this gap, this paper gives an appraisal of incremental learning methods based on
the latest reports. Taking CF as the core problem, a systematic description and analysis are given.
Works for review are first collected from well known academic engines, including DBLP, Web of
Science, etc. (in Section 2). Different scenarios are described for better understanding the problem
that incremental learning solved (in Section 3). Each work is reviewed. Then categorization and
metrics are given (in Section 4). Benchmark datasets that are commonly used are listed in detail (in
Section 5). Moreover, comparisons are given based on their property and performance (in Section 6).
Finally, future development trends of incremental learning methods and techniques are shown with
our careful consideration.

2. Material Selection Criteria

Articles and reports about incremental learning methods from DBLP and the Web of Science
were retrieved up to May 2020. This systematic review was done based on the following procedures:
(i) relevant keywords are input into specific databases, and retrieval is performed; (ii) repeated
works are removed; (iii) each work is grouped based on a set of defined indicators, such as scenario,
principle and method type.

The keywords, incremental learning, lifelong learning and continuous learning were used as
input for search engines of Web of Science, IEEEXplore, and DBLP. In the initial survey, 353 works
were obtained. After identification and removal of the repeated ones, 209 works were selected for the
next step. After analysis and selection, 109 articles were identified as the target in this review.
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3. Incremental Learning Scenarios

Incremental learning scenarios are used to describe the context and environment of incremental
learning, and it can help us understand the problem and challenges better. van de Ven et al. [20]
have provided a comprehensive framework for the scenarios of incremental learning; they classified
incremental learning scenarios into task incremental scenario, domain incremental scenario and
class-incremental scenario according to specific experimental protocols. This framework is also
adopted in [21,22]. However, it does not make a good conceptual distinction between incremental
learning scenarios. In fact, the word “task” appears frequently in many studies and then almost
all scenarios can be referred to as an incremental task scenario. Figure 1 gives the brief process
of incremental learning. The continuously obtained data are divided into sequential tasks, which
can be represented as {T1, T2, . . . , TN}. Ti means i-th data group, and Ti = {(xi

1, yi
1), (xi

2, yi
2), . . .}.

The incremental learning model Mi is trained with new coming data Ti and model Mi−1, as shown in
Equation (1).

Mi = f (Ti, Mi−1) (1)
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Figure 1. Process of incremental learning.

In order to avoid concept confusion, we follow [23] to divide incremental learning into three
scenarios: instance incremental scenario, class-incremental scenario, instance and class-incremental
scenario. In instance incremental scenario, the number of categories is fixed while the data in each
category are expanded in each learning stage. In the class-incremental scenario, both the number of
categories and incoming data are changed. Of course, the last scenario is the situation where both
instances and categories will increase, which is also the most common scenario in the real environment.

Table 1 shows some cutting-edge research directions in the field of machine learning so that
we can more intuitively feel the difference between incremental learning and them. Compared with
transfer learning, incremental learning requires the model to retain its performance on the old task
after learning a new task. In contrast, transfer learning only uses the old knowledge to learn new
knowledge. After the learning is completed, it only focuses on the performance of the new knowledge,
and no longer considers the performance of the old knowledge.

Table 1. Definitions of different types of learning.

Type Definition

Incremental learning Continuously and efficiently learn new knowledge while maintaining
the performance of the model on old knowledge.

Transfer learning Apply the knowledge of a solved problem to a different but related
problem.

Meta-learning Meta-learning aims at mastering the ability to learn so that an
agent can master many tasks.

Multi-task learning Learn multiple related but different tasks at the same time.

Few-shot learning Dataset contains only a limited number of examples with supervised
information for the task.
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4. Method Description

Catastrophic forgetting is the key challenge for incremental learning methods. In this research,
selected works are reviewed and classified according to different perspectives to solving the problem of
catastrophic forgetting in classification tasks. Therefore, three types of solution strategies: architectural
strategy, regularization strategy, rehearsal and pseudo-rehearsal strategy are adopted (Figure 2 gives
the brief structure of these strategies). It is worth emphasizing that these three strategies do not
contradict with each other, instead, they cooperate with each other. What is more, there are also some
algorithms designed based on other strategies (in Section 4.4). Finally, comprehensive evaluation
metrics will be proposed (in Section 4.5).

(a) Architectural strategy (b) Regularization strategy

(c) Rehearsal strategy

Figure 2. Cont.
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(d) Pseudo-rehearsal strategy

Figure 2. Structure of the following strategies, where xt and yt represent the input and the output
at time t, respectively. In (a), the network expands with the arrival of new data. In (b), the model
maintains its original performance through regularization. In (c), Xt represents the subset at time t,
which contains a part of the previous data. In (d), Gt represents the generator at time t and xP

t is a
subset generated by it.

4.1. Architectural Strategy

In this strategy, separate models are trained for each sequential incremental task. Then a selector
is set to determine which model will be used during the inference phase.

Learn++ was proposed by Polikar et al. [24]. It first trains multiple classifiers with different
training subsets. Then it makes decisions using a weak classifier combination based on an adaptive
boosting neural network. SVM (support vector machine) and learn++ were combined for incremental
learning classifier integration [25,26]. As an algorithm proposed earlier, the ability to learn new
classes is one of the main features and advantages of learn++. It also has the advantages of a small
number of parameters and short training time. However, it suffers from data imbalance when learning
new classes.

A progressive neural network (PNN) model was proposed by Rusu et al. [27]. Parameters of
a network trained by previous tasks are fixed to prevent catastrophic forgetting. When training a new
task, PNN introduces the experience of previously learned knowledge by taking the output of the
previous network into consideration. The structure of PNN is shown in Figure 3. PNN retains the
structure that has been trained to protect the performance of the model on the old task and effectively
alleviate catastrophic forgetting. However, the number of parameters will gradually increase as tasks
increase, and the design of different tasks requires manual intervention.

A hierarchical network with a tree structure was designed by Roy et al. [28]. Incremental learning
can be realized by adjusting the leaves of the tree adaptively. Although this method mitigates
catastrophic forgetting to a certain extent, it is intuitively a method that consumes more space and is
not efficient in training.

Since the methods of expanding the network like PNN cannot make good use of the network capacity,
how to use the network more effectively and save space consumption has been further studied.

Overlapping knowledge between stages was learned, and the network structure can be
dynamically determined [29]. This dynamic expansion network (DEN) based on correlation can
make more efficient use of network capacity and save storage space.

