
electronics

Review

A Review of Binarized Neural Networks

Taylor Simons and Dah-Jye Lee ∗

Electrical and Computer Engineering, Brigham Young University, Provo, UT 84602, USA;
taylor.simons@byu.edu
* Correspondence: djlee@byu.edu; Tel.: +1-801-422-5923

Received: 14 May 2019; Accepted: 5 June 2019; Published: 12 June 2019
����������
�������

Abstract: In this work, we review Binarized Neural Networks (BNNs). BNNs are deep neural
networks that use binary values for activations and weights, instead of full precision values.
With binary values, BNNs can execute computations using bitwise operations, which reduces
execution time. Model sizes of BNNs are much smaller than their full precision counterparts.
While the accuracy of a BNN model is generally less than full precision models, BNNs have been
closing accuracy gap and are becoming more accurate on larger datasets like ImageNet. BNNs are
also good candidates for deep learning implementations on FPGAs and ASICs due to their bitwise
efficiency. We give a tutorial of the general BNN methodology and review various contributions,
implementations and applications of BNNs.

Keywords: Binarized Neural Networks; Deep Neural Networks; deep learning; FPGA; digital design;
deep neural network compression

1. Introduction

Deep neural networks (DNNs) are becoming more powerful. However, as DNN models become
larger they require more storage and computational power. Edge devices in IoT systems, small mobile
devices, power constrained and resource constrained platforms all have constraints that restrict
the use of cutting edge DNNs. Various solutions have been proposed to help solve this problem.
Binarized Neural Networks (BNNs) are one solution that tries to reduce the memory and computational
requirements of DNNs while still offering similar capabilities of full precision DNN models.

There are various types of networks that use binary values. In this paper we focus networks
based on the BNN methodology first proposed by Courbariaux et al. in [1] where both weights
and activations only use binary values, and these binary values are used during both inference and
backpropgation training. From this original idea, various works have explored how to improve their
accuracy and how to implement them in low power and resource constrained platforms. In this paper
we give an overview of how BNNs work and review extensions.

In this paper we explain the basics of BNNs and review recent developments in this growing
area. Most work in this area has focused on advantages that are gained during inference time.
Unless otherwise stated, when the advantages of BNNs are mentioned in this work, we will assume
these advantages apply mainly to inference. However, we will look at the advantages of BNNs during
training as well. Since BNNs have received substantial attention from the digital design community,
we also focus on various implementation of BNNs on FPGAs.

BNNs build upon previous methods for quantizing and binarizing neural networks, which are
reviewed in Section 3. Since terminology throughout the BNN literature may be confusing or
ambiguous, we review important terms used in this work in Section 2. We outline the basic mechanics
of BNNs in Section 4. Section 5 details the major contributions to the original BNN methodology.
Techniques for improving accuracy and execution time at inference are covered in Section 6. We present

Electronics 2019, 8, 661; doi:10.3390/electronics8060661 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-7360-679X
https://orcid.org/0000-0003-1752-8146
http://www.mdpi.com/2079-9292/8/6/661?type=check_update&version=1
http://dx.doi.org/10.3390/electronics8060661
http://www.mdpi.com/journal/electronics

Electronics 2019, 8, 661 2 of 25

accuracies of various BNN implementations on different datasets in Section 7. FPGA and ASIC
implementations are highlighted in Sections 8.1 and 8.5.

2. Terminology

Before diving into the details of BNNs and how they work, we want to clarify some of the
terminology that will be used throughout this review. Some of the terms used in the literature
interchangeably and can be ambiguous.

Weights: Learned values that are used in a dot product with activation values from previous
layers. In BNNs, there are real valued weights which are learned and binary versions of those weights
which are used in the dot product with binary activations.

Activations: The outputs from an activation function that are used in a dot product with the
weights from the next layer. Sometimes the term “input” is used instead of activation. We use the term
“input” to refer to input to the network itself and not just the inputs to an individual layer. In BNNs,
the output of the activation function is a binary value and the activation function is the sign function.

Dot product: A multiply accumulate operation occurs in the “neurons” of a neural network. The term
“multiply accumulate” is used at times in the literature, but we use the term dot product instead.

Parameters: All values that are learned by the network through backpropagation. This includes
weights, biases, gains and other values.

Bias: An additive scalar value that is usually learned. Found in batch normalization layers and
specific BNN techniques that will be discussed later.

Gain: A scaling factor that is usually learned, (but sometimes extracted from statistics (Section 5.2)).
Similar to bias. A gain is applied after a dot product between weights and activations. The term scaling
factor is used at times in the literature, but we use gain here to emphasis its correlation with bias.

Topology: The specific arrangement of layers in a network. The term “architecture” is used
frequently in the DNN community. However, the digital design and FPGA community also use the
term architecture to refer to the arrangement of hardware components. For this reason we use topology
to refer to the layout of the DNN model.

Architecture: The connection and layout of digital hardware. Not to be confused with the topology
of the DNN models themselves.

Fully Connected Layer: As a clarification, we use the term fully connected layer instead of dense
layer like some of the literature reviewed in this paper.

3. Background

Various methods have been proposed to help make DNNs smaller and faster without sacrificing
excess accuracy. Howard et al. proposed channel-wise separable convolutions as a way to reduce the
total number of weights in a convolutional layer [2]. Other low rank and weight sharing methods have
been explored [3,4]. These methods do not reduce the data width of the network, but instead use fewer
parameters for convolutional layers while maintaining the same number of channels and kernel size.

SqueezeNet is an example of a network topology that designed specifically to reduce the number of
parameters used [5]. SqueezeNet requires less parameters by using more 1× 1 kernels for convolutional
layers in place of some 3× 3 kernels. They also reduce the number of channels in the convolutional
layers to reduce the number of parameters even further.

Most DNN models are overparamertized and network pruning can help reduce size and
computation [6–8]. Neurons that do not contribute much to the network can be identified and
removed from the network. This leads to sparse matrices and potentially smaller networks with
fewer calculations.

3.1. Network Quantization Techniques

Rather than reducing the total number of parameters and activations to be processed in a DNN,
quantization reduces the bit width of the values used. Traditionally, 32-bit floating point values have

Electronics 2019, 8, 661 3 of 25

been used in deep learning. Quantization techniques use data types that are smaller than 32-bits and
tend to focus on fixed point calculations rather than floating point. Using smaller data types can offer
reduction in total model size. In theory, arithmetic with smaller data types can be quicker to compute
and fixed point operations can be more efficient than floating point. Gupta et al. show that reducing
datatype precision in a DNN offers reduced model size with limited reduction in accuracy [9].

We note, however, that 32-bit floating point arithmetic operations have been highly optimized in
GPUs and most CPUs. Performing fixed point operations on hardware with highly optimized floating
point units may not achieve the kinds of execution speed advantages that oversimplified speedup
calculations might suggest.

Courbariaux et al. compare accuracies of trained DNNs using various sizes of fixed and floating
point values for weights and activations [10]. They even examine the effect of a hybrid dynamic fixed
point data type and show how comparable accuracy can be obtained with sub 32-bit precision.

Using quantized values for gradients has also been explored in an effort to reduce training time.
Zhou et al. experiment with several low bit widths for gradients [11]. They test various combinations
of low bit-widths for activations, gradients and weights. They observe that using higher precision is
more useful in gradients than in activations, and using higher precision in activations is more useful
than in weights.

3.2. Early Binarization

The most extreme form of network quantization is binarization. Binarization is a 1-bit quantization
where data can only have two possible values. Generally −1 and +1 have been used for these two
values (or −γ and +γ when scaling is considered, see Section 6.1).We point out that quantized
networks that use the values −1 and 0 and +1 are not binary, but ternary, a confusion in some of the
literature [12–15]. They exibit a high level of compression and simple arithmetic, but do not benefit
from the single bit simplicity of BNNs since they require 2-bits of precision.

The idea of using binary weights predates the current boom in deep learning [16]. Early networks
with binary values contained only single hidden layer [16,17]. These early works point out that
backpropagation (BP) and stochastic gradient decent (SGD) cannot be directly applied to these
networks since weights cannot be updated in small increments. As an alternative, early works
with binary values used variations of Bayesian inference. More recently [18] applies a similar method,
Expectation Backpropagation, to train deep networks with binary values.

Courbariaux et al. claim to be the first to train a DNN from start to finish using binary weights
and BP with their BinaryConnect method [19]. They use real valued weights which are binarized
before being using by the network. During backpropagation, the gradient is applied to the real valued
weights using the Straight-Through Estimator (STE) which is explained in Section 4.1.

While binary values are used for the weights, Courbariaux et al. retain full precision activations
in BinaryConnect. This eliminates the need for full precision multiplications, but still requires full
precision accumulations. BinaryConnect is named in reference to DropConnect [20], but connections
are binarized instead of being dropped.

These early works in binary neural networks are certainly binary in a general sense. However,
this paper defines BNNs as networks that use binary values for both weights and activations allowing
for bitwise operations instead of multiply-accumulate operations. Soudry et al. was one of the first
research groups to focus on DNNs with binary weights and activations [18]. They use Bayesian
learning to get around the problems of learning with binary values [18]. However, Courbariaux et al.
are able to use binary weights and activations during training with backpropagation techniques and
take advantage of bitwise operations [1,21]. Their BNN method is the basis for most binary networks
that have come since (with some notable exceptions in [22,23]).

Electronics 2019, 8, 661 4 of 25

4. An Introduction to BNNs

Courbariaux et al. [1,21] develop the BNN methodology that is used by most network binarization
techniques since. In this section we will review the functionality of this original BNN methodology.
Other specific details from [1,21] will be reviewed in Section 5.1.

In BNNs, both the weights and activations are binarized. This reduces the memory requirement
for BNNs and the computational complexity through the use of bitwise operations.

4.1. Binarization of Weights

Courbariaux et al. first provide a way to train using binary weights in [19] using backpropagation
with a gradient decent based method (SGD, Adam, etc.). Using binary values during training provides
a more representative loss to train against instead of only binarizing a network once training is
complete. Computing the gradient of the loss w.r.t binary weights through backpropagation is not a
problem. However, updates to the weights using gradient decent methods (SGD, Adam, etc.) prove
impossible with binary weights. Gradient decent methods make small changes to the value of the
weights, which cannot be done with binary values.

