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▪ AI startup founded in 2012 focused on 

power-efficient AI inference processing

▪ Unique analog compute-in-memory (CIM) 

architecture using flash memory

▪ 120+ employees in Austin, TX and 

Redwood City, CA

▪ $86M in venture funding:

– Softbank, DFJ, Lux, Valor Equity Partners,  

Lockheed Martin, Micron, and others

Mike Henry-
Redwood City, CA

FOUNDER, CEO

Dave Fick-
Austin, TX

FOUNDER, CTO



Mythic IPU is a PCI Express Accelerator

3

High performance for
constrained environments

Mythic IPU

DRAM

Data

Inference
Results

PCIe

Operating System
Applications

Interfaces
Mythic IPU Driver

Inference Model

Host
CPU / SOC



Analog Compute Gives Us Efficient Matrix Multiplication
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Eliminating weight movement and using 
analog computation provides >10x overall
efficiency improvement vs digital systems

Flash transistors can be modeled as variable 
conductances representing the weights

The I=G*V current equation will achieve the 
math we need:

Inputs (X) = DAC Inputs

Weights (G) = Flash transistors

Outputs (Y) = ADC Outputs
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IA IB IC

Key Question: 
How do we make dataflow as 
efficient as analog compute?



Mythic IPU Overview
 Low Latency

• Runs batch size = 1, single frame latency

 High Performance

• 10’s of TMAC/s

 High Efficiency

• 0.5 pJ/MAC  aka  500mW / TMAC

 Hyper-Scalable

• Ultra low power to high performance

 Easy to use

• Topology agnostic (CNN/DNN/RNN)

• TensorFlow/Caffe2/etc supported
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Matrix Multiply 
Accelerator Tile (x108)

Sector Control Tile (x7)

Chip Control Tile (x1)

PCIe Tile (x1)
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Example Application: ResNet-50

Running at 224x224 resolution.  Mythic estimated, GPU/SoC measured

GPU Performance in an Edge Form Factor!
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Example Application: OpenPose

Running at 656x368 resolution.  Mythic estimated, GPU/SoC measured



Outline

▪ Compute-in-Memory Overview

▪ Analog Compute Overview

▪ Mythic GPS

▪ Mythic Neural Networks



When Should I use Compute-in-Memory?



Compute-In-Memory

▪ “Compute-in-Memory” is relative!

▪ Typically the CPU works on the L1 
Cache

▪ CIM could mean…
– Compute at L2/L3

– Compute in DRAM chips

– Compute in the SSD

– Compute in an accelerator that 
contains memory



Memory Systems are Built for Data Access Patterns

▪ The existing memory structure has built-in assumptions:

– Temporal Locality

▪ If at one point a particular memory location is referenced, then it is likely that the same 

location will be referenced again in the near future.

– Spatial Locality

▪ If a particular storage location is referenced at a particular time, then it is likely that nearby 

memory locations will be referenced in the near future.

– Probability, not Certainty

▪ We do not know exactly what data will be needed next



Data Access Patterns: Analysis Via “Working Set”

Working set: the amount of 

memory needed by the application 

over a period of time



Data Access Patterns: Analysis Via “Working Set”

The cache system captures larger 

and larger working sets. The 

mostly infrequently used data is 

stored in system storage (SSD)



Compute-in-Memory for Difficult Access Patterns

Some applications have access patterns that do not “play nice” 

with the traditional memory hierarchy

Compute-in-Memory systems can 

target these applications!



Other Reasons for Compute-in-Memory

▪ Deterministic Data Patterns
– In some cases, we know the exact data access pattern to be performed, so hierarchical memory 

systems do not provide a benefit and are inefficient.

▪ ASIC Capabilities Further Minimize Data Movement
– In other cases, we can build in ASIC capabilities that take advantage of known data patterns.

▪ Analog Computation
– In extreme cases, analog computation can be added to achieve most minimal data movement.



Compute-in-Memory is Not Always the Answer

▪ General Purpose Computing
– You need an application to take advantage of.

▪ Low Application Importance
– If this application is not >90% of the system time or power, then you will not be able to 

get a 10x improvement.

▪ Small Working Sets
– Compute-in-memory often requires relatively large working sets to make sense.

– Applications that fit in L1 cache are hard to improve.



What is Analog Compute?



What Does “Analog Compute” Mean?

Definition of “Analog Computer”: a type of computer that uses the 

continuously changeable aspects of physical phenomena such as 

electrical, mechanical, or hydraulic quantities to model the problem 

being solved. In contrast, digital computers represent varying quantities 

symbolically.



What Does “Analog Compute” Mean?

Digital Solution

Problem: 2+2

0b10 + 0b10 = 0b100

Analog Solution

A0 = 0

A1 = 1

B0 = 0

B1 = 1

I1 = 2uA

I2 = 2uA

I3 = 4uA



Analog Compute Options



Why and When is Analog Compute Useful?

Digital Compute:

8168 full adders, 15 stage tree

1. Large 
problems

2. Noise 
tolerant 
algorithms

Analog Compute:

Current-mode summation, Single summation wire



What is Analog Compute bad at?

▪ Downsides of Analog Computation

– Noise!   → compute using changing signals introduces noise

– Flexibility

– Data corruption (coupling, routing loss)

Analog compute is not a silver bullet!

