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Abstract—Deep neural networks (DNN) have revolutionized
the field of machine learning by providing unprecedented human-
like performance in solving many real-world problems such as
image or speech recognition. Training of large DNNs, however,
is a computationally intensive task, and this necessitates the
development of novel computing architectures targeting this ap-
plication. A computational memory unit where resistive memory
devices are organized in crossbar arrays can be used to store
the synaptic weights in their conductance states. The expensive
multiply accumulate operations can be performed in place using
Kirchhoff’s circuit laws in a non-von Neumann manner. However,
a key challenge remains the inability to alter the conductance
states of the devices in a reliable manner during the weight update
process. We propose a mixed-precision architecture that combines
a computational memory unit storing the synaptic weights with
a digital processing unit and an additional memory unit that
stores the accumulated weight updates in high precision. The
new architecture delivers classification accuracies comparable to
those of floating-point implementations without being constrained
by challenges associated with the non-ideal weight update char-
acteristics of emerging resistive memories. The computational
memory unit in a two layer neural network realized using non-
linear stochastic models of phase-change memory achieves a test
accuracy of 97.40% in the MNIST digit classification problem.

Keywords—Deep learning, In-memory computing, Mixed-
precision computing, Phase-change memory

I. INTRODUCTION

Deep neural networks (DNN) including convolutional neu-
ral networks, deep belief networks, and Long-Short-Term-
Memories are loosely inspired by biological neural networks
in which layers of neurons are interconnected by plastic
synapses. The neuronal outputs in these networks are real-
valued numbers, processed at consecutive iterations. Learning
involves the strengthening or weakening of the synapses to
optimize a cost function. Through a combination of factors
such as the availability of massive labeled datasets and the
highly parallel matrix manipulations offered by modern GPUs,
these networks have recently achieved considerable success in
numerous applications [1].

These software advances have fueled a significant interest
in designing non-von Neumann co-processors for training
DNNs. A system comprising dense crossbar arrays of resistive
memory devices has been proposed to perform the various
steps involved in the training of DNNs [2]–[5]. The devices
store information in their conductance states [6], [7], which can
be used to represent the synaptic weights. The matrix-vector
multiplications needed during the forward and backward prop-
agations of different data signals is realized via Kirchhoff’s
circuit laws in the crossbar. Weight updates can be achieved by
modifying the conductance of the resistive memory devices by

applying appropriate programming pulses. However, this ap-
proach can attain satisfactory training accuracy only with ideal,
not-yet-available resistive memory devices [4]. The experimen-
tal demonstrations based on existing resistive memory devices
have shown reduced classification accuracies because of the
difficulty in achieving precise conductance changes in these
devices [2], [8]. In parallel, there are some key developments
taking place at the algorithmic front with respect to training
DNNs using digital arithmetic with reduced precision [9]–[12].
Recent work shows that it is possible to have binary precision
for the weights used in the multiply-accumulate operations
(during the forward and backward propagations) as long as
the precision of the stored weights in which gradients are
accumulated is retained [11].

Building on this insight and on our recent work on
mixed-precision memcomputing [13], we present a mixed-
precision architecture based on computational memory to
train DNNs. This is followed by a detailed investigation of
various undesirable attributes of the constituent devices in
such a computational memory unit and a thorough evaluation
of how the proposed architecture copes with such behavior.
Our studies suggest that the proposed architecture can deliver
classification accuracies comparable to those of floating-point
implementations even when all the propagations are done
inexactly in the computational memory and when inaccurate
conductance updates are done using single-shot programming
of memory devices.

II. THE MIXED-PRECISION ARCHITECTURE BASED ON
COMPUTATIONAL MEMORY

In Fig. 1, we introduce the mixed-precision computational
memory approach to train DNNs. The most expensive opera-
tion during the forward and backward propagation is obtaining
the weighted sums, which are results of matrix-vector multi-
plications. A computational memory unit which has resistive
memory devices organized in a crossbar array is ideally suited
for performing these matrix-vector operations in constant time
complexity [14], [15]. The neuron activations xi are applied as
voltages to the word lines using digital-to-analog converters
(DACs). Currents proportional to the conductance will flow
through the devices and the resulting total current at any bit
line calculated following Kirchhoff’s law is I j = ΣiWjixi. Here
Wji represents the device conductance connecting neuron i to
the next-layer neuron j. These currents read and digitized using
analog-to-digital converters (ADCs) represent the desirable
weighted sum operation results. The same crossbar array can
be used to perform the matrix multiplication during the back-
propagation in the same layer. Here, the errors to be back-
propagated, δk, are applied as voltages to the bit lines and
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Fig. 1. Mixed-precision architecture based on computational memory. The
synaptic weights are stored in a computational memory unit as conductance
states of resistive memory devices organized in crossbar arrays. The matrix-
vector multiplications associated with the forward and the backward prop-
agation are performed in place in the memory arrays. The weight updates
are accumulated in a volatile memory, χ , in high precision until it becomes
comparable to the update granularity (ε) of the memory devices. The device
updates are integer multiples of ε which are subtracted from χ .

