


These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

www.arm.com/ai


These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

Embedded 
Machine Learning 

Design

Arm Special Edition



These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

Embedded Machine Learning Design For Dummies®,  
Arm Special Edition
Published by 
John Wiley & Sons, Inc. 
111 River St. 
Hoboken, NJ 07030-5774 
www.wiley.com

Copyright © 2019 by John Wiley & Sons, Inc., Hoboken, New Jersey

No part of this publication may be reproduced, stored in a retrieval system or transmitted 
in any form or by any means, electronic, mechanical, photocopying, recording, scanning 
or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States 
Copyright Act, without the prior written permission of the Publisher. Requests to the 
Publisher for permission should be addressed to the Permissions Department, John Wiley &  
Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or 
online at http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, and related 
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its 
affiliates in the United States and other countries, and may not be used without written 
permission. Arm and the Arm logo are trademarks or registered trademarks of Arm 
Limited. All other trademarks are the property of their respective owners. John Wiley & 
Sons, Inc., is not associated with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO 
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE 
CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT 
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED 
OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED 
HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING 
THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL 
SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL 
PERSON SHOULD BE SOUGHT.  NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR 
DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN 
THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN 
THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE 
MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT 
INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN 
THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services, or how to create a custom 
For Dummies book for your business or organization, please contact our Business 
Development Department in the U.S. at 877-409-4177, contact info@dummies.biz, or 
visit www.wiley.com/go/custompub. For information about licensing the For Dummies 
brand for products or services, contact BrandedRights&Licenses@Wiley.com.

ISBN 978-1-119-55123-2 (pbk); ISBN 978-1-119-55127-0 (ebk)

Manufactured in the United States of America

10   9   8   7   6   5   4   3   2   1

Publisher’s Acknowledgments
We’re proud of this book and of the people who worked on it. Some of the 
people who helped bring this book to market include the following:

Contributing Writer: Ulrika Jägare

Project Editor: Martin V. Minner

Senior Acquisitions Editor:  
Katie Mohr

Editorial Manager: Rev Mengle

Business Development 
Representative: Karen Hattan

Production Editor:  
Tamilmani Varadharaj

Arm Contributors: Hellen Norman, 
Mark O’Connor, Tanuj Aurora

http://www.wiley.com
http://www.wiley.com/go/permissions
mailto:info@dummies.biz
http://www.wiley.com/go/custompub
mailto:BrandedRights&Licenses@Wiley.com


1
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

Introduction

From Alan Turing’s 1950 prediction that “machines 
will eventually compete with men,” through decades 
of research in labs and think tanks, machine 

learning (ML) has finally reached its viability point,
exploding into the domain of engineering and into 
 people’s daily lives.

The technology is now moving quickly. ML is no longer 
thepreserveofdistant,cloud-baseddatacenters.A dra-
matic shift in the capabilities of compute processing 
power and ML algorithms is driving applications, train-
ing,andinferencebacktotheedgeofthenetwork —to
the smart devices that are already an intrinsic part of 
everyday life.

About This Book
Embedded Machine Learning Design For Dummies, Arm 
 Special Edition, shows you that adding machine learning 
to any device is not only possible but relatively easy to do. 
This book highlights key challenges and explains why it 
is vital to address them at the earliest stages of planning. 
The book addresses how to approach your platform 
configurationandexplainswhysoftwarematters.Finally,
the book explores the importance of an ecosystem 



2
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

perspective in ML development and gives examples of 
interesting ML solutions at the edge.

Icons Used in This Book
We occasionally use these special icons to focus your 
attention on important items:

This icon with the proverbial string around the 
finger reminds youabout information that’s
worth recalling.

Expect to find something useful or helpful
by  way of suggestions, advice, or observa-
tions here.

This icon may be taken in one of two ways: 
Techieswillzeroinonthejuicyandsignifi-
cant details that follow; others will happily 
skip ahead to the next paragraph.