Digital
Analog 

Compute
Use analog where analog is best

Digital where digital is best



Mythic’s First Experience With Compute-in-Memory: GPS



Mythic Circa 2012 (aka Isocline)

▪ Mike Henry received an SBIR to do low power GPS 

on chip

– Subthreshold digital was the initial proposal

Working on an SBIR for GPS

** All GPS images courtesy of Skylar’s ISSCC presentation



GPS Acquisition is a Large Search…

▪ Time-domain search

▪ Timing offset (T) is calculated

– Done through correlation
▪ 1000’s of 2-bit vector multiply

▪ 1000’s of results to accumulate

▪ Pattern is very long

– Reject noise

– Increase gain



…and Energy/Time Intensive

▪ Requires many operations
– (10-350)×109 for civilian 

– 35×1012 for military

▪ Energy intensive
– 19-665 mJ per satellite

▪ Time consuming
– 10-350 ms per satellite



But Can Be Done with a Single Wire in Analog

▪ Digital:
– 8168 full adders

– 15 stage tree

▪ Analog:
– Current-mode 

summation



Example Calculation: Initialization



Example Calculation



GPS Die Photo

▪ TSMC65LP

▪ 0.325mm2 1024 Cells 1024 Cells

1024 Cells 1024 Cells

Analog
Chain

Digital
Control

& 
Decap



Results:  Implementation vs. Ideal



Analog Compute Noise is Less than Quantization

▪ Signal has inherent noise

– RF front-end

▪ Analog compute noise:

– 10x lower than quantization noise

– Analog noise is dominated by current 

source variation



Results:  Comparison

▪ 340-27,000x performance 

increase

▪ 67x energy efficiency 

increase

▪ Scalable for application



Application Analysis:  Neural Networks
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Neural Networks = Intuition



DNNs are Largely Multiply-Accumulate

Primary DNN Calculation is   Input Vector * Weight 

Matrix = Output Vector

Input Data
Neuron Weights Outputs Equations

𝑋0 𝑋1 ⋯ 𝑋𝑁 ∗

𝐴0 𝐵0 𝐶0
𝐴1 𝐵1 𝐶1
⋯ ⋯ ⋯
𝐴𝑁 𝐵𝑁 𝐶𝑁

=

𝑌𝐴 = 𝑋0𝐴0 + 𝑋1𝐴1 + 𝑋2𝐴2
𝑌𝐵 = 𝑋0𝐵0 + 𝑋1𝐵1 + 𝑋2𝐵2
𝑌𝐶 = 𝑋0𝐶0 + 𝑋1𝐶1 + 𝑋2𝐶2

Key Operation:  Multiply-Accumulate, or “MAC”

Figure of Merit: How many picojoules to execute a MAC?



Memory Access Includes Weight Data and Intermediate Data



For a 1000 input, 1000 neuron matrix…



For a 1000 input, 1000 neuron matrix…



DNN Processing is All About Weight Memory



Key Question: Use DRAM or Not?



Common NN Accelerator Design Points



Mythic is Fundamentally Different



Mythic is Fundamentally Different

Also, Mythic does this in a 40nm 

process, compared to 7/10/16nm



Analog Compute-in-Memory Using Flash Transistors



What are Flash Transistors?

▪ Transistor with an extra “floating” gate

▪ Floating gate traps electrons → changes the 

threshold voltage of the device

▪ With constant VG,VS,VD – flash cell operates 

as a programmable current source



Flash Cells as Programmable Current Sources

𝐼𝑛 = 𝛼𝑛 × 𝐼𝑛
′ = 𝛼𝑛 × 𝑉𝐺𝑆 − 𝑉𝑡ℎ𝑛

𝐼𝑇𝑜𝑡𝑎𝑙 = 𝐼0 + 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4 + 𝐼5

▪ Each flash cell acts as a gated current 
source (multiplication)

▪ Flash cells on the same bit line sub 
current (accumulation)

Multiply-accumulate function!
I1 I2 I3 I4 I5I0

ITotal

α0 α1 α2 α3 α4 α5



Mapping NN Weights to Flash Current

𝑧 = 𝐴 ×𝑊 = 𝛼0 ⋯ 𝛼𝑁

𝜔00 … 𝜔𝑀0

⋮ ⋱ ⋮
𝜔0𝑁 ⋯ 𝜔𝑀𝑁

Input Vector Weight Matrix
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Flash transistors can be modeled as 
variable resistors representing the weight

The V=IR current equation will achieve the 
math we need:

Inputs (X) = DAC

Weights (R) = Flash transistors

Outputs (Y) = ADC Outputs

The ADCs convert current to digital codes, 
and provide the non-linearity needed for 
DNN

Neural Networks via Flash + Analog Compute
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Mythic Neural Network Digital Architecture
Our difference: Mixed-Signal Compute (Ultra-dense storage + matrix 
multiplication)
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Example Application: ResNet-50

Running at 224x224 resolution.  Mythic estimated, GPU/SoC measured

GPU Performance in an Edge Form Factor!



Example Application: OpenPose

Running at 656x368 resolution.  Mythic estimated, GPU/SoC measured



Mythic IPU Overview
 Low Latency

• Runs batch size = 1, single frame latency

 High Performance

• 10’s of TMAC/s

 High Efficiency

• 0.5 pJ/MAC  aka  500mW / TMAC

 Hyper-Scalable

• Ultra low power to high performance

 Easy to use

• Topology agnostic (CNN/DNN/RNN)

• TensorFlow/Caffe2/etc supported
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Matrix Multiply 
Accelerator Tile (x108)

Sector Control Tile (x7)

Chip Control Tile (x1)

PCIe Tile (x1)



Conclusion



What is Possible with Compute-in-Memory?

▪ >10x improvement in energy efficiency

▪ >10x improvement in performance

▪ Application specific benefits

– Not every algorithm can benefit from CiM!

– Some benefit more than others



Compute-in-Memory Considerations

▪ What does the working set look like?

– Is it “wide”?

– Is it “large”?

▪ How important is this algorithm to our system?

– Does it use up to 90% of something?

▪ How predictable are our data patterns?

– Can we reduce data movement somehow?


