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Abstract Novel pervasive devices such as smart surveil-

lance cameras and autonomous micro-UAVs could

greatly benefit from the availability of a computing

device supporting embedded computer vision at a very

low power budget. To this end, we propose PULP (Par-

allel processing Ultra-Low Power platform), an architec-

ture built on clusters of tightly-coupled OpenRISC ISA

cores, with advanced techniques for fast performance

and energy scalability that exploit the capabilities of the

STMicroelectronics UTBB FD-SOI 28nm technology.

We show that PULP performance can be scaled over a

1x-354x range, with a peak theoretical energy efficiency

of 211 GOPS/W. We present performance results for

several demanding kernels from the image processing

and vision domain, with post-layout power modeling:

a motion detection application that can run at an ef-

ficiency up to 192 GOPS/W (90% of the theoretical

peak); a ConvNet-based detector for smart surveillance

that can be switched between 0.7 and 27fps operating

modes, scaling energy consumption per frame between

1.2 and 12mJ on a 320x240 image; and FAST+Lucas-

Kanade optical flow on a 128x128 image at the ultra-low

energy budget of 14 µJ per frame at 60fps.
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1 Introduction

With the introduction of cheap and powerful embedded

computing devices such as Qualcomm Snapdragon 810

[?] and Nvidia Tegra K1 [?], the computer vision field has

started to shift from theory and PC-based prototypes

towards embedded applications such as smart cameras,

self-driving cars and semi-autonomous robots. However,

all current vision devices depend on the availability of a

relatively abundant source of energy such as a mobile

phone battery, which prevents integration of significant

vision capabilities in devices that must run on very

limited power and energy budgets, such as micro- or

nano-UAVs that have a limited payload to host a battery

or wireless sensor nodes (WSNs) that run on harvested

power or must live years on a single charge [?]. These

devices typically employ low power and ultra-low power

microcontroller units (MCUs) that cannot cope with

the heavy workloads of CV algorithms, even for very

small images.

The ideal computing platform for this kind of heavily

energy-constrained applications would be a low power,

yet flexible fabric that is able to provide significant

performance when needed and remain in a very low-

consumption state when not. In particular, smart cam-

eras, micro-UAVs and other similarly constrained ap-

plications that are designed to work with input from

low-power imagers and performing vision-related algo-

rithms need an exceptional degree of performance and

energy scalability to cope both with the limited energy

http://link.springer.com/article/10.1007/s11265-015-1070-9
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budget and with the frame-rate requirements of vision

applications. At the same time, a computing fabric an-

swering to these needs should also provide a very high

level of programmability with an easy-to-use model, to

keep on track with the fast-moving CV field.

In this work we introduce PULP (Parallel process-

ing Ultra-Low Power platform), a many-core platform

answering to these demands. To achieve high perfor-

mance when needed, PULP features clusters of simple,

yet complete, OpenRISC [?] cores that can be used to

exploit both coarse- and fine-grain data level parallelism

or task level parallelism. At the same time, operating

points (voltage, frequency, body biasing) can be con-

trolled at a fine granularity and high speed to achieve

high energy efficiency when the performance constraints
are more relaxed or when the power budget is tighter.

The proposed PULP platform exploits the capabilities of

STMicroelectronics Ultra-Thin Body and Box Fully De-

pleted Silicon-on-Insulator (UTBB FD-SOI) technology

[?] that, in contrast with deep submicron bulk technolo-

gies, allows to exploit an extended body bias range to

modulate the performance/energy trade-off at different

operating points.

We put our platform to test using several vision

benchmarks, which were implemented in pure C code

using the OpenMP programming model to express par-

allelism. Two benchmarks are targeted at the smart
surveillance use case. The first is absolute difference mo-

tion estimation, a well known highly parallel algorithm

that can be used to detect intruders in a camera stream,

and is also a component of successful video compression

algorithms[?]. The second benchmark is based on Con-

volutional Neural Networks (CNN s or ConvNets) [?], a
model that is state-of-art in many current CV bench-

marks and has shown promising accuracy results in new

classification, detection, and full-scene understanding

tasks. CNN-based algorithms are typically computation-

ally demanding and require a good level of performance

to work at acceptable frame rates. Finally, to demon-

strate the micro-UAV use case for a device such as PULP,

we provide a benchmark based on Lucas-Kanade optical

flow [?] that can be used as input for self-stabilization

and hovering in an aerial vehicle.

