MYTHIC

Analog Compute-in-Memory at Mythic

Dave Fick, CTO / Founder

dave.fick@mythic-ai.com

© 2019 MYTHIC. ALL RIGHTS RESERVED

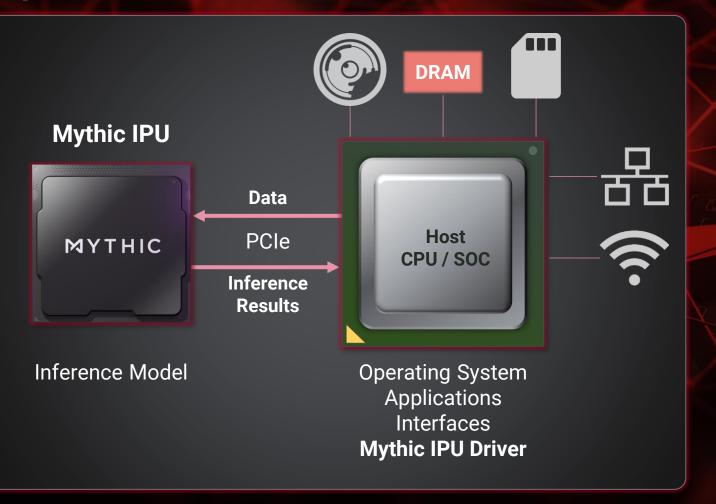
MYTHIC

Mythic, Inc.

- AI startup founded in 2012 focused on power-efficient AI inference processing
- Unique analog compute-in-memory (CIM) architecture using flash memory
- 120+ employees in Austin, TX and Redwood City, CA
- \$86M in venture funding:
 - Softbank, DFJ, Lux, Valor Equity Partners, Lockheed Martin, Micron, and others

Mythic IPU is a PCI Express Accelerator

High performance for constrained environments



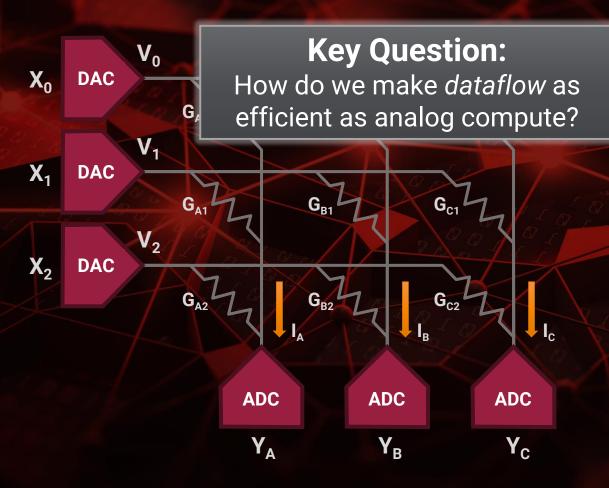
Analog Compute Gives Us Efficient Matrix Multiplication

Eliminating weight movement and using analog computation provides >10x **overall** efficiency improvement vs digital systems

Flash transistors can be modeled as **variable conductances** representing the weights

The I=G*V current equation will achieve the math we need:

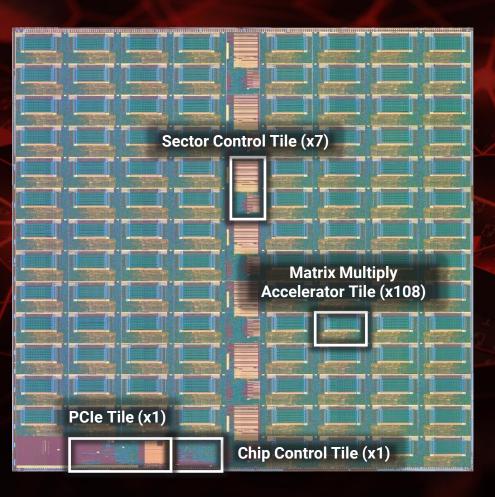
Inputs (X) = DAC Inputs Weights (G) = Flash transistors Outputs (Y) = ADC Outputs



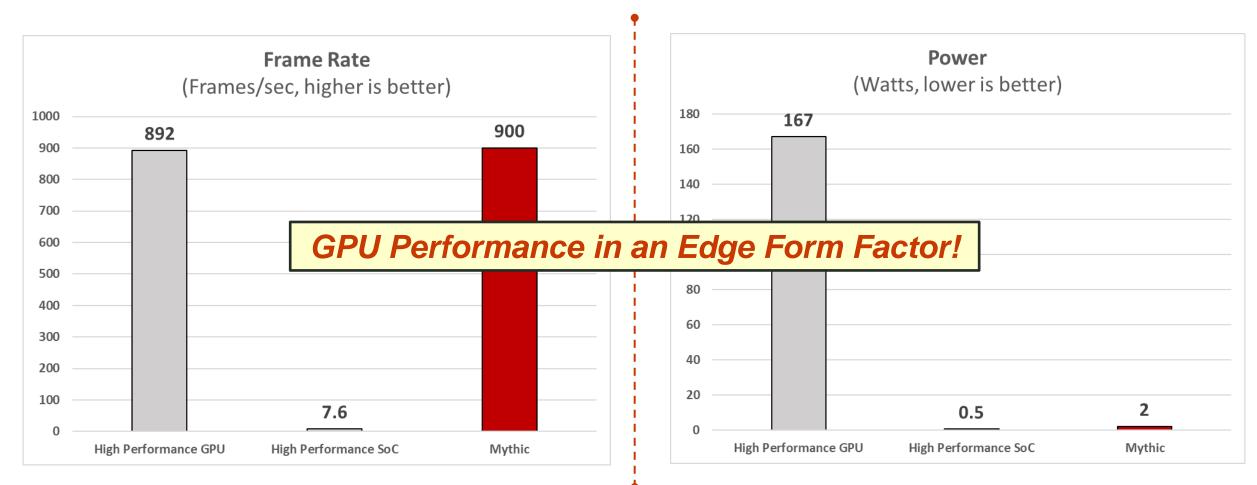
Mythic IPU Overview

Low Latency

- Runs batch size = 1, single frame latency
- High Performance
 - 10's of TMAC/s
- High Efficiency
 - 0.5 pJ/MAC aka 500mW / TMAC
- Hyper-Scalable
 - Ultra low power to high performance
- Easy to use
 - Topology agnostic (CNN/DNN/RNN)
 - TensorFlow/Caffe2/etc supported