the total current read out from any word line represents a
transposed matrix multiplication result (ΣkWk jδk).

The desired weight updates are determined as the prod-
uct of the back-propagated error and the neuron activation,
∆Wji = ηδ jxi, where η is the learning rate. Even though the
computational memory unit can accelerate the forward and
the backward propagation significantly, updating the synaptic
weights with the desired precision is very challenging. Often,
the device conductance representing the synaptic weights has
a conductance change granularity dictated by the physical
characteristics of the memory device. Let ε be the absolute
value of the smallest conductance change that can be reliably
achieved in a device. In the proposed approach, the weight
updates are accumulated in high precision in a variable χ .
The device conductance will be updated only if the magnitude
of the accumulated weight update becomes greater than or
equal to an integer multiple of ε . The number of programming
pulses p to be applied to the resistive memory devices is then
determined by flooring χ/ε toward zero, and the same number
of εs is subtracted from the χ . Depending on the sign of
p, the conductance value of the corresponding device will be
increased (potentiated) or decreased (depressed). Note that the
actual conductance state of the devices is never read back, and
hence it is not possible to confirm whether the requested weight
update is accurately attained as an equivalent conductance
change in the devices. In spite of this, we will show in the sub-
sequent sections that this scheme works remarkably well and
that the performance is often comparable to those of floating-
point implementations. This single-shot programming method,
which avoids a verification and/or iterative programming step,
enables the acceleration of the learning task.

III. EVALUATION OF THE MIXED-PRECISION
ARCHITECTURE

A. The simulation framework

The performance of the mixed-precision architecture is
analyzed based on its classification accuracy of the MNIST
handwritten digit dataset using a neural network as shown

Fig. 2. The neural network used to evaluate the mixed-precision architecture.
The objective is handwritten digit classification based on the MNIST data set.
There are 784 input neurons, 250 hidden sigmoid neurons, and 10 output
sigmoid neurons.

schematically in Fig. 2. The number of neurons in the input, the
hidden and the output layer is 784, 250, and 10, respectively.
The hidden and the output neurons are sigmoid.

The network is trained using the entire training set of
60,000 images for ten epochs, and a test accuracy is reported
based on the classification of 10,000 test images. Each 28×28
gray-scale images from the data set are normalized before they
are supplied as input to the network. No other preprocessing
is performed on the images. We used the quadratic objective
function for the back-propagation-based training and used a
fixed learning rate. The network achieves 98% floating point
(64-bit) test accuracy when trained using stochastic gradient
descent. This classification result is used as reference to
evaluate the performance of our mixed-precision approach. The
final weight distribution from the high-precision training was
approximately in the range [−1,1].

B. Inaccuracies arising from weight updates

In this section, we will evaluate how the proposed archi-
tecture copes with the issues associated with the non-ideal
weight updates of emerging memory devices. We assume a
hypothetical linear device with a fixed n-bit update granularity
which covers its conductance range in 2n− 2 steps such that
there are 2n− 1 levels in the absence of conductance change
stochasticity. Assuming a similar final weight distribution
range as that from the floating-point simulation, we set the
update size, ε = 2/(2n − 2). We program a device only if
the accumulated weight updates exceed ε in magnitude. Even
though it is desirable to induce a conductance change corre-
sponding to an integer multiple of ε , the actual conductance
change in a device is often stochastic. Therefore, the actual
weight update from the device due to a single programming
pulse, denoted by ∆Ŵ , is modeled as a Gaussian random
variable whose mean is ε and whose standard deviation (σ )
is a fractional multiple of ε . The neural network synapses
are realized with such devices, initialized to {-1, 0, 1} states
with a discrete distribution whose variance is normalized by
the number of neurons in the pre- and post-synaptic layers.
Device read noise and analog-digital converters are ignored at
this stage. The simulated classification accuracy with different
amounts of stochasticity in the updates is shown in Fig. 3a.
When the weight updates are non-stochastic, the test accuracy
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Fig. 3. (a) Effect of granularity and stochasticity associated with weight
updates. Linear devices with symmetric potentiation and depression granularity
are assumed. The standard deviation of the weight update randomness,
σ(∆Ŵ ) is taken as a multiple of the weight update granularity, ε . The error
bars indicate the standard deviation corresponding to five repetitions of the
simulation. (b) Sparsity of device programming. The device update count per
epoch in each layer is plotted for different values of ε . The number of synapses
in each layer times the total training image count is indicated as reference.