3
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

Realizing Why ML Is 
Moving to the Edge

Machine learning (ML) represents the greatest 
inflection point in computing for more than a 
generation — and it’s already having a signifi-

cant impact across virtually every market. It’s leading to 
dramatic advances in connected car technologies, chang-
ing the face of healthcare, and influencing how city 
infrastructure is controlled. It’s also affecting less 
 obvious sectors such as farming, where device-born 
intelligence is enabling super-efficient watering prac-
tices, precisely targeted pest and disease control, and the 
optimization of crop harvesting.

Chapter 1

IN THIS CHAPTER

 » Grasping the basics of ML

 » Understanding differentiation 
and cost reduction



4
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

The potential for ML is so far-reaching, it’s hard to 
imagine a sector that won’t be affected. For users, ML 
promises new levels of insight and convenience  — at 
home, at work, and at leisure. For manufacturers, it 
offers the chance to make processes far more efficient 
and to create new business models and services.

Grasping the Basics of ML
The terms artificial intelligence (AI) and ML are often used 
interchangeably. However, in data science, the terms are 
distinct. This book uses the following definitions:

 » AI is an umbrella term relating to hardware or 
software that enables a machine to mimic human 
intelligence. A range of techniques are used to 
deliver that “intelligence” including ML, computer 
vision, and natural language processing.

 » ML is a subset of AI, as shown in Figure 1-1. ML 
uses statistical techniques to enable programs 
to “learn” through training, rather than being 
programmed with rules.

ML systems process training data to progressively 
improve performance on a task, providing results that 
improve with experience. Data is taken from the edge — 
be that an IoT device, edge server, or edge device — and 
sent to the cloud to be used for training.



5
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

Once an ML system is trained, it can analyze new data 
and categorize it in the context of the training data. This 
is known as inference.

ML is performed in one of two locations:

 » Cloud: ML training is typically performed on 
remote, power-intensive, and compute-intensive 
server systems.

 » Edge: ML inference is usually done locally, on the 
device that will deliver the outputs. The term edge 
may refer to an IoT device, edge server, or edge 
device.

FIGURE 1-1: Machine learning is a subset of artificial intelligence.



6
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

Differentiation and 
Cost Reduction
While the first wave of ML focused on cloud computing, 
the combination of improved techniques for shrinking 
models to run on low-power hardware and increased 
compute capabilities on edge devices is opening possi-
bilities for dramatic advantages in differentiation and 
unit cost reduction:

 » Reduced latency; increased reliability and 
safety: Latency in the form of an unresponsive app 
or a page that won’t load is an annoyance for the 
user, but many time-critical applications — such  
as automotive systems — simply cannot rely on 
connectivity to the cloud because a delay in 
response might have serious safety implications 
and seriously affect vehicle performance.

 » Power and cost: Transmitting data from a device to a 
cloud server increases the power cost of perform-
ing ML because moving data around a system takes 
power. Cloud- or network-performed ML also adds a 
bandwidth tax, which can be significant because ML 
tends to be data-intensive. By performing as much ML 
as possible on-device, the cost and complexity burden 
on the network and cloud infrastructure is reduced.

 » Privacy and security: Consumers and corporations 
are increasingly becoming aware of data security.  



7
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

No one wants their privacy breached, but the risks 
are amplified when data is constantly shifted to the 
cloud and back. When processing is done on-device, 
legislative issues around the storing or transmission 
of data — and compliance with privacy regulations, 
such as the European Union’s recent General Data 
Protection Regulation (GDPR) — are minimized.

 » Personalization: In addition to privacy and 
security, performing ML on-device can lead to a 
more personalized compute experience. As more 
devices become “intelligent,” they will need to adapt 
and provide a contextualized response to their 
immediate environment — instantaneously. When 
these devices connect users to the things they care 
about, AI becomes accessible and personal. 
Maintaining unique, customized models for every 
user in the cloud is a significant ongoing expense, 
so edge devices that can run their own customized 
models will provide a competitive advantage.

Ultimately, ML at the edge delivers a more reliable, 
responsive, and secure user experience that reduces per-
unit cost, personal data risk, and power requirements — 
and isn’t dependent on network connections.

Exploring ML Opportunities
ML is not about a new type of device; it’s about  
every device. ML enables devices to contextualize their 



8
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

immediate environments far better — using data such as 
vision, sound, heat, and vibration. This innovation is 
driving new business models, reducing costs, and opti-
mizing performance across a range of parameters.