In order to solve this problem, Courbariaux et al. keep a set of real valued weights, WR, which are
binarized within the network to obtain binary weights, WB. WR can then be updated through backprop
and the incremental updates gradient decent. During inference, WR is not needed and the binary
weights are the only weights that are stored and used. Binarization is done using a simple sign function

WB = sign(WR) (1)

resulting in a tensor with values of +1 and −1.
Calculating the gradient of the loss w.r.t. the real valued directly weights is meaningless due to the

sign function used in binarization. The gradient of the sign function is 0 or undefined at every point.
To get around this problem, Courbariaux et al. use a heuristic called the straight through estimator
(STE) [24]. This method approximates a gradient by bypassing the gradient of the layer in question.
The problematic gradient is simply turned into an identity function

∂L
∂WR

=
∂L

∂WB
(2)

where L is the loss at the output. This gradient approximation is used to update the real valued weights.
This binarization is sometimes thought of as a layer unto itself. The weights are passed through

a binarization layer that evaluates the sign of the values in the forward pass and performs an identity
function during the backwards pass, as illustrated in Figure 1.

Figure 1. A visualization of the sign layer and Straight-Through Estimator (STE). While the real values
of the weights are processed by the sign function in the forward pass, the gradient of the binary weights
are simply passed through to the real valued weights.

Using the STE, the real valued weights can be updated with an optimization strategy, like SDG or
Adam. Since the gradient updates can affect the real valued weights WR without changing the binary

Electronics 2019, 8, 661 5 of 25

values WB, if values in WR are not bounded, they can accumulate to very large numbers. For example,
if during a large portion of training a positive value of WR is evaluated to have a positive gradient,
every update will increase that value. This can create large values in WR. For this reason, BNNs clip
the values of WR between −1 and +1. This keeps the values of WR closer to WB.

4.2. Binarization of Activations

Binarization of the activation values was introduced in the first BNN paper by
Courbariaux et al. [1]. In order to binarize the activations, they are passed through a sign function
using a STE in the backwards pass, similar to how the weights are binarized. This sign function serves
as the activation function in the network. In order to obtain good results, Courbariaux et al. find
that they need to cancel out the gradient in the backwards pass if the input to the activation was too
large, using

∂L
∂aR

=
∂L
∂aB
∗ 1|aR |≤1 (3)

where aR is the real valued input to the activation function and aB is the binarized output of the
activation function. 1|aR |≤1 is the indicator function that evaluates to 1 if |aR| ≤ 1 and 0 otherwise.
This zeros out the gradient if the input to the activation function is too large. This functionality can be
achieved by adding a hard tanh function before the sign activation function, but this layer would only
have any effect in the backwards pass and has no effect in the forward pass.

4.3. Bitwise Operations

When using binary values, the dot product between weights and activations can be reduced to
bitwise operations. The binary values can either be −1 or +1. These signed binary values are encoded
with a 0 for −1 and a 1 for +1. To be clear, we refer to the signed values −1 and +1 as binary “values”
and their encodings, 0 and 1, as binary “encodings”.

Using an XNOR logical operation on the binary encodings is equivalent to performing
multiplication on the binary values as seen in Table 1.

Table 1. This table shows how the XNOR operation of the endorsing can be equivalent to multiplications
of the binary values, in parenthesis.

Encoding (Value) XNOR (Multiply)

0 (−1) 0 (−1) 1 (+1)
0 (−1) 1 (+1) 0 (−1)
1 (+1) 0 (−1) 0 (−1)
1 (+1) 1 (+1) 1 (+1)

A dot product requires an accumulation of all the products between values. XNOR can perform
the multiplication on a bitwise level, but performing the accumulation requires a summation of the
results of the XNOR operation. Using the binary encodings resulting from the XNOR operation,
this can be done by counting the number of 1 bits in a group of XNOR products, multiplying this value
by 2 and subtracting the total number of bits producing an integer value. Processor instruction sets
often include a popcount instruction to count the number of ones in a binary value.

These bitwise operations are much simpler to compute than multi-bit floating-point or fixed-point
multiplication and accumulation. This can lead to faster execution times and/or less hardware
resources required. However, theorizing efficiency speedups is not always straightforward.

For example, when looking at the execution time of a CPU, some papers that we reviewed here
use the number of instructions as a measure of execution time. The 64-bit x86 instruction set allows
a CPU to perform a bitwise XNOR operation between two 64-bit registers. This operation takes
a single instruction. With a similar 64 bit CPU architecture, two 32-bit floating point multiplications
could be performed. One could conclude that the bitwise operations would have a 32× speed up

Electronics 2019, 8, 661 6 of 25

over the floating point operations. However, number of instructions is not a measure of execution
time. Each instruction can take a variable amount of clock cycles to execute. Instruction and resource
scheduling within a modern CPU core is dynamic and the number of cycles to produce an instructions
result depends on other instruction that have come before. CPUs and GPUs are optimized for different
types of instruction profiles. Instead of using the number of instruction as a measure of efficiency,
it is better to look at the actual execution times. Courbariaux et al. [1] observe a 23× speed up when
optimizing their code for bitwise operations.

Not only do bitwise operations offer faster execution times in software based implementations,
BNNs also require less hardware requirements in digital designs.

4.4. Batch Normalization

Batch normalization (BN) layers are common practice in deep learning. They condition the values
within a network for faster training and act as a form of regularization. In BNNs, they are considered
essential. BN layers not only condition the values used during training, but they contain gain and bias
terms which are learned by the network. These learned terms help add complexity to BNN which can
suffer without them. The efficiency of BN layers is discussed in Section 6.7.

4.5. Accuracy

While BNNs are compact and efficient compared to their full precision counter-parts, they suffer
degradation in accuracy. The original BNN proposed in [1] suffers a 3% loss in accuracy on the
CIFAR-10 dataset and did not show comparable results on the larger ImageNet dataset. However,
with improvement from other authors and modifications to the BNN methodology, more recent BNNs
have achieve comparable results on the ImageNet data set, showing a decrease in accuracy of 3.1% on
top-5 accuracy and 6.0% on the top-1 accuracy [25].

4.6. Robustness to Attacks

Full precision DNNs have been shown to be susceptible to adversarial attacks [26,27].
Small perturbations to an input can cause gross classification in a classifier network. This is especially
true of convolutional networks where input images can be altered in way which are imperceptible to
humans, but cause extreme failure in the network.

BNNs, however, have show robustness to this problem [28,29]. Small changes in the input
image have less of an effect on the network activations since discrete values are used. Adversarial
perturbations are generally computing using gradient methods, which, as discussed above, are not
directly commutable in BNNs.

5. Major BNN Developments

While there has been much work done on BNNs and how to improve their accuracy, a handful of
works have put forth key ideas that significantly expound upon original methodology of BNNs [1].
Before discussing and comparing the literature of BNNs as a whole, we wish to step though each
of these selected works and look at the contributions of each work. These works are either highly
referenced by BNN literature, directly compared to in much of the BNN literature, and/or made
significant changes to the BNN methodology. For this reason we feel it is useful to examine them
individually. We recognize that this selection of works is somewhat subjective and works not included
in this section have made contributions as well. After reviewing each of these works in isolation,
we will examine the BNN literature as a whole for the remainder of this work, summarizing our
observations by topic rather than by publication.

Electronics 2019, 8, 661 7 of 25

5.1. The Original BNN

We already summarized the basics of the original proposed methodology for BNNs in Section 4.
Here we will review details specific to [1,21] that were not mentioned earlier. Courbariaux et al.
reported their method and results which includes details about their experiments on the MNIST,
SVHN and CIFAR-10 experiments in [1]. In their other paper [21] they did not include all of the details
of these three experiments, but did include their preliminary results on the ImageNet dataset.

While most of the binarization done with BNNs is deterministic using the simple sign function,
Courbariaux et al. discuss stochastic binarization, which can lead to better results than their BNN
model [1] and their earlier BinaryConnect Model [19]. Stochastic binarization binarizes values using
a probability distribution that favors binarizing to −1 when the value is closer to −1 and binarizing
to +1 when the value is closer to +1. This helps regularize the training of the network and produces
better test results. However, working and producing probabilities for every binarization requires more
complex computation compared to deterministic binarization. Deterministic binarization is used in
almost all of the literature on BNNs.

Aside from the methodology presented in Section 4, Courbariaux et al. give details for optimizing
the learning process of BNNs. They point on that training a BNN takes longer than traditional DNNs
due to the STE heuristic needed to approximate the gradient of the real valued weights. To speed this
process, they make modifications to the BN layer and the optimizer. For both of these they use a shift
based method, shifting all of the bits to the left or right, which is an efficient way of multiplying or
dividing a value by two. While this can speed up training time, the majority of publications on BNNs
do not focus on optimization during training time in favor of test accuracy and speed at inference.

The specific topologies used for the MNIST, SVHN and CIFAR-10 datasets are reused by many of
the papers that follow [1,21]. Instead of processing the MNIST dataset with convolutions they used
3 fully connected (FC) layers with 4096 nodes in the hidden layers. For the SVHN and CIFAR-10
datasets, they use a VGG-like topology with two 128-channel convolutional layers, two 256-channel
convolutional layers, two 512-channel convolutional layers and three fully connected layers with
1024 channels for the first two. This topology has been replicated by many works based on BNNs.
BNN topology is discussed in detail in Section 7.2.

While [1] does not include results on experiments using ImageNet, [21] does provide some details
on how the earliest BNN results for ImageNet. AlexNet and GoogleNet were both used, replacing
their FC convolutional layers with binary versions. While these models do not perform very well
during testing, it is a starting place that other works have built off of.

Courbariaux et al. point out that the bitwise operations of BNNs are not efficiently run on
standard deep learning or frameworks without additional coaxing. They build and provide a custom
GPU kernel which runs efficient bitwise operations. They demonstrate the benefits of their technique
showing a 7× speed up on the MNIST dataset.

A follow on paper, [30], provides responses to the next works reviewed below, applications for
LSTMs, and a generalization to other levels of quantization.

5.2. XNOR-Net

Soon after the original work on BNNs [21], Rastegari et al. proposed a similar model called
XNOR-Net [31]. XNOR-Net was proposed to perform well on the ImageNet dataset. XNOR-Net
includes all of the major methods from the original BNN, but adds a gain term to compensate for lost
information during binarization. This gain term is extracted from the statistics of the weights and
activations before binarization.

A pair of gain terms is computed for every dot product in the convolutional layer. The L1-norm
of both the weights and activations are multiplied together to obtain this gain term. This gain term
does improve the performance of BNNs as shown by their results, however their results may be a bit
misleading. Their own results were not reproducible in [11] and do not match the results reported by
Courbariaux et al. [21] or others [11,32].

Electronics 2019, 8, 661 8 of 25

The gain term introduced by XNOR-Net seems to improve its performance, but it does come at
a cost. Rastegari et al. report a theoretical speed up of 64× over traditional DNNs. This comes
from a simple calculation that 1-bit operations should be 64× faster than 64-bit floating point
operations. While this is not accurate, as described in Section 4.3, they do not take into consideration
the computations required to calculate the gain term. XNOR-Net must calculate L1-norms for all
convolutions during training and inference. The rest of the works presented in this section make
mention of this. While a gain term is helpful in improving the accuracy of BNNs, the manner in which
XNOR-Net computes gain terms is costly.