The paper is organized as follows: Section 2 reports

related works, introducing the state of art of research

on energy-efficient embedded computing platforms, par-

ticularly those devoted to embedded vision. Section 3

overviews the architecture of the PULP platform, and

its features to support low-power computing. Section ??

details our implementation results, it compares PULP

with several other platforms and analyzes performance

and energy efficiency in three benchmarks: motion de-

tection, convolutional neural networks and optical flow.

2 Related work

Architectural research on many-core architectures has

focused on tiled platforms; each tile contains one or

more cores and communicates with other tiles through

a scalable medium. The dominating paradigm is that of

general-purpose and embedded GPUs such as NVIDIA

Tegra [?]. GPUs feature a restricted SPMD-based execu-

tion model that can be suboptimal for CV applications,

which have often an irregular structure [?][?]. Many-

core platforms with clusters of RISC cores have been

proposed as a more flexible model: examples include

STMicroelectronics P2012 [?], which is programmable

in OpenCL [?] and OpenMP [?]; and Kalray MPPA [?],

which supports a proprietary KPN-based programming

model as well as OpenMP. All these platforms target

a different power budget (from a few watts to several

hundred milliwatts) with respect to the PULP platform

we present in this paper.

To improve energy efficiency, many CV-targeted

platforms rely on clusters of VLIW cores; for exam-

ple, Movidius Myriad [?] features 8 SHAVE clusters,

each including a VLIW core. Other examples are the

TI AccelerationPAC [?], which includes several EVE

clusters composed of a RISC processor and a VLIW

coprocessor, and the Qualcomm Hexagon DSP [?] that

accelerates a Snapdragon 800 with VLIW DSPs. While

it is technically possible to develop new functionality

for these platforms, all heavily rely on intrinsics, spe-

cialized assembly languages and other very low level

programming models to deliver maximum performance

and efficiency.

Trading off flexibility for additional efficiency, many
CV-focused platforms rely on fixed-function HW blocks.

Most of these platforms are dataflow engines, often

implemented on FPGAs or CGRAs. Examples of this
approach include Vortex [?][?] for biologically-inspired

vision acceleration, and NeuFlow [?] and TeraDeep nn-

X [?], which focus on ConvNet acceleration. Another

high-performance platform based on a combination of

coarse- and mid-grain reconfigurable blocks and embed-

ded FPGA blocks is Morpheus [?], that can reach up

to 50 GOPS/W energy efficiency on a variety of ap-

plications. Also some commercial products follow this

path: for example the Analog Devices Blackfin [?] fea-

tures a fixed-function Pipelined Vision Processor for

CV acceleration. Another approach is to augment an
existing many-core with fixed-function accelerators or

coprocessors, as is done in He-P2012 [?].

None of the platforms reported above currently tar-

gets ultra-low power operation, as their power budget

ranges from hundreds of milliwatts to several watts. At

the other end of the spectrum, microcontrollers can eas-
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ily target power budgets of 50 mW and below, even in

the case of high performance MCUs such as the STMi-

croelectronics STM32F401, based on a ARM Cortex-M4

[?]. State-of-art ULP microcontrollers can work with

less than 10 mW: examples include the SiliconLabs

EFM32 [?], Texas Instruments MSP430 [?] families of

MCUs, and Ambiq Apollo [?]. Significant efficiency can

be reached by near-threshold microcontrollers such as

the one shown in Ickes et al. [?], SleepWalker [?] and

Bellevue [?], which also exploits SIMD parallelism to

further improve performance.

Since the performance level attainable by these low-

power MCUs is too low for most CV applications, many

CV-focused ULP accelerators employ fixed-function HW

blocks [?][?][?]. Application specific architectures for
low-power computer vision include designs trying to

exploit alternative approaches to computation with re-

spect to the traditional Von-Neumann ones; examples

include state-of-art ASICs implementing spiking neu-

ral networks [?][?]. In some cases computation may be

performed in the analog domain, for example in mixed-

signal ASICs based on cellular neural networks [?]; an-

other example is that of integrating simple filtering

capabilities directly within the vision sensor [?].