Although the benefits of ML are exciting, taking the first 
steps to add ML capability to your product may seem 
daunting. ML processing requirements vary significantly 
according to the model and workload; no “one-size- 
fits-all” solution exists. Almost all models allow accu-
racy and performance to be traded freely. This flexibility 
allows a perfect fit between device hardware and the 
model capability, but it raises additional questions:

 » What are the use cases?

 » Which neural network (NN) model provides the 
best performance/accuracy trade-off?

 » Which hardware should you choose to comple-
ment it? Can lower-capability hardware be used 
with a reduced-accuracy model? Can the model be 
tuned to make use of all the available RAM?

 » Which tools are available to help a team answer 
these questions?

 » Most importantly: How can these issues be balanced 
to deliver the best performance at the best unit cost?



9
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

Configuring Your 
ML Environment

Selecting the right solution for your application 
entails a series of trade-offs: from small, low-
power microcontroller units (MCUs) for cost- and 

power-constrained systems to central processors (CPUs) 
for greater performance and general-purpose program-
mability; graphics processors (GPUs) for faster perfor-
mance with graphics-intensive applications; and neural 
processors (NPUs) for the most intensive and efficient 
ML processing. This chapter leads you through the 
process.

Chapter 2

IN THIS CHAPTER

 » Understanding the components 
of an ML platform

 » Making choices for your ML 
environment

 » Learning from a case study



10
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

Understanding the 
Components of an 
ML Platform
What does your platform need to run ML workloads? 
 Perhaps surprisingly, in hardware terms it may need 
nothing more than you already have. Many platforms are 
already efficiently running ML applications on CPUs and 
GPUs alone. (You can see some examples in Chapter 5.)

For some use cases, higher performance requirements 
may demand a dedicated ML processor, such as a neural 
processing unit (NPU). However, adding an NPU to an 
already crowded mix of CPUs and GPUs running ML 
applications can create complexity if the software stack 
for each processor type is different. This issue creates a 
need for a software layer that hides hardware complexity 
from the software applications.

Heterogeneous computing refers to systems 
that use more than one kind of processor 
or  core to achieve better performance and 
greater efficiency.

A heterogeneous compute platform allows application 
developers to write ML applications using their favorite 
NN frameworks — such as Google’s TensorFlow or Face-
book’s Caffe and Caffe2 — and target a variety of proces-
sor types from multiple vendors. As shown in Figure 2-1, 



11
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

the software layer between the application and the hard-
ware handles the translation of the workload to target the 
applicable and available core types automatically.

Open standards can help to reduce complexity and assure 
future compatibility with solutions from a variety of 
 vendors. One example of this is the Open Neural Network 
Exchange Format (ONNX), supported by Arm, Microsoft, 
Facebook, Amazon, and others to provide a common for-
mat between training frameworks and runtime engines.

FIGURE 2-1: An example of a heterogeneous ML compute 
platform with a variety of core types and open-source software.



12
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

You have many options for running an ML model:

 » Low-power/always-on microcontroller CPUs: 
Small models can be run on these cores with a very 
low power budget. Example: detecting activity or 
behavior that wakes up the rest of the system to 
perform more detailed analysis.

Sometimes microcontroller CPUs have 
DSP extensions, known as Digital Signal 
Controllers, which allow for faster 
processing, thus providing clean signals 
for ML without the need for a separate 
DSP. This feature saves cost, area, and 
development time, especially for those 
without a DSP software development 
background.

 » High-efficiency, general-purpose CPUs: 
Depending on the configuration and number of 
cores, these can comfortably run entire workloads. 
Example: real-time speech recognition for closed-
caption generation.

 » Multimedia and GPU cores: These often run the 
same models as a mobile-class core with increased 
performance or efficiency. If a design already 
requires a GPU, offloading the ML workload may 
allow you to reuse this silicon for maximum 
cost-benefit.



13
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

 » Dedicated NPUs: Dedicated silicon offers the 
highest efficiency for running general-purpose 
ML models in a low-power environment. Example: 
determining which pixels of a real-time HD video 
feed correspond to a person.