The ExpertGate model was proposed by Aljundi et al. [30]. The expert network was used in a new
task, which was determined by an auto-encoder gate, thus an old task that has the highest similarity to
the new task will be selected for training.
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Figure 3. The structure of a progressive neural network (PNN). The two columns on the left (dashed
arrow) have been used for training task 1 and task 2 respectively. The gray box marked a represents
lateral connections to receive the output of the previous network. The rightmost column is added for
the last task, which has access to all the features learned before.

The method proposed by Gepperth and Karaoguz [31] used a self-organizing map (SOM) to
reorganize a two-dimensional coordinate grid. It was only updated when the input was different from
previous tasks, and this way can prevent the model changing quickly. In terms of network expansion,
ExpertGate and SOM have similar advantages as DEN.

The Self-Net model was proposed by Mandivarapu et al. [32]. An auto-encoder was used to
represent a set of low-dimensional weights, which were learned by different tasks. The pretrained
weights were initialized with these low-dimensional representations. Since parameters grow only
logarithmically with the number of tasks, Self-Net has achieved good results in storage compression.

Model scalability and sustainability were studied in the IADM method [33]. It embeds the
attention parameters of Fisher regularization to gradually match the training neural network in each
stage. With the adaptive Fisher regularization, IADM is knowledgeable about the past and present data
distribution, which can accurately reflect whether the algorithm utilizes the model capacity efficiently.

An incremental-like random forest was used by Hu et al. [34]. Then a splitting strategy was
determined for how to insert internal nodes based on the separation axis theorem. Sarwar et al. [35]
designed a deep convolutional neural network model that incrementally grows up with new tasks and
the basic backbone was retained and shared for previous tasks. Peng et al. [36] alleviated catastrophic
forgetting through nerve pruning and synapse consolidation.

We list some other references that proposed similar methods based on architectural design [37–44],
so we will not go into the detail of each.

4.2. Regularization Strategy

This strategy mitigates catastrophic forgetting by adding a special regularization term to loss
function. The core idea is to limit the updating of parameters to improve the model stability, and thereby
alleviate catastrophic forgetting. According to different concerns, regularization strategies can be
further divided into two types: weight regularization strategy and distillation strategy.

4.2.1. Weight Regularization Strategy

Weight regularization is a commonly used method to mitigate catastrophic forgetting.
Through measuring the importance of weights, the old knowledge can be protected by limiting
the learning rate. The loss function is:

L(θ) = Ln(θ) + λR(θi) (2)
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where Ln is the loss function of new data, λ is a hyperparameter, R is the regularization term and θi is
the important parameters to the old knowledge.

Weights of a neural network model will be updated by back propagation (BP) and stochastic
gradient descent (SGD). While in an incremental learning scenario, weights of an old model, which is
trained by previous data, are updated to a new version, which is more fit to the new knowledge.
This will lead to catastrophic forgetting. By identifying those parameters that have a greater impact on
the old task and suppressing their update, the model can protect the old knowledge when learning
new knowledge. Therefore, the key of parameter regularization is how to measure the importance of
parameters and protect them.

One representative method, elastic weight consolidation (EWC), was used to evaluate the importance
of weights through the Fisher information matrix [15]. Information carried by the observable random
variable is measured based on the Fisher information matrix. EWC supposes that information of
previous tasks should be absorbed by a posterior probability, which reflects the importance of weights.
Laplace approximation is used to approximate the posterior as a Gaussian distribution, where the
mean is given by the weights learned through a previous task and the variance is given by the diagonal
of the Fisher information matrix. By this approximation, let the previous task be A and the current
task B, then the loss function of minimizing EWC is:

L(θ) = LB(θ) + ∑
i

λ

2
Fi(θi − θ∗A,i)

2 (3)

where LB is the loss of B, F is the Fisher information matrix, λ sets how important the old task is
compared to the new one and i labels each parameter.

Similarly, the method proposed by Amer et al. [45] combined dynamic information balancing
and an EWC for model regularization. EWC can effectively save storage space since it is a way to
alleviate catastrophic forgetting without expanding the network and retaining old data. This is also
the advantage of all regularization strategies. However, EWC only considers the Fisher information
matrix for the final stage, not all the previous stages. Therefore, there will still be the phenomenon of
interval forgetting.

The SI method was proposed by Zenke et al. [46]. The importance of weight was judged by
calculating the cumulative change of distance difference in a Euclidean space after training new tasks.
The bigger value means the weight has greater impact on this task. The per-parameter regularization
strength is measured by:

Ωµ
k = ∑

ν<µ

ων
k

(∆ν
k)

2 + ζ
(4)

where µ and ν mean task ID, k represents the k-th parameter, ων
k is the parameter specific contribution

to changes in the total loss, ∆µ
k is to ensure that the regular term has the same unit scale as the loss

function, and an additional damping parameter ζ is set to bound the expression in cases where
∆µ

k −→ 0. Compared with EWC, SI measures the importance of parameters more intuitively.
Forgetting and intransigence were considered in the work of Chaudhry et al. [47]. The RWalk

method was proposed by combining EWC and SI. The Fisher information matrix was calculated
based on the last update with the moving average method, and this way can improve the efficiency.
Moreover, RWalk adopted approximation KL divergence between output distributions as the distance
to calculate sensitivity [48]. In addition to a regularization term, a subset of previous data was also
retained. Rwalk improves the regularization methods of EWC and SI, and further improves the
performance based on them. However, for performance reasons, some old data are still retained.
This shows the effectiveness of rehearsal strategies for mitigating catastrophic forgetting.

The MAS method was proposed by Aljundi et al. [49], which was partly similar with SI but it
supports the use of unlabeled data to obtain weight sensitivity. Through unlabeled data, it measured
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the importance of weight based on model sensitivity, which was obtained by comparing outputs of
original and disturbed training data. The importance weight Ωij for parameter θij can be shown as:

Ωij =
1
N

N

∑
k=1
||gij(xk)|| (5)

where gij(xk) is the gradient of the learned function with respect to the parameter θij evaluated at
the data point xk, N is the total number of data points at a given phase. Furthermore, Aljundi et al.
also proposed an incremental learning algorithm based on MAS [50].

The OWM method was proposed by Zeng et al. [51]. It protected previously learned knowledge
by constraining the updated direction of the parameter weights. Specifically, when training a model
for continuous new tasks, it only updated the weights in a direction orthogonal to the previously
trained feature subspace spans.

The OGD method was proposed by Farajtabar et al. [52]. Every time a new task was coming,
the OGD first calculated the orthogonal basis S of the old task, and then changed the original gradient of
the new task to a new gradient orthogonal to S. OWN and OGD update gradients based on orthogonal
constraints, which is an intuitive and effective way to maintain model stability. However, they still
cannot avoid the limitations of the regularization strategy itself.