A class of designs that are more directly compara-

ble to our PULP platform is that of parallel low-power

processors. Centip3de [?] consists of a large scale 3D-
integrated fabric of clusters of Cortex M3 cores. With

64 cores running at 10 MHz, it can reach a performance

of 0.64 GOPS. DietSODA [?] features 128 SIMD lanes

working at lower frequency (50 MHz) than the rest of

the chip, reaching up to 6.4 GOPS. These multicore

platforms achieve efficiency levels comparable to those
of PULP, but they compromise on programmability and

flexibility; moreover, to the extent of our knowledge

results on their power/performance scalability have not

been provided. Dogan et al. [?] explore multicore design

in subthreshold for biomedical usage, with a power bud-

get as low as 10 µW that is more than one order of mag-

nitude the power budget of PULP; however, this comes

at a huge cost in terms of performance that also hits

overall energy efficiency. To the best of our knowledge,

the only commercial ULP multicore microcontroller on

the market is the NXP LPC51400 [?], that asymmet-
rically couples a Cortex-M4 powerful microcontroller

with a low-power Cortex-M0 for sensor control.

The first application we chose to evaluate PULP is

smart visual surveillance, with the motion estimation

and CNN benchmarks. Motion estimation is a well-

known algorithm that is part of video standards such

as MPEG [?], with known hardware (e.g. Hsieh et al.

[?]) and software (e.g. Brockmeyer[?]) implementations.

Conversely, Convolutional Neural Networks (CNNs or
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Fig. 1: PULP architecture.

ConvNets), originally proposed by LeCun et al. [?],

have been object of many recent developments that

were rekindled by the discovery of efficient ways to train

them [?]. ConvNets have been used to obtain state-of-art

accuracy results on scene labeling, video classification

and object detection and interest in their applications

has been shown by companies such as Google [?][?],

Microsoft [?] and Facebook [?].

Future applications for scalable ultra-low power and

energy computing devices are beginning to emerge in

many fields, such as that of micro-UAVs and of smart

and ubiquitous surveillance. State-of-art work on au-

tonomous UAVs focuses on relatively big UAVs that are

driven by full desktop-class processors and GPUs [?]

[?]; to achieve full autonomy in micro-UAVs with much

more limited batteries and payload a breakthrough in

computing efficiency is needed. Wood et al. [?] quantify

the total power budget for this kind of vehicle as 102

mW, of which only 5 mW can be dedicated to sensing

and computation. In a similar fashion, smart wireless

cameras acting as wireless sensor network nodes need

to perform relatively complex activities in a reduced

amount of time, while keeping the energy consumption

at a minimum [?].

3 Architecture

3.1 PULP SoC overview

PULP (Parallel processing Ultra Low Power platform) is

a scalable, clustered many-core computing platform able

to operate on a large range of operating voltages, achiev-

ing in this way a high level of energy efficiency over a

wide range of application workloads. Figure 1 shows the

main building blocks of a single-cluster SoC. The PULP

fabric is integrated in a SoC featuring a L2 memory

(sized in the 32 kB to 128 kB range) shared among all
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clusters through a system bus, plus IO peripherals that

provide flexibility to the whole platform.

The set of peripherals integrated in the PULP plat-

form includes two SPI (Serial Peripheral Interface) in-

terfaces (one master and one slave), GPIOs, a bootup

ROM and a JTAG interface suitable for testing purposes.

Both SPI interfaces can be configured in single mode or

quad mode depending on the required bandwidth, and

they are suitable for interfacing the SoC with a large set

of off-chip components (non volatile memories, voltage

regulators, cameras...). Moreover, the SPI slave can be
configured as a master, and a set of enable signals placed

on both SPI interfaces allow the SoC to interface to up

to 4 slave peripherals.

Thanks to its peripheral architecture the SoC is able

to operate in two different modes: slave mode or stand-

alone mode. When configured in slave mode, PULP

behaves as a many-core accelerator of a standard host

processor (e.g. an ARM Cortex M low-power microcon-

troller). In this configuration the host microcontroller is

responsible for loading the application and processing

data on the PULP L2 through the SPI master interface,

and initiate and synchronize the computation through

dedicated memory mapped signals (e.g. fetch enable)

and GPIOs. When configured in stand-alone mode the

SoC detects the presence of a flash memory on its SPI

master interface, booting from the external flash if con-

nected, from the L2 memory otherwise.

3.2 Cluster architecture

The cluster architecture features a parametric number

of Processing Elements (PEs) consisting of a highly

power optimized microarchitecture based on OpenRISC

32-bit ISA [?], each one with a private instruction cache

(I$). The refill ports of all instruction caches converge

on a common cluster instruction initiator port through

a cluster instruction bus. The OpenRISC cores were

optimized to achieve a high IPC on a wide variety of

benchmarks, including control-intensive code [?]. Energy

efficiency is boosted by using a flat pipeline to reduce

register and clocking overhead, while the datapath was

area-optimized to reduce leakage. Further, extensive ar-

chitectural clock gating was employed to reduce spurious

dynamic power.

