
© 2019 MYTHIC. ALL RIGHTS RESERVED.

Analog Compute-in-Memory at Mythic

Dave Fick, CTO / Founder

dave.fick@mythic-ai.com

© 2019 MYTHIC. ALL RIGHTS RESERVED.

Mythic, Inc.

2

▪ AI startup founded in 2012 focused on

power-efficient AI inference processing

▪ Unique analog compute-in-memory (CIM)

architecture using flash memory

▪ 120+ employees in Austin, TX and

Redwood City, CA

▪ $86M in venture funding:

– Softbank, DFJ, Lux, Valor Equity Partners,

Lockheed Martin, Micron, and others

Mike Henry-
Redwood City, CA

FOUNDER, CEO

Dave Fick-
Austin, TX

FOUNDER, CTO

Mythic IPU is a PCI Express Accelerator

3

High performance for
constrained environments

Mythic IPU

DRAM

Data

Inference
Results

PCIe

Operating System
Applications

Interfaces
Mythic IPU Driver

Inference Model

Host
CPU / SOC

Analog Compute Gives Us Efficient Matrix Multiplication

4

Eliminating weight movement and using
analog computation provides >10x overall
efficiency improvement vs digital systems

Flash transistors can be modeled as variable
conductances representing the weights

The I=G*V current equation will achieve the
math we need:

Inputs (X) = DAC Inputs

Weights (G) = Flash transistors

Outputs (Y) = ADC Outputs

X0

X1

X2

V0

V1

V2

YA YB YC

ADC ADC ADC

DAC

DAC

DAC

GA0 GB0 GC0

GA1 GB1 GC1

GA2 GB2 GC2

IA IB IC

Key Question:
How do we make dataflow as
efficient as analog compute?

Mythic IPU Overview
 Low Latency

• Runs batch size = 1, single frame latency

 High Performance

• 10’s of TMAC/s

 High Efficiency

• 0.5 pJ/MAC aka 500mW / TMAC

 Hyper-Scalable

• Ultra low power to high performance

 Easy to use

• Topology agnostic (CNN/DNN/RNN)

• TensorFlow/Caffe2/etc supported

5

Matrix Multiply
Accelerator Tile (x108)

Sector Control Tile (x7)

Chip Control Tile (x1)

PCIe Tile (x1)

6

Example Application: ResNet-50

Running at 224x224 resolution. Mythic estimated, GPU/SoC measured

GPU Performance in an Edge Form Factor!

7

Example Application: OpenPose

Running at 656x368 resolution. Mythic estimated, GPU/SoC measured

Outline

▪ Compute-in-Memory Overview

▪ Analog Compute Overview

▪ Mythic GPS

▪ Mythic Neural Networks

When Should I use Compute-in-Memory?

Compute-In-Memory

▪ “Compute-in-Memory” is relative!

▪ Typically the CPU works on the L1
Cache

▪ CIM could mean…
– Compute at L2/L3

– Compute in DRAM chips

– Compute in the SSD

– Compute in an accelerator that
contains memory

Memory Systems are Built for Data Access Patterns

▪ The existing memory structure has built-in assumptions:

– Temporal Locality

▪ If at one point a particular memory location is referenced, then it is likely that the same

location will be referenced again in the near future.

– Spatial Locality

▪ If a particular storage location is referenced at a particular time, then it is likely that nearby

memory locations will be referenced in the near future.

– Probability, not Certainty

▪ We do not know exactly what data will be needed next

Data Access Patterns: Analysis Via “Working Set”

Working set: the amount of

memory needed by the application

over a period of time

Data Access Patterns: Analysis Via “Working Set”

The cache system captures larger

and larger working sets. The

mostly infrequently used data is

stored in system storage (SSD)

Compute-in-Memory for Difficult Access Patterns

Some applications have access patterns that do not “play nice”

with the traditional memory hierarchy

Compute-in-Memory systems can

target these applications!

Other Reasons for Compute-in-Memory

▪ Deterministic Data Patterns
– In some cases, we know the exact data access pattern to be performed, so hierarchical memory

systems do not provide a benefit and are inefficient.