Choi et al. [53] proposed an incremental learning method based on a self-encoder, using SI and
MAS regularization strategies to alleviate catastrophic forgetting, respectively. They extracted the
prototype of the output values of a convolutional layer by an autoencoder and adopted the nearest
neighbor classification. Since it only stores the mean prototypes per class, it consumes less storage
space than the rehearsal strategy.

The incremental moment matching (IMM) method was proposed by Lee et al. [54]. They used
the Bayesian neural network framework to introduce the uncertainty of parameters and calculate
the posterior distribution. The dimension of the random variable in the posterior distribution is
the number of parameters in the neural network. It approximates the Gaussian posterior mixture,
where each component represents the Gaussian distribution of the parameters from a single task to
a combined task. Moreover, to make the assumption of Gaussian distribution for neural network
reasonable, they applied three main transfer learning techniques on the IMM procedure, which is
a major feature of this paper.

A visualization method was used to analyze the catastrophic forgetting in incremental
learning [55]. It first divided the neural network into multiple modules. Then it paid attention
to which layers are forgotten. Finally, a module can be found that was more plastic and it was frozen
while learning the new task to alleviate catastrophic forgetting.

Coop et al. [21] proposed a method that introduced a fixed expansion layer and a hidden layer with
sparse coding to overcome catastrophic forgetting. Adversarial losses were used in Singh’s work [56].
Both the architectural strategy and regularization strategy were combined in Maltoni et al.’s work [57].
A task-based hard attention mechanism was designed in Serra et al.’s work [58]. Fisher information
was approximated with a diagonalized parameter, and EWC was adopted to mitigate CF [59].

We list some other references that proposed incremental learning methods based on the weight
regularization strategy [60–65], so we will not go into the detail of each.

4.2.2. Distillation Strategy

Distillation is a macro-protection oriented regularization method, which constrains the output
value of the old model and new model. This can make the new model consistent with the old model
when learning new data, and knowledge contained in an old model can be drawn into the new
model and CF can be partly overcome. Knowledge distillation (KD), proposed by Hinton et al. [66],
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was originally used to reduce the loss when transferring knowledge from a complex model to a simple
model. Through the softmax output layer, the equation of KD can be expressed as:

qi =
exp(zi/T)

∑j exp(zj/T)
(6)

where qi is the probability of i-th class, z is the logit of the previous layer. T is a temperature coefficient
that is normally set to 1. Using a higher value for T produces a softer probability distribution
over classes.

It becomes one of the most commonly used techniques for incremental learning.
The LwF method was proposed by Li et al. [16]. It trained a separate classifier for each incoming

task. The data of the new task was labeled based on the output obtained by the old model (classifier),
and these labels were used to constraint the update of the model parameter for knowledge distillation.
LwF was the earliest method to apply knowledge distillation to incremental learning. Algorithm 1
gives the design details of LwF. Since then, knowledge distillation has been increasingly applied in
various incremental learning methods.

Algorithm 1 Learning without forgetting

Start with:

θs: shared parameters

θo: task specific parameters for each old task

Xn, Yn: training data and ground truth on the new task
Initialize:

Yo ← CNN(Xn, θs, θo) // compute output of old tasks for new data

θn ← RANDINIT(|θn|) // randomly initialize new parameters
Train:

Define Ŷo ≡ CNN(Xn, θs, θo) // old task output

Define Ŷn ≡ CNN(Xn, θs, θn) // new task output

θs∗, θo∗, θn∗ ≡ argmin
θs∗,θo∗,θn∗

(λoLold(Yo, Ŷo) + Lnew(Yn, Ŷn) + R(θ̂s + θ̂o + θ̂n)

Based on LwF, Hao et al. [67] focused on solving object detection problems in incremental learning.
A simple encoder model EBLL was designed to characterize each task [68]. The P&C model was
proposed in Schwarz et al.’s work [69], which combined the EWC and KD methods.

Hou et al. [70] proposed the DR method. It first trained a separate model for a new task, and then
distilled the knowledge of the new model and the old model into a student model by means of
knowledge distillation. Since the model is separately trained for a new task each time, various tasks
can be effectively learned. In addition, this method shows that keep a small subset of old data has
a significant effect on mitigating the CF.

The AFA method was proposed by Yao et al. [71]. It disassembled a complex problem into several
simple ones. Two additional loss items using soft labels are added to the loss function, which are low
level visual feature alignment and high-level semantic feature alignment. For low level feature alignment,
adversarial attention feature maps generated by mapping the same data through non-updated and
updated models were used. For high-level semantic feature alignment, Maximum Mean Discrepancy
was used [72]. Compared with LwF, AFA improves the distillation loss and increases the restraint of the
model, but it does not significantly improve the performance of the model.

The MEDIC method was proposed by Kim et al. [73], which used a maximum entropy regularizer
for distillation loss [74], and excluded a number of samples in the new group of classes during
stochastic gradient descent of a mini-batch for reducing data imbalance. Compared with other
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methods, MEDIC has conducted a more comprehensive and detailed evaluation of the performance of
the model, including: average task accuracy, forgetting measure and intransigence.

The KT method was proposed by Jung et al. [75], which did not require knowing whether the
input data come from the old task or the new task in advance. When training the new data, KT freezes
the softmax classification layer, and uses the L2 norm to regularize the feature map between the old
and new model. However, this requires an equal number of categories in the old and new tasks.

A global distillation, GD, was proposed in [76]. It first trained a model for a new task,
and consolidated the old model and current model by knowledge distillation. A small subset of
old data was retained. In addition, an external dataset was build using confidence sampling and
random sampling. Finally, a parameter of the classification layer was fine-tuned to avoid over-fitting on
the current task. Compared with LwF, GD strengthens the binding force of distillation loss, which helps
to improve model stability, but also loses some efficiency. Using unlabeled external datasets has been
a promising method in recent years, which was also adopted in [77].

Xiang et al. [78] proposed an algorithm based on dynamic correction vectors to solve the deviation
from knowledge distillation and model overfitting problems. Zhao et al. [79] combined weight
adjustment and knowledge distillation in order to balance the new and old knowledge. Javed et al. [80]
proposed a dynamic threshold shift method to improve the limitations of the deviation in a general
knowledge distillation model. Hou et al. [81] integrated cosine normalization, less-forget constraint
and inter-class separation into a distillation model to mitigate the negative influences of the imbalance
between new and old data.

Other distillation strategy-based incremental learning algorithms can also be referred to in [82–85].