Knowing exactly which components are required in your 
device demands careful consideration of multiple factors, 
which the next section discusses.

Making Choices for Your 
ML Environment
The right hardware for your application, what you need 
from a dedicated NPU, and how you integrate it into 
 systems and tools varies from case to case. However, the 
following capabilities are important to consider as part of 
your architectural design for a constrained environment:

 » Processing: What type of data ingestion and 
processing does your edge solution require? This 
may depend on the type of models you run and the 
number of models running at the same time. How 
complex are these models? Are they compute- or 
bandwidth-constrained?



14
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

 » Connectivity: What can be done locally on the 
device? What requires a connection to the cloud? 
What must stay in the cloud?

 » Integration: Are there any integrations or 
dependencies that must be managed? What 
NN frameworks will the developer community 
be using? How will the models developed in a 
variety of different frameworks be supported 
on the system?

 » Power, size, and heat: Does your edge device 
have power, size, and thermal constraints?

 » Accuracy: What is the desired accuracy? Although 
you might initially think that the higher the accuracy, 
the better, that isn’t always true. After a certain level, 
you hit a point of diminishing returns. In certain 
scenarios, a 2 percent increase in accuracy may 
require a 10x increase in compute and memory 
requirements, for example. You should clearly 
understand what level of accuracy is required for 
any particular use case.

 » Privacy: What are the privacy and security 
concerns around your edge solution?

 » Workload: Will an NPU be mostly idle and only 
used for work that an otherwise idle CPU or GPU 
can accomplish? On the other hand, if a CPU or 



15
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

GPU is capable of running a model, might an NPU 
be a better solution if those resources are already 
heavily loaded?

Taking these points into consideration, you can look at 
the different components that are required. Is a CPU or 
GPU sufficient? Do you need to add an NPU? How big 
must that NPU be to service your requirements within the 
cost constraints? Look at the different core types availa-
ble in the market and match them to your area and power 
budgets, as well as your compute requirements.

The following case study offers an example of the com-
plexity that can be managed on an embedded device at 
the edge.

Case Study: An Edge ML 
Solution for Asthma Patients
The Amiko Respiro provides smart inhaler technology 
that helps asthma sufferers breathe more easily. The 
solution includes ML-powered sensors as add-ons to 
standard inhalers to improve asthma treatment. These 
smart sensors must be low-powered, scalable, and 
cost-efficient enough to work with a patient-facing app 
on a connected platform.



16
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

At the center of Respiro’s sensor module is an ultra-low- 
power Arm Cortex-M processor, enabling:

 » Processing that takes place securely on the device 
with no need to connect to the cloud

 » Bluetooth low-power (BTLE) connectivity to a 
smartphone app

 » An efficiency profile that extends device battery life

The solution uses ML to interpret vibration data from the 
inhaler. The sensor is trained to recognize the patient’s 
breathing pattern and inhalation time and can calculate 
important parameters such as lung capacity and 
 inhalation technique.

The processor allows the Respiro to run real-time ML 
algorithms that recognize behavior patterns and interpret 
data within the sensor module itself. The user  doesn’t 
need to wait for back-end infrastructure to process 
detailed sensor data. When the user presses the trigger, 
the module instantly recognizes the breath data pattern 
and provides low-latency, private user feedback.

The Respiro sensor is bundled with an app that the 
patient installs on a smartphone. The sensor collects 
inhaler use data without disrupting the medication deliv-
ery pathway and sends data and feedback to the app. The 
sensor also has the flexibility to add new features and 
easily scale up to deliver further innovative connected 
healthcare solutions going forward.



17
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

Why Software 
Really Matters

According to the famous quote by the prominent 
technologist Mark Andressen, “software is eating 
the world.” It’s certainly capable of eating devel-

opment budgets and delaying product schedules if you 
get it wrong. However, because software innovation and 
ML functionality are increasingly becoming key differen-
tiators for many device-makers, if you’re building ML 
into your product, you need a strong grasp on your 
 specific software needs.

