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Abstract—On-chip implementation of large-scale neural 
networks with emerging synaptic devices is attractive but 
challenging, primarily due to the pre-mature analog properties 
of today’s resistive memory technologies. This work aims to 
realize a large-scale neural network using today’s available 
binary RRAM devices for image recognition. We propose a 
methodology to binarize the neural network parameters with a 
goal of reducing the precision of weights and neurons to 1-bit 
for classification and <8-bit for online training. We 
experimentally demonstrate the binary neural network (BNN) 
on Tsinghua’s 16 Mb RRAM macro chip fabricated in 130 nm 
CMOS process. Even under finite bit yield and endurance 
cycles, the system performance on MNIST handwritten digit 
dataset achieves ~96.5% accuracy for both classification and 
online training, close to ~97% accuracy by the ideal software 
implementation. This work reports the largest scale of the 
synaptic arrays and achieved the highest accuracy so far.   

I. INTRODUCTION 
Recent advances in neuro-inspired learning algorithms have shown tremendous successes in the intelligent tasks such as image recognition when they are run on the powerful supercomputers (generally with GPU accelerators) [1]. However, the memory wall problem (the performance gap between on-chip processor and off-chip memory) in the von-Neumann architecture has become the bottleneck of executing learning algorithms with deep neural networks. For mobile applications, off-chip memory access incurs significant overhead of latency and energy consumption. Therefore, it is imperative to load the large-scale weight matrices of the neural networks on chip. In the CMOS ASIC design, SRAM is commonly used as the synaptic element [2]. However, SRAM cell occupies >200 F2 (F is the technology feature size), thus it is not area-efficient to fully load the large-scale weight matrices on chip using SRAM cells.  
Emerging non-volatile memories (NVMs) such as phase change memory (PCM) and resistive random access memory (RRAM) offer much higher integration density (4~6 F2), therefore they are competitive candidates for synaptic elements [3]. In the recent years, PCM [4] and RRAM [5-7] based “analog” synapses that exploit the multilevel states have been demonstrated at single device level. So far, there are a few experimental implementations of simple networks on small-scale (e.g. 12×12 TiOx/Al2O3 crossbar [8]) to medium-scale (e.g. 256×256 PCM array [9]). However, there are practical design challenges identified by the recent device-algorithm co-simulations for large-scale integration [10-11]: Although the neural networks are capable of tolerating the random effects 

such as device variations or noises to certain degree, the systematical effects, particularly the nonlinearity of weight update (the conductance vs. # of programming pulses), may greatly degrade the learning accuracy. Unfortunately, almost all the reported “analog” synapses [4-11] suffer from this nonlinear weight update. Further device engineering is needed to improve the linearity of weight update. Alternatively, we propose using the more mature digital RRAM as “binary” synapses.  
This work aims to binarize the multilayer neural network with back-propagation, namely the binary neural network (BNN), inspired by the recent trend of network pruning and parameter compression in the deep learning community [12]. The goal is to reduce the precision of both weight and neuron to 1-bit for classification and <8-bit for online training. To validate our proposal, we experimentally implemented the BNN on Tsinghua’s 16 Mb RRAM macro chip fabricated in 130 nm CMOS process. Even under finite bit yield and endurance cycles, the benchmarked system performance on MNIST handwritten digit dataset achieves ~96.5% accuracy that is closed to the floating-point software implementation (~97%).  

II. 16 MB RRAM MACRO CHIP 
A 16 Mb RRAM macro chip was designed by Tsinghua and 

fabricated in 130 nm CMOS process, and we used this chip for 
the demonstration of BNN. Fig. 1 shows the architectural 
organization of the 16 Mb chip, with 16 blocks and each block 
has two arrays (512×1024) sharing the sense amplifiers. The 
I/O width is 8-bit. The array core uses 1-transistor-1-resistor 
(1T1R) architecture. Fig. 2 shows the photo image of the 
fabricated die. The front-end fabrication (up to M4) was done 
in a commercial 200 mm CMOS foundry, and the back-end 
RRAM process was done in-house. The RRAM device 
structure is TaOx/HfO2 stack following our prior work [13] and 
it is monolithically integrated on top of the CMOS transistors 
between M4 and M5. Table 1 summarizes the design 
specifications of this prototype. The typical programming 
conditions are: SET: 2.7 V/50 ns; RESET: 2.6 V/50 ns. The 
measurement results show a bit-yield >99% of the 16 Mb 
macro. Fig. 3 shows the cycling endurance testing results up to 
~106 cycles. No verify technique was used in the endurance test. 
Certainly the yield and performance could be further optimized 
for digital memory application, this prototype is sufficient to 
implement the BNN. This is because that the neural networks 
are inherently resilient to the random effects (i.e. the bit error 
due to finite yield), and the most of the RRAM cells do not 
update very frequently in the training process when we binarize 
the weight representation.   
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III. BINARY NEURAL NETWORK FOR CLASSFICATION 
We used the 16 Mb RRAM macro to validate the proposed 