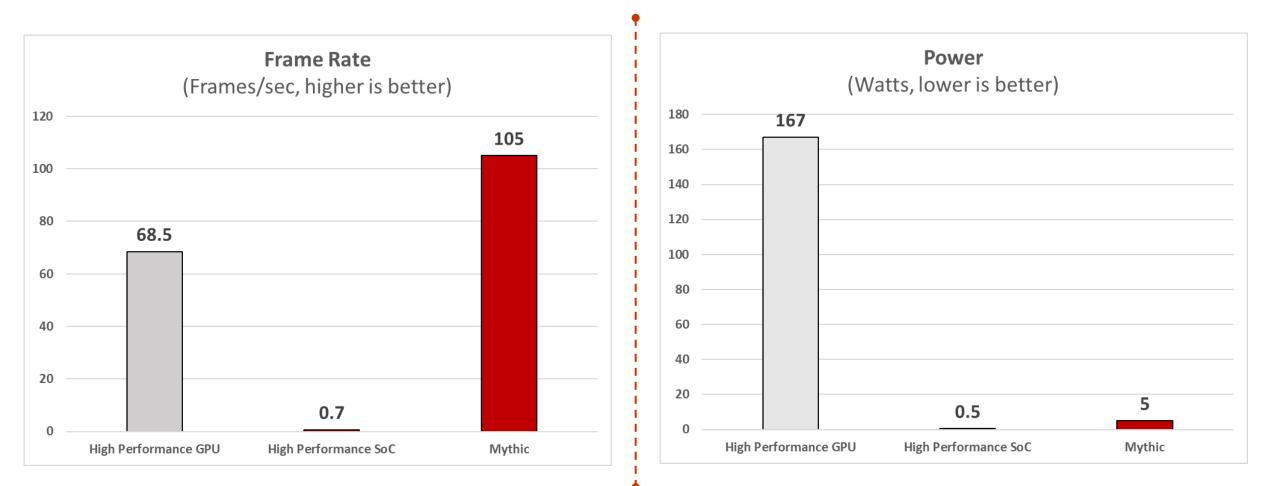


Example Application: ResNet-50



Running at 224x224 resolution. Mythic estimated, GPU/SoC measured

Example Application: OpenPose



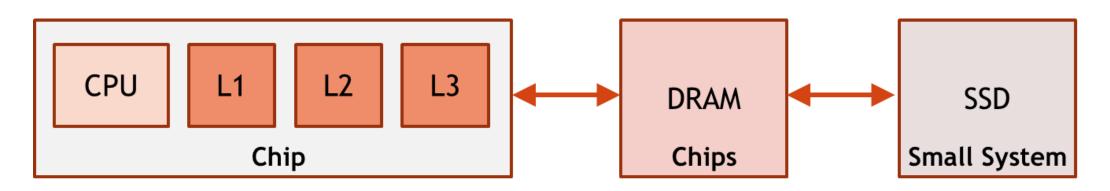
Running at 656x368 resolution. Mythic estimated, GPU/SoC measured

Outline

- Compute-in-Memory Overview
- Analog Compute Overview
- Mythic GPS
- Mythic Neural Networks

When Should I use Compute-in-Memory?

Compute-In-Memory

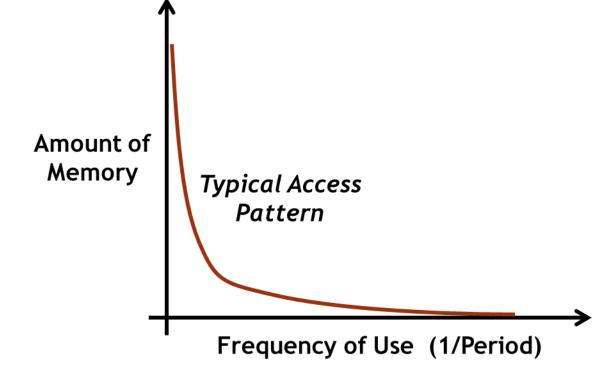


- "Compute-in-Memory" is relative!
- Typically the CPU works on the L1 Cache
- CIM could mean...
 - Compute at L2/L3
 - Compute in DRAM chips
 - Compute in the SSD
 - Compute in an accelerator that contains memory

Memory Systems are Built for Data Access Patterns

- The existing memory structure has built-in assumptions:
 - Temporal Locality
 - If at one point a particular memory location is referenced, then it is likely that the same location will be referenced again in the near future.
 - Spatial Locality
 - If a particular storage location is referenced at a particular time, then it is likely that nearby memory locations will be referenced in the near future.
 - Probability, not Certainty
 - We do not know exactly what data will be needed next

Data Access Patterns: Analysis Via "Working Set"



Working set: the amount of memory needed by the application over a period of time

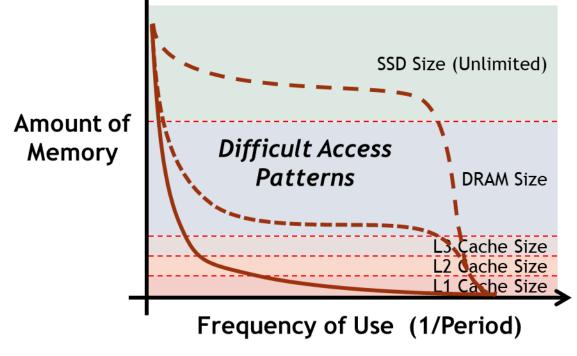
Data Access Patterns: Analysis Via "Working Set"

SSD Size (Unlimited)
Amount of
Memory
Typical Access
Pattern
DRAM Size
L3 Cache Size
L2 Cache Size
L1 Cache Size
Trequency of Use (1/Period)

The cache system captures larger and larger working sets. The mostly infrequently used data is stored in system storage (SSD)

Compute-in-Memory for Difficult Access Patterns

Some applications have access patterns that do not "play nice" with the traditional memory hierarchy



Compute-in-Memory systems can target these applications!

Other Reasons for Compute-in-Memory

- Deterministic Data Patterns
 - In some cases, we know the exact data access pattern to be performed, so hierarchical memory systems do not provide a benefit and are inefficient.
- ASIC Capabilities Further Minimize Data Movement
 - In other cases, we can build in ASIC capabilities that take advantage of known data patterns.
- Analog Computation
 - In extreme cases, analog computation can be added to achieve most minimal data movement.