drop is only 1% for 2-bit granularity compared to the 64-bit
floating-point reference. With 3-bit granularity, the accuracy
is very close to that obtained in software simulations. As the
amount of stochasticity is increased, the performance degrades
with reducing number of bits. However, it is remarkable that
even when the standard deviation of the weight update is equal
to or greater than the ideal weight update granularity itself, the
drop in test accuracy is still within approximately 4%.

In this mixed precision scheme, weight update accumula-
tion can reduce the number of required device programming
instances by more than two orders of magnitude, as smaller
updates are combined and applied together to the device.
The device updates becomes sparser as the weight update
granularity, ε becomes larger (Fig. 3b).

Fig. 4. Effect of asymmetric conductance response. The test accuracy,
when trained with devices of fixed 8-bit potentiation granularity and variable
depression granularity, is plotted as a function of the depression granularity
(expressed in bits). Weight updates are assumed to be deterministic.

Next, we study the influence of asymmetric conductance
update response. We assume a device with fixed but unequal
potentiation and depression granularity. The mixed-precision
method can cope with this behavior by using different thresh-

Fig. 5. (a) Effect of read noise. A 4-bit weight update granularity with no
stochasticity is assumed. The standard deviation of the Gaussian distributed
additive read noise associated with the weights is varied as a fraction of the
total weight range. Error bars are plotted from 5 repetitions. (b) Effect of finite
resolution data converters. The weight update granularity is assumed to be 4-
bit, without stochasticity and read noise. The curve with triangle indicates
simulation results where DACs are used at the crossbar input whereas the
output current is read back in floating-point precision. The curve with inverted
triangle indicates results where the crossbar input has floating point precision
whereas ADCs are used for reading back the output current.

olds, εP and εD, for conductance increment and decrement,
respectively. For example, in Fig. 4, we assume an 8-bit poten-
tiation granularity and the depression granularity is varied. The
1-bit depression corresponds to a situation where the update
granularity, εD, equals the entire weight range in contrast to the
previous definition of ε . The weight updates are assumed to
be deterministic. The resulting test accuracies show less than
1% drop, demonstrating the efficacy of the proposed scheme
to tolerate device update asymmetry effectively.

C. Inaccuracies arising from matrix-vector multiplication

In this section, we study the influence of conductance
fluctuations and finite resolution of data converters. Resistive
memory devices typically exhibit fluctuations in conductance
arising from trapping/detrapping processes [16]. The effect of
this read noise is tested by adding a zero mean white Gaussian
noise to the linear device model. The noise is added to the
weights used in matrix multiplications in the forward and the
backward propagations during training. The same approach is
followed during the testing phase. The standard deviation of
the noise is varied as a fraction of the total weight range, and
the resulting test accuracies are shown in Fig. 5a. It can be
seen that the methodology is robust to a read noise of up to
5% of the total weight range.

An additional source of noise in the matrix-vector multi-
plication is the quantization error from the DACs and ADCs at
the crossbar periphery. During forward propagation, the neuron
activations evaluated in the digital domain are converted to ana-
log voltages using DACs before they are applied to the word
lines of the crossbar array. Then the weighted sum obtained as
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currents in the bit lines are read back using ADCs. Similarly,
the back-propagated error is converted to analog voltage when
applied to the crossbar array. The range for the DACs are fixed
for sigmoid and tanh neuron activations, whereas for ReLU
neurons this could be a challenge, as their range depends on the
data and weight distribution. Here, we chose sigmoid neurons
for our network, which fixed the DAC range in the forward
propagation. Also, we normalized the back-propagated errors
to a fixed range which becomes the input for the DACs during
backward propagation. The normalization factor is multiplied
with the learning rate during the weight update calculation. The
range for ADCs in the forward propagation is fixed since the
digitized values become input for sigmoid neurons. Further, the
range for ADCs for the back-propagated error could be fixed to
limit the maximum weight update. To study the effect of DACs
and ADCs separately, the bit precision of one of them is varied,
whereas the other variables are represented in floating-point
precision. Fig. 5b shows that an 8-bit resolution is sufficient
to avoid any noticeable degradation in test accuracy.