Rastegari et al. point out that by placing the pooling layer after the dot product layer (FC or
convolutional layer) rather than after the activation layer, training is improved. This allows the max
pool layer to look at the signed integer values out of the dot product instead of the the binary values
out of the activation. A max pool of binary values would have no information about the magnitude of
the inputs to the activation, thus the gradient is passed to all activations with a +1 value rather than
the largest one before binarization.

5.3. DoReFa-Net

Zhou et al. try to generalize quantization and take advantage of bitwise operations for fixed point
data with widths of various sizes [11]. They introduce DoReFa-Net, a model with a variable width
size for weights, activations and even gradient calculations during backpropagation. Zhou et al. put
an emphasis on speeding up training time instead of just inference.

DoReFa-Net claims to utilize bitwise operations by breaking down dot products of fixed-point
values into multiple dot products of binary values. However, the complexity of their bitwise operations
is O(n2) where n is the width of the data used, which is not better than fixed point dot products.

Zhou et al. point out the inefficiencies of XNOR-Net’s method for calculating a gain term.
DoReFa-Net does not do dynamic calculation of a gain term using the L1-norm of both activations and
weights. Instead, the gain term is only based on the weights of the network. This allows for efficient
inference since the weights and gain terms do not change after training.

The topology of DoReFa-Net is used throughout the BNN literature which is explained in
Section 8.2.

5.4. Tang et al.

Tang et al. [33] present multiple ideas for BNNs that are used by others. They do not present
a new topology but binarize AlexNet and focus on classification accuracy on the ImageNet dataset.

In order to speed up training, Tang et al. study how the learning rate affects the rate of
improvement in the network and how it affects the rate at which binary value oscillate between
−1 and +1. For a given learning rate, the sign of the weights in a BNN oscillates much more frequently
than in a full-precision network. The number of sign changes in a BNN is orders of magnitude more
than in a traditional network. Tang et al. show better training in BNN when small learning rates
are used.

Tang et al. take advantage of a gain term in their network and point out the inefficient manner in
which XNOR-Net uses a gain term. They propose to use a learned scaling factor by using a PReLU
layer in their network. As opposed to a the ReLU layer which zeros out negative inputs, PReLU
learns a positive gain term to apply to the negative input values.This gain is applied indirectly within
the PReLU.

Tang et al. notice the bulky nature of the FC layers used in previous BNN implementations.
FC layers perform much larger dot products than convolutional layer. In a convolutional layer,
many small dot products are calculated. FC layers perform a single large dot product which is much
larger than those used in convolutional layers. In BNNs, whole values (−1 and +1) are used instead of
the fractional values seen in traditional DNNs. Tang et al. point out that this can lead to a large range

Electronics 2019, 8, 661 9 of 25

of possible values for the final FC layer, which does not play nicely with the softmax function used
in classification.

Previous works get around this by leaving the final layer at full precision instead of binarizing it.
Tang et al. binarize the last layer and introduce a learned gain term at every neuron. With a binarized
last layer, the BNN becomes much more compact since most of the models parameters lie in the
FC layers.

In order to help generalization, Tang et al. emphasize the importance of a regularizer. This is the
first instance of a regularizer used during the training of a BNN that we could find. They also use
multiple bases for binarization which is discussed in Section 6.2.

5.5. ABC-Net

The ABC-Net model is introduced in [25] by Lin et al. ABC-Net tries to reconcile the accuracy
gap between BNNs and full precision networks. ABC-Net generalizes some of multi-bit ideas in
DoReFa-Net and the gain terms learned by the network in [33].

ABC-Net binarizes activations and weights in to multiple bases. For weights, the binarization
function is given by

Bw
i = sign(Ŵ + uistd(W)) (4)

where W is the set of weights being binarized, Ŵ = W−mean(W), std(W) is the standard deviation of
W and ui is a learned term. A set of Bi binarizations are produced according to the learned parameters
ui. This binarization function centers the weights W around zero and produces different binarizations
according to different threshold biases (uistd(W)).

These binarized linear bases can be used in bitwise dot products with the activations. The results
are then combined in a linear combination with learned gain terms. This technique is reminiscent of
the multi-bit method proposed in DoReFa net, but instead of using the slices from the powers of two,
bases are based on learned bias that act as thresholds. This requires more calculations, but offers better
accuracy than DoReFa-Net for the number of bitwise operations used. It also uses learned gain terms
in the linear combination of the bases which is a more general use of a gain term than just in a PReLU
layer like Tang et al. [33].

The binarization of the weights is aided by calculating the mean and standard deviation of the
weights. Once the weights are learned, there is no need to calculate the mean and standard deviation
again during inference. If the same method were used on the activations, the network would suffer
from a similar problem as XNOR-Net where these values would need to be calculated again during
inference. Instead, ABC-Net makes multiple binarized bases for the activations using a learned
threshold bias without the aid of the mean or standard deviation with

BA
i = sign(A + ui) (5)

where BA
i is the binarized base for the set of activations A and ui is learned threshold bias. A gain term

is learned which is associated with each activation base.
Each binary activation base can be combined with each binary weight base in a dot product.

ABC-Net takes advantage of efficient gain terms and multiple biases, but the computation cost is
higher for each base that is added.

The ABC-Net method is applied to various sizes of ResNet topologies and shows only a 3.3%
drop in top-5 accuracy on ImageNet compared to full 32-bit precision when using 5 bases for both
activations and weights.

Electronics 2019, 8, 661 10 of 25

5.6. BNN+

Darabi et al. extend some of the core principles of the original BNN by looking at alternatives to
the STE used by all previous BNNs. The STE simply uses an identity function for the backpropagation
of the gradient though the signed activation layer. Combining this with the need to kill gradients of
large activations (see Section 4.2), the backpropagation of gradients through sign activation function
can be viewed as an impulse function which clips the gradient if the activation has an absolute value
greater than 1.

The BNN+ methodology improves learning through a different effective backpropagation function
in place of the impulse function. Instead of the impulse function, a variation of the derivative of the
Swish-like activation (swish ref) is used:

dSSβ(x)
dx

=
β(2− βxtanh(βx

2))

1 + cosh(βx)
(6)

where β can be a hyperparameter set by the user or a learned parameter set by the network. Darabi et al.
state that this type of function allows for better training since it is differential instead of piece-wise at
−1 and +1.

Another focus of the BNN+ methodology is a regularization function that helps force the weights
towards −1 and +1. They compare two approaches, one that is based on the L-1 norm

R1(w) = |α− |w|| (7)

and another that is based on the L-2 norm.

R2(w) = (α− |w|)2 (8)

When α = 1 this regularizer is minimized when weights are closer to −1 and +1. The network is
allowed to learn this parameter.

In addition to these new techniques, BNN+ uses a gain term. It is notable that multiple bases are
not used. Compared to other single base techniques, BNN+ reports the best accuracies on ImageNet,
but does not perform quite as well as ABC-Net.

5.7. Comparison

Here we compare the methods reviewed in this section. Table 2 summarizes the accuracies of these
methods on the CIFAR-10 dataset. Table 3 compares accuracies on the ImageNet dataset. See Section 7
for further accuracy comparisons of BNNs. Table 4 compared the features of each method. The results
are listed in each table in chronological order of when they were published.

It is interesting to note that the results reported by Courbariaux et al. [1] on the CIFAR-10 dataset
for the original BNN method achieves the best performance. Most of the work since [1] has focused on
improving results on the ImageNet dataset.

Table 2. Comparison of accuracies on the CIFAR-10 dataset from works presented in this section.

Methodology Topology Accuracy (%)

Original BNN BNN 89.85
XNOR-Net BNN 89.83

BNN+ AlexNet 87.16
BNN+ DoReFa-Net 83.92

Electronics 2019, 8, 661 11 of 25

Table 3. Comparison of accuracies on the ImageNet dataset from works presented in this section.
Full precision network accuracies are included for comparison as well.

Methodology Topology Top-1 Accuracy (%) Top-5 Accuracy (%)

Original BNN AlexNet 41.8 67.1
Original BNN GoogleNet 47.1 69.1

XNOR-Net AlexNet 44.2 69.2
XNOR-Net ResNet18 51.2 73.2

DoReFa-Net AlexNet 43.6 -
Tang et al. 51.4 75.6
ABC-Net ResNet18 65.0 85.9
ABC-Net ResNet34 68.4 88.2
ABC-Net ResNet50 76.1 92.8

BNN+ AlexNet 46.11 75.70
BNN+ ResNet18 52.64 72.98

Full Precision AlexNet 57.1 80.2
Full Precision GoogleNet 71.3 90.0
Full Precision ResNet18 69.3 89.2
Full Precision ResNet34 73.3 91.3
Full Precision ResNet50 76.1 92.8

Table 4. A table of major details of the methods presented in this section. Activation refers to which
kind of activation function is used. Gain describes how gain terms were added to the network.
Multiplicity refers to how many binary convolutions were performed in parallel in place of full
precision convolution layers. The regularization column indicates which kind of regularization was
used, if any.

Methodology Activation Gain Multiplicity Regularization

Original BNN Sign Function None 1 None
XNOR-Net Sign Function Statistical 1 None

DoReFa-Net Sign Function Learned Param. 1 None
Tang et al. PReLU Inside PReLU 2 L2
ABC-Net Sign w/Thresh. Learned Param. 5 None

BNN+ Sign w/SSt for STE Learned Param. 1 L1 and L2

6. Improving BNNs

Several techniques for improving the accuracy of BNN were reviewed throughout the last section.
We will now cover each technique individually.

6.1. Scaling with a Gain Term

Binarization only allows information about the sign of inputs to be passed to the next layers in
the network while information about the magnitude of the input is lost. The resulting values are either
−1 or +1. This allows for efficient computation using bitwise dot product operations at a cost of lost
information in the network. Gain terms can be used after the bitwise dot products have occurred to
give the output a sense of magnitude. Many works on BNN point out that this allows for a binarization
with values of −γ and +γ, where γ is the gain term. This lends the network more complexity if used
correctly. If −γ and +γ are fed directly into another sign activation function centered at 0, the gain
term would have no effect since sign(+/− γ) = sign(+/− 1). BNNs with BN layers can avoid this
pitfall since a bias term is built in. See Section 6.7 for more details on the combination of BN and the
sign activation function.

Gain terms can be used to give more capacity to a network when multiple gain terms are used
within a dot product or to form a linear combination of parallel dot products. Instead of simply
changing the values used in the binarization from +1 and −1 to +γ and −γ, different weights can be
added to elements within the binary dot product to make it act more like a full precision dot product.