Compute-in-Memory is Not Always the Answer

- General Purpose Computing
 - You need an application to take advantage of.
- Low Application Importance
 - If this application is not >90% of the system time or power, then you will not be able to get a 10x improvement.
- Small Working Sets
 - Compute-in-memory often requires relatively large working sets to make sense.
 - Applications that fit in L1 cache are hard to improve.

What is Analog Compute?

What Does "Analog Compute" Mean?

Definition of "Analog Computer": a type of computer that uses the continuously changeable aspects of physical phenomena such as *electrical*, mechanical, or hydraulic quantities to model the problem being solved. In contrast, **digital computers** represent varying quantities symbolically.

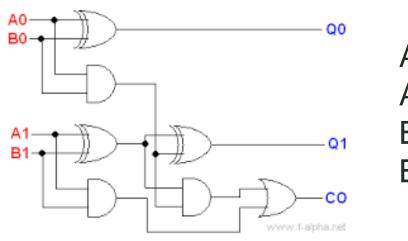
What Does "Analog Compute" Mean?

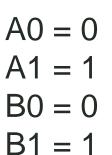
Problem: 2+2

Digital Solution

0b10 + 0b10 = 0b100

Analog Solution







I1 = 2uA I2 = 2uA I3 = 4uA

Analog Compute Options

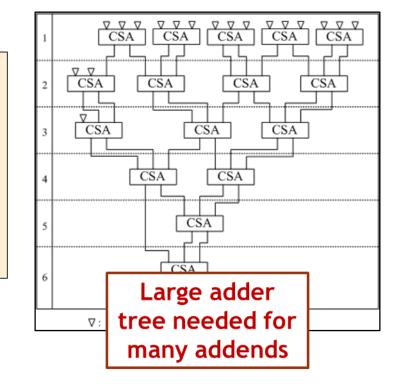
	<u>Charge</u>	<u>Conductance</u>	<u>Current</u>
			$ \begin{array}{c} $
<u>Example Uses</u>	 Multiply 	 Absolute-value- of-difference 	 Summation
<u>Advantages</u>	 Energy efficient Result is a voltage 	 Energy efficient Area efficient 	 Can use many inputs Process tolerant
<u>Disadvantages</u>	AreaVariation	 Special device (flash) Variation 	 Lower energy efficiency

Why and When is Analog Compute Useful?

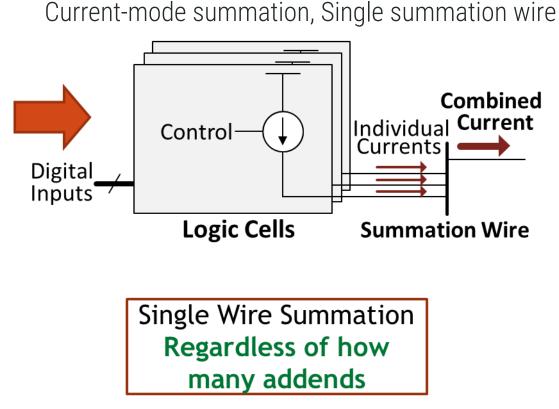
Digital Compute:

8168 full adders, 15 stage tree

 Large problems
 Noise tolerant algorithms



Analog Compute:



M

What is Analog Compute *bad* at?

Downsides of Analog Computation

- Noise! \rightarrow compute using *changing* signals introduces noise
- Flexibility
- Data corruption (coupling, routing loss)

Use analog where analog is best Digital where digital is best

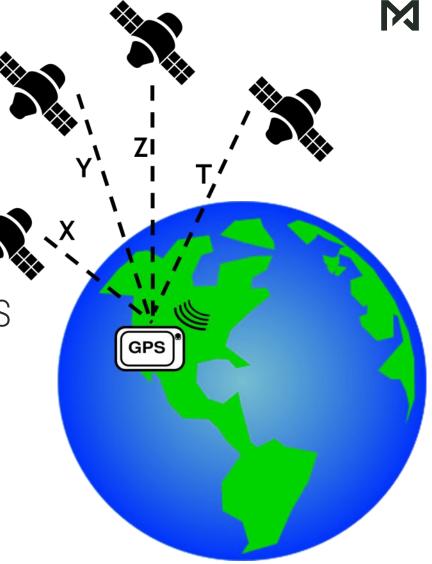


Mythic's First Experience With Compute-in-Memory: GPS

Mythic Circa 2012 (aka Isocline)

Working on an SBIR for GPS

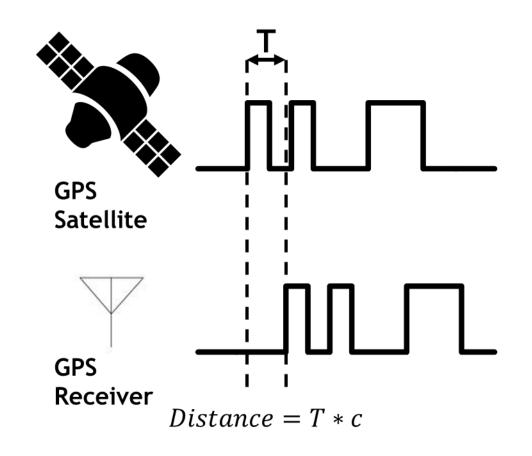
- Mike Henry received an SBIR to do low power GPS on chip
 - Subthreshold digital was the initial proposal



** All GPS images courtesy of Skylar's ISSCC presentation

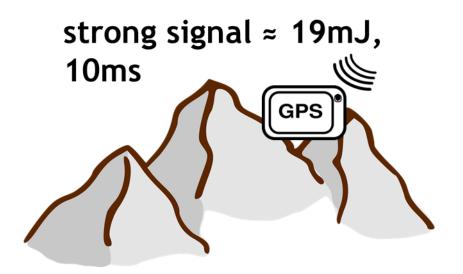
GPS Acquisition is a Large Search...