4.3. Rehearsal and Pseudo-Rehearsal Strategy

Rehearsal and pseudo-rehearsal strategies follow a relatively simple idea, retrospection, to deal
with catastrophic forgetting. Before the era of deep learning, Robins [86,87] stated that catastrophic
forgetting could be mitigated through rehearsal or pseudo-rehearsal. One of the reasons for CF
is that incremental learning lacks corresponding supervision for previous knowledge. If a model
can review past knowledge when learning new knowledge, it can mitigate catastrophic forgetting.
Recently, a study by Knoblauch et al. pointed out that IL algorithms can be seen as polynomial time
heuristics targeted at solving an NP-HARD problem and theoretically revealed why a rehearsal and
pseudo-rehearsal strategy can more effectively alleviate catastrophic forgetting [88].

Based on this, the rehearsal method allows the model to review the old knowledge whenever
it learns new knowledge by retaining a subset of the previous data. The pseudo-rehearsal method
constructs a generator to learn the distribution of input data. In order to deal with the plasticity-stability
dilemma, when the model learns new knowledge, the generator will produce a batch of pseudo data
that is very close to the old data in distribution. In the retraining stage, the model will be supervised
by both pseudo data and new data.

iCaRL was proposed in [17], which combined knowledge distillation and prototype rehearsal
technologies. It was designed for a class-incremental scenario, and m samples were retained for each
class type. Samples were selected based on the closest distance to the prototypes. Moreover, iCaRL set
a constant value to total storage of a model prototype. Algorithm 2 gives the specific procedure
for removing exemplars. Similarly, EEIL adopted a similar method for retaining old data [89].
Although iCaRL limits memory consumption to some extent, it does not meet the requirements
of long-term increments.

Algorithm 2 iCaRL reduce exemplar set

input m // target number of exemplars
input P = (P1, ..., p|P|) // current exemplar set P← (p1, ..., pm) // i.e. keep only first m
output exemplar set P



Entropy 2020, 22, 1190 11 of 27

Wu et al. [90] proposed a method of retaining a small subset of old data and knowledge distillation.
In addition, in order to make up for the distribution difference between retained exemplars implicit
data, they used vanilla generative adversarial networks to learn the distribution of old data, which is
easier to implement than conditional GANs when the number of categories is large and the samples
are limited [91]. Based on GANs while retaining part of the old data, which enhances its stability.
However, more training data usually means longer training time. In addition, the introduction of
GANs brings the problem of incremental GANs.

Inspired by the two-layer memory model mammalian [13], FearNet was proposed in [92].
It includes three networks, probabilistic neural network hippocampal complex (HC) for storing
recent memories, autoencoder medial prefrontal cortex (mPFC) for storing long-term memories and
basolateral amygdala (BLA) for deciding which networks were selected for recall. Figure 4 gives the
BLA sub-systems. Moreover, FearNet contained a sleep phase and prediction phase. The sleep phase
was used to train mPFC for memory integration with samples from Gaussian mixture distribution
based on the mean and variance of each category. The new sample and the pseudo sample were
combined to fine-tune the mPFC. In the prediction phase, the outputs of HC or mPFC were decided for
prediction. FearNet has good memory efficiency, and its design of the long- and short-term memory
mechanism is more in line with the mammalian brain structure at the biological level. However, it does
not involve incremental training of feature extractors, which is also an important issue that needs to be
considered for incremental learning.

Figure 4. The basolateral amygdala (BLA) sub-systems in FearNet, where µc, Σc are the base-knowledge
of long-term memories and XHPC are the recent memories. BLA is used during prediction time to
determine which memory should be recalled from short- or long-term memory.

Shin et al. [93] trained a separate generative model for data rehearsal, which followed variational
autoencoder (VAE) [94]. It used KL divergence and autoencoder to approximate the data distribution.
Compared with GANs, VAE introduced hidden variables, and it was relatively easy to learn for its
linearly theoretical derivation. However, the generated images were more fuzzy.

The BIC method was proposed in [95]. It first pointed out that the last fully connected layer of the
neural network has a relatively large deviation for the parameters that were not shared across classes.
Then a correction layer was added to rectify the deviation, which is simple and effective in dealing
with the data imbalance issue.

DGM was proposed in [96], which relies on conditional generative adversarial networks. It trained
a sparse binary mask for each layer of the generator. The learned mask can obscure the model
connection plasticity, and it was possible to prevent the important units from being overwritten by
restricting the update of parameters. At the same time, DGM also considered the problem of dynamic
network expansion. The number of units used in each layer of the generator was appended to ensure
the model had sufficient capacity when it trained.

The SIGANN proposed by [97] consisted of three modules, the classifier module, the generator
module and the detector module. The joint action of the detector was composed of Meta-recognition and
OpenMax, and it can judge whether the input contained new categories. In this way, SIGANN could
automatically learn new knowledge when needed. The classifier module included an encoder unit
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shared with the generator module. The generator module was designed based on an adversarial
self-encoder.

Guo et al. [98] proposed an example set exemplar-based subspace clustering method.
Riemer et al. [99] used an autoencoder based model to support scalable data storage and retrieval for
scalable old data.

Li et al. [22] proposed to balance the generated samples and the new coming data samples by
adjusting the training batch. Kim et al. [100] proposed an incremental learning algorithm based on
attribute sharing. Shah et al. [101] proposed to eliminate model deviation by distilling knowledge
from an Auxiliary classifier.

Other incremental learning methods based on rehearsal and pseudo-rehearsal strategy
included [102–114].

4.4. Other Strategies

Besides the three most commonly used strategies mentioned above, there are also some
other methods to achieve incremental learning, such as meta learning-related methods and
reinforcement-learning-inspired methods. Related works will be covered below.

Wang et al. [115] explored incremental reinforcement learning and proposed a two-step solution
incorporated with the incremental learning procedure: policy relaxation and importance weighting.
In the initial learning episodes, policy relaxation can encourage the model to explore appropriately in
the new environment. During parameter updating, learning episodes receiving higher returns will be
assigned higher importance weights for encouraging the previous optimal policy to be faster adapted
to a new one that fits in the new environment. This method can help the model adapt to the changing
environment faster.

Perez-Rua et al. [116] proposed OpeN-ended Centre nET (ONCE) for solving the problem of
incremental object detection and segmentation. ONCE is based on the structure of CentreNet [117] and
splits it into a feature extractor and an object locator. It uses meta-learning to train the code generator,
outputs the corresponding weight for each category of images, and uses the weight to complete the
detection of the test target. Compared with other few-shot detection algorithms, the advantage of
ONCE is that after training on the basic dataset, the new small sample dataset can be directly used for
inference, and the contents of the basic dataset will not be forgotten in this process. iTAML [118] is
also an incremental learning algorithm designed based on meta-learning, but it focuses on solving
classification tasks.