BNN. The multilayer perceptron algorithm with the sigmoid 
activation and back-propagation was used for the MNIST 
handwritten digit recognition (Fig. 4). We binarized the MNIST 
dataset to black and white and cropped the edges to be 20×20 
images (Fig. 5). The network has three layers: input layer of 400 
neurons corresponding to the 20×20 images, hidden layer of 
200 neurons, and output layer of 10 neurons corresponding to 
the 10 classes of digits. Therefore, it has two weight matrices 
(W1-2: 400×200, and W2-3: 200×10). For ideal software 
baseline, we trained the network with floating point (64-bit) on 
CPU and the recognition accuracy saturates ~97% after tens of 
training epochs (Fig. 6). One epoch is 60,000 training images. 
Recognition is done by another set of 10,000 testing images.  

For classification, we performed offline training in software 
after certain number of epochs, then we truncated the precision 
of weights/neurons to 1-bit for hardware implementation. Fig. 
7 shows the accuracy vs. the training epoch. The BNN with 
such 1-bit classification shows an accuracy ~96.5% that is close 
to the ideal software baseline. Then we loaded the pre-trained 
weight matrices (after 50 epochs) into one 512×1024 array of 
the 16 Mb RRAM macro. Because of the +/- weights in the 
BNN (+1, 0, -1), we used two columns to represent the weight 
by taking the differential output. Fig. 8 shows that we assigned 
two regions in one array: 400×400 for W1-2, and 200×20 for W2-
3. When we programmed the pre-trained matrices to the array, 
some of the bits could not be programmed to the desired states. 
Fig. 9 shows the experimentally measured pattern: the error bits 
that differ from the desired states are highlighted in the red 
color. Despite of the finite bit yield ~99%, the 1-bit 
classification can still achieve reasonably high accuracy 
~96.3%. We performed simulations of even worse yield in Fig. 
10, showing that the average accuracy can be >90% when the 
bit yield is only 90%. The redundant and massively parallel 
networks provide such resilience to random bit errors.  

IV. BINARY NEURAL NETWORK FOR ONLINE TRAINING 
 For online training when the weights are updated on the 

hardware during the run-time, the precision requirement is 
significantly higher than the classification. Fig. 11 shows the 
accuracy vs. precision of weights/neurons, indicating at least 6-
bit is needed. The reason is that the back-propagation passes the 
small training errors from the output layer to the input layer, if 
the precision is insufficient, such small errors will be skipped. 
In the next, we used 8 binary RRAM cells to represent 1-bit of 
the sign (+/-) and 7-bit of the weights from the most significant 
bit (MSB) to the least significant bit (LSB). Then 4 arrays of 
512×1024 are needed to implement the BNN for online 
training. The primary concern for online training is the 
RRAM’s endurance, as the weights are updated frequently. We 
tracked the weight update history in the online training process 
of 50 epochs. Fig. 12 and Fig. 13 shows the number of 
switching cycles of RRAM cells (sign, and from MSB to LSB) 
for W1-2, and W2-3, respectively. We can see that LSB updates 
more frequently than MSB, and W2-3 updates more frequently 
than W1-2. Nevertheless, most of the RRAM cells switch <104 

cycles. The simulation on BNN then fixes the RRAM states if 
one cell switches more than the endurance limit. Fig. 14 shows 
the accuracy vs. training epochs for different endurance limits. 
If endurance limit is low (e.g. 103 cycles), the peak of accuracy 
only achieves ~94.8% (see the zoom-in of that regime in Fig. 
15). More epochs beyond the endurance limits actually 
decreases the accuracy. Even with a moderate endurance limit 
~104 cycles, the BNN can still achieve high accuracy ~96.9%. 
The reduction of precision brings improvement on energy 
efficiency (by 42.7% from 12-bit to 8-bit) as shown in Table 2. 

V. CONCLUSIONS 
This work demonstrated the BNN on the 16 Mb RRAM 

macro chip, with a new record of the scale of synaptic array up 
to 512×1024. Even with low weight/neuron precision, the BNN 
achieves high learning accuracy (~96.5% for MNIST) under the 
non-perfect bit yield and endurance. The trade-offs of binary 
synapses vs. analog synapses are that binary synapses need a 
few more cells for online training (thus larger area and power) 
but they can avoid the nonlinear weight update problem in 
analog synapses, thus higher accuracy. The area of the neuro-
synaptic core is typically limited by the relatively large pitch of 
peripheral neuron circuits [11], thus a few more synaptic cells 
can be acceptable. The proposed BNN implementation is also 
applicable to the neuromorphic designs with other binary 
memories such as SRAM, PCM and even STT-MRAM. 
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Fig. 5 Samples of MNIST 
handwritten digit dataset 
binarized to black and white and 
cropped the edges to be 20×20 
pixels. The network has three 
layers: input layer of 400 
neurons, hidden layer of 200 
neurons, and output layer of 10 
neurons Therefore, it has two 
weight matrices (W1-2: 400×200, 
and W2-3: 200×10). 
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Fig. 1 The organization of Tsinghua’s 16 Mb RRAM 
macro. There are 16 blocks and each block has two 
arrays (512×1024) sharing the sense amplifiers. The 
I/O width is 8-bit. The array core uses 1-transistor-1-
resistor (1T1R) architecture.  