Electronics 2019, 8, 661 12 of 25

This is what is done with XNOR-Net [31]. XNOR-Net uses magnitude information to form a gain term
for both the weights and activations. Every “pixel” in a tensor of feature maps has its own gain term
based on the magnitude of all the channels at that “pixel”. Every “kernel” also has its own gain term.
However, as detailed in Section 5.2 this is not very efficient. A full precision convolution is required
since the gain of every “pixel” acts as full precision weight.

Instead of using gain terms within the dot products like XNOR-Net, other works use gains to
perform a linear combination between parallel dot products. Some network use gains terms that are
extracted from the statistics of the inputs [11,33], and other learn these gain terms [25,34]. The idea of
parallel binary dot products that are combined in a linear combination is often referred to as multiple
bases, which is covered in the next section.

6.2. Using Multiple Bases

Multiple binarizations of a single set of inputs have been used to help with the loss of information
during binarization in BNNs. These multiple binarizations can be seen as bases that can be combined
to form a result with more information. Efficient dot products can still be used in computing outputs,
but extra computations are needed to combine the multiple bases together.

DoReFa-Net [11] breaks inputs into bases where each base corresponds to a power of two. There is
one binary base for each power of two needed to represent the data being binarized. The number of
bases needs to match the number of fixed point bits of precision in the input. DoReFa-Net uses less bits
of precision in the data used when less precision is desired. This lead to no loss in information compared
to the input and gives the appearance of more efficient computations. However, this technique does
not save any computations over regular fixed point multiplication and addition.

Another technique is to compute the residual error between a scaled binarization and its input,
then compute another scaled binarization based on that error. This type of binarization is known
residual binarization. Tang et al. [33] both ReBNet [35] use residual binarizations (which should not
be confused with residual layers in DNNs). Compared to DoReFa-Net, the gain term for each base
is dependent on the magnitude of input value or residual. Information is lost, but the first bases
computed hold more information. This is a more efficient use of the bases than the straightforward
fixed-point base-two method of DoReFa-Net. Floating-point values can be used and are preferable
in such a scheme which is more suitable for GPUs and CPUs that are optimized for floating-point
computations. However, more computations are needed in order to calculate the residuals of the
binarization, a similar problem to XNOR-Net, but on a smaller scale since this is being done for
a handful of bases instead of every “pixel” in a feature map.

Using information from activations in order to compute multiple bases requires more
computations, as seen in [33,35]. ABC-Net [25] simply learns various bias terms for thresholding and
different gain terms for scaling bases when computing activations. By allowing the network to learn
these values instead of computing them directly, there is no extra computations required at inference
time. ABC-Net still uses magnitude information from the weights during training, but since weights
are set after training, constant values are used during inference.

6.3. Partial Binarization

Instead of binarizing the whole network, a couple of methods have been proposed to binarize on
the parts of the network that benefit the most from the compression and keep the most essential layers
at full precision. The original BNN method and most other BNNs do in fact use partial binarization
since the last layer is kept at a higher precision to achieve the results that they do. Tang et al. [33]
propose a method for overcoming this (see Section 5.4).

Other networks have embraced this idea, sacrificing efficiency and model compression for better
accuracy by increasing the number of full precision layers. TaiJiNet [33] divides the kernels of
a convolutional layer in two groups, more important kernels that will not be binarized and another

Electronics 2019, 8, 661 13 of 25

group of kernels that will be binarized. To determine which kernels are more important, TaiJiNet looks
at combinations of statistics using L1 and L2-norms, mean, standard deviation and variance.

Prabhu at al. [36] also explore the partial binarization. Instead of separating out individual kernels
in a convolutional layer, each layer is analyzed as a whole. Every layer in the network is given a score,
then clustering is done to find an appropriate threshold that will split low scores from high scores
deciding which layers will be binarized and which other ones will not.

Wang et al. [37] use partial binarization during the training for better accuracy. The network
is gradual binarized as the network is trained. The method goes against the original method of
Courbariaux et al. [1] where binarization during training was desired. However, Wang et al. argue
that introducing binarization gradually during training helps achieve better accuracy.

Partial binarization is well suited for software based systems where control is not dictated by
a hardware layout. Full binarization may not take full advantage of the available resources of a system
while full precision network may prove to be too difficult. Partial binarization can be customized to
a system, but requires the extra effort in selecting what parts to binarize. Partial binarization decision
would need to be application and system specific.

6.4. Learning Rate

It has been shown by experience that BNNs take longer to train than full precision networks.
While traditional DNNs can make small adjustments to their weights during optimization,
BNNs update real-valued weights that may or may not effect change in the output of the loss function.
These real valued weights can be thought of as quasi accumulators that hold a running total of the
gradient for each binary weight. It takes an accumulation of gradient steps to change the sign of the
real valued weight and thus change the binary weight.

In addition, most of the weights in BNNs converge to either positive or negative [34]. The binary
weights do not change even through backpropagation the optimizer dictates a step in that same
direction. Many of the gradients that are calculated never have any effect on the loss and never
improve the network. For these reasons Tang et al. suggest that a higher learning rate should be used
to speed up training [33].

6.5. Padding

In DNNs, convolutions are often padded with zeros to help make the topology and data flow more
uniform. This is standard practice for convolutional layers. With BNNs however, using a zero padding
adds a third value along with−1 and +1. Since there is no binary encoding for 0, the bitwise operations
are not compatable. We found that this is overlooked in many of the available software source code
provided by authors. Several works focusing in digital design and FPGAs ([38–40]) point out this
problem. Zhao et al. [38] experiment with the effects of just using +1 for padding. Fraser et al. [40]
use −1 for padding and report that it works just as well as zero padding. Guo et al. [39] explore
this problem in detail and claim that simple padding with either −1 or +1 hurts the accuracy of the
BNN. Instead they test an alternating padding where the border is padded with −1s and +1s at every
other location. This method improves accuracy, but only slightly. To help even further, they alternate
which value they begin the padding from one channel to the next. So at every location where a −1
for padding in odd numbered channels, a +1 is used in even numbered channels and vice versa.
This helps the BNN network achieve accuracy similar to a zero padded network.

6.6. More Binarization

The original BNN methodology is not completely binarized. As mentioned in Section 6.5,
the convolutional padding scheme used by the original open source BNN software implementation
uses zero padding which introduces 0 values into the network. This turns the network into a ternary
network instead of a binary network. Some hardware implementations get around this by not using

Electronics 2019, 8, 661 14 of 25

padding at all. The methods mentioned in Section 6.5 allows for complete use of bitwise operations
and padding leading to faster run times than with networks that involve 0 values.

Another part of most BNN models that are not completely binary are the first and last layers.
The FBNA [39] methodology focuses on making the BNN topology completely binary. This includes
binarizing the first layer. Instead of using the fixed precision values from the input data, they use
a scheme similar to DoReFa-Net [11] where a smaller bit width is used for the values and the small
bit-width values are split into multiple binarization without losing precision. Instead of using a base
for each power of two used to represent the data, they use as many bases as needed to be able to sum
binary values to get the original value. This seems to be a less efficient technique since n2 bases are
needed for n bit of precision.

Tang et al. [33] introduce a method for binarizing the final FC layer of a network, which is
traditionally left at a higher precision. They use a learnable channel-wise gain term within the dot
product to allow for manageable numbers instead of large whole values. Details are provided in
Section 5.4.

6.7. Batch Normalization and Activations as a Threshold

The costly calculation of the BN layer may seem to contradict the efficiency of the BNN
methodology. However, implementing a BN layer in the forward pass is arithmetically equivalent to
an integer threshold in BNNs. The BN layer computes

BN(x) =
x− µ√
σ2 + ε

∗ γ + β (9)

where x is the input, µ is the mean value of the batch, σ2 is the variance of the batch, ε is added for
numerical stability and γ and β are learned gain and bias terms. Since the activations simply calculates
sign(BN(y)),

sign(y) =

{
+1 x ≥ τ

−1 x < τ
(10)

where

τ =
−β
√

σ2 + ε

γ
+ µ (11)

This is only true if γ is positive. For negative valued γ, the same comparator would by used,
but x would be negated. Since integer values are produced by the dot product in a BNN, τ can be
rounded appropriately to an integer.

This method is very useful in digital designs where thresholding is much simpler than the explicit
arithmetic required for BN layers during training.

6.8. Layer Order

As pointed out in Section 5.2, BNNs can be better trained if the pooling layer is placed before
the BN/activation layer. However, in the forward pass, there is no difference in the order of these
particular layers. For this reason Umuroglu et al. [41] point out that execution is faster during inference
if the pooling layer comes after the activation. That way binary values can be used, eliminating the
need for comparisons in the max pooling layer. If any of the inputs is +1, the output is a +1. An OR
function can be used on the binary encodings within the network to achieve a max pooling.

7. Comparison of Accuracy

In this section we present a comparison of the accuracy of BNNs on a few different datasets.
The accuracies are associated with a specific publication and only include the authors self reported
accuracies, not accuracies other authors reported as a comparison.

Electronics 2019, 8, 661 15 of 25

7.1. Datasets

Four major datasets are used to test BNN. We include results for these four datasets. Various
publications exist for specialized applications of BNNs on specific datasets [18,42–50].

MNIST: A simple dataset of handwritten digits. The images are only 28× 28 pixel grayscale
images with 10 classes to classify. This data set is fairly easy, and FC layers are used to classify these
images instead of CNNs. Courbariaux et al. do this in their original work on BNNs [1] claiming that is
harder with FC layers and is a better test of the BNNs capabilities. The dataset contains 60,000 images
for training and 10,000 for testing.

SVHN: The Stree View House Numbers dataset. A dataset of photos of single digits (0–9) taken
from photos of house numbers. These color photos are centered on a single digit. The dataset contains
just under 100,000 32× 32 images classified into 10 classes.

CIFAR-10: A dataset of 60,000 32× 32 photos. Contains 10 different classes, 6 different animals
and 4 different vehicles.

ImageNet: Larger photographs of varying sizes. These images are usually resized to a common
size before processing. Contains images from 1000 different classes. ImageNet is a much larger and
more difficult dataset then the other three datasets mentioned. The most common version of this
dataset, from 2012, contains 1.2 million images for training and 150,000 images for validation.

7.2. Topologies

While BNN methods can be applied to any topology, many BNNs compared in the literature are
binarizations of common topologies. We list the topology of networks used as we compare methods.
Papers that did not specify which topology was used are denoted with NK in the topology column
throughout this paper. For topologies that were ambiguous, we provide as much detail as was provided
by the authors.

All the topologies compared in this section are feedforward topologies. They are either described
by their name if they are well established in the literature (like AlexNet or ResNet) or we describe
them layer by layer with our own notation.