Time series anomaly detection is also a common problem faced by incremental learning.
Related research was carried out in [119], and they used incremental tensor decomposition to solve the
task of online time series anomaly detection.

4.5. Evaluation Metric

Although many studies only focus on the improvement of overall accuracy, the evaluation metric
of incremental learning should also include efficiency. As argued in [120], focusing only on the problem
of forgetting may lead to bias in the research of incremental learning.

Lopez-Paz and Ranzato [102] pointed out that the ability of learners to transfer knowledge should
also be paid attention to, and accordingly proposed the concepts of backward transfer (BWT, which is
the influence that learning a task has on the performance on previous tasks) and forward transfer (FWT,
which is the influence that learning a task has on the performance on future tasks). Given the train-test
accuracy matrix R ∈ RN×N , which contains in each entry Ri,j the test classification accuracy of the
model on task tj after observing the last sample from task ti. For BWT, positive backward transfer can
increase the performance on some preceding tasks, and large negative backward transfer is known
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as CF. Considering the average of the backward transfer after each task, the metric of BWT can be
shown as:

BWT =
∑N

i=2 ∑i−1
j=1(Ri,j − Rj,j)

N(N−1)
2

(7)

For FWT, positive forward transfer is possible when the model is able to perform “zero-shot”
learning. The metric of FWT can be defined as:

FWT =
∑N

i<j Ri,j

N(N−1)
2

(8)

Forward transfer is a challenge worth paying attention to in incremental learning, and research in
this area needs to be further deepened.

Take into account the scalability of an incremental learning system, comprehensive evaluation
metrics for incremental learning could include [5,20,120–122]: accuracy, train/test time, storage size
(including model size and samples storage size), whether the algorithm needs task id or not,
BWT and FWT.

5. Datasets

Incremental learning methods usually adopt generic datasets for evaluation, which include
MNIST, CIFAR-100. ImageNet ILSVRC, SVHN, PASCAL VOC, MIT Scenes, Caltech-UCSD Birds and
Oxford Flowers. References of the data set can be seen in Table 2.

MNIST is a handwritten digital dataset [123]. It contains 10 classes and a total of 70,000 images.
All images are gray level with size of 32 × 32 pixels. MNIST is adopted in [15,22,33,47,52,54,75,92,96].

CIFAR-100 is a common object dataset [124]. It has 100 classes containing 600 images each,
and 100 classes are grouped into 20 superclasses. All images are RGB format with size of 32× 32 pixels.
CIFAR-100 is used in [17,47,53,73,76,77,89,90,95].

The ImageNet dataset is collected from flickr and other search engines. It contains 1000 categories
and 1.2 million images for training [125]. Image samples in this dataset are not fixed-size. ImageNet is
used in [16,17,51,70,71,76,89,95,96].

SVHN is a street view house numbers Dataset [126]. It contains 600,000 digit images that come
from Google Street View, and it is a significantly harder, unsolved and real-world problem. The size of
image samples is a 32 × 32 pixels RGB format. The authors of [22,75,96] employ this dataset.

PASCAL VOC is a dataset for object classification, detection and segmentation. It has 20 classes,
and11,530 images in total containing 27,450 ROI annotated objects and 6929 segmentations [127].
The sizes of image samples are diverse. PASCAL VOC is applied in [67,77,126].

MIT Scenes is an indoor scene recognition dataset [128]. It contains 67 indoor categories and
a total of 15,620 images. The number of image samples varies across categories. There are at least 100
images per category. It is used in [16,49,70,71].

Caltech-UCSD Birds 200 (CUB-200) is a challenging image dataset annotated with 200 bird
species [129]. In total it has 11,788 image samples, and it is downloaded from Flickr and filtered
manually. The authors of [16,49,53,70,71,92] used the dataset.

Oxford Flowers is a dataset used for flower image fine classification [130]. It contains 102
categories and 8189 image samples. Each category includes 40 to 258 images. The studies [49,70,71,90]
selected this dataset.

Besides these commonly used generic datasets, the CORe50 dataset was proposed in [23],
which is the benchmark for continual Learning and Object Recognition, Detection and Segmentation.
It simulates an incremental learning environment for evaluation. Fifty domestic objects belonging to
10 categories are collected. For each object, multiple continuous frames are recorded with smooth moving
and rotation. So the classification task can be performed at the object level (50 classes) or at category
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level (10 classes). The final dataset consists of 164,866 128*128 RGB-D images. CORe50 supports three
continuous learning scenarios, New Instances, New Classes, New Instances and Classes, respectively.

Table 2. References of the dataset.

Datasets Reference

MNIST [123] [15,22,33,47,52,54,75,92,96]
CIFAR-100 [124] [17,47,53,73,76,77,90,95]

ImageNet ILSVRC 2012 [125] [16,17,51,70,71,76,89,95,96]
SVHN [126] [22,75,96]

PASCAL VOC 2012 [127] [16,67,77]
MIT Scenes [128] [16,49,70,71]

Caltech-UCSD Birds 200 [129] [16,49,53,70,71,92]
Oxford Flowers [130] [49,70,71,90]

CORe50 [23] [122]
OpenLORIS-Object [121] [131]

Since the research of incremental learning is very important to robotics, there are also some
datasets proposed for robotics. In IROS 2019-Lifelong Robotic Vision Competition, OpenLORIS-Object
was proposed to promote lifelong learning research and applications in the field of robot vision,
including daily necessities in homes, offices, campuses and shopping malls [121,131]. The dataset clearly
quantifies the illumination, occlusion, object size, camera-object distance/angle, and clutter. The version
of OpenLORIS-Object for this competition is a collection of 69 instances, including 19 categories of
daily-necessity objects under seven scenes. The benchmarks of OpenLORIS-Object include the overall
accuracy of all tasks and efficiency (model size, inference time and replay size).

6. Discussion and Comparison

In this chapter, we will discuss and analyze the advantages and disadvantages of various
strategies, and give some comparisons of algorithms. Then, based on the current work, we will
summarize the current research and look into the future development direction. Finally, we will look
at the role of incremental learning in robotics.

6.1. Strategy Discussion

In this part, we discuss the characteristics and shackles of several mainstream incremental
learning strategies.