Chapter 3

IN THIS CHAPTER

 » Reducing time to market with 
off-the-shelf hardware, tools, 
and simulators

 » Differentiating through software

 » Training and deploying ML 
models



18
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

Reducing Time to Market 
with Off-The-Shelf Hardware, 
Tools, and Simulators
The quickest way to de-risk software and ML model 
development is to do your prototyping with off-the-shelf 
hardware that has functionality as close to your final 
product as possible. That can be through the use of 
industry-standard CPUs and GPUs or a previous iteration 
of the product itself.

To achieve what you need, it’s advisable to choose 
 components sourced from a large-scale provider  —  
preferably from an ecosystem with a wide range of pos-
sible prototype platforms. This means you’ll be able to 
select technology similar to your final design in the areas 
that matter — such as performance and power or with 
specific hardware connectivity.

Once a prototype platform is in the hands of the software 
team, the next step is to create a useful development envi-
ronment. Depending on your device, this might include:

 » An operating system

 » Compilers

 » Performance libraries



19
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

 » Debugging and profiling tools

 » ML frameworks

Development teams take time to build expertise in these 
tools and libraries. Building on a platform that’s already 
familiar to your team increases productivity and the 
capacity for innovation, greatly reducing the risk to your 
software development.

Ideally, the tools and the software your team 
develops should be portable to your final  
platform. Common standards and architec-
tures pave the way for a smooth and  
painless integration when early hardware 
becomes ready for testing, minimizing the 
chance of last-minute delays and perfor-
mance surprises.

If your chosen architecture provides simulators and fast 
modeling tools, this risk is minimized even further. 
Today’s fast models and simulators are capable of bring-
ing up an entire operating system in simulation and run-
ning the final application code even before silicon is 
ready, with cycle simulators providing further correct-
ness and performance predictions. Projects that use sim-
ulation effectively can often successfully deploy the same 
software directly onto the first silicon.

In short, to effectively de-risk software development, 
select an architecture and off-the-shelf prototyping 
platform that



20
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

 » Closely reflects the functionality required in the 
final product

 » Supports a common set of tools, libraries, and 
frameworks that is familiar to your team

 » Provides robust simulation solutions that minimize 
time spent integrating software and hardware

Differentiating Through 
Software
A decision for hardware architecture is also a decision for 
its software stack and the ecosystem supporting it. Large 
ecosystems frequently have dedicated teams continu-
ously optimizing and improving their software stacks. 
For example, Arm provides Arm NN, Compute Library, 
and CMSIS-NN. Over a four-month period, the perfor-
mance of NNs such as AlexNet, Inception, SqueezeNet, 
and VGG-16 improved 1.6x to 2.6x on Cortex-A series 
CPUs and the Mali GPU, as shown in Figure 3-1.

Developing on top of an actively developed and main-
tained stack ensures you benefit from future performance 
and security improvements without taking time away 
from your own development efforts.



21
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

Many designs have the option of trading off software 
solutions for hardware implementations. In general, 
software solutions allow your team to continue to inno-
vate on software features as well as ML model architec-
tures and performance training right up until release.

FIGURE 3-1: Software performance gain.



22
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

In some cases, the performance gains unlocked upstream 
in the ecosystem and the ML research community may 
enable the second version of your product to provide 
 significantly differentiated performance and features, 
with minimal hardware changes  — as long as those 
 features were not hard-wired into the original design.

When choosing a hardware solution, pay close attention 
to these areas of software performance:

 » An optimized software stack: This is key to 
unlocking promised hardware performance figures.

 » Ecosystems: These must be able to deliver 
consistent performance and security updates.

 » Your solution: Consider which parts require a 
hardware implementation and which could be 
performed more flexibly in software.

Training and Deploying 
ML Models
The upside, and downside, of NNs is their flexibility. 
Accuracy, performance, memory requirements, and 
hardware compatibility can be traded off against each 
other to fit your desired performance parameters — but 
evaluating this trade-off, and training the networks for 



23
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

optimal deployment, is often not trivial. As with software 
development, your team will take time to build expertise 
in these tools. To minimize your risk, look for solutions 
built upon, and compatible with, open-source standards 
such as TensorFlow and ONNX.

As model training and optimization techniques improve, 
intelligence that was once confined to the datacenter — 
such as speech and image recognition, recommendation, 
and prediction  — is increasingly available on mobile- 
and embedded-class CPUs and GPUs, in addition to the 
increasing range of high-performance NPUs.