▪ ASIC Capabilities Further Minimize Data Movement
– In other cases, we can build in ASIC capabilities that take advantage of known data patterns.

▪ Analog Computation
– In extreme cases, analog computation can be added to achieve most minimal data movement.

Compute-in-Memory is Not Always the Answer

▪ General Purpose Computing
– You need an application to take advantage of.

▪ Low Application Importance
– If this application is not >90% of the system time or power, then you will not be able to

get a 10x improvement.

▪ Small Working Sets
– Compute-in-memory often requires relatively large working sets to make sense.

– Applications that fit in L1 cache are hard to improve.

What is Analog Compute?

What Does “Analog Compute” Mean?

Definition of “Analog Computer”: a type of computer that uses the

continuously changeable aspects of physical phenomena such as

electrical, mechanical, or hydraulic quantities to model the problem

being solved. In contrast, digital computers represent varying quantities

symbolically.

What Does “Analog Compute” Mean?

Digital Solution

Problem: 2+2

0b10 + 0b10 = 0b100

Analog Solution

A0 = 0

A1 = 1

B0 = 0

B1 = 1

I1 = 2uA

I2 = 2uA

I3 = 4uA

Analog Compute Options

Why and When is Analog Compute Useful?

Digital Compute:

8168 full adders, 15 stage tree

1. Large
problems

2. Noise
tolerant
algorithms

Analog Compute:

Current-mode summation, Single summation wire

What is Analog Compute bad at?

▪ Downsides of Analog Computation

– Noise! → compute using changing signals introduces noise

– Flexibility

– Data corruption (coupling, routing loss)

Analog compute is not a silver bullet!

Digital
Analog

Compute
Use analog where analog is best

Digital where digital is best

Mythic’s First Experience With Compute-in-Memory: GPS

Mythic Circa 2012 (aka Isocline)

▪ Mike Henry received an SBIR to do low power GPS

on chip

– Subthreshold digital was the initial proposal

Working on an SBIR for GPS

** All GPS images courtesy of Skylar’s ISSCC presentation

GPS Acquisition is a Large Search…

▪ Time-domain search

▪ Timing offset (T) is calculated

– Done through correlation
▪ 1000’s of 2-bit vector multiply

▪ 1000’s of results to accumulate

▪ Pattern is very long

– Reject noise

– Increase gain

…and Energy/Time Intensive

▪ Requires many operations
– (10-350)×109 for civilian

– 35×1012 for military

▪ Energy intensive
– 19-665 mJ per satellite

▪ Time consuming
– 10-350 ms per satellite

But Can Be Done with a Single Wire in Analog

▪ Digital:
– 8168 full adders

– 15 stage tree

▪ Analog:
– Current-mode

summation

Example Calculation: Initialization

Example Calculation

GPS Die Photo

▪ TSMC65LP

▪ 0.325mm2 1024 Cells 1024 Cells

1024 Cells 1024 Cells

Analog
Chain

Digital
Control

&
Decap

Results: Implementation vs. Ideal

Analog Compute Noise is Less than Quantization

▪ Signal has inherent noise

– RF front-end

▪ Analog compute noise:

– 10x lower than quantization noise

– Analog noise is dominated by current

source variation

Results: Comparison

▪ 340-27,000x performance

increase

▪ 67x energy efficiency

increase

▪ Scalable for application

Application Analysis: Neural Networks

35

Neural Networks = Intuition

DNNs are Largely Multiply-Accumulate

Primary DNN Calculation is Input Vector * Weight

Matrix = Output Vector

Input Data
Neuron Weights Outputs Equations

𝑋0 𝑋1 ⋯ 𝑋𝑁 ∗

𝐴0 𝐵0 𝐶0
𝐴1 𝐵1 𝐶1
⋯ ⋯ ⋯
𝐴𝑁 𝐵𝑁 𝐶𝑁

=

𝑌𝐴 = 𝑋0𝐴0 + 𝑋1𝐴1 + 𝑋2𝐴2
𝑌𝐵 = 𝑋0𝐵0 + 𝑋1𝐵1 + 𝑋2𝐵2
𝑌𝐶 = 𝑋0𝐶0 + 𝑋1𝐶1 + 𝑋2𝐶2

Key Operation: Multiply-Accumulate, or “MAC”

Figure of Merit: How many picojoules to execute a MAC?