Due to its characteristics, the architectural strategy has a natural advantage in maintaining the
stability of the model. However, it requires the model to continue to expand, which means that the
parameters will continue to increase with each task. In addition, the incremental learning algorithm
based on the architectural strategy usually requires the task identity to be informed in advance during
the inference phase [27,29], which restricts the robustness and flexibility of the strategy and makes it
difficult to tackle for a more realistic environment.

In terms of the regularization strategy, the thought of reducing the plasticity of neural networks to
improve stability is theoretically close to the long-term memory of biological brains. Weight regularization
does not require extra storage space and sometimes has a good effect on improving network stability
and mitigating catastrophic forgetting. However, the weight regularization strategy struggles quite a
lot when the number of tasks is large. This is because after the model has been trained many times,
many parameters in the neural network will be protected due to the constraints of regular terms,
so that the parameter update becomes increasingly difficult. Moreover, when the new and old tasks
are sensitive to the same parameter, it is difficult to balance the update of the parameters. Furthermore,
different tasks may be sensitive to the same parameters, and the processing method at this time is also
a big challenge.
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Compared with weight regularization, the regularization strategy based on knowledge distillation
makes the model more plastic. However, the issue that follows is that the supervision of soft labels
obtained using new data is not strong enough, and there will be an imbalance between the old and
new classes. Many distillation strategy methods can only effectively mitigate catastrophic forgetting
when the number of incremental tasks is small, in which it is still difficult to meet the requirements of
long-term increments [16,70,71].

Among several strategies for dealing with CF, the rehearsal strategy has the longest history and
works well. It is still regarded as an effective strategy to mitigate CF until today. Since CF can be greatly
relieved by only retaining a small amount of old data, rehearsal strategy often appears as an effective
auxiliary method in various incremental learning methods. Many incremental learning methods based
on the regularization strategy save a small amount of old data to enhance model performance [47,70,76].
Although it has a good effect, it also has its own limitations. The main drawback of the rehearsal
strategy is that storing old data requires a lot of memory space, but we cannot have infinite space
to store enough data. At the same time, more training data usually means lower training efficiency.
These challenges could be alleviated by optimizing data storage methods [99], but it still cannot be
completely overcome. If the memory capacity is limited [17], the sample size of a single knowledge
category will gradually decrease with the accumulation of tasks, and its impact on the model will
gradually decrease. In addition, in many cases, due to considerations such as security and personal
privacy, old data is not allowed to be retained.

With the maturity of generative adversarial networks, the pseudo-rehearsal strategy has recently
received increasing attention. Comparing with the rehearsal strategy, the pseudo-rehearsal strategy
does not need to save a large number of real samples, and has great advantages in protecting privacy
and saving memory. However, the pseudo-rehearsal strategy requires the use of a generative model
that can meet the incremental requirements, which currently seems more difficult than implementing
incremental learning. Unless it is assisted by using data with real samples [132], some methods can
hardly present a satisfactory performance [93]. Moreover, it is difficult for the current generator to
generate complex pictures, which means the pseudo-rehearsal strategy can only achieve results in some
simple classification problems. Seff et al. [133] proposed to use EWC in the generative network to avoid
repeated training of the generator each time, which is an exploration of the incremental generator.

As each strategy has corresponding limitations, researchers increasingly tend to combine various
strategies to achieve incremental learning.

6.2. Algorithm Comparison

In this part, we will describe Table 3. Table 3 is a general comparison of some incremental learning
methods mentioned in Section 4. Considering that the experimental results are closely related to the
experimental protocol, in order to facilitate comparison, we chose the experimental protocol settings
as similar as possible, and selected the results obtained by the relatively more general design in the
experimental results section. Nevertheless, since most algorithms only focus on accuracy without
a comprehensive evaluation mentioned in Section 4.5, Table 3 only collects results related to accuracy,
and a more direct comparison can be found in [20,122].
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Table 3. General comparison of some incremental learning for image classifications.

Reference Strategy Dataset Method Compare the Result with Result

Kirpatirck et al. [15] Weight regularization They permuted MNIST into EWC uses the Fisher information - Average accuracy is 94.5%
10 subsets matrix to evaluate the

importance of weights
Zenke et al. [46] Weight regularization They divided MNIST into SI evaluates the importance of EWC [15] A multi-head approach is adopted,

5 subsets of consecutive weights by calculating the and average accuracy is 97.5%
numbers cumulative change in European

unit loss before and after
parameter updating

Chaudhry et al. [47] Combined They divided MNIST and Rwalk improves on the basis of EWC, SI [46], Multi-head classifier:
CIFAR-100 into 5 and 10 EWC and SI iCaRL [17] Accuracy (MNIST) = 99.3%

disjoint subsets based Accuracy (CIFAR-100) = 74.2%
on classes Single-head classifier:

Accuracy (MNIST) = 82.5%
Accuracy (CIFAR-100) = 34.0%

Aljundi et al. [49] Weight regularization CUB-2011, MIT Scenes, Oxford MAS evaluates the importance of LwF [16], EWC, Accuracy:
Flowers: They train a weights based on the sensitivity SI,EBL [68] (Birds→Scenes) 53.20% and 55.0%

multi-head classifier to of functions that have been respectively
classify them in increments learned after parameter (Flower→Birds) 76.63% and 50.39%

of the dataset changes respectively
Yang et al. [33] Weight regularization They divided MNIST into 4 IADM uses an improved Fisher EWC, DEN [29] Average accuracy is 89.2%

subsets information matrix
Choi et al. [53] Combined CIFAR-100, CUB-2011: The Based on SI and MAS, while FearNet [92], In CIFAR-100, average accuracies

initial training subset retaining some old data after iCaRL are 85.0%(MAS) and 85.7%(SI)
contains half classes in a encoding In CUB-2011, average accuracy
dataset, and each other are 76.9%(MAS) and 76.2%(SI)
contains a single class

Farajtabar et al. [52] Weight regularization They divided MNIST into 5 OGD limits the direction of EWC, A-GEM [134] A multi-head approach is adopted,
subsets, each subset weight update average accuracy is 98.84%
contains two classes

Rebuffi et al. [17] Combined They split CIFAR-100 and iCaRL retains a subset of old data - The average classification accuracies
train all 100 classes in and combines KD techniques are 62.1%, 64.5% and 67.5%,
batches of 5, 10 or 20 respectively

classes at a time
Wu et al. [90] Combined CIFAR-100: Similar settings Combined iCaRL and LwF, and used iCaRL The average classification accuracies

to [17] GANs to expand the training set are 63.85%, 66.05% and 68.44%,
respectively
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Table 3. Cont.