Our notation is similar to other used in the literature. Layer of specified in the order. Three types
of layers can be specified: Convolutional layers, C; fully connected layers, FC; and max pooling layers,
MP. BN layers and activations are implied and are not listed. The number of output channels of a layer
is listed directly after the type of layer. For example FC1024 is a fully connected layer with 1024 output
channels. The number input channels can be determined by the output of the last layer or the size of
input image or number of activations produced by the last max pooling layer. All max pooling layers
have a receptor size of 2 × 2 pixels and stride of 2. Duplicates of layers also occur often. So we list the
multiplicity of layers before the type. So two convolutional layers with 256 output channels could be
listed as C256-C256, but we use 2C256 instead.

To better understand and compare the accuracies in this section, we provide a description of
the common topologies used by BNN that are not well known otherwise. We refer to these common
topologies in the comparison tables in this section.

We will refer to the topology of the convolutional BNN proposed by Courbariaux et al. [1] and used
on the SVHN and CIFAR-10 datasets as BNN. It is a variation of a VGG-11 topology with the following
structure: 2C128-MP-2C256-MP-2C512-MP-2FC1024-FC10 as seen in Figure 2. Other networks use this
same topology but reduce the number of channels by half. We denote these as 1/2 BNN.

We will refer to a common three layer MLP used as MLP with the following structure:
3FC1024-FC10. 4xMLP will denote a MLP with 4 times as many hidden channels (3FC4096-FC10).

Some works mention the DoReFa-Net topology. The original DoReFa-Net paper does not outline
any specific topology, but instead outlines a general methodology [34]. We suspect that papers that
claim to use the DoReFa-Net topology use a software implementation of DoReFa-Net like the one
included in Tensorpack for Tensorflow, which may be a binarization of a popular topology like AlexNet.
However, since we do not know for sure, we denote these entries as DoReFa-Net.

Electronics 2019, 8, 661 16 of 25

Figure 2. Topology of the original Binarized Neural Networks (BNN). Numbers listed denote the
number of output channels for the layer. Input channels are determined by the number of channels in
the input, usually 3, and the input size for the FC layers.

7.3. Table of Comparisons

Seven tables are included in this section to report the accuracies of different BNN methodologies
for the MNIST (Tables 5 and 6), SVHN (Tables 7 and 8), CIFAR (Tables 9 and 10) and ImageNet
(Table 11) datasets. We also report the accuracies of non-binary networks that are related, like partial
binarized networks and BinaryConnect, which preceded BNNs.

Table 5. BNN accuracies on the MNIST dataset. The accuracy reported for [51] was not explicitly stated
by the authors. This number was inferred from the figure provided.

Source Accuracy (%) Topology

[52] 95.7 FC200-3FC100-FC10
[1] 96.0 MLP
[51] 97 NK
[53] 97.0 LeNet
[54] 97.69 MLP
[55] 97.86 ConvPool-2
[35] 98.25 1/4 MLP
[41] 98.4 MLP
[56] 98.40 MLP
[57] 98.6 NK
[58] 98.67 MLP
[59] 98.77 FC784-3FC512-FC10

Electronics 2019, 8, 661 17 of 25

Table 6. Accuracies on the MNIST dataset of non-binary networks related to works reviewed.

Source Accuracy (%) Topology Precision

[14] 95.15 NK Ternary values
[60] 96.9 NK 8-bit values
[60] 97.2 NK 12-bit values
[58] 98.53 MLP 2-bits values
[19] 98.71 BinaryConnect deterministic 32-bit float activations
[54] 98.74 MLP 32-bit float
[19] 98.82 BinaryConnect stochastic 32-bit float activations
[12] 99.1 NK Ternary values

Table 7. BNN accuracies on the SVHN dataset.

Source Accuracy Topology

[54] 94.9 1/2 BNN
[41] 94.9 1/2 BNN
[39] 96.9 NK
[35] 97.00 C64-MP-2C128-MP-2C256-2FP512-FP10
[11] 97.1 DoReFa-Net
[1] 97.47 1/2 BNN

Table 8. Accuracies on the SVHN dataset of non-binary networks related to works reviewed.

Source Accuracy (%) Topology Precision

[15] 97.60 1/2 BNN Ternary weights
[15] 97.70 BNN Ternary weights
[19] 97.70 BinaryConnect—deterministic 32-bit float activations
[19] 97.85 BinaryConnect—stochastic 32-bit float activations

Table 9. BNN accuracies on the CIAFR-10 dataset.

Source Accuracy (%) Topology Disambiguation

[61] 66.63 2 conv. and 2 FC
[40] 79.1 1/4 BNN
[41] 80.1 1/2 BNN
[54] 80.1 1/2 BNN
[13] 80.4 VGG16
[62] 81.8 VGG11
[57] 83.27 NK
[40] 88.3 BNN
[34] 83.52 DoReFa-Net R2 regularizer
[34] 83.92 DoReFa-Net R1 regularizer
[55] 84.3 NK
[40] 85.2 1/2 BNN
[63] 85.9 6 conv.
[53] 86.0 ResNet-18
[64] 86.05 9 256-ch conv.
[61] 86.06 5 conv. and 2 FC
[65] 86.78 NK
[35] 86.98 C64-MP-2C128-MP-2C256-2FC512-FC10
[51] 87 NK
[34] 87.16 AlexNet R1 regularizer
[34] 87.30 AlexNet R2 regularizer
[38] 87.73 BNN +1 padding
[32] 88 BNN 512 channels for FC
[38] 88.42 BNN 0 padding
[59] 88.47 6 conv.
[39] 88.61 NK
[1] 89.85 BNN

Electronics 2019, 8, 661 18 of 25

Table 10. Accuracies on the CIFAR-10 dataset of non-binary networks related to works reviewed.

Source Accuracy(%) Topology Precision

[13] 81.0 VGG16 Ternary values
[13] 82.9 VGG16 Ternary values
[15] 86.71 1/2 BNN Ternary values
[15] 89.39 BNN Ternary values
[19] 90.10 BinaryConnect—deterministic 32-bit float activations
[19] 91.73 BinaryConnect—stochastic 32-bit float activations

Table 11. BNN accuracies on the ImageNet dataset.

Source Top 1 Acc. (%) Top 5 Acc. (%) Topology Details

[21] 36.1 60.1 BNN AlexNet
[11] 40.1 Alexnet
[35] 41.43 Details in [35]
[30] 41.8 67.1 BNN AlexNet
[31] 44.2 69.2 AlexNet
[11] 43.6 Alexnet Pre-trained on full precision
[34] 45.62 70.13 AlexNet R2 reg
[34] 46.11 75.70 AlexNet R1 reg
[21] 47.1 69.1 BNN GoogleNet
[36] 48.2 71.9 AlexNet Partial binarization
[31] 51.2 73.2 ResNet18
[34] 52.64 72.98 ResNet-18 R1 reg
[34] 53.01 72.55 ResNet-18 R2 reg
[66] 54.8 77.7 ResNet-18 Partial binarization
[67] 55.8 78.7 AlexNet Partial binarization
[25] 65.0 85.9 ResNet-18 5 bases
[25] 68.4 88.2 ResNet-34 5 bases
[25] 70.1 89.7 ResNet-50 5 bases
[68] 75 VGG 16
[33] 75.6 51.4 AlexNet binarized last layer

8. Hardware Implementations

8.1. FPGA Implementations

FPGAs are a natrual platform for BNNs when performing inference. BNNs take advantage of
bitwise operations when performing dot products. While CPUs and GPUs are capable of performing
these operations, they are optimized for a range of tasks, especially integer and floating point
operations. FPGAs allow for custom data paths. They specifically allow for hardware architectures
optimized around the XNOR and popcount operations. FPGAs are generally low power platforms
compared to CPUs, and especially GPUs. They usually have smaller platforms than GPU.

8.2. Architectures

FPGA DNN architectures usually fall under one of two categories, streaming architectures and
layer accelerators. Steaming architectures have dedicated hardware for all or most of the layers in
a network. These types of architectures can be pipelined, where each stage in the architecture can
be processing different input samples. This usually offers a higher throughput, reasonable latency
and requires less memory bandwidth. They do require more resources since all layers of the network
need dedicated hardware. These type of architectures are especially well suited for video processing.
This style is the most commonly found throughout the literature.

Layer accelerators provide modules that can handle only a specific layer of a network.
These modules need to be able to handle every type, size and channel width of input that may
be required of it. Results are stored in memory to be fed back into the accelerator for the next layer

Electronics 2019, 8, 661 19 of 25

that will be processed. These types of architectures do not require as many resources as streaming
architectures, but have a much lower throughput. These types of architectures are well suited for
constrained resource designs where high throughput is not needed. The feedback nature of layer
processors also make them well suited for RNNs, as seen in [69].

FPGAs typically include digital signal processors (DSPs) and block memory (BARMs) built into
the logic fabric. DSPs can be vital in full precision DNN implementations on FPGAs where they can be
used to compute multi-bit dot products. In BNNs however, dot products are bitwise operations and
DPSs are not used as extensively. Nakahara et al. [70] show the effectiveness of in-fabric calculation in
BNNs over methods that use DSPs. BRAMs are used in BNNs to store activations, weights and other
parameters. They offer storage for sliding windows used in convolutions.

CPU-FPGA hybrid systems offer a CPU and FPGA connected in the same silicon. These systems
are widely used to implement DNNs and BNNs [35,38,39,41,54,61–63,68,71]. The CPU is flexible and
easily programmed to load inputs to the DNN. The FPGA can then be programmed to execute the
BNN architecture without extra logic for input and output processing.

8.3. High Level Synthesis

FPGAs can be difficult to program for those who do not have specialized training. To help
software programmers without experience with hardware design, tool flows have been designed
where programmers can write a program in a language like C++ which is then synthesized into
a FPGA hardware design. This type of work flow is called High Level Synthesis (HLS). HLS has been
a major component of the research done with BNNs on FPGAs [35,38–40,54,56,63,68,69,72].

Yaman Umuroglu et al., from the Xilinx Research Labs, provided a specific work flow designed
for training and implementing BNNs called FINN [41]. Training of a BNN is done with a deep learning
library. The trained model is then used by FINN to produce code for the BNN which it synthesizes
into a hardware design by Xilinx’s HLS tool. The FINN tool received an extension allowing it to work
with BNN topologies for LSTMs [69]. Xilinx Research labs also extended the capabilities of FINN by
allowing it to work with multi-bit quantized networks, not just with BNNs [54].

8.4. Comparison of FPGA Implementations

We provide a comparison of BNN implementations in FPGA platforms in Table 12. Details
regarding accuracies, topologies, FPGA usage and FPGA execution are given. Note that [35,63] were
the only works that reported significant DPS usage and DSP usage was left out of Table 12.