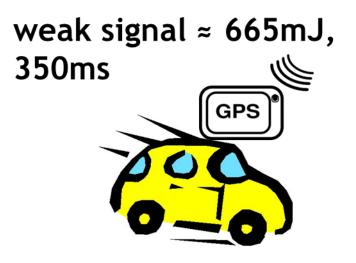
- Time-domain search
- Timing offset (T) is calculated
 - Done through correlation
 - 1000's of 2-bit vector multiply
 - 1000's of results to accumulate
- Pattern is very long
 - Reject noise
 - Increase gain



...and Energy/Time Intensive

- Requires many operations
 - (10-350)×109 for civilian
 - 35×10^{12} for military
- Energy intensive
 - 19-665 mJ per satellite
- Time consuming
 10-350 ms per satellite

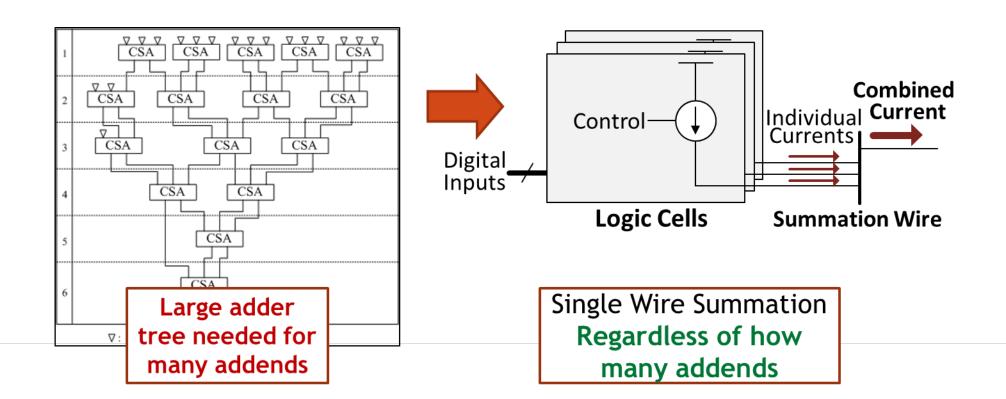




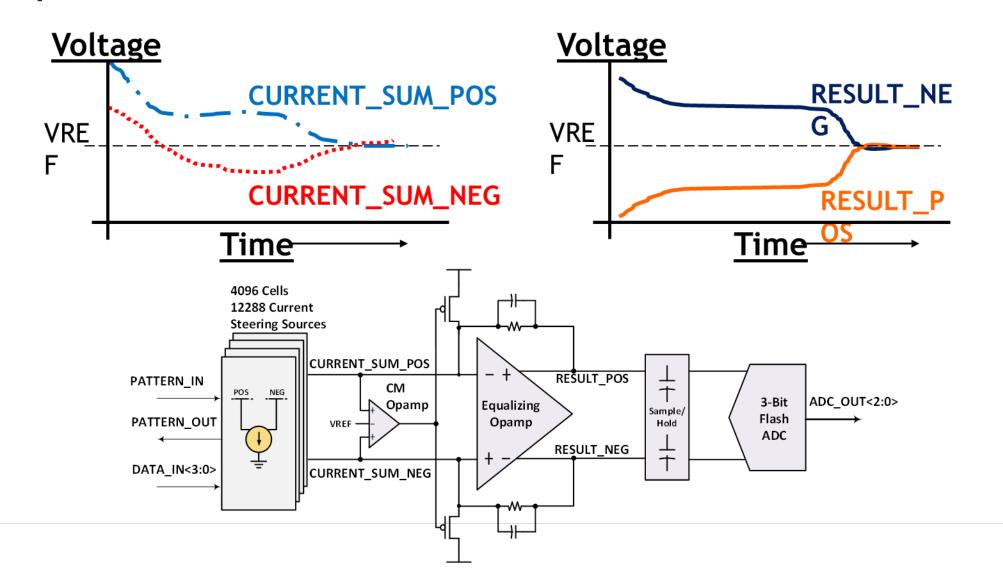
But Can Be Done with a Single Wire in Analog