Reference Strategy Dataset Method Compare the Result with Result

Kemker et al. [92] Pseudo-rehearsal CIFAR-100, CUB-2011: They FeaNet is inspired by the long-term FEL [21], iCaRL, Average accuracies are
set the batch size to 10 and short-term models of mammalian GeppNet [31] 94.7%(CIFAR-100) and

classes memory 89.1%(CUB-2011)
Li et al. [96] Combined MNIST, SVHN, CIFAR-10: They DGM uses GANs and designs a dynamic EWC-M [133], iCaRL, The accuracy rates on MNIST,

divided these datasets into network expansion method MeRGAN [135], SVHN and CIFAR-10 are
10 subsets, each subset DGR [93] 98.75%, 83.93% and

contains 2 classe 64.94%, respectively
Mellad et al. [97] Pseudo-rehearsal They divided EMNIST [136] SIGANN’s generator is based on - The average accuracy is

into 4 subsets, each subset adversarial autoencoder and has a 70.11 ± 2.21%
contains 9 classes detector to determine whether the

model needs to be updated
Deboleena et al. [28] Architectural They divided CIFAR-100 into Tree-CNN adopts an adaptive iCaRL, LwF To Tree-CNN-5 (maximum number

10 subsets, each subset hierarchical network structure of child nodes for a branch
contains 10 classes node is set at 5), the final

test accuracy is 61.57%
Jaehong et al. [29] Architectural They divided CIFAR-100 into DEN dynamically determines EWC, PNN [27] Average accuracy is 92.25%

10 tasks, and set each task its network structure
as a set of 10 subtasks through a series of stages

Kim et al. [73] Combined CIFAR-100, TinyImageNet MEDIC uses maximum entropy as EWC, EEIL Average accuracy is
(a subset of ImageNet 2012): distillation loss, while 72.51 ± 0.17%

Similar setting to [28] retaining some old data
Wu et al. [95] Combined They divided ImageNet(2010) BiC adds a correction layer based LwF, iCaRL, EEIL Average accuracy is 73.2%

into 10 subsets on iCaRL and EEIL [89]
Lee et al. [76] Distillation Similar to [73] GD designs a loss called Global LwF, EEIL Average accuracies are

Distillation and uses unlabeled 68.1 ± 1.1%(CIFAR-100)
external data to assist training and 57.7 ± 1.6%(TinyImageNet)

Li et al. [16] Distillation ImageNet ILSVRC 2012, LwF uses KD to mitigate - Accuracy:
CUB-2011, MIT Scenes: catastrophic forgetting (ImageNet→CUB-2011) 54.7%,
The datasets are used 57.7% respectively

in a similar way to [49] (ImageNet→MIT Scenes) 55.9%,
64.5% respectively

Hou et al. [70] Distillation Similar to [16] Improved the method of knowledge LwF Accuracy:
distillation based on LwF (ImageNet→CUB-2011) 55.34%,

58.21% respectively
(ImageNet→MIT Scenes) 55.65%,

64.70% respectively
Yao et al. [71] Distillation Similar to [16] AFA adds two regularization terms LwF, EBLL, Accuracy:

using soft labels to the loss MAS [49], (ImageNet→CUB-2011) 54.43%,
function based on LwF EWC 57.84% respectively

(ImageNet→MIT Scenes) 54.71%,
63.88% respectively
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By observing relevant experimental protocols and comparing experimental results, we can
observe that:

• Although the experimental protocol of each reference is not exactly the same, incremental learning
is the basic research to realize artificial intelligence, so the selection of the datasets is often
close and general. Some general datasets are frequently used, such as MNIST, CIFAR-100,
and ImageNet ILSVRC.

• The experimental protocol of some methods is closer to the instance incremental scenario, and all
have obtained relatively good experimental results [15,33]. It shows that the implementation of
an instance incremental scenario is less difficult than the class-incremental scenario. In addition,
EWC, as a representative method of weight regularization, can also be used in a class-incremental
scenario, which indicates that the regularization strategy is applicable to both an instance
incremental scenario and class-incremental scenario.

• Aljundi et al. [49] compared the classification performance between a multi-head classifier and
single-head classifier. It can be seen that a multi-head classifier can achieve higher classification
accuracy than a single-head classifier. For some low-complexity data, the incremental learning
algorithm using a multi-head classifier can obtain quite good results. However, the multi-head
classifier requires the task identity to be informed in advance during the inference stage, which is
a strict condition that limits its versatility.

• The experimental results of [47,70,76] prove that the algorithm based on the regularization strategy
is appropriately combined with a rehearsal or pseudo-rehearsal strategy, which is of great help to
improve the performance of the model. This is because the essence of current artificial intelligence
technology may still be data fitting, and data support is the basis of fitting.

• The dual memory system designed by FearNet [92] conforms to the mammalian memory system
and is a model design method worth exploring. However, it directly uses pre-trained ResNet
embeddings as extracted features that feed to FearNet, which makes the model’s ability to extract
features in new data questionable.

• Using similar experimental settings, the gap between the results of the three methods based on
the distillation strategy is not too obvious [16,70,71]. This means that the supervision ability of
soft labels has not been significantly enhanced, i.e., the method of using only new data is not
reliable at present.

At present, the rehearsal strategy is still the optimal solution for dealing with CF, although there
are still disputes in the academic circles about whether incremental learning should strictly limit the
use of old data. Based on the collated multiple pieces of incremental learning materials and practical
application considerations, this paper believes that incremental learning should not be limited to
whether it can review old data. For incremental learning, the most fundamental requirement is the
ability to learn new knowledge efficiently and autonomously while resisting catastrophic forgetting.
Unless required by the actual environment, any restrictions beyond that are unnecessary.

6.3. Trend Analysis and Prospects

In this part, we analyze the research trends of incremental learning and explore its prospects
based on the current situation.

Through statistics on the publication of incremental learning (continuous learning, lifelong learning)
in DBLP and the strategies used by various incremental learning algorithms in Section 4, we have
calculated the incremental learning research trend from 2016 to 2020, as shown in Figure 5.

As shown in Figure 5a, with the development of deep learning, the academic circles have regained
the research enthusiasm for incremental learning in recent years. The development of databases and
Internet technology has made the acquisition and updating of data increasingly rapid. People urgently
need a model that can continuously effectually learn useful new content from massive amounts
of data without losing the original performance. Moreover, incremental learning is an important
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part of realizing true intelligence. After all, a system that cannot continue to learn is not a truly
intelligent system, and the cost that comes with it is that it always requires manual intervention.
Therefore, incremental learning is still an important challenge to be solved in the future.

