
 

 

Introduction 
Today’s FPGAs are quickly growing in demand for both datacenter 
and edge environments. This is due to advances in performance, 
use of easier FPGA development tools, and growing need for the 
flexibilit y to tailor hardware acceleration to a specific application. 
Often working alongside CPUs, FPGA accelerator solutions are part 
of a heterogenous approach to computing that is focused on 
flexible application performance fitted to the end-user’s 
requirements. 

In this white paper, we explain just such an application: traffic 
monitoring using a recent machine learning-based image 
recognition system (YOLOv3) adapted using OpenCL to the 
BittWare 520N accelerator board with an Intel Stratix 10 FPGA. The 
three aspects mentioned as key FPGA drivers are examined: 
performance versus CPU, ease of development using OpenCL 
instead of HDL, and the flexibility of tailoring the application (in this 
variable calculation precision including single-bit binary weights) to 
use the minimum power/resources. 

Growing Demand for Machine Learning 
Until only a decade ago, Artificial Intelligence resided almost 
exclusively within the realm of academia, research institutes, and 
science fiction. The relatively recent realization that Machine 
Learning (ML) techniques could be applied practically and 
economically, at scale, to solve real-world application problems has 
resulted in a vibrant eco-system of market players. 

However, any news of breakthroughs in machine learning is still to 
be weighed against the reality that this is a very computationally 
heavy approach to solving problems, both in the training phase of 
a dataset and what’s called the inference phase—the “runtime” 
where unknown input is translated to inferred output. While the 

training phase for a machine learning application only needs to 
happen once in the datacenter over an unconstrained time period 
often extending to hours or days, the live inference must often 
happen in a fraction of a second using a constrained hardware 
platform at the edge of a system. 

For the machine learning to grow in adoption, inference 
solutions must be developed that can rapidly implement 
the latest machine learning libraries in hardware that can 
be tailored to the application needs. 

Flexible FPGAs 
One approach to reduce the silicon count (therefore power) 
required for machine learning inference is reducing the dynamic 
range of calculations. Reducing from 32-bit to 16-bit floating point 
arithmetic, for example, only slightly reduces the application 
performance in recognition accuracy, yet can greatly reduce 
hardware requirements. 

What if we went further? This is where FPGAs can excel because as 
the number of bits required is reduced, even down to a single 
binary bit, the hardware fabric adapts to only use what is needed. 
We can use variable precision within a project as well, including use 
of the hardened floating-point DSP logic blocks on the Stratix 10 
FPGA when required. FPGAs allow the designer to have a range of 
tools to best tailor the hardware to the application requirements. 

In fact, our research focuses on performing machine learning using 
only binary weights: weights are binarized with only two values: +1 
and -1. While many image-based machine learning applications use 
a series of convolution operations collectively called convolutional 
neural networks (CNNs), this new CNN variant is known more 
specifically as a Binary Weighted Neural Network (BWNN). It 
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reduces all fixed-point multiplication operations in the 
convolutional layers and fully connected layers to integer additions. 

Another key component in this research was using the 520N’s 
OpenCL support to abstract the hardware development process to 
a software-like tool flow. This allows for the most recent application 
libraries to be used as the basis for hardware acceleration—
reducing the months or longer it would take to target a specific 
device and ML library using traditional HDL methods (during which 
newer, better-performing ML libraries might be released). For 
example, this white paper stems from work we did for the OPERA 
project on a BittWare Arria 10-based board, the 385A-SoC. Our 
development team quickly moved the OpenCL code from that 
device to the much larger and faster fabric of Stratix 10. 

Variable precision, use of DSPs for floating-point, and 
development using OpenCL combine for an application-tailored 
hardware solution but with software-like development speed. 

Binary Neural Networks 
Processing convolutions within CNN networks requires many 
millions of coefficients to be stored and processed. Traditionally,  
each of these coefficients are stored in full single precision 
representation. Researchers have demonstrated that coefficients  
can be reduced to half precision without any significant change to 
the overall accuracy while reducing the amount of storage needed 
and the memory bandwidth requirements. Most of the pre-trained 
CNN models available today use partially reduced precision. 

 

F igure 1 : Converting weights to binary (mean = 0.12) 

However, by using a different approach to the training of these 
coefficients, the bit accuracy can be reduced to a single bit, plus a 
scaling factor1. During training floating-point coefficients are 
converted to binarized values that represent whether a value is 
either greater or less than the mean of all the input coefficients. This 
can be represented as either 1,0 in binary notation (Figure 1). The 
output of the convolution is then multiplied by the mean. 