- Digital:
 - 8168 full adders
 - 15 stage tree

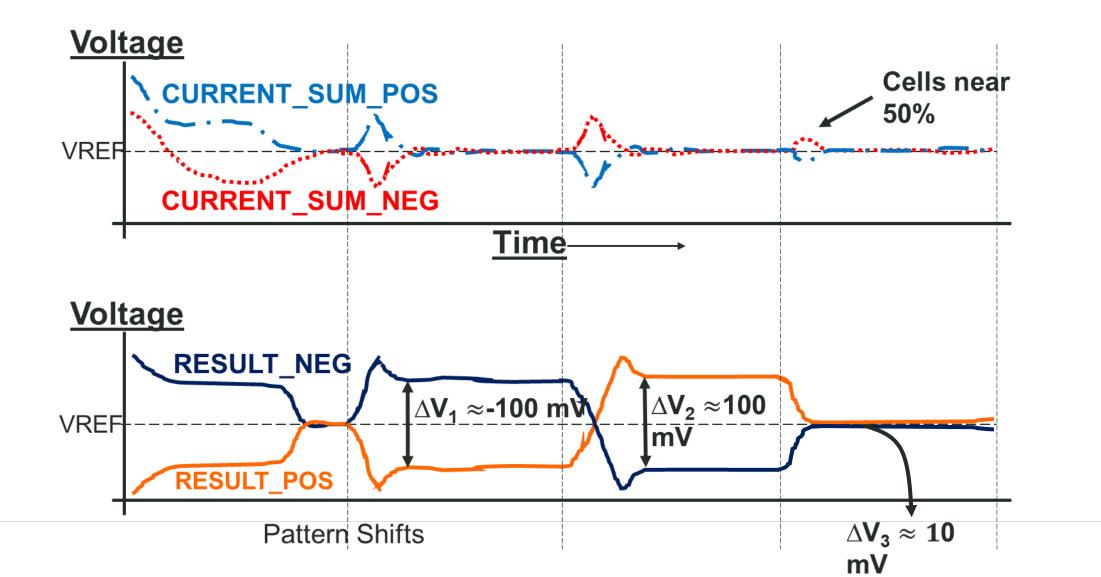
- Analog:
 - Current-mode summation



Example Calculation: Initialization

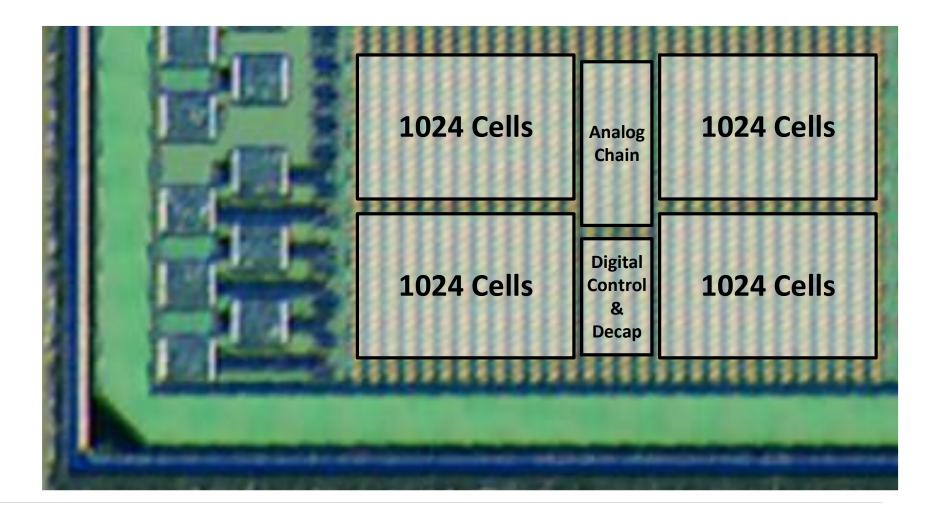


Example Calculation

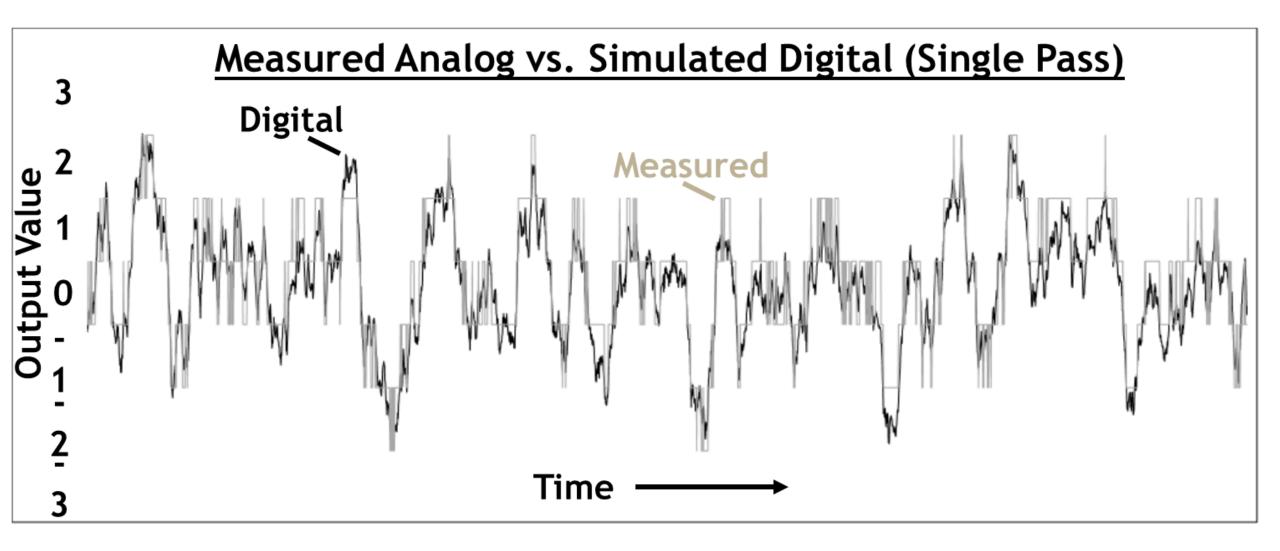


GPS Die Photo

- TSMC65LP
- 0.325mm²



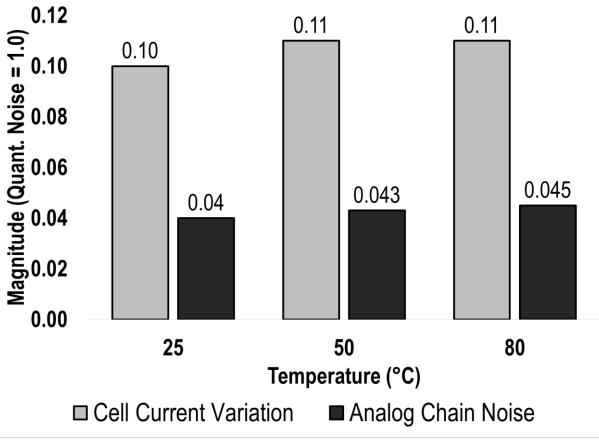
Results: Implementation vs. Ideal



Analog Compute Noise is Less than Quantization

- Signal has inherent noise
 RF front-end
- Analog compute noise:
 - 10x lower than quantization noise
 - Analog noise is dominated by current source variation

Noise Contribution Normalized by Quantization Noise



M

Results: Comparison

- 340-27,000x performance increase
- 67x energy efficiency increase
- Scalable for application

	This Work	MITRE	JSSC'05	ISCAS'11
Technology	65 nm	180 nm	350 nm	130 nm
V _{DD} (V)	1.20 (Analog) 1.15 (Digital)	1.8	2.0	1.0
Clock Frequency (MHz)	170	20.46	8	0.2
Power (mW)	18.9*	1,900	2	0.0004
TOPS	0.70*	1.05	2.05E-3	2.56E-5
TOPS/W	36.8	0.55	1.05	64.0
TOPS/mm ²	2.154*	0.0119	0.0038	0.000197
Vector Length	4,096*	51,150	256	128
Quantization	2-bit	2-bit	Analog	Analog
Area (mm ²)	0.325*	88.0	0.54	0.13
Topology	Digital storage/ switched current	All digital	Analog storage/ switched current	Analog storage/ switched capacitor

*The design could be tiled to proportionally scale these metrics.