The world’s most popular AI platform today is the smart-
phone, which includes ML features like predictive text, 
speech recognition, and computational photography. 
However, as the benefits of embedded ML development 
are becoming better understood, these capabilities are 
expanding and becoming available in an increasing range 
of edge devices. For example, effective voice keyword 
search  — such as listening for a wake word or simple 
command  — has been effectively demonstrated on 
microcontrollers.

ML requires a training phase, where the learn-
ing happens, and an inference phase where 
that learned is applied. Today, training typi-
cally happens on servers or similar devices, 
but inference is increasingly moving to the 
edge — to consumer and industrial devices in 
homes, factories, and places of work.



24
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

ML workloads are characterized by demanding require-
ments for computation and memory bandwidth. How-
ever, recent optimization techniques such as quantization, 
pruning, and model compression make it possible to 
deploy solutions previously confined to the datacenter 
onto mobile and embedded devices.

Making the best use of available compute 
resources is increasingly complex. Although 
the largest ML models may run most effi-
ciently on a dedicated ML processor, in many 
cases it may be more energy-, latency- and 
cost-efficient to run some networks  —  
or parts of networks — on one or more CPU 
or GPU cores, depending on the device, its 
current wake-state, and its workload. The 
flexibility to easily move models between 
compute resources is critical.

Look for a platform that enables developers 
and data scientists to easily build and run ML 
applications in a power-efficient environment 
across CPUs, GPUs, and NPUs, leaving you 
maximum flexibility in your current and future 
designs. The software should provide a bridge 
to existing ML frameworks, such as Tensor-
Flow and PyTorch, while hiding implementa-
tion details of the underlying hardware. This 
allows developers to continue to use their pre-
ferred frameworks and tools while the hetero-
geneous ML platform seamlessly converts the 
results to run on the underlying hardware.



25
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

Why Ecosystems 
Are Important

There’s an old saying: “When you marry someone, 
you marry their family too.” When you select 
an  architecture for your device, you’re also 

 committing — for better or worse — to an ecosystem of 
silicon partners, original equipment manufacturers 
(OEMs), software vendors, and consultants; its array of 
training and educational materials; and — not least — its 
recruitment pool of experienced engineers.

Getting the most out of an ecosystem is an important 
part of minimizing costs and reducing time to market, as 
this chapter shows.

Chapter 4

IN THIS CHAPTER

 » Reusing existing assets

 » Finding a better product/ 
market fit



26
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

Reusing Existing Assets
One of the most important assets for the success of your 
business is the ability to build and capitalize upon your 
in-house expertise. An ecosystem built around interop-
erable standards allows solutions and skills to migrate 
across projects, reducing your risk and time to market.

A standards-based design also futureproofs your soft-
ware and ML investment: Being able to switch hardware 
with minimal disruption to your software stack gives you 
the agility and freedom to move to a better solution.

To this end, single-purpose hardware can be a 
 double-edged sword: Although software development 
may be initially fast, if the platform doesn’t provide for a 
pipeline of new products with various performance and 
power profiles, you may have to turn to other non-
aligned technology providers for future designs. This 
technology “divorce” means that expertise gathered on 
one design does not transfer to the next product — or 
even an iteration of the current product. Ultimately, 
 initial speed may give way to eventual stagnation.

ML brings its own set of challenges: The research com-
munity is moving quickly, and new and better operators, 
activation functions, and architectures for NNs are being 
published every day. Whether you choose to run the 
models on a CPU, a GPU, or an NPU, you can avoid being 
blindsided by future research or competitor develop-
ments by making sure that new and custom ML operators 



27
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

can be supported in software rather than being limited by 
the hardware design.

Finding a Better Product/
Market Fit
Very few companies custom design every aspect of a 
device, so even the largest need the ability to reuse their 
own components or source compatible external ones.

When you select a large and vibrant ecosystem, you gain 
access to a wider array of potential components and sup-
pliers, which gives you the best chance to find the perfect 
product/market fit.