Table 12. Comparison of FPGA implementations. The accuracies reported from [68,70] were not
explicitly stated. These numbers were inferred from figures provided. The accuracy for [68] is assumed
to be a top-5 accuracy and the accuracy for [35] is assumed to top-1 accuracy, but this was never stated
by their respective authors. Datasets: MNIST = MN, SVHN = SV, CIFAR-10 = CI, ImageNet = IN.

Source Dataset Acc. Topology FPGA LUTs BRAMs Clk FPS Power
(%) (MHz) (W)

[54] MN 97.69 MLP Zynq7 020 25,358 220 100 2.5
[54] MN 97.69 MLP ZynqUltra 3EG 38,205 417 300 11.8
[35] MN 98.25 See Table 5 Spartan7 50 32,600 120 200
[41] MN 98.4 MLP Zynq7 045 82,988 396 1,561,000 22.6
[56] MN 98.40 MLP Kintex7 325T 40,000 110 100 10,000 12.22

[41] SV 94.9 1/2 BNN Zynq7 045 46,253 186 21,900 11.7
[39] SV 96.9 6 Conv/3 FC Zynq7 020 29,600 103 6451 3.2
[35] SV 97.00 See Table 7 Zynq7 020 53,200 280 200

Electronics 2019, 8, 661 20 of 25

Table 12. Cont.

Source Dataset Acc. Topology FPGA LUTs BRAMs Clk FPS Power
(%) (MHz) (W)

[61] CI 66.63 2 Convs/2 FC Zynq7 045 20,264
[70] CI 78 See Table 9 Vertex7 690T 20,352 372 450 15.44
[40] CI 79.1 1/4 BNN KintexUltra 115 35,818 144 125 12,000
[54] CI 80.10 1/2 BNN ZynqUltra 3EG 41,733 283 300 10.7
[54] CI 80.10 1/2 BNN Zynq7 020 25,700 242 100 2.25
[41] CI 80.1 1/2 BNN Zynq7 045 46,253 186 21,900 11.7
[62] CI 81.8 1/2 BNN Zynq7 020 14,509 32 143 420 2.3
[40] CI 85.2 1/2 BNN KintexUltra 115 93,755 386 125 12,000
[63] CI 85.9 See Table 9 Zynq7 020 23,426 135 143 930 2.4
[61] CI 86.06 5 Convs/2 FC Vertex7 980T 556,920 340 332,158
[35] CI 86.98 See Table 9 Zynq7 020 53,200 280 200
[38] CI 87.73 See Table 9 Zynq7 020 46,900 140 143 4.7
[40] CI 88.3 BNN KintexUltra 115 392,947 1814 125 12,000
[39] CI 88.61 6 Conv/3 FC Zynq7 020 29,600 103 520 3.3

[35] IN 41 See Table 11 VirtexUltra 095 1,075,200 3456 200
[68] IN 75 VGG 116 ZynqUltra 9EG 191,784 1367 150 31.48 22

8.5. ASICs

While FPGAs are well suited for processing BNNs and take advantage of their efficient bitwise
operations, custom silicon designs, or ASICs, have the potential to provide the ultimate power
and computational efficiency for any hardware design. FPGAs fabrics can be configured for BNN
topologies, but the physical layout of FPGAs never change. The fabric and resources are made to fit
a wide variety of applications. Hardware layout in ASIC designs can be changed to fit the specifications
for BNNs. Bitwise operations can be even more efficient in ASIC designs than they are in any other
platform [43,44,57,64,73–75]. ASIC designs can integrate image sensors [76] and other peripheral
elements into their design for fast processing and low latency access.

Nurvitadhi et al., from Intel’s Accelerator Architecture Lab, design a layer accelerator for
BNNs in an ASIC [73]. They compare the execution performance of the ASIC implementations with
implementations in an FPGA, CPU and GPU. They show that power can be significantly lower in
an ASIC while maintaining the fastest execution times.

Since BNNs require a large number of parameters, like most DNNs. A handful of ASIC
designs focus on in-memory computations [68,77–80]. Custom silicon also allows for the use of
mixed technologies and memory based designs in resistive RAM (RRAM). RRAM is an emerging
technology and is an appealing platform for BNN designs due to its compact operation at the bit
level [59,60,77,81,82].

9. Conclusions

BNNs can provide substantial model compression and inference speedups over traditional DNNs.
BNNs do not achieve the same accuracy as their full precision counterparts, but improvements have
been made to close this gap. BNNs appear to be better replacements for smaller networks rather than
larger ones, coming within 4.3% top-1 accuracy for the small ResNet18 but 6.0% top-1 accuracy on the
larger ResNet50.

The use of multiple bases, learned gain terms, learned bias terms, intelligent padding and
even partial binarization have helped to make BNNs accurate while still executing at high speeds
maintaining small sizes. These speeds have been accelerated even further as BNNs have been
implemented in FPGAs and ASICs. New tool flows like FINN have made programming BNNs
on FPGA accessible to more designers.

Author Contributions: Conceptualization, T.S. and D.-J.L.; Investigation, T.S.; Resources, D.-J.L.; Data Curation,
T.S.; Writing—Original Draft Preparation, T.S.; Writing—Review and Editing, T.S. and D.-J.L.; Visualization, T.S.;
Supervision, D.-J.L.; Project Administration, D.-J.L.; Funding Acquisition, D.-J.L.

Electronics 2019, 8, 661 21 of 25

Funding: This research was supported by the University Technology Acceleration Program (UTAG) of Utah
Science Technology and Research (USTAR) [#172085] of the State of Utah, U.S.A.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Courbariaux, M.; Bengio, Y. BinaryNet: Training Deep Neural Networks with Weights and Activations
Constrained to +1 or −1. arXiv 2016, arXiv:1602.02830.

2. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017,
arXiv:1704.04861.

3. Jaderberg, M.; Vedaldi, A.; Zisserman, A. Speeding up Convolutional Neural Networks with Low Rank
Expansions. arXiv 2014, arXiv:1405.3866.

4. Chen, Y.; Wang, N.; Zhang, Z. DarkRank: Accelerating Deep Metric Learning via Cross Sample
Similarities Transfer. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,
New Orleans, LA, USA, 2–7 February 2018.

5. Iandola, F.N.; Moskewicz, M.W.; Ashraf, K.; Han, S.; Dally, W.J.; Keutzer, K. SqueezeNet: AlexNet-level
accuracy with 50× fewer parameters and <1 MB model size. arXiv 2016, arXiv:1602.07360.

6. Hanson, S.J.; Pratt, L. Comparing Biases for Minimal Network Construction with Back-propagation.
In Advances in Neural Information Processing Systems 1; Morgan Kaufmann Publishers Inc.: San Francisco,
CA, USA, 1989; pp. 177–185.

7. Cun, Y.L.; Denker, J.S.; Solla, S.A. Optimal Brain Damage. In Advances in Neural Information Processing
Systems 2; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1990; pp. 598–605.

8. Han, S.; Mao, H.; Dally, W.J. Deep Compression: Compressing Deep Neural Network with Pruning, Trained
Quantization and Huffman Coding. arXiv 2015, arXiv:1510.00149.

9. Gupta, S.; Agrawal, A.; Gopalakrishnan, K.; Narayanan, P. Deep Learning with Limited Numerical Precision.
In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015.

10. Courbariaux, M.; Bengio, Y.; David, J.P. Training deep neural networks with low precision multiplications.
arXiv 2014, arXiv:1412.7024.

11. Zhou, S.; Ni, Z.; Zhou, X.; Wen, H.; Wu, Y.; Zou, Y. DoReFa-Net: Training Low Bitwidth Convolutional
Neural Networks with Low Bitwidth Gradients. arXiv 2016, arXiv:1606.06160.

12. Seo, J.; Yu, J.; Lee, J.; Choi, K. A new approach to binarizing neural networks. In Proceedings of the 2016
International SoC Design Conference (ISOCC), Jeju, Korea, 23–26 October 2016; pp. 77–78.

13. Yonekawa, H.; Sato, S.; Nakahara, H. A Ternary Weight Binary Input Convolutional Neural Network:
Realization on the Embedded Processor. In Proceedings of the 2018 IEEE 48th International Symposium on
Multiple-Valued Logic (ISMVL), Linz, Austria, 16–18 May 2018; pp. 174–179. [CrossRef]

14. Hwang, K.; Sung, W. Fixed-point feedforward deep neural network design using weights +1, 0, and
−1. In Proceedings of the 2014 IEEE Workshop on Signal Processing Systems (SiPS), Belfast, UK,
20–22 October 2014; pp. 1–6. [CrossRef]

15. Prost-Boucle, A.; Bourge, A.; Pétrot, F. High-Efficiency Convolutional Ternary Neural Networks with Custom
Adder Trees and Weight Compression. ACM Trans. Reconfigurable Technol. Syst. 2018, 11, 1–24. [CrossRef]

16. Saad, D.; Marom, E. Training feed forward nets with binary weights via a modified CHIR algorithm.
Complex Syst. 1990, 4, 573–586.

17. Baldassi, C.; Braunstein, A.; Brunel, N.; Zecchina, R. Efficient supervised learning in networks with binary
synapses. Proc. Natl. Acad. Sci. USA 2007, 104, 11079–11084. [CrossRef]

18. Soudry, D.; Hubara, I.; Meir, R. Expectation Backpropagation: Parameter-free training of multilayer neural
networks with real and discrete weights. Adv. Neural Inf. Process. Syst. 2014, 2, 963–971.

19. Courbariaux, M.; Bengio, Y.; David, J.P. BinaryConnect: Training Deep Neural Networks with binary
weights during propagations. In Proceedings of the Advances in Neural Information Processing Systems,
Montréal, QC, Canada, 7–10 December 2015; pp. 3123–3131.

20. Wan, L.; Zeiler, M.; Zhang, S.; Le, Y.; Cun, R.F. DropConnect. In Proceedings of the International Conference
on Machine Learning, Atlanta, GA, USA, 17–19 June 2013.

http://dx.doi.org/10.1109/ISMVL.2018.00038
http://dx.doi.org/10.1109/SiPS.2014.6986082
http://dx.doi.org/10.1145/3270764
http://dx.doi.org/10.1073/pnas.0700324104

Electronics 2019, 8, 661 22 of 25

21. Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized Neural Networks. In Proceedings
of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–8 December 2016; pp. 1–9.