The PEs do not have private data caches, avoiding

memory coherency overhead and increasing area effi-

ciency, while they all share a L1 multi-banked tightly

coupled data memory (TCDM ) acting as a shared data

scratchpad memory. The TCDM has a number of ports

equal to the number of memory banks providing concur-

rent access to different memory locations. Intra-cluster

communication is based on a high bandwidth low-latency

interconnect, implementing a word-level interleaving

scheme to reduce access contention [?].

A lightweight, ultra-low-programming-latency, multi-

channel DMA enables fast and flexible communication

with other clusters, the L2 memory and external periph-

erals [?]. The DMA uses minimal request buffering and

features a direct connection to the TCDM, to eliminate

the need for internal buffering, which is very expensive

in terms of power. A peripheral interconnect provides ac-

cess to all the cluster peripherals and to all the resources

external to the cluster.

3.3 Power management

In order to provide the best energy efficiency across a

wide range of workloads, each cluster can work at its

own voltage and frequency. To enable fine grained tuning

of the SoC frequency, a FLL (Frequency-Locked Loop

[?]) is included as a peripheral at SoC level. Moreover,

a set of clock dividers (one for the SoC + one for each

cluster) allow to further divide the clock generated by

the FLL. To reduce the dynamic power consumption

in idle mode, each processor can be separately disabled

and clock-gated through a set of registers mapped on

the peripheral interconnect. In this way, depending on

the required workload, each cluster is able to work with

an arbitrary number of processing elements, while the

others consume zero dynamic power.

A body bias multiplexer (BBMUX ) allows to dy-

namically select the back-bias voltage of the cluster,

enabling ultra-fast transitions between the normal oper-
ating mode and the boost mode when temporary peaks

of computation are required by the applications. To

reduce the latency of the transitions between different

operating modes, and making them transparent to the

software, a power management unit (PMU ) was added

to generate the control signals of the processors fetch

enables, clock gating units, and BBMUX.

4 Benchmarking PULP

This section examines the implementation results of the

PULP platform on a reference configuration, providing

an estimation of the area of the platform, of the energy

efficiency at the different operating points, and a com-

parison with other state of the art multi-core platforms

for embedded computing. It also reports the results of

our evaluation of performance and energy in the motion

estimation, ConvNet and optical flow benchmarks.
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Fig. 2: PULP cluster area breakdown.

4.1 Implementation results

In the context of this work we consider a single cluster

PULP implementation operating in stand-alone mode.

Thus, we assume the SoC connected to an external

flash memory which contains the application code, a

video surveillance camera periodically feeding the L2

of the SoC with a new frame, and a programmable

DC/DC converter configured by the cores to switch

between the idle, search and follow mode described

in Section ??. The L2 memory was sized at 128 kB
to fit both the program code and one 320x240 frame.

The cluster consists of 8 cores featuring 1 kB of I$

each, while the TCDM is composed of 16 banks of 2

kB each, leading to an overall TCDM size of 32 kB.

These architectural parameters were chosen to fit the

constraints of the benchmarks described in Section ??,

and should be sufficiently flexible for a broad variety of

vision tasks. Both the TCDM banks and the processor’s

I$ are implemented using standard cell memory (SCM)

cuts of 4 kbits each. While SRAMs may achieve a higher

density than SCMs (by a factor of ∼3x), SCMs are able

to work at the same voltage ranges as the rest of the

logic, with the key benefit of providing much smaller

energy/access (∼4x)[?].

Our results refer to a post place & route implemen-

tation of the proposed SoC in STMicroelectronics 28nm

UTB FD-SOI technology. Thus, they include the over-

heads (i.e. timing, area, power) caused by the clock tree

implementation, accurate parasitic models extraction,

cell sizing for setup fixing and delay buffers for hold

fixing (neglecting these would cause significant underes-

timations in the clock tree dynamic power). The SoC was

synthesized with Synopsys Design Compiler, the place

& route was performed using Cadence SoC Encounter,

and the signoff was performed using Synopsys StarRC

for parasitic extraction and Synopsys PrimeTime for

timing and power analysis.