Application Analysis: Neural Networks

Neural Networks = Intuition

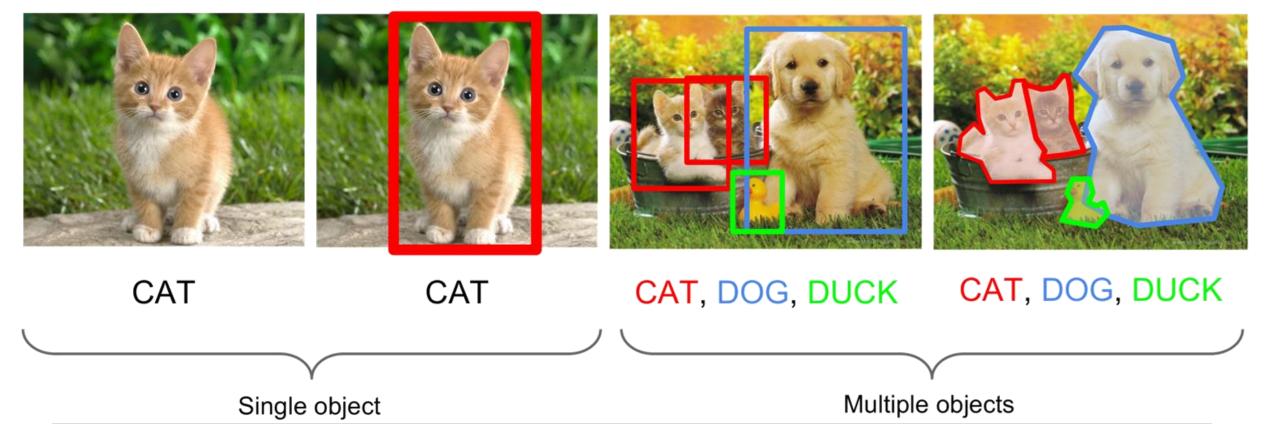
Classification

Classification + Localization

Object Detection

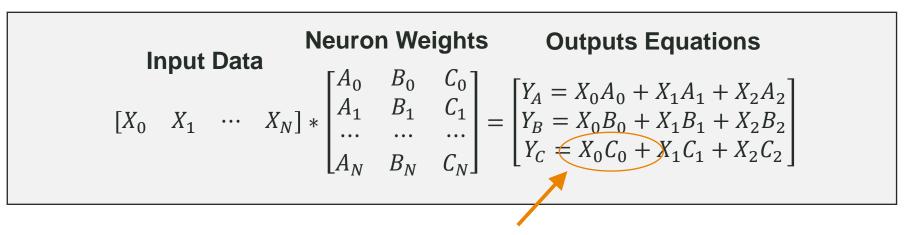
Instance Segmentation

35



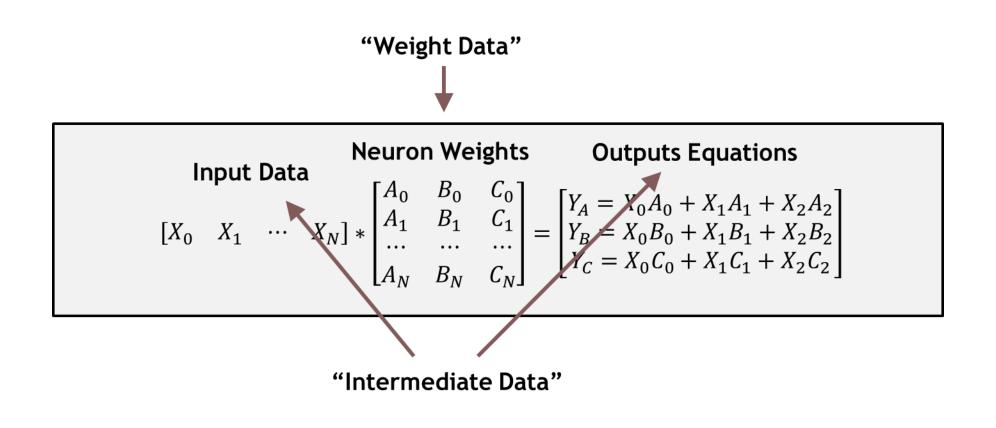
DNNs are Largely Multiply-Accumulate

Primary DNN Calculation is Input Vector * Weight Matrix = Output Vector



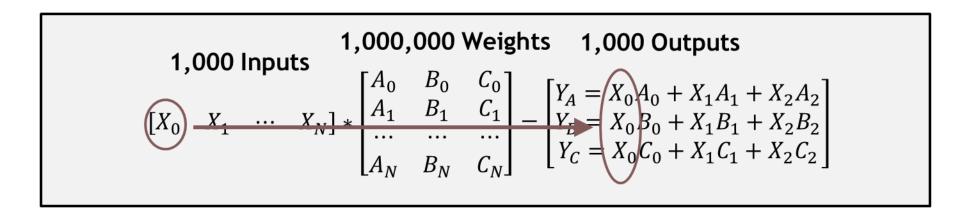
Key Operation: Multiply-Accumulate, or "MAC" Figure of Merit: How many picojoules to execute a MAC?

Memory Access Includes Weight Data and Intermediate Data



For a 1000 input, 1000 neuron matrix...

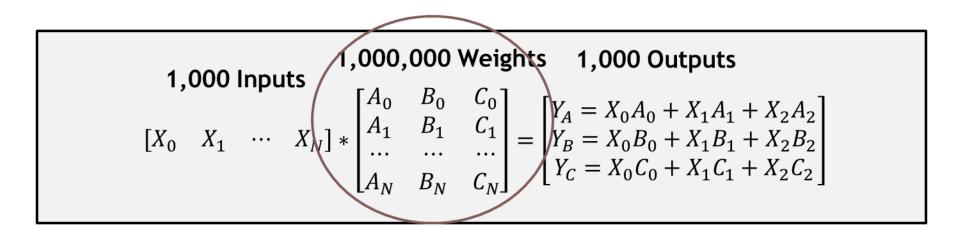
Intermediate Data Accesses are Naturally Amortized



Intermediate data accesses are amortized **64-1024x** since they are used in many MAC operations

For a 1000 input, 1000 neuron matrix...

Weight Data Accesses are Not Amortized



Weight data could need to be stored in *DRAM*, and it does not have the same amortization as the intermediate data

DNN Processing is All About Weight Memory

Network	Weights	MACs	@ 30 FPS
AlexNet ¹	61 M	725 M	22 B
ResNet-18 ¹	11 M	1.8 B	54 B
ResNet-50 ¹	23 M	3.5 B	105 B
VGG-19 ¹	144 M	22 B	660 B
OpenPose ²	46 M	180 B	5400 B

Very hard to fit this in an Edge solution

- I0+M parameters to store
- 20+B memory accesses
- How do we achieve...
 - High Energy Efficiency
 - High Performance
 - "Edge" Power Budget (e.g., 5W)

- ¹: 224x224 resolution
- ²: 656x368 resolution

Key Question: Use DRAM or Not?