(a) (b)

Figure 5. Research status of incremental learning: (a) retrieval of incremental learning (lifelong learning,
continual learning) in DBLP in the last five years, (b) the use of various incremental learning strategies
over the past five years.

In terms of various strategies to deal with CF, it can be seen from Figure 5b that the regularization
strategy has received widespread attention at present, the research on the architectural strategy tends
to be stable, and the research on rehearsal and pseudo-rehearsal strategies is gradually increasing.

Regularization strategies are attractive since they are efficient and require no extra storage.
The pseudo-rehearsal strategy has more possibilities due to the development of GANs.

What is more, the proportion of attempts to the combined strategy is gradually increasing,
which implies that the current research on incremental learning has fallen into a bottleneck.

For the combination strategy, the combination of the distillation strategy and rehearsal strategy is
the most popular. On the one hand, only a small amount of old data needs to be retained to greatly
alleviate CF [70,73]. On the other hand, the rehearsal strategy can make up for the lack of soft label
supervision in the distillation strategy, and the distillation strategy can improve training efficiency and
reduce space consumption.

In addition to being a bottleneck in strategy, the existing incremental learning algorithms generally
suffer from poor flexibility and strict environmental requirements. Since the current research on
incremental learning is almost task-based, the experimental protocol is strict, which cannot simulate
the real environment very well. In the real environment, data flows are coming constantly, and there
is no obvious boundary between the data, i.e., the boundaries of the task will not be predefined.
Hence, a more realistic incremental learning environment should be task-free. This requires the model
to be able to automatically determine when to perform incremental training, and effectively mitigate
CF while incorporating new knowledge into the system. Aljundi et al. [50] have explored the design
of this system.

The universal applicability of incremental learning makes it occupy an important position
in the research of other machine learning fields, such as incremental transfer learning [102],
incremental reinforcement learning [115], and so on. In the future, combining various strategies
is still the mainstream, and incremental learning systems in a variety of environments will be explored.
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Moreover, the introduction of decremental learning may help incremental learning systems to achieve
long-term increments with existing technology and limited capacity.

Decremental learning means removing unimportant (or long-term unused) knowledge from the
system to make space for learning new knowledge.

The working mechanism of the human brain is inspiring for the study of neural networks.
For incremental learning, many articles have emphasized that catastrophic forgetting does not occur
in the human brain, but have ignored the fact that forgetting can also occur in the human brain.
Even if long-term memory is formed by creating new synapses, the human brain will forget it after
a long period of inactivity. This inspired us to consider the forgetting phenomenon in the design of
incremental learning. For machines, if the forgetting mechanism can be triggered dynamically based
on the surrounding environment and received data, then it is theoretically possible for the existing
technology to achieve long-term increments without unlimited expansion of the model.

6.4. Incremental Learning for Robotics

Finally, in terms of applications, the real-world applications of incremental learning are almost
limitless. In fact, any system involving continuous learning requires the participation of incremental
learning. The advent of the 5G (5th generation mobile networks) makes the speed of information
circulation even further, and in the era of big data, the importance of incremental learning will
become more prominent. In the field of big data processing, intelligent robots and any field involving
knowledge updates, incremental learning will play an important role. Among them, applications on
robotics or autonomous systems are the most intuitive application fields for incremental learning.

A lifelong vision challenge for assistive robotics was firstly introduced by Mozaffari et al. [2].
In practice, assistive robots should be able to operate in dynamic environments with everyday
changes. The variations include illumination, occlusion, camera-object distance/angles and clutter.
Through testing based on the OpenLORIS-Object dataset, they found that the three most adopted
regularization methods in lifelong learning (EWC, SI and LwF) have little effect on solving the lifelong
vision challenges for assistive robotics. The research reveals that the current application of incremental
learning in assistive robots is still far from enough, and algorithms that can tackle these practical
factors urgently need to be developed.

Simultaneous Localization and Mapping (SLAM) is one of the core problems in the field of
robotics, which aims to enable the robot to autonomously estimate its own position and posture during
the movement. Liu et al. [137] firstly introduced “lifelong SLAM” to distinguish SLAM in static
settings from in an ever-changing environment. Lifelong SLAM emphasizes the positioning failure
and mismatch problems caused by scene changes, which could be addressed by incremental learning.
They released the OpenLORIS-Scene datasets (datasets that emphasize scene change) to accelerate
lifelong SLAM research.

Lesort et al. [138] summarized incremental learning in the context of robotics, made a comprehensive
review of incremental learning for robotics. There are three important incremental learning use cases
on robotics: perception, reinforcement learning (RL) and model-based learning. Perception includes
classification, object detection and semantic segmentation, which are all concerns in the current incremental
learning research field. In the real world, the constantly changing environment poses more daunting
challenges to the perception of agents. Incremental learning is crucial to address these challenges.
In the context of reinforcement learning, in order to learn an approximately stable data distribution,
techniques similar to those proposed in incremental learning are often used, such as the rehearsal
method [139]. Model-based learning is a form of reinforcement learning, and its high data utilization rate
makes it popular in robotics applications. In [140], Raffaello et al. presented an approach for incremental
semiparametric inverse dynamics learning, which used parametric modeling based on rigid body dynamic
equations and nonparametric modeling based on incremental kernel methods.
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7. Conclusions

This paper makes an appraisal of incremental learning methods. We introduced the basic concepts
and main challenges of incremental learning, and analyzed three incremental learning strategies
to mitigate catastrophic forgetting: architectural strategy, regularization strategy and rehearsal and
pseudo-rehearsal strategy. Through the discussion and comparison of related incremental learning
methods, we analyzed the current research situation of incremental learning and looked forward to the
future incremental learning research from the aspects of application and theory. Although the current
work has made good progress, the realization of flexible and stable incremental learning that can adapt
to various complex environments is still far away. Through analysis, we found that the strategy for
dealing with catastrophic forgetting has reached a bottleneck. Researchers are increasingly inclined
to use a combination of various existing strategies to study incremental learning, which is usually
better than using a single strategy alone. The lack of flexibility and practicality are the dilemmas
faced by many current incremental learning methods. Most methods are task-based designs, but the
actual data flow is much more complicated than this. Therefore, the incremental learning of task-free
design should be considered more. One possible way is to introduce unsupervised learning. Since the
iterative update of parameters with the arrival of new data is a major internal cause of catastrophic
forgetting, non-iterative training may be able to overcome catastrophic forgetting from a lower level,
which is also a direction worthy of attention in the future.

This is the first step in our research on incremental learning. After this, we will focus on the
interpretability of incremental learning and the underlying design issues, to explore the possibility of
achieving incremental learning from the basic level.
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