22. Ding, R.; Liu, Z.; Shi, R.; Marculescu, D.; Blanton, R.S. LightNN. In Proceedings of the on Great Lakes
Symposium on VLSI 2017 (GLSVLSI), Banff, AB, Canada, 10–12 September 2017; ACM Press: New York,
NY, USA, 2017; pp. 35–40. [CrossRef]

23. Ding, R.; Liu, Z.; Blanton, R.D.S.; Marculescu, D. Lightening the Load with Highly Accurate Storage- and
Energy-Efficient LightNNs. ACM Trans. Reconfigurable Technol. Syst. 2018, 11, 1–24. [CrossRef]

24. Bengio, Y.; Léonard, N.; Courville, A. Estimating or Propagating Gradients Through Stochastic Neurons for
Conditional Computation. arXiv 2013, arXiv:1308.3432.

25. Lin, X.; Zhao, C.; Pan, W. Towards Accurate Binary Convolutional Neural Network. In Proceedings of the
Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–7 December 2017.

26. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.J.; Fergus, R. Intriguing properties
of neural networks. arXiv 2013, arXiv:1312.6199.

27. Moosavi-Dezfooli, S.; Fawzi, A.; Fawzi, O.; Frossard, P. Universal adversarial perturbations. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017.

28. Galloway, A.; Taylor, G.W.; Moussa, M. Attacking Binarized Neural Networks. arXiv 2017, arXiv:1711.00449.
29. Khalil, E.B.; Gupta, A.; Dilkina, B. Combinatorial Attacks on Binarized Neural Networks. arXiv 2018,

arXiv:1810.03538.
30. Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Quantized Neural Networks: Training

Neural Networks with Low Precision Weights and Activations. J. Mach. Learn. Res. 2017, 18, 6869–6898.
31. Rastegari, M.; Ordonez, V.; Redmon, J.; Farhadi, A. XNOR-Net: ImageNet Classification Using Binary

Convolutional Neural Networks. In Proceedings of the European Conference on Computer Vision,
Amsterdam, The Netherlands, 11–14 October 2016; pp. 525–542._32. [CrossRef]

32. Kanemura, A.; Sawada, H.; Wakisaka, T.; Hano, H. Experimental exploration of the performance of binary
networks. In Proceedings of the 2017 IEEE 2nd International Conference on Signal and Image Processing
(ICSIP), Singapore, 4–6 August 2017; pp. 451–455.

33. Tang, W.; Hua, G.; Wang, L. How to Train a Compact Binary Neural Network with High Accuracy?
In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, CA, USA,
4–9 February 2017.

34. Darabi, S.; Belbahri, M.; Courbariaux, M.; Nia, V.P. BNN+: Improved Binary Network Training.
In Proceedings of the Sixth International Conference on Learning Representations, Vancouver, BC, Canada,
29 April–3 May 2018; pp. 1–10.

35. Ghasemzadeh, M.; Samragh, M.; Koushanfar, F. ReBNet: Residual Binarized Neural Network. In Proceedings
of the 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), Boulder, CO, USA, 29 April–1 May 2018; pp. 57–64. [CrossRef]

36. Prabhu, A.; Batchu, V.; Gajawada, R.; Munagala, S.A.; Namboodiri, A. Hybrid Binary Networks: Optimizing
for Accuracy, Efficiency and Memory. In Proceedings of the 2018 IEEE Winter Conference on Applications
of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 821–829. [CrossRef]

37. Wang, H.; Xu, Y.; Ni, B.; Zhuang, L.; Xu, H. Flexible Network Binarization with Layer-Wise Priority.
In Proceedings of the 2018 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece,
7–10 October 2018; pp. 2346–2350. [CrossRef]

38. Zhao, R.; Song, W.; Zhang, W.; Xing, T.; Lin, J.H.; Srivastava, M.; Gupta, R.; Zhang, Z. Accelerating
Binarized Convolutional Neural Networks with Software-Programmable FPGAs. In Proceedings of the 2017
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays—FPGA, Monterey, CA, USA,
22–24 February 2017; ACM Press: New York, NY, USA, 2017; pp. 15–24. [CrossRef]

39. Guo, P.; Ma, H.; Chen, R.; Li, P.; Xie, S.; Wang, D. FBNA: A Fully Binarized Neural Network Accelerator.
In Proceedings of the 2018 28th International Conference on Field Programmable Logic and Applications
(FPL), Dublin, Ireland, 27–31 August 2018; pp. 51–513. [CrossRef]

40. Fraser, N.J.; Umuroglu, Y.; Gambardella, G.; Blott, M.; Leong, P.; Jahre, M.; Vissers, K. Scaling Binarized
Neural Networks on Reconfigurable Logic. In Proceedings of the 8th Workshop and 6th Workshop on
Parallel Programming and Run-Time Management Techniques for Many-core Architectures and Design Tools
and Architectures for Multicore Embedded Computing Platforms - PARMA-DITAM, Stockholm, Sweden,
25 January 2017; ACM Press: New York, NY, USA, 2017; pp. 25–30. [CrossRef]

http://dx.doi.org/10.1145/3060403.3060465
http://dx.doi.org/10.1145/3270689
http://dx.doi.org/10.1007/978-3-319-46493-0_32
http://dx.doi.org/10.1109/FCCM.2018.00018
http://dx.doi.org/10.1109/WACV.2018.00095
http://dx.doi.org/10.1109/ICIP.2018.8451576
http://dx.doi.org/10.1145/3020078.3021741
http://dx.doi.org/10.1109/FPL.2018.00016
http://dx.doi.org/10.1145/3029580.3029586

Electronics 2019, 8, 661 23 of 25

41. Umuroglu, Y.; Fraser, N.J.; Gambardella, G.; Blott, M.; Leong, P.; Jahre, M.; Vissers, K. FINN. In Proceedings
of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays—FPGA, Monterey,
CA, USA, 22–24 February 2017; ACM Press: New York, NY, USA, 2017; pp. 65–74. [CrossRef]

42. Song, D.; Yin, S.; Ouyang, P.; Liu, L.; Wei, S. Low Bits: Binary Neural Network for Vad and Wakeup.
In Proceedings of the 2018 5th International Conference on Information Science and Control Engineering
(ICISCE), Zhengzhou, China, 20–22 July 2018; pp. 306–311. [CrossRef]

43. Yin, S.; Ouyang, P.; Zheng, S.; Song, D.; Li, X.; Liu, L.; Wei, S. A 141 UW, 2.46 PJ/Neuron Binarized
Convolutional Neural Network Based Self-Learning Speech Recognition Processor in 28NM CMOS.
In Proceedings of the 2018 IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 18–22 June 2018;
pp. 139–140. [CrossRef]

44. Li, Y.; Liu, Z.; Liu, W.; Jiang, Y.; Wang, Y.; Goh, W.L.; Yu, H.; Ren, F. A 34-FPS 698-GOP/s/W Binarized
Deep Neural Network-based Natural Scene Text Interpretation Accelerator for Mobile Edge Computing.
IEEE Trans. Ind. Electron. 2018, 66, 7407–7416. [CrossRef]

45. Bulat, A.; Tzimiropoulos, G. Binarized Convolutional Landmark Localizers for Human Pose Estimation
and Face Alignment with Limited Resources. In Proceedings of the 2017 IEEE International Conference on
Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 3726–3734. [CrossRef]

46. Ma, C.; Guo, Y.; Lei, Y.; An, W. Binary Volumetric Convolutional Neural Networks for 3-D Object Recognition.
IEEE Trans. Instrum. Meas. 2019, 68, 38–48. [CrossRef]

47. Kim, M.; Smaragdis, P. Bitwise Neural Networks for Efficient Single-Channel Source Separation.
In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 701–705. [CrossRef]

48. Eccv, A. Efficient Super Resolution Using Binarized Neural Network. arXiv 2018, arXiv:1812.06378.
49. Bulat, A.; Tzimiropoulos, Y. Hierarchical binary CNNs for landmark localization with limited resources.

IEEE Trans. Pattern Anal. Mach. Intell. 2018. [CrossRef] [PubMed]
50. Say, B.; Sanner, S. Planning in factored state and action spaces with learned binarized neural network

transition models. In Proceedings of the IJCAI International Joint Conference on Artificial Intelligence,
Stockholm, Sweden, 13–19 July 2018; pp. 4815–4821.

51. Chi, C.C.; Jiang, J.H.R. Logic synthesis of binarized neural networks for efficient circuit implementation.
In Proceedings of the International Conference on Computer-Aided Design - ICCAD, San Diego, CA, USA,
5–8 November 2018; ACM Press: New York, NY, USA, 2018; pp. 1–7. [CrossRef]

52. Narodytska, N.; Ryzhyk, L.; Walsh, T. Verifying Properties of Binarized Deep Neural Networks.
In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA,
2–7 February 2018; pp. 6615–6624.

53. Yang, H.; Fritzsche, M.; Bartz, C.; Meinel, C. BMXNet: An Open-Source Binary Neural Network
Implementation Based on MXNet. In Proceedings of the 25th ACM international conference on Multimedia,
Mountain View, CA, USA, 23–27 October 2017.

54. Blott, M.; Preußer, T.B.; Fraser, N.J.; Gambardella, G.; O’brien, K.; Umuroglu, Y.; Leeser, M.; Vissers, K.
FINN-R: An End-to-End Deep-Learning Framework for Fast Exploration of Quantized Neural Networks.
ACM Trans. Reconfigurable Technol. Syst. 2018, 11, 1–23. [CrossRef]

55. McDanel, B.; Teerapittayanon, S.; Kung, H.T. Embedded Binarized Neural Networks. arXiv 2017,
arXiv:1709.02260.

56. Jokic, P.; Emery, S.; Benini, L. BinaryEye: A 20 kfps Streaming Camera System on FPGA with Real-Time
On-Device Image Recognition Using Binary Neural Networks. In Proceedings of the 2018 IEEE 13th
International Symposium on Industrial Embedded Systems (SIES), Graz, Austria, 6–8 June 2018; pp. 1–7.
[CrossRef]

57. Valavi, H.; Ramadge, P.J.; Nestler, E.; Verma, N. A Mixed-Signal Binarized Convolutional-Neural-Network
Accelerator Integrating Dense Weight Storage and Multiplication for Reduced Data Movement.
In Proceedings of the 2018 IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 18–22 June 2018;
pp. 141–142. [CrossRef]

58. Kim, M.; Smaragdis, P.; Edu, P.I. Bitwise Neural Networks. arXiv 2016, arXiv:1601.06071.
59. Sun, X.; Yin, S.; Peng, X.; Liu, R.; Seo, J.S.; Yu, S. XNOR-RRAM: A scalable and parallel resistive synaptic

architecture for binary neural networks. In Proceedings of the 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE), Dresden, Germany, 19–23 March 2018; pp. 1423–1428. [CrossRef]

http://dx.doi.org/10.1145/3020078.3021744
http://dx.doi.org/10.1109/ICISCE.2018.00071
http://dx.doi.org/10.1109/VLSIC.2018.8502309
http://dx.doi.org/10.1109/TIE.2018.2875643
http://dx.doi.org/10.1109/ICCV.2017.400
http://dx.doi.org/10.1109/TIM.2018.2840598
http://dx.doi.org/10.1109/ICASSP.2018.8461824
http://dx.doi.org/10.1109/TPAMI.2018.2866051
http://www.ncbi.nlm.nih.gov/pubmed/30136931
http://dx.doi.org/10.1145/3240765.3240822
http://dx.doi.org/10.1145/3242897
http://dx.doi.org/10.1109/SIES.2018.8442108
http://dx.doi.org/10.1109/VLSIC.2018.8502421
http://dx.doi.org/10.23919/DATE.2018.8342235