Benefits of DRAM

- Can fit arbitrarily large models
- Not as much SRAM needed on chip

Drawbacks of DRAM

Huge energy cost for reading weights

- Eimited bandwidth getting to weight data
- Variable energy efficiency
 & performance depending on application

Common NN Accelerator Design Points

	Enterprise With DRAM	Enterprise No-DRAM	Edge With DRAM	Edge No-DRAM
SRAM	<50 MB	100+ MB	< 5 MB	< 5 MB
DRAM	8+ GB	-	4-8 GB	-
Power	70+ W	70+ W	3-5 W	1-3 W
Sparsity	Light	Light	Moderate	Heavy
Precision	32f / 16f / 8i	32f / 16f / 8i	8i	1-8i
Accuracy	Great	Great	Moderate	Poor
Performance	High	High	Very Low	Very Low
Efficiency	25 pJ/MAC	2 pJ/MAC	10 pJ/MAC	5 pJ/MAC

Mythic is Fundamentally Different

	Enterprise With DRAM	Enterprise No-DRAM	Edge With DRAM	Edge No-DRAM	Mythic NVM
SRAM	<50 MB	100+ MB	< 5 MB	< 5 MB	< 5 MB
DRAM	8+ GB	-	4-8 GB	-	-
Power	70+ W	70+ W	3-5 W	1-3 W	1-5 W
Sparsity	Light	Light	Moderate	Heavy	None
Precision	32f / 16f / 8i	32f / 16f / 8i	8i	1-8i	1-8i
Accuracy	Great	Great	Moderate	Poor	Great
Performance	High	High	Very Low	Very Low	High
Efficiency	25 pJ/MAC	2 pJ/MAC	10 pJ/MAC	5 pJ/MAC	0.5 pJ/MAC

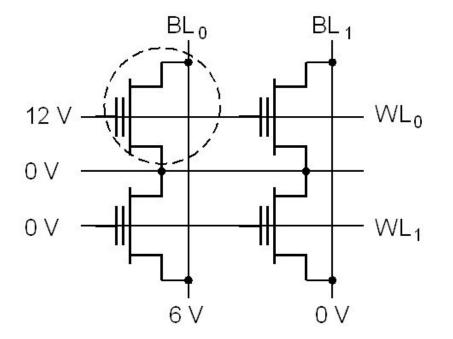
Mythic is Fundamentally Different

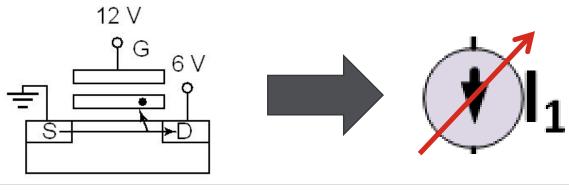
	Enterpris With DRA		Enterprise No-DRAM	Edge With DRAM	Edge No-DRAM	Mythic NVM
SRAM	<50 MB		100+ MB	< 5 MB	< 5 MB	< 5 MB
DRAM	8+ GB		-	4-8 GB	-	-
Power	70+ W		70+ W	3-5 ₩	1-3 W	1-5 W
Sparsity	Light	Also, Mythic does this in a 40nm process, compared to 7/10/16nm				None
Precision	32f / 16f 8i	orc	8i	pared to 7/1	0/16nm	1-8i
Accuracy	Great		Great	Moderate	Poor	Great
Performance	High		High	Very Low	Very Low	High
Efficiency	25 pJ/MAC		2 pJ/MAC	10 pJ/MAC	5 pJ/MAC	0.5 pJ/MAC

Analog Compute-in-Memory Using Flash Transistors

What are Flash Transistors?

- Transistor with an extra "floating" gate
- Floating gate traps electrons → changes the threshold voltage of the device
- With constant VG,VS,VD flash cell operates as a programmable current source

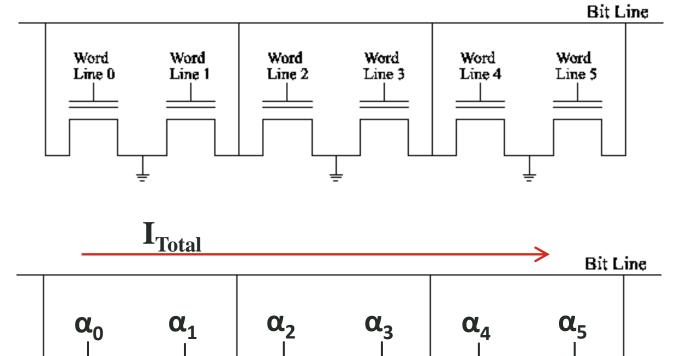




Flash Cells as Programmable Current Sources

$$I_n = \alpha_n \times I'_n = \alpha_n \times (V_{GS} - V_{th_n})$$

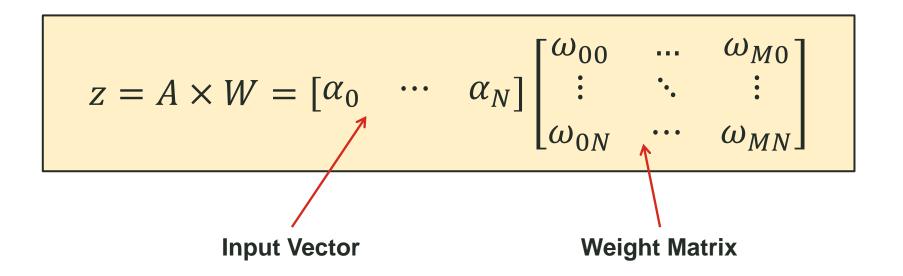
$$I_{Total} = I_0 + I_1 + I_2 + I_3 + I_4 + I_5$$



- Each flash cell acts as a gated current source (multiplication)
- Flash cells on the same bit line sub current (accumulation)

Multiply-accumulate function!

Mapping NN Weights to Flash Current



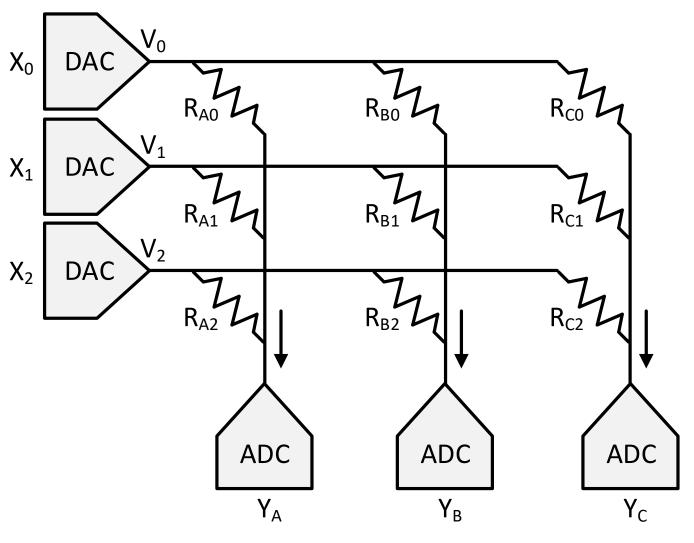
Neural Networks via Flash + Analog Compute