                                                                 

 

 
1 https://pjreddie.com/media/files/papers/xnor.pdf 

FPGA Optimizations 
Firstly, binarization of the weights reduces the external memory 
bandwidth and storage requirements by a factor of 32. The FPGA 
fabric can take advantage of this binarization as each internal 
memory block can be configured to have a port width ranging from 
1 to 32 bits. Hence, the internal FPGA resource for storage of 
weights is significantly reduced, providing more space for 
parallelization of tasks. 

The binarization of the network also allows the CNN convolutions  
to be represented as a series of additions or subtractions of input 
activations. If the weight is binary 0, the input is subtracted from the 
result; if the weight is binary 1, it is added to the result. Each logic 
element in an FPGA has additional carry chain logic that can 
efficiently perform integer additions of virtually any bit length. 
Utilizing these components efficiently allows a single FPGA to 
perform tens of thousands of parallel additions. To do so the 
floating point input activations must be converted to fixed 
precision. With the flexibility of the FPGA fabric, we can tune the 
number of bits used by the fixed additions to meet the CNN’s 
requirement. Analysis of the dynamic range of activations in various 
CNNs shows that only a handful of bits, typically 8, are required to 
maintain an accuracy to within 1% of a floating point equivalent  
design. The number of bits can be increased for more accuracy.  

There are many different networks that could be investigated for 
BNN applications, and it is tempting to pick one of the many simpler 
networks such as AlexNet. However, to really understand the 
effectiveness of FPGAs for BWNN processing, it is better to use a 
state-of-the-art network, such as YOLOv3. This is a large 
convolution network with many convolution layers.  

YOLOv3 is a deep network, and errors introduced due to fixed point 
rounding require more bits per addition than smaller networks like 
AlexNet. The advantage of FPGA technology is the ability to modify 
the precise number of bits required. For our design, we used 16 bits 
to represent the data transferred between layers. 

Converting to fixed point for the convolution and removing the 
need for multiplications via binarization dramatically reduces the 
logic resources required within the FPGA. It is then possible to 
perform significantly more processing in the same FPGA compared 
to a single precision or half precision implementation, or free up 
FPGA logic for other processing. 
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Targeted Network Training 
The YOLOv3 network is a large convolutional network with 106 
layers that not only identifies objects, but also places bounding 
boxes around these objects. It is particularly useful in applications 
that require objects to be tracked.  

Binary weighted networks reduce the accuracy of the YOLOv3 
network only marginally if appropriately trained. The following table 
illustrates the results obtained for the retrained YOLOv3 network.  

 

 

Feature Confidence (BNN) 

Bicycle 94%, 85%, 80%, 79%, 67%, 66%, 62% 

Person 99%, 94%, 91%, 88%, 64%, 57% 
 

The average confidence in this image for bicycles was 76%, and for 
people was 82%. Compare that to the floating-point on the same 
image, which would achieve 92% average accuracy on bicycles  
(16% better) and 88% on people (6% better). 

To achieve the best performance for the FPGA, it helps to target 
network features that map best to the FPGA. In this case not only 
was the network trained for binary weights, appropriate activation 
types were chosen that mapped efficiently to the FPGA logic.  

Designing for Stratix 10 
OpenCL is a popular language used to express parallelism in CPUs, 
GPGPUs, and FPGAs. Here the Intel FPGA OpenCL compiler has 
been used to program accelerators targeting the Intel Stratix 10 
device. The target FPGA accelerator for this Whitepaper was the 
BittWare 520N board. 

 

F igure 2 : BittWare 520N FPGA accelerator board 

 

Performance of FPGA designs are dependent upon many factors 
including but not limited to: 

• Device speed grade 
• Depth of combinatorial logic in a design 
• Fan out of a design (the number of signals that are shared 

between multiple points) 
• Routing congestion caused by over populating the device 
• Global memory bandwidth 

 

Stratix 10 devices are very large and more susceptible to these 
problems than previous devices. The following paragraphs discuss 
some these issues in more detail. 

Combinatorial Logic Depth: The Intel OpenCL tools will pipeline 
designs automatically where possible, inserting the required 
registering to achieve the best performance possible on a Stratix 
10. However, registering is not always possible if there is feedback 
in the design. This typically occurs when creating complex indexing 
requirements that have self-dependencies. Therefore, it is 
necessary to structure code, where possible, to avoid any such 
pipeline dependencies; otherwise the clock frequency of the design 
is dominated by these paths. 