Electronics 2019, 8, 661 24 of 25

60. Yu, S.; Li, Z.; Chen, P.Y.; Wu, H.; Gao, B.; Wang, D.; Wu, W.; Qian, H. Binary neural network with 16 Mb
RRAM macro chip for classification and online training. In Proceedings of the 2016 IEEE International
Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 16.2.1–16.2.4. [CrossRef]

61. Zhou, Y.; Redkar, S.; Huang, X. Deep learning binary neural network on an FPGA. In Proceedings of the
2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA,
6–9 August 2017; pp. 281–284. [CrossRef]

62. Nakahara, H.; Fujii, T.; Sato, S. A fully connected layer elimination for a binarizec convolutional neural
network on an FPGA. In Proceedings of the 2017 27th International Conference on Field Programmable
Logic and Applications (FPL), Gent, Belgium, 4–6 September 2017; pp. 1–4. [CrossRef]

63. Yang, L.; He, Z.; Fan, D. A Fully Onchip Binarized Convolutional Neural Network FPGA Impelmentation
with Accurate Inference. In Proceedings of the International Symposium on Low Power Electronics and
Design, Washington, DC, USA, 23–25 July 2018; pp. 50:1–50:6. [CrossRef]

64. Bankman, D.; Yang, L.; Moons, B.; Verhelst, M.; Murmann, B. An Always-On 3.8 micro J/86% CIFAR-10
Mixed-Signal Binary CNN Processor With All Memory on Chip in 28-nm CMOS. IEEE J. Solid-State Circuits
2019, 54, 158–172. [CrossRef]

65. Rusci, M.; Rossi, D.; Flamand, E.; Gottardi, M.; Farella, E.; Benini, L. Always-ON visual node with
a hardware-software event-based binarized neural network inference engine. In Proceedings of the 15th
ACM International Conference on Computing Frontiers—CF, Ischia, Italy, 8–10 May 2018; ACM Press:
New York, NY, USA, 2018; pp. 314–319. [CrossRef]

66. Ding, R.; Liu, Z.; Blanton, R.D.S.; Marculescu, D. Quantized Deep Neural Networks for Energy Efficient
Hardware-based Inference. In Proceedings of the 23rd Asia and South Pacific Design Automation Conference,
Jeju, Korea, 22–25 January 2018; pp. 1–8.

67. Ling, Y.; Zhong, K.; Wu, Y.; Liu, D.; Ren, J.; Liu, R.; Duan, M.; Liu, W.; Liang, L. TaiJiNet: Towards Partial
Binarized Convolutional Neural Network for Embedded Systems. In Proceedings of the 2018 IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), Hong Kong, China, 8–11 July 2018; pp. 136–141. [CrossRef]

68. Yonekawa, H.; Nakahara, H. On-Chip Memory Based Binarized Convolutional Deep Neural Network
Applying Batch Normalization Free Technique on an FPGA. In Proceedings of the 2017 IEEE
International Parallel and Distributed Processing Symposium Workshops (IPDPSW), Orlando, FL USA,
29 May–2 June 2017; pp. 98–105. [CrossRef]

69. Rybalkin, V.; Pappalardo, A.; Ghaffar, M.M.; Gambardella, G.; Wehn, N.; Blott, M. FINN-L: Library Extensions
and Design Trade-Off Analysis for Variable Precision LSTM Networks on FPGAs. In Proceedings of the
2018 28th International Conference on Field Programmable Logic and Applications (FPL), Dublin, Ireland,
27–31 August 2018; pp. 89–897. [CrossRef]

70. Nakahara, H.; Yonekawa, H.; Sasao, T.; Iwamoto, H.; Motomura, M. A memory-based realization of
a binarized deep convolutional neural network. In Proceedings of the 2016 International Conference on
Field-Programmable Technology (FPT), Xi’an, China, 7–9 December 2016; pp. 277–280. [CrossRef]

71. Nakahara, H.; Yonekawa, H.; Fujii, T.; Sato, S. A Lightweight YOLOv2. In Proceedings of the 2018
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays—FPGA, Monterey, CA, USA,
25–27 February 2018; ACM Press: New York, NY, USA, 2018; pp. 31–40. [CrossRef]

72. Faraone, J.; Fraser, N.; Blott, M.; Leong, P.H.W. SYQ: Learning Symmetric Quantization For Efficient Deep
Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–22 June 2018. [CrossRef]

73. Nurvitadhi, E.; Sheffield, D.; Sim, J.; Mishra, A.; Venkatesh, G.; Marr, D. Accelerating Binarized Neural
Networks: Comparison of FPGA, CPU, GPU, and ASIC. In Proceedings of the 2016 International Conference
on Field-Programmable Technology (FPT), Xi’an, China, 7–9 December 2016; pp. 77–84. [CrossRef]

74. Jafari, A.; Hosseini, M.; Kulkarni, A.; Patel, C.; Mohsenin, T. BiNMAC. In Proceedings of the 2018 on Great
Lakes Symposium on VLSI - GLSVLSI, Chicago, IL, USA, 23–25 May 2018; ACM Press: New York, NY, USA,
2018; pp. 443–446. [CrossRef]

75. Bahou, A.A.; Karunaratne, G.; Andri, R.; Cavigelli, L.; Benini, L. XNORBIN: A 95 TOp/s/W hardware
accelerator for binary convolutional neural networks. In Proceedings of the 2018 IEEE Symposium in
Low-Power and High-Speed Chips (COOL CHIPS), Yokohama, Japan, 18–20 April 2018; pp. 1–3. [CrossRef]

http://dx.doi.org/10.1109/IEDM.2016.7838429
http://dx.doi.org/10.1109/MWSCAS.2017.8052915
http://dx.doi.org/10.23919/FPL.2017.8056771
http://dx.doi.org/10.1145/3218603.3218615
http://dx.doi.org/10.1109/JSSC.2018.2869150
http://dx.doi.org/10.1145/3203217.3204463
http://dx.doi.org/10.1109/ISVLSI.2018.00034
http://dx.doi.org/10.1109/IPDPSW.2017.95
http://dx.doi.org/10.1109/FPL.2018.00024
http://dx.doi.org/10.1109/FPT.2016.7929552
http://dx.doi.org/10.1145/3174243.3174266
http://dx.doi.org/10.1109/CVPR.2018.00452
http://dx.doi.org/10.1109/FPT.2016.7929192
http://dx.doi.org/10.1145/3194554.3194634
http://dx.doi.org/10.1109/CoolChips.2018.8373076

Electronics 2019, 8, 661 25 of 25

76. Rusci, M.; Cavigelli, L.; Benini, L. Design Automation for Binarized Neural Networks: A Quantum Leap
Opportunity? In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS),
Florence, Italy, 27–30 May 2018; pp. 1–5. [CrossRef]

77. Sun, X.; Liu, R.; Peng, X.; Yu, S. Computing-in-Memory with SRAM and RRAM for Binary Neural
Networks. In Proceedings of the 2018 14th IEEE International Conference on Solid-State and Integrated
Circuit Technology (ICSICT), Qingdao, China, 31 October–3 November 2018; pp. 1–4. [CrossRef]

78. Choi, W.; Jeong, K.; Choi, K.; Lee, K.; Park, J. Content addressable memory based binarized neural network
accelerator using time-domain signal processing. In Proceedings of the 55th Annual Design Automation
Conference on - DAC, San Francisco, CA, USA, 24–29 June 2018; ACM Press: New York, NY, USA, 2018;
pp. 1–6. [CrossRef]

79. Angizi, S.; Fan, D. IMC: Energy -Efficient In-Memory Concvolver for Accelerating Binarized Deep Neural
Networks. In Proceedings of the Neuromorphic Computing Symposium on - NCS, Knoxville, TN, USA,
17–19 July 2017; ACM Press: New York, NY, USA, 2017; pp. 1–8. [CrossRef]

80. Liu, R.; Peng, X.; Sun, X.; Khwa, W.S.; Si, X.; Chen, J.J.; Li, J.F.; Chang, M.F.; Yu, S. Parallelizing SRAM Arrays
with Customized Bit-Cell for Binary Neural Networks. In Proceedings of the 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), San Francisco, CA, USA, 24–28 June 2018; pp. 1–6. [CrossRef]

81. Zhou, Z.; Huang, P.; Xiang, Y.C.; Shen, W.S.; Zhao, Y.D.; Feng, Y.L.; Gao, B.; Wu, H.Q.; Qian, H.; Liu, L.F.; et al.
A new hardware implementation approach of BNNs based on nonlinear 2T2R synaptic cell. In Proceedings of
the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018;
pp. 20.7.1–20.7.4. [CrossRef]

82. Tang, T.; Xia, L.; Li, B.; Wang, Y.; Yang, H. Binary convolutional neural network on RRAM. In Proceedings
of the 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), Jeju Island, Korea,
16–19 January 2017; pp. 782–787. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ISCAS.2018.8351807
http://dx.doi.org/10.1109/ICSICT.2018.8565811
http://dx.doi.org/10.1145/3195970.3196014
http://dx.doi.org/10.1145/3183584.3183613
http://dx.doi.org/10.1109/DAC.2018.8465935
http://dx.doi.org/10.1109/IEDM.2018.8614642
http://dx.doi.org/10.1109/ASPDAC.2017.7858419
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Terminology
	Background
	Network Quantization Techniques
	Early Binarization

	An Introduction to BNNs
	Binarization of Weights
	Binarization of Activations
	Bitwise Operations
	Batch Normalization
	Accuracy
	Robustness to Attacks

	Major BNN Developments
	The Original BNN
	XNOR-Net
	DoReFa-Net
	Tang et al.
	ABC-Net
	BNN+
	Comparison

	Improving BNNs
	Scaling with a Gain Term
	Using Multiple Bases
	Partial Binarization
	Learning Rate
	Padding
	More Binarization
	Batch Normalization and Activations as a Threshold
	Layer Order

	Comparison of Accuracy
	Datasets
	Topologies
	Table of Comparisons

	Hardware Implementations
	FPGA Implementations
	Architectures
	High Level Synthesis
	Comparison of FPGA Implementations
	ASICs

	Conclusions
	References