We tested our platform with power supplies ranging

from 0.3V to 1.3V and forward body biasing ranging

VDD [V]
fmax[MHz] fmax[MHz] fmax[MHz]
VFBB = 0V VBB = 0.5V VBB = 1V

0.3 2.5 4.45 6.31
0.4 22 35.9 49.1
0.6 200 277 350
0.8 400 484 563
1.0 588 650 705
1.3 775 836 885

Table 1: Supply voltage and peak frequencies for the

reference PULP cluster. Bold values indicate reference

operating points.

from 0 to 1V in the typical corner case at the tempera-

ture of 25◦C. Table ?? shows the peak frequency that

the PULP cluster can reach at each operating point.

Being the cluster composed of 8 cores, the theoretical

performance of the platform can easily scale between

20 MOPS @0.3V, no BB to 7 GOPS @ 1.3V, 1.0V

FBB, demonstrating the dramatic performance scalabil-

ity (354x) that can be exploited on PULP.

Figure ?? shows the area breakdown of the cluster,

where the overall cluster area in the considered configu-

ration is 1.2 mm2. It is possible to note that the TCDM
and the cores I$ occupy ∼59% of the overall cluster area,

mainly due to the SCM based implementation. However,

this is fully compensated by the improvement in terms

of dynamic power consumption of the memories, which

are responsible for the ∼15% of the overall cluster dy-

namic power, with an improvement of ∼4x with respect

to a previous implementation of the same architecture

[?].

4.2 Energy efficiency analysis

This section provides an evaluation of the energy effi-

ciency of the proposed PULP implementation at the

different operating points that can be exploited on the

platform. To cope with the leakage power variation in

the 28nm UTB FD-SOI, cell libraries are character-

ized very conservatively; early silicon measurements on

PULP prototypes showed that there is more than a 2x

guardband on power models. For this reason, we first

evaluated the energy efficiency of the platform in four
scenarios, accounting for various levels of pessimism for

leakage: conservative, where the leakage power is directly

extracted from the standard cell libraries; typical, with

leakage scaled down by 2x; optimistic, where it is scaled

down by 5x; and ideal with no leakage. This experiment

allowed us to quantify the impact of the leakage power

model guardband over our energy efficiency estimation.

Figure ?? shows the results of this exploration; the

platform is working at the maximum operating frequency



6 Francesco Conti, Davide Rossi, Antonio Pullini, Igor Loi, Luca Benini

0 100 200 300 400 500 600 700 800

frequency (MHz)

0

100

200

300

400

500

600

p
e
rf
o
rm

a
n
ce
/p
o
w
e
r 
(G
O
P
S
/W

)

@0.3V

@0.4V

@0.6V

@0.8V

@1.0V
@1.3V

conservative

typical

optimistic

ideal

(a) GOPS/W while scaling the leakage contribution to power.

0 100 200 300 400 500 600 700 800 900

frequency (MHz)

0

50

100

150

200

250

p
e
rf
o
rm

a
n
ce
/p
o
w
e
r 
(G
O
P
S
/W

)

V_fbb = 0.0 V

V_fbb = 0.5 V

V_fbb = 1.0 V

@0.3V

@0.4V

@0.6V

@0.8V

@1.0V

@1.3V

@0.3V

@0.4V

@0.6V

@0.8V

@1.0V

@1.3V

@0.3V

@0.4V

@0.6V

@0.8V

@1.0V

@1.3V

(b) GOPS/W with 0V, 0.5V and 1.0V FBB.

Fig. 3: PULP energy efficiency in GOPS/W.
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achievable at each given supply voltage. The peak energy

efficiency points in the four scenarios are 172 GOPS/W,

211 GOPS/W, 262 GOPS/W, and 500 GOPS/W respec-

tively. The best energy efficiency point is around 0.4V

in all the scenarios except for the ideal. In all but the

ideal scenario, the impact of leakage power is huge in the

0.3V to 0.4V operating range, when the supply voltage

VDD is close to Vth (0.28V for this technology), due to

the relatively slow operating frequency (2.5 MHz to 50

MHz) that causes the static contribution of leakage to be

dominant. On the other hand, when working with VDD

larger than 0.6V, the combined effect of increased dy-

namic power density (which scales as V 2
DD), and higher

operating frequency causes the impact of leakage to be

smaller. In the rest of the paper we only consider the

typical scenario with a twofold leakage reduction as our

reference for further power estimations and comparisons;

measurements on a previous batch of fabricated PULP

prototypes suggest that this is the most realistic value.