Fanout: Fanout refers to signals that have a single source but 
multiple endpoints. This can cause problems for routing tools as 
there are a finite number of nets available to use on a device. 
Congestion of these routes requires some signals to be passed 
around congestion points, resulting in longer paths and ultimately 
slower clock frequencies. Fanout can be reduced by being aware at 
coding time of the impact of sharing variables between multiple 
parts of the design.  
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Overpopulation: There is a temptation to cram as much logic into a 
design as possible; however, there will be a point at which the 
design clock frequency will start to reduce as the device becomes 
heavily populated. This is caused by routing congestion due to the 
large number of signals trying to find a route around the FPGA. For 
large designs to hit high clock frequencies, they must be heavily 
pipelined and avoid high fanouts. 

Memory Bandwidth: It is not always possible to store enough data 
in local FPGA memory, and data must be written or read from deep 
external memory. The 520N has 4 banks of DDR4 memory, giving 
a total memory bandwidth of ~98 GBytes/Sec. Given the size of the 
S10 device, this bandwidth is not adequate to keep all the neural 
network layers fed with data; hence input data must be reused 
where possible. Fortunately, CNN codes permit a lot of data reuse. 
This problem can be alleviated somewhat using HBM2 versions of 
the Stratix 10, such as is used on BittWare’s 520N-MX board. 

Ultimately most designs are a compromise of the above, and the 
BNN design described here is no exception. 

 

 
 

F igure 3 : Convolution Pipeline Example 

 

Figure 3 illustrates the main processing element of the design, the 
convolution path. Data has been pipelined where possible into 3 
accumulation paths. Each convolution block performs a 32x32 
binary weight convolution block, where each of the 32 inputs are 
shared by all 32 outputs. This is of course causing a high fanout but 
reducing the pressure on external memory bandwidth. By 
subdividing what would have been a 96x96 convolution into 
multiple blocks of 32x32, the fan out routing is constrained to within 
each block, reducing the overall fanout of the design. Input data is 

passed to each convolution block via OpenCL pipes, permitting the 
compiler to insert extra registering if required. 

The “producer,” “consume,” and “coefficient” kernels shown in 
Figure 3 pass data from global memory to the different convolution 
blocks. The consumer block also performs a floating-point 
activation function on the output.  

Table 1 lists the resources required to perform 1024 16-bit 
accumulations that represent each 32x32 convolution. 

 

ALMs Registers Ops 

35305 (2%) 41601 (2%)  2048 
Table 1 : Stratix 10 resources for 32x32 convolution matrix 

 

The storage required for storing all input and output feature data 
exceeds what is available on the FPGA device, even when using 16-
bit data. Therefore, data needs to be copied from attached global 
memory to local FPGA memory in batches, which eventually 
dominates performance once the number of parallel convolutions  
increase beyond what the global memory can support.  

 

Logic 
(ALMs) MHz Peak 

TOps 

Speed Up versus OpenMP 
32 Threads (Xeon CPU D-

1587 1.7 GHz) 

536,122 
(57%) 300  5.5 50x 

 

Table 2 : Stratix 10 G280 3x3 Design Performance 

 

Table 2 provides some statistics for the final compiled design. Note 
that the Logic also includes the board support package resource 
required for host communications over PCIe and global memory 
interfaces. 

The next figures provide a comparison of performance in speed 
and performance per energy used when compared to both Arria 
10 and a Xeon CPU. Note that for Stratix 10, even more cores 
could be utilized for further speed improvements.  
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F igure 4: Speedup versus CPU 

 

 
F igure 5: Number of images per joule of energy 

HBM2 on Stratix 10 MX 
The new BittWare 520N-MX board features an Intel Stratix 10 MX 
device. This FPGA has 3D stacked high-bandwidth memory 2 
(HBM2) with 32 user ports offering a combined memory bandwidth 
of up to 512 GB/s. This extra bandwidth allows different 
architectures that could help reduce high fanouts in designs and 
reduce the need for internal buffering for external memory. MX 
devices should free up more user logic for processing by simplifying 
the memory arbitration network that can become complex for 
memory intensive algorithms and allow new bandwidth limited 
solutions to CNN that were not previously possible. 

Conclusion 
The flexibility of FPGAs present opportunities for CNN 
optimizations per individual network that are difficult, if not 
impossible, to achieve on other technologies. As industry begins to 
realize the benefits of neural networks and the number of inference 
applications increase, so will the requirement for networks tailored 
for different data sets, accuracy, and power.   

Fully realizing the wide range of future applications will inevitably 
require topologies that cannot be completely fulfilled by generic 
APIs, particularly for computing on the edge. BittWare’s wide 
variety of FPGA solutions, combined with CNN FPGA optimization 
expertise, is uniquely positioned to help industry realize the 
potential of FPGAs for CNN. 
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