  
Fig. 2 The photo image of 16 Mb die. The 
front-end fabrication was done in a 
commercial CMOS foundry in 130 nm, and 
the back-end RRAM process was done in-
house.  
 

Capacity 16 Mb 
Tech Node 130 nm 
VDD_Digital 1.8 V 
VDD_Analog 5 V 
VWL_SET 2-5 V/ 50 ns 
VBL_SET 2-3 V/ 50 ns 

VWL_RESET 3.5-5 V/ 50 ns 
VSL_RESET 2-3 V/ 50 ns 
I/O Width 8 

Table 1 Design parameters for the 
prototype chip.  
 
The TaOx/HfO2 based RRAM device 
structure is monolithically integrated 
on top of the CMOS transistors 
between M4 and M5. The bit yield is 
measured to be >99%. 
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Fig. 4 The network topology of the multilayer perceptron 
algorithm with the sigmoid activation and back-
propagation. This work binarizes the weights and neurons 
into binary representation, namely binary neural network 
(BNN). For classification with offline training, the 
feedforward inference is reduced to 1-bit. For online 
training, both feedforward inference and back-
propagation is reduced to n-bit (n<8).

 
Fig. 7 Accuracy of the BNN with 1-bit 
weights and neurons for classification. 
Offline training is performed in software 
after certain number of epochs, then the 
precision is truncated to 1-bit. ~96.5% 
accuracy is achieved. 
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Fig. 6 Accuracy of the BNN implemented by 
software (64-bit floating point). The ideal 
baseline is ~97%. One epoch is 60,000 
training images. Recognition is done by 
another set of 10,000 testing images. 
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 Fig. 3 Experiments on RRAM cycling 
endurance. The set/reset programming pulses 
are repeated up to 106 cycles. No verify scheme 
is used.  

512×1024

400×400

200
×20/

W1-2

400 row 
from input 

images

/400 column 
weighted sum for 

hidden layer
Subtraction  & Acvtivation

/200 row 
inputs

/ 20 column 
weighted sum 

for output

W2-3

 
Fig. 8 Implementation of the BNN into one 
array of the 16 Mb macro. Because of the +/- 
weights in the BNN (+1, 0, -1), two columns are 
used to represent the weight by taking the 
differential output. Therefore, the size of the 
data pattern doubles: 400×400 for W1-2, and 
200×20 for W2-3. After the offline training, the 
pre-trained weight matrices (after 50 epochs) 
are loaded into two regions of one 512×1024 
array by one-time programming. 
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Fig. 10 Accuracy of the BNN with 1-bit 
classification under different RRAM bit yield. 
the average accuracy can be still >90% when 
the bit yield is only 90%. The network can 
tolerate the random bit error to certain degree.  
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Fig. 9 Experimental measured data pattern of the weights after one-time 
programming into the 16 Mb macro. The error bits (that differ from the desired 
state in the algorithm) are marked in red color. The yield of programming is ~99%. 

Fig. 11 Accuracy of the BNN with online 
training for different precision of weights 
and neurons. At least 6-bit is required.  
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Fig. 12 Distribution of the switching cycles 
of the bits in weight matrix (W1-2) during 
online training. LSB bits updates more 
frequently than MSB bits. Most cells update 
less than endurance limit (104 cycles). 
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Fig. 13 Distribution of the switching cycles 
of the bits in weight matrix (W2-3) during 
online training. W2-3 bits updates more 
frequently than W1-2 bits.  
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Fig. 14 Accuracy of the BNN with online 
training for different endurance limits. No 
degradation is observed if endurance >8,000 
cycles.  
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Fig. 15 Zoom-in of Fig. 14 to show the peak of 
the accuracy. Lower endurance results in less 
peak of accuracy. With 104 cycles, ~96.9% 
accuracy is achievable for online training.  
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Precision 
 

12-bit 8-bit 
Accuracy 

 
97.2% 96.9% 

# 
switching 

6.96E8 3.99E8 
Energy 

(mJ) 
9.11 5.22 

Table 2 The reduction of energy 
consumption of lower precision in 
online training. The number of 
switching cycles and energy are 
counted during the 50 epochs. 8-bit 
weight/neuron has similar accuracy as 
12-bit, but reducing energy by 42.7%. 
The energy here is only for the weight 
update.  
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