Figure ?? shows what happens when forward body

biasing (FBB) is introduced. By applying FBB, it is

possible to dynamically modulate the Vth of transistors

to improve the frequency without changing the supply,

with only a slight increase of dynamic power in the

high-VDD range. On the other hand, FBB introduces an

overhead in leakage power, quantifiable as a 7x increase

when VBB is 1V [?]. For these reasons, FBB is an effective

knob to increase the energy efficiency by up to 1.5x

for workloads larger than 1.6 GOPS (200 MHz). For

example, the target workload of 3.2 GOPS (400 MHz)
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can be achieved @0.8V with 0V FBB or @0.6V with

1V FBB, resulting in a 1.5x improvement in energy

efficiency.

To further provide insight into the scaling capabilities

of the PULP platform, in Figure ?? we investigate energy

efficiency in terms of peak GOPS per watt. We compare

the reference PULP platform with several other com-

mercial and academic platforms: the Processing System

of the Xilinx Zynq platform (i.e. a dual core ARM Cor-

tex A9), a Samsung Exynos 5 (i.e. a ARM big.LITTLE

quad-core A7 + quad-core A15), and many of the ULP
platforms referenced in Section 2. PULP, providing up

to 211 GOPS/W, is competitive with microcontrollers

specialized for low-power (Bellevue, SleepWalker) and

more performant parallel ULP platforms (Centip3de,

DietSoda), and is much more efficient than mobile solu-

tions such as the Exynos 5 due to the simpler, optimized

architecture of the OpenRISC cores and to the fine-grain

knobs for power management provided by the FDSOI

technology. It must also be noted that both Centip3de

and DietSoda do not support a programming model,

whereas PULP has been designed for compatibility with

standards such as OpenCL and OpenMP, to ease the

exploitation of potential performance in applications.

4.3 Motion estimation benchmark

As a first test for the PULP cluster, we wrote an absolute

difference motion estimation [?] benchmark composed

of several simple kernels: background subtraction, ab-

solute value, binarization, erosion, dilation and a Sobel

filter. The aim of the proposed algorithm is to detect

the presence of external objects on a video transmit-

ted by a camera framing a fixed background. For each

video frame the first stage performs the absolute dif-

ference between the current and the background image.

The resulting maximum value is extracted and used to

calculate the threshold for binarization. The binarized

image is then processed by three spatial operators. Ero-

sion and dilatation implement the opening kernel which

denoises the binarized image, while edge detection is

implemented through a bidimensional Sobel convolution

filter to create the external object boundary. If an ex-

ternal object is detected, the final kernel returns the

highlighting of that object on the original frame.

The motion estimation benchmark runs on an input

8-bit grayscale 176x120 QCIF image produced by a low-

power camera and loaded on the PULP L2 memory

along with a prerecorded background. The program

code occupies 12508 bytes in the L2 memory. Since

the full image cannot fit in the TCDM, we divided the

input image in slices or tiles of 44x20 pixels that are

loaded into the TCDM and processed separately. Each

tile occupies 1320 bytes in the TCDM, with a total

TCDM occupation of 10560 bytes (four buffers used

for present tile output computation, plus four used for

double buffering).

Figure ?? shows the speedup of parallel versus se-

quential execution. This kernel is relatively simple and

linear and completely parallelizable; as a consequence,

its performance scales nicely up to 16 cores. The slight
gap between the theoretical and simulated performance

is mainly caused by the calculation of the maximum

pixel value after the binarization stage, that cannot be

completely parallelized over the available cores. Even

so, as that is the only sequential part of the benchmark,

speedup and energy efficiency are almost ideal. Figure

?? shows that energy efficiency of the motion estima-

tion benchmark peaks at 192 GOPS/W at the 0.4V

operating point, 90% of the theoretical limit.

4.4 ConvNet benchmarks

4.4.1 Convolution-accumulation optimization
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Fig. 6: Reference convolutional network.

A CNN is composed by a deep sequence of con-

volutional or fully-connected linear layers intermixed

with pooling ones to perform a transformation on fea-

ture maps produced by the previous layer. Weights in

convolutional and linear layers are trained by backprop-

agation but are used thereafter in a strictly feedforward

fashion; due to their data parallel nature they are a

natural candidate for acceleration in a parallel platform

such as PULP. Convolutional layers in CNNs compute

output feature maps of a layer as sums of convolutions

over input feature maps; therefore, we chose to use

a convolution-accumulation step as our basic kernel:

y(i, j) := y(i, j) +
(
W ∗ x

)
(i, j). where x is the input

image, W is the convolution kernel and y is the output

image.