Memory Access Includes Weight Data and Intermediate Data

For a 1000 input, 1000 neuron matrix…

For a 1000 input, 1000 neuron matrix…

DNN Processing is All About Weight Memory

Key Question: Use DRAM or Not?

Common NN Accelerator Design Points

Mythic is Fundamentally Different

Mythic is Fundamentally Different

Also, Mythic does this in a 40nm

process, compared to 7/10/16nm

Analog Compute-in-Memory Using Flash Transistors

What are Flash Transistors?

▪ Transistor with an extra “floating” gate

▪ Floating gate traps electrons → changes the

threshold voltage of the device

▪ With constant VG,VS,VD – flash cell operates

as a programmable current source

Flash Cells as Programmable Current Sources

𝐼𝑛 = 𝛼𝑛 × 𝐼𝑛
′ = 𝛼𝑛 × 𝑉𝐺𝑆 − 𝑉𝑡ℎ𝑛

𝐼𝑇𝑜𝑡𝑎𝑙 = 𝐼0 + 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4 + 𝐼5

▪ Each flash cell acts as a gated current
source (multiplication)

▪ Flash cells on the same bit line sub
current (accumulation)

Multiply-accumulate function!
I1 I2 I3 I4 I5I0

ITotal

α0 α1 α2 α3 α4 α5

Mapping NN Weights to Flash Current

𝑧 = 𝐴 ×𝑊 = 𝛼0 ⋯ 𝛼𝑁

𝜔00 … 𝜔𝑀0

⋮ ⋱ ⋮
𝜔0𝑁 ⋯ 𝜔𝑀𝑁

Input Vector Weight Matrix

49

Flash transistors can be modeled as
variable resistors representing the weight

The V=IR current equation will achieve the
math we need:

Inputs (X) = DAC

Weights (R) = Flash transistors

Outputs (Y) = ADC Outputs

The ADCs convert current to digital codes,
and provide the non-linearity needed for
DNN

Neural Networks via Flash + Analog Compute

V2

RA2

V1

RA1

V0

RA0

RB2

RB1

RB0

RC2

RC1

RC0

YA YB YC

ADC ADC ADC

 DAC

 DAC

 DACX2

X1

X0

Mythic Neural Network Digital Architecture
Our difference: Mixed-Signal Compute (Ultra-dense storage + matrix
multiplication)

50

Input

Data Activations

Weight

Storage

+

Analog Matrix

MultiplierD
ig

it
a

l
to

 A
n

a
lo

g

A
n

a
lo

g
 T

o
 D

ig
it
a

l

SRAM

Tiles Connected in

a Grid

RISC-V

SIMD Router

Single Tile

Network

Connections

Scene

Segmentation

Object

Tracking

Camera

Enhancement

Expandable Grid of Tiles

Example Application: ResNet-50

Running at 224x224 resolution. Mythic estimated, GPU/SoC measured

GPU Performance in an Edge Form Factor!

Example Application: OpenPose

Running at 656x368 resolution. Mythic estimated, GPU/SoC measured

Mythic IPU Overview
 Low Latency

• Runs batch size = 1, single frame latency

 High Performance

• 10’s of TMAC/s

 High Efficiency

• 0.5 pJ/MAC aka 500mW / TMAC

 Hyper-Scalable

• Ultra low power to high performance

 Easy to use

• Topology agnostic (CNN/DNN/RNN)

• TensorFlow/Caffe2/etc supported

53

Matrix Multiply
Accelerator Tile (x108)

Sector Control Tile (x7)

Chip Control Tile (x1)

PCIe Tile (x1)

Conclusion

What is Possible with Compute-in-Memory?

▪ >10x improvement in energy efficiency

▪ >10x improvement in performance

▪ Application specific benefits

– Not every algorithm can benefit from CiM!

– Some benefit more than others

Compute-in-Memory Considerations

▪ What does the working set look like?

– Is it “wide”?

– Is it “large”?

▪ How important is this algorithm to our system?

– Does it use up to 90% of something?

▪ How predictable are our data patterns?

– Can we reduce data movement somehow?