D. Phase-change memory synapses

Phase-change memory (PCM) is a relatively mature resis-
tive memory technology that has found applications in the
space of storage-class memory [17] and novel computing
paradigms such as neuromorphic computing [18]–[20] and
computational memory [13], [21]–[23]. It is based on the
property of chalcogenide alloys, typically compounds of Ge,
Sb and Te, whose electrical conductivities differ drastically
depending on whether they are in the ordered crystalline
phase or in the disordered amorphous phase. It is possible to
achieve a continuum of conductance values in these devices by
partial crystallization or amorphization [24], [25]. This analog
storage capability makes PCM particularly well suited for
computational memory applications. However, PCM devices
exhibit most of the non-idealities we described earlier, such
as granularity, stochasticity, and asymmetric and non-linear
conductance response.

To evaluate the suitability of PCM devices for the mixed-
precision approach to train DNNs, we developed a model
that captures the essential physical attributes of PCM devices.
The model is created based on characterization data from
approximately 10,000 devices integrated in 90nm CMOS
technology [26]. The devices are subjected to 20 programming
pulses of fixed amplitude, and each state is read 50 times to
eliminate read noise. The mean and standard deviation of the
extracted conductance change (∆G) versus the average initial
conductance for each programming pulse are fitted using piece-
wise linear models as shown in Fig. 6a, b. Assuming the ∆G
to be a Gaussian random variable, the device cumulative pulse
response is simulated, and the statistical plot of the resulting
stochastic model behavior is plotted in Fig. 6c.

This device model was used in the simulations to study the
influence on training DNNs. Two PCM devices in differential
configuration with weight refresh [2], [27] are used for the
network weight simulation. The conductances are initialized
to a normal distribution around 2 µS whose standard deviation
is normalized based on the number of neurons in the pre- and
post-synaptic layers. Resulting test accuracy after 10 epochs of
training was 97.78% (Fig. 6d). Incorporating a fixed read noise
(zero mean Gaussian noise with experimentally measured

Fig. 6. PCM device model. Piece-wise linear approximations to (a) the
mean, µ , and (b) the standard deviation, σ , of the experimentally measured
∆G from Ge2Sb2Te5-based PCMs for 50 µA, 50 ns programming pulses as a
function of their average current conductance state, µG, are used to model the
device. (c) The resulting model cumulative conductance evolution in pulse
programming simulation. (d) Training using PCM models. Two non-linear
PCM device models in differential configuration are used at the cross-points
for the neural network weights. Training convergence and test accuracies
(inset) are shown. Device-model based network simulation achieves 97.78%
test accuracy. Additional drop from the read noise (0.26%) and analog-digital
converters (0.12%) are indicated.

average standard deviation) and 8-bit analog-digital converters
during training and testing resulted in an additional 0.38% drop
in accuracy. We also tested the training performance where
each synapse is realized using a single PCM device model
at the cross-point, exploiting the capability of the scheme to
cope with the strongly asymmetric conductance response. The
final test accuracy for the MNIST dataset classification was
96.5%, indicating the robustness of our scheme. Note that,
with improved PCM devices and synaptic architectures these
numbers are likely to increase [28], [29].

IV. CONCLUSION

In this work, we presented a mixed-precision architecture
based on computational memory to train DNNs. The central
idea is to use a computational memory unit in conjunction
with a high-precision processing unit. The computationally
expensive matrix-vector multiplications arising during the data
propagation stages of the learning algorithms are realized
using the computational memory unit which can compute
the multiply-accumulation in constant time complexity. The
weight updates are accumulated in high precision and are
transferred only sporadically to the computational memory
unit, reducing the device programming overhead. This mixed-
precision approach overcomes the non-ideal weight update
characteristics of resistive memory devices due to the limited
granularity, stochasticity, asymmetry, and non-linearity asso-
ciated with the device conductance changes. It achieves a
simulated test accuracy of 97.40% on the MNIST handwritten
digit classification problem using a two layer neural network in
which the computational memory units are realized using mod-
els of state-of-the-art 90nm phase-change memory devices and
conductance updates are based on single-shot programming.
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