We used 16-bit fixed point numbers for inputs, ker-

nels and outputs. We implemented three versions of

convolution-accumulation: naive directly implements it

as four nested loops (two on the output pixels and two

for the convolution kernel W ); 1-unrolled uses manual

loop unrolling on the innermost loop; 2-unrolled uses

loop unrolling on the two innermost loops. We bench-
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Fig. 5: Motion estimation benchmark results.

Implementation 3x3 5x5 7x7 9x9 11x11

naive, single thread 0.26 0.32 0.34 0.35 0.36
1-unrolled, single thread 0.52 0.62 0.65 0.69 0.88
2-unrolled, single thread 0.80 0.83 0.76 0.26 0.18

naive, 8 threads 0.26 0.31 0.34 0.35 0.36
1-unrolled, 8 threads 0.49 0.60 0.65 0.69 0.85
2-unrolled, 8 threads 0.71 0.77 0.74 0.27 0.18

Table 2: Convolution-Accumulation: average efficiency/-

core

marked these convolutions with a single thread or 8

parallel threads1.

Table ?? shows the efficiency/core for the various

convolution-accumulation implementations on a 32x32

input image, computed as the ratio between useful (i.e.
computation) cycles and the total number of cycles

spent in the outermost loop. For smaller convolution

kernels, unrolling both inner loops provides a much

better efficiency; however, for kernels bigger than 7x7,

efficiency is reduced by I$ misses due to the size of the

unrolled loop. As a consequence, the tighter 1-unrolled

convolution-accumulation step is more convenient for

bigger kernels. Results are similar in the multi-threaded

case, as data contention on the TCDM causes on average

only a small amount of efficiency decrease.

4.4.2 Use case: CNN for visual surveillance

On top of these optimized convolutions, we developed a

network based on the one proposed by LeCun et al. [?]

for MNIST classification, which is shown in Figure ??.

1 We used the or1k-elf-gcc compiler (build 4.9.0

20140308), with the following flags: -O2 -nostdlib

-mhard-mul -msoft-div.

This network has 2220 parameters and a footprint of

11408 bytes for data and 4400 bytes for weights on the

L1 TCDM; Table ?? summarizes them. The program

code uses 16768 bytes on the L2 memory. As shown in

Conti et al. [?], a network of this kind can be trained

for complex object detection tasks by running it on a

window sliding over the input frame.

We use this CNN for visual surveillance. The plat-

form spends most of the time in a low-power search

mode looking for suspicious objects (as this task re-

quires only a relatively low frame rate), and it switches

to a high-performance follow mode to keep track of a

previously detected object. Input frames are brought

inside the PULP cluster by DMA transfer from the

L2. This transfer is superimposed to the computation of

deeper layers and has no impact on the final throughput.

Figure ?? shows the performance of the reference

CNN when run on a 32x32 image patch, scaling the

clock frequency of the cluster from 100 MHz to 1 GHz

and the number of OpenRISC cores in the PULP cluster

between 1, 2, 4, 8 or 16. As expected from a highly data-

parallel algorithm such as ConvNets, execution time

scales almost linearly with the number of cores. In our

visual surveillance application, the ConvNet is run on a

32x32 window spanning a QVGA (320x240) image with

a stride of 32 pixels. Each frame is spanned two times:

one with no offset, the other with an offset of 16 pixels in

both directions so that the chance of missed detections

on the border of a window are reduced. PULP can be set

to work at a very low frame rate (∼0.7 fps at the 0.4V

operating point) in the search mode, and then switched

to a frame rate as high as 27 fps (at the 1.3V operating

point with 1V FBB) in the follow mode.

Figure ?? shows the energy efficiency of the Con-

vNet execution on a frame in terms of FPS/W; we ran



PULP: A Ultra-Low Power Parallel Accelerator for Energy-Efficient and Flexible Embedded Vision 9

layer params memory (bytes)
#

feat.
filter
size

data
size

weights data

input 1 - 32x32 0 2048
conv 0 4 5x5 28x28 200 6272
pool 1 4 - 14x14 0 1568
conv 2 6 5x5 10x10 1200 1200
pool 3 6 - 5x5 0 300
full 4 10 5x5 1x1 3000 20

(a) small CNN.

layer params memory (bytes)
#

feat.
filter
size

data
size

weights data

input 1 - 32x32 0 2048
conv 0 8 5x5 28x28 400 12544
pool 1 8 - 14x14 0 3136
conv 2 12 5x5 10x10 4800 2400
pool 3 12 - 5x5 0 600
full 4 10 5x5 1x1 6000 20

(b) medium CNN.

