

Introduction
Today’s FPGAs are quickly growing in demand for both datacenter
and edge environments. This is due to advances in performance,
use of easier FPGA development tools, and growing need for the
flexibilit y to tailor hardware acceleration to a specific application.
Often working alongside CPUs, FPGA accelerator solutions are part
of a heterogenous approach to computing that is focused on
flexible application performance fitted to the end-user’s
requirements.

In this white paper, we explain just such an application: traffic
monitoring using a recent machine learning-based image
recognition system (YOLOv3) adapted using OpenCL to the
BittWare 520N accelerator board with an Intel Stratix 10 FPGA. The
three aspects mentioned as key FPGA drivers are examined:
performance versus CPU, ease of development using OpenCL
instead of HDL, and the flexibility of tailoring the application (in this
variable calculation precision including single-bit binary weights) to
use the minimum power/resources.

Growing Demand for Machine Learning
Until only a decade ago, Artificial Intelligence resided almost
exclusively within the realm of academia, research institutes, and
science fiction. The relatively recent realization that Machine
Learning (ML) techniques could be applied practically and
economically, at scale, to solve real-world application problems has
resulted in a vibrant eco-system of market players.

However, any news of breakthroughs in machine learning is still to
be weighed against the reality that this is a very computationally
heavy approach to solving problems, both in the training phase of
a dataset and what’s called the inference phase—the “runtime”
where unknown input is translated to inferred output. While the

training phase for a machine learning application only needs to
happen once in the datacenter over an unconstrained time period
often extending to hours or days, the live inference must often
happen in a fraction of a second using a constrained hardware
platform at the edge of a system.

For the machine learning to grow in adoption, inference
solutions must be developed that can rapidly implement
the latest machine learning libraries in hardware that can
be tailored to the application needs.

Flexible FPGAs
One approach to reduce the silicon count (therefore power)
required for machine learning inference is reducing the dynamic
range of calculations. Reducing from 32-bit to 16-bit floating point
arithmetic, for example, only slightly reduces the application
performance in recognition accuracy, yet can greatly reduce
hardware requirements.

What if we went further? This is where FPGAs can excel because as
the number of bits required is reduced, even down to a single
binary bit, the hardware fabric adapts to only use what is needed.
We can use variable precision within a project as well, including use
of the hardened floating-point DSP logic blocks on the Stratix 10
FPGA when required. FPGAs allow the designer to have a range of
tools to best tailor the hardware to the application requirements.

In fact, our research focuses on performing machine learning using
only binary weights: weights are binarized with only two values: +1
and -1. While many image-based machine learning applications use
a series of convolution operations collectively called convolutional
neural networks (CNNs), this new CNN variant is known more
specifically as a Binary Weighted Neural Network (BWNN). It

White Paper

FPGA Acceleration of Binary Weighted Neural Network Inference

FPGA Acceleration of Binary
Weighted Neural Networks

reduces all fixed-point multiplication operations in the
convolutional layers and fully connected layers to integer additions.

Another key component in this research was using the 520N’s
OpenCL support to abstract the hardware development process to
a software-like tool flow. This allows for the most recent application
libraries to be used as the basis for hardware acceleration—
reducing the months or longer it would take to target a specific
device and ML library using traditional HDL methods (during which
newer, better-performing ML libraries might be released). For
example, this white paper stems from work we did for the OPERA
project on a BittWare Arria 10-based board, the 385A-SoC. Our
development team quickly moved the OpenCL code from that
device to the much larger and faster fabric of Stratix 10.

Variable precision, use of DSPs for floating-point, and
development using OpenCL combine for an application-tailored
hardware solution but with software-like development speed.

Binary Neural Networks
Processing convolutions within CNN networks requires many
millions of coefficients to be stored and processed. Traditionally,
each of these coefficients are stored in full single precision
representation. Researchers have demonstrated that coefficients
can be reduced to half precision without any significant change to
the overall accuracy while reducing the amount of storage needed
and the memory bandwidth requirements. Most of the pre-trained
CNN models available today use partially reduced precision.

F igure 1 : Converting weights to binary (mean = 0.12)

However, by using a different approach to the training of these
coefficients, the bit accuracy can be reduced to a single bit, plus a
scaling factor1. During training floating-point coefficients are
converted to binarized values that represent whether a value is
either greater or less than the mean of all the input coefficients. This
can be represented as either 1,0 in binary notation (Figure 1). The
output of the convolution is then multiplied by the mean.

1 https://pjreddie.com/media/files/papers/xnor.pdf

FPGA Optimizations
Firstly, binarization of the weights reduces the external memory
bandwidth and storage requirements by a factor of 32. The FPGA
fabric can take advantage of this binarization as each internal
memory block can be configured to have a port width ranging from
1 to 32 bits. Hence, the internal FPGA resource for storage of
weights is significantly reduced, providing more space for
parallelization of tasks.