Flash transistors can be modeled as **variable resistors** representing the weight

The V=IR current equation will achieve the math we need:

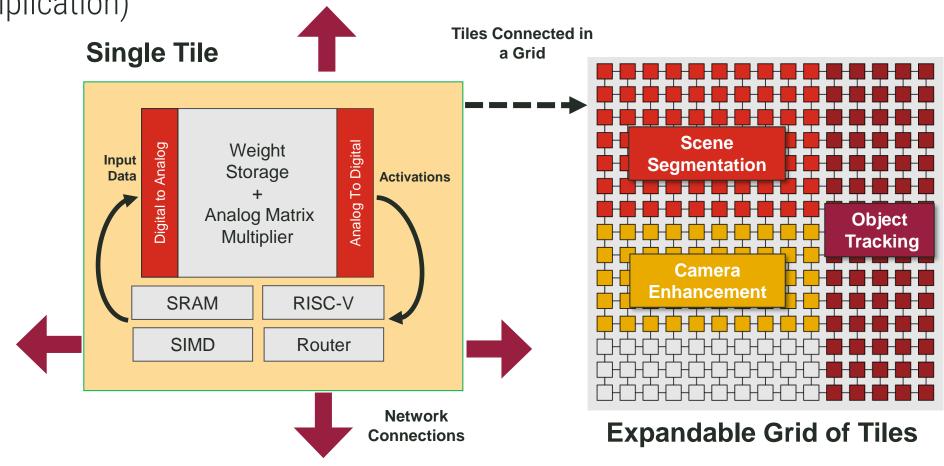
Inputs (X) = DAC Weights (R) = Flash transistors Outputs (Y) = ADC Outputs

The ADCs convert current to digital codes, and provide the non-linearity needed for DNN

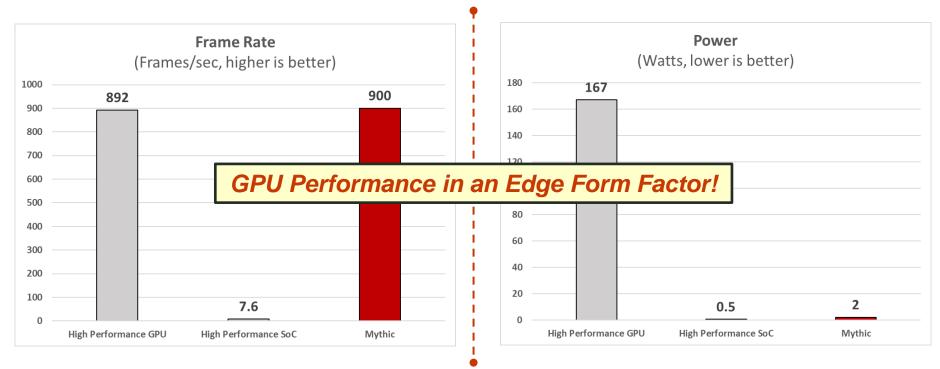


Mythic Neural Network Digital Architecture

Our difference: Mixed-Signal Compute (Ultra-dense storage + matrix multiplication)

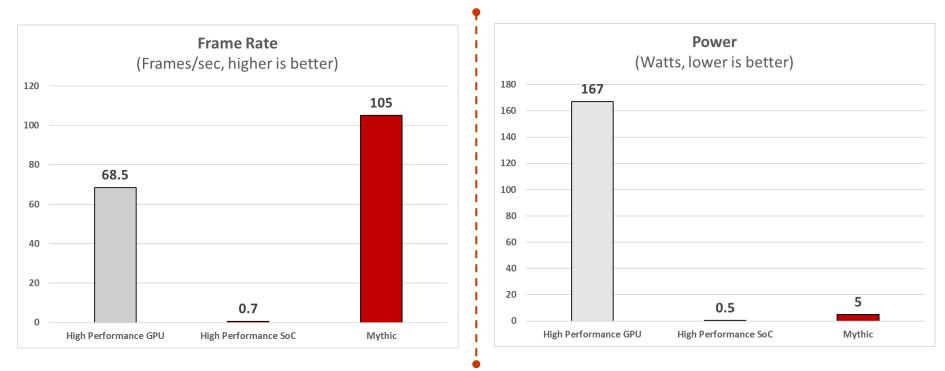


Example Application: ResNet-50



Running at 224x224 resolution. Mythic estimated, GPU/SoC measured

Example Application: OpenPose

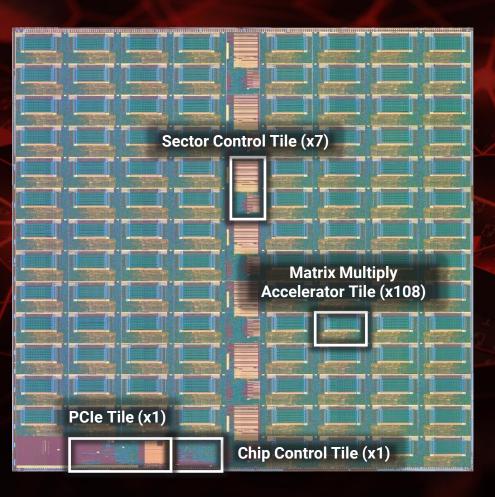


Running at 656x368 resolution. Mythic estimated, GPU/SoC measured

Mythic IPU Overview

Low Latency

- Runs batch size = 1, single frame latency
- High Performance
 - 10's of TMAC/s
- High Efficiency
 - 0.5 pJ/MAC aka 500mW / TMAC
- Hyper-Scalable
 - Ultra low power to high performance
- Easy to use
 - Topology agnostic (CNN/DNN/RNN)
 - TensorFlow/Caffe2/etc supported



Conclusion

What is Possible with Compute-in-Memory?

- >10x improvement in energy efficiency
- >10x improvement in performance

- Application specific benefits
 - Not every algorithm can benefit from CiM!
 - Some benefit more than others

Compute-in-Memory Considerations

- What does the working set look like?
 - Is it "wide"?
 - Is it "large"?
- How important is this algorithm to our system?
 - Does it use up to 90% of something?
- How predictable are our data patterns?
 - Can we reduce data movement somehow?