In addition, a large ecosystem can make it easier to find 
off-the-shelf solutions that meet most — if not all — of 
your product needs. This helps to minimize the number 
of components per device, reducing per-unit costs.

On the Shoulders of Giants
Speed to market and differentiation are key elements in 
the design of any product. Engaging with a standards-
based ecosystem is helpful because it means a company 
can rely on a community of partners rather than invent-
ing every element from scratch.



28
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

Nowhere is this more important than in ML. As the speed 
of new business opportunities and creative real-world 
solutions increases, new models and algorithms must be 
adapted more quickly. Open-source blueprints play an 
important role in allowing companies to extend their 
proprietary frameworks and tools to bring innovative 
products to market faster.

ML standardization is an important but challenging task 
because everything — from use cases to software stacks 
and hardware processors — is changing so quickly. Even 
the data poses a problem. However, from the perspective 
of system architecture, some vendors offer standardiza-
tion across the ecosystem.

ML requires two kinds of frameworks to work seamlessly 
together:

 » The training framework, such as TensorFlow, is 
used by data scientists and ML engineers to train 
new models from data.

 » The inference framework, such as Arm NN, loads 
those models and executes them efficiently on the 
underlying CPUs, GPUs, and ML-specific IP.

When Arm donated its open-source inference engine, 
Arm NN, to the Linaro Machine Intelligence initiative, 
the gift was a rallying point for the entire ecosystem to 
contribute and develop a single, optimized inference 
engine. This approach lets everyone in the ecosystem 
benefit from each other’s expertise and optimizations.



29
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

Ten Examples of 
ML at the Edge

T 
he potential for applying ML at the edge is bound-
less. Here are ten inspiring solutions:

 » Secure, low-power smart home security: Uses 
on-device, always-on, motion, person, and sound 
detection to identify family members or intruders. 
Starts recording only when it detects motion or sound, 
sending a notification to the user’s smartphone.

 » Hospital staff/visitor tracking: Alerts reception-
ists to unknown people or unauthorized access. 

Chapter 5

IN THIS CHAPTER

 » Applying ML solutions at the 
edge

 » Solving problems at the edge



30
These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

Edge recognition means images of visitors and 
patients are never stored or transmitted.

 » Plant disease detection: Uses an image recogni-
tion smartphone app to detect disease with near 
100 percent accuracy — even off-network.

 » Faster produce selection: Classifies fruit and vegeta-
bles by camera, automatically identifying different 
categories and improving production-line efficiency.

 » Drone avionics: Recognizes and follows a target 
while avoiding obstacles, via camera-based vision 
and movement prediction.

 » No-latency driver assistance: Helps to reduce 
collisions using cameras, motion sensors, and GPS to 
understand and guide driver behavior in real time.

 » Improved human-machine interaction: Streamlines 
interactions, boosts productivity, and creates a 
smoother user experience across devices.

 » On-device translation: Makes communication 
possible — however remote the location —  
and avoids costly roaming charges.

 » Device optimization: Significantly extends battery 
life by optimizing operating system scheduling 
for individual applications.

 » Computational photography: Tackles tricky 
problems such as distant objects and low-light 
conditions to achieve near-perfect images.



These materials are © 2019 John Wiley & Sons, Inc. Any dissemination, distribution, or unauthorized use 
is strictly prohibited.

www.arm.com/machine-learning


http://dummies.com


WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Title Page
	Copyright Page
	Introduction
	About This Book
	Icons Used in This Book

	Chapter 1 Realizing Why ML Is Moving to the Edge
	Grasping the Basics of ML
	Differentiation and Cost Reduction
	Exploring ML Opportunities

	Chapter 2 Configuring Your ML Environment
	Understanding the Components of an ML Platform
	Making Choices for Your ML Environment
	Case Study: An Edge ML Solution for Asthma Patients

	Chapter 3 Why Software Really Matters
	Reducing Time to Market with Off-The-Shelf Hardware, Tools, and Simulators
	Differentiating Through Software
	Training and Deploying ML Models

	Chapter 4 Why Ecosystems Are Important
	Reusing Existing Assets
	Finding a Better Product/Market Fit
	On the Shoulders of Giants

	Chapter 5 Ten Examples of ML at the Edge
	EULA 