The binarization of the network also allows the CNN convolutions
to be represented as a series of additions or subtractions of input
activations. If the weight is binary 0, the input is subtracted from the
result; if the weight is binary 1, it is added to the result. Each logic
element in an FPGA has additional carry chain logic that can
efficiently perform integer additions of virtually any bit length.
Utilizing these components efficiently allows a single FPGA to
perform tens of thousands of parallel additions. To do so the
floating point input activations must be converted to fixed
precision. With the flexibility of the FPGA fabric, we can tune the
number of bits used by the fixed additions to meet the CNN’s
requirement. Analysis of the dynamic range of activations in various
CNNs shows that only a handful of bits, typically 8, are required to
maintain an accuracy to within 1% of a floating point equivalent
design. The number of bits can be increased for more accuracy.

There are many different networks that could be investigated for
BNN applications, and it is tempting to pick one of the many simpler
networks such as AlexNet. However, to really understand the
effectiveness of FPGAs for BWNN processing, it is better to use a
state-of-the-art network, such as YOLOv3. This is a large
convolution network with many convolution layers.

YOLOv3 is a deep network, and errors introduced due to fixed point
rounding require more bits per addition than smaller networks like
AlexNet. The advantage of FPGA technology is the ability to modify
the precise number of bits required. For our design, we used 16 bits
to represent the data transferred between layers.

Converting to fixed point for the convolution and removing the
need for multiplications via binarization dramatically reduces the
logic resources required within the FPGA. It is then possible to
perform significantly more processing in the same FPGA compared
to a single precision or half precision implementation, or free up
FPGA logic for other processing.

FPGA Acceleration of Binary
Weighted Neural Networks

Targeted Network Training
The YOLOv3 network is a large convolutional network with 106
layers that not only identifies objects, but also places bounding
boxes around these objects. It is particularly useful in applications
that require objects to be tracked.

Binary weighted networks reduce the accuracy of the YOLOv3
network only marginally if appropriately trained. The following table
illustrates the results obtained for the retrained YOLOv3 network.

Feature Confidence (BNN)

Bicycle 94%, 85%, 80%, 79%, 67%, 66%, 62%

Person 99%, 94%, 91%, 88%, 64%, 57%

The average confidence in this image for bicycles was 76%, and for
people was 82%. Compare that to the floating-point on the same
image, which would achieve 92% average accuracy on bicycles
(16% better) and 88% on people (6% better).

To achieve the best performance for the FPGA, it helps to target
network features that map best to the FPGA. In this case not only
was the network trained for binary weights, appropriate activation
types were chosen that mapped efficiently to the FPGA logic.

Designing for Stratix 10
OpenCL is a popular language used to express parallelism in CPUs,
GPGPUs, and FPGAs. Here the Intel FPGA OpenCL compiler has
been used to program accelerators targeting the Intel Stratix 10
device. The target FPGA accelerator for this Whitepaper was the
BittWare 520N board.

F igure 2 : BittWare 520N FPGA accelerator board

Performance of FPGA designs are dependent upon many factors
including but not limited to:

• Device speed grade
• Depth of combinatorial logic in a design
• Fan out of a design (the number of signals that are shared

between multiple points)
• Routing congestion caused by over populating the device
• Global memory bandwidth

Stratix 10 devices are very large and more susceptible to these
problems than previous devices. The following paragraphs discuss
some these issues in more detail.

Combinatorial Logic Depth: The Intel OpenCL tools will pipeline
designs automatically where possible, inserting the required
registering to achieve the best performance possible on a Stratix
10. However, registering is not always possible if there is feedback
in the design. This typically occurs when creating complex indexing
requirements that have self-dependencies. Therefore, it is
necessary to structure code, where possible, to avoid any such
pipeline dependencies; otherwise the clock frequency of the design
is dominated by these paths.

Fanout: Fanout refers to signals that have a single source but
multiple endpoints. This can cause problems for routing tools as
there are a finite number of nets available to use on a device.
Congestion of these routes requires some signals to be passed
around congestion points, resulting in longer paths and ultimately
slower clock frequencies. Fanout can be reduced by being aware at
coding time of the impact of sharing variables between multiple
parts of the design.

FPGA Acceleration of Binary
Weighted Neural Networks

Overpopulation: There is a temptation to cram as much logic into a
design as possible; however, there will be a point at which the
design clock frequency will start to reduce as the device becomes
heavily populated. This is caused by routing congestion due to the
large number of signals trying to find a route around the FPGA. For
large designs to hit high clock frequencies, they must be heavily
pipelined and avoid high fanouts.

Memory Bandwidth: It is not always possible to store enough data
in local FPGA memory, and data must be written or read from deep
external memory. The 520N has 4 banks of DDR4 memory, giving
a total memory bandwidth of ~98 GBytes/Sec. Given the size of the
S10 device, this bandwidth is not adequate to keep all the neural
network layers fed with data; hence input data must be reused
where possible. Fortunately, CNN codes permit a lot of data reuse.
This problem can be alleviated somewhat using HBM2 versions of
the Stratix 10, such as is used on BittWare’s 520N-MX board.

Ultimately most designs are a compromise of the above, and the
BNN design described here is no exception.

F igure 3 : Convolution Pipeline Example

Figure 3 illustrates the main processing element of the design, the
convolution path. Data has been pipelined where possible into 3
accumulation paths. Each convolution block performs a 32x32
binary weight convolution block, where each of the 32 inputs are
shared by all 32 outputs. This is of course causing a high fanout but
reducing the pressure on external memory bandwidth. By
subdividing what would have been a 96x96 convolution into
multiple blocks of 32x32, the fan out routing is constrained to within
each block, reducing the overall fanout of the design. Input data is

passed to each convolution block via OpenCL pipes, permitting the
compiler to insert extra registering if required.

The “producer,” “consume,” and “coefficient” kernels shown in
Figure 3 pass data from global memory to the different convolution
blocks. The consumer block also performs a floating-point
activation function on the output.

Table 1 lists the resources required to perform 1024 16-bit
accumulations that represent each 32x32 convolution.

ALMs Registers Ops

35305 (2%) 41601 (2%) 2048
Table 1 : Stratix 10 resources for 32x32 convolution matrix

The storage required for storing all input and output feature data
exceeds what is available on the FPGA device, even when using 16-
bit data. Therefore, data needs to be copied from attached global
memory to local FPGA memory in batches, which eventually
dominates performance once the number of parallel convolutions
increase beyond what the global memory can support.

Logic
(ALMs) MHz Peak

TOps

Speed Up versus OpenMP
32 Threads (Xeon CPU D-

1587 1.7 GHz)

536,122
(57%) 300 5.5 50x

Table 2 : Stratix 10 G280 3x3 Design Performance

Table 2 provides some statistics for the final compiled design. Note
that the Logic also includes the board support package resource
required for host communications over PCIe and global memory
interfaces.

The next figures provide a comparison of performance in speed
and performance per energy used when compared to both Arria
10 and a Xeon CPU. Note that for Stratix 10, even more cores
could be utilized for further speed improvements.

FPGA Acceleration of Binary
Weighted Neural Networks

F igure 4: Speedup versus CPU

F igure 5: Number of images per joule of energy

HBM2 on Stratix 10 MX
The new BittWare 520N-MX board features an Intel Stratix 10 MX
device. This FPGA has 3D stacked high-bandwidth memory 2
(HBM2) with 32 user ports offering a combined memory bandwidth
of up to 512 GB/s. This extra bandwidth allows different
architectures that could help reduce high fanouts in designs and
reduce the need for internal buffering for external memory. MX
devices should free up more user logic for processing by simplifying
the memory arbitration network that can become complex for
memory intensive algorithms and allow new bandwidth limited
solutions to CNN that were not previously possible.

Conclusion
The flexibility of FPGAs present opportunities for CNN
optimizations per individual network that are difficult, if not
impossible, to achieve on other technologies. As industry begins to
realize the benefits of neural networks and the number of inference
applications increase, so will the requirement for networks tailored
for different data sets, accuracy, and power.

Fully realizing the wide range of future applications will inevitably
require topologies that cannot be completely fulfilled by generic
APIs, particularly for computing on the edge. BittWare’s wide
variety of FPGA solutions, combined with CNN FPGA optimization
expertise, is uniquely positioned to help industry realize the
potential of FPGAs for CNN.

0

10

20

30

40

50

60

CPU
OPENMP 32

THREADS

ARRIA 10 -
1 CORE

ARRIA 10 -
2 CORES

ARRIA 10 -
4 CORES

STRATIX 10
- 9 CORES

x Speed up versus CPU

0

0.05

0.1

0.15

0.2

0.25

0.3

CPU
OPENMP 32

THREADS

ARRIA 10 -
1 CORE

ARRIA 10 -
2 CORES

ARRIA 10 -
4 CORES

STRATIX 10
- 9 CORES

Images per joule

	Introduction
	Introduction
	Growing Demand for Machine Learning
	Growing Demand for Machine Learning
	For the machine learning to grow in adoption, inference solutions must be developed that can rapidly implement the latest machine learning libraries in hardware that can be tailored to the application needs.
	For the machine learning to grow in adoption, inference solutions must be developed that can rapidly implement the latest machine learning libraries in hardware that can be tailored to the application needs.

	Flexible FPGAs
	Flexible FPGAs
	Binary Neural Networks
	Binary Neural Networks
	FPGA Optimizations
	FPGA Optimizations
	FPGA Optimizations
	Targeted Network Training
	Targeted Network Training
	Targeted Network Training
	Designing for Stratix 10
	Designing for Stratix 10
	HBM2 on Stratix 10 MX
	HBM2 on Stratix 10 MX
	Conclusion
	Conclusion
	Conclusion