layer params memory (bytes)
#

feat.
filter
size

data
size

weights data

input 1 - 32x32 0 2048
conv 0 16 5x5 28x28 800 25088
pool 1 16 - 14x14 0 6272
conv 2 24 5x5 10x10 19200 4800
pool 3 24 - 5x5 0 1200
full 4 10 5x5 1x1 12000 20

(c) big CNN.

layer params memory (bytes)
#

feat.
filter
size

data
size

weights data

input 1 - 64x64 0 16384
conv 0 4 5x5 60x60 200 28800
pool 1 4 - 30x30 0 7200
conv 2 6 5x5 26x26 1200 8112
pool 3 6 - 13x13 0 2028
conv 4 10 5x5 9x9 3000 920

(d) small CNN on a 64x64 image.

Table 3: Parameters and memory usage of all CNN networks.
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Fig. 7: Surveillance ConvNet benchmark results.

the same ConvNet on the Xilinx Zynq PS and on a

Samsung Exynos 5 for comparison, as this benchmark

is beyond the typical performance capabilities of most

ULP microcontroller architectures. Benchmark results

substantially confirm the theoretical values shown in

Figure ??. The energy/execution time tradeoff when

switching between search and follow mode is also clearly

shown: in search mode, PULP consumes 1.18 mJ per

frame and lives at a power budget of 834 µW, whereas

in follow mode energy consumption jumps at 12.6 mJ

per frame.

4.4.3 Tiled CNNs

To further explore the capabilities of the PULP platform

in this scenario, we considered the case that the CNN or

its input image cannot fit in the TCDM. In this case, it is

necessary to tile the CNN similarly to what is described

in Section ??; also in this case, double buffering can

be employed to hide the latency of the L2/L1 memory

transfer.

In the case of CNNs, tiling involves some amount

of recomputation as the receptive field of each output

convolutional tile is partially superimposed to that of
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Fig. 8: Tiled CNN benchmark performance results.

the next output tile. We can tile the same ConvNet

with two distinct approaches. With a “vertical” tiling

approach, the full network is applied to each input tile

until the last layer, then the output is transferred to the

L2 memory and a new tile is loaded; “horizontal” tiling

instead is applied by dividing input of a single layer in

tiles and computing all output tiles before proceeding

to the following layer. In this approach, intermediate

results (i.e. the outputs of intermediate layers) have to

be stored in buffers in the L2 memory.

We chose to concentrate on horizontal tiling for three

reasons: first, vertical tiling involves a lot of recomputa-
tion as the smaller ConvNet tile has to be moved over

the input image (similarly to what we did in Section

??, but with stride of 1 pixel instead of 32). Second, the

horizontal approach allows us to tile also in the input

feature dimension, whereas in vertical tiling all input

features are needed in the shared memory to compute

the following layer. Third, although horizontal tiling

involves frequent data transfers between L1 and L2, we

will show in the following that the impact of these trans-

fers scales nicely with the size of the input data and the

amount of parallelism.

We extended the reference CNN2 of Section ?? in

the following way. The medium and big CNNs, whose pa-

rameters are reported in Tables ?? and ?? respectively,

are similar to the small one but their intermediate layers

have more features. The fourth CNN shares the same

parameters as the small one, but runs on a bigger im-

age patch of 64x64 pixels; its parameters and memory

consumption are reported in Table ??. In this network,

the final linear layer is substituted by an equivalent

convolutional layer using the same weights; the output

2 We will refer to this network as the small network from
this point on.

is equivalent to the separate classification of all pixels

(see for example Sermanet et al. [?]). In all benchmarks,

we set the maximum dimension of the tiles to 4KB so

that it is possible to fit two input tiles and two output

tiles in the TCDM. The dimension of the program code

is similar for all of these benchmarks (∼25KB loaded on

the L2 memory), since we relied on the same ConvNet

library extended with horizontal tiling support.

Figure ?? reports the execution time of all bench-

marks in terms of cluster clock cycles. The computa-

tional complexity of the CNN raises exponentially when

we double the number of feature maps used in each layer

or the pitch of the input image; we observe that the big

CNN applied on a 32x32 image and the small one on a

64x64 image impose similar constraints both in terms

of workload and of memory occupation. To better eval-

uate how performance scales in all benchmarks as we

vary the number of cores, Figure ?? compares speedup

versus single-core execution for all benchmarks. Figure

?? also reports the theoretical speedup if we neglected

all impact of DMA transfers. The main limiting factor

for speedup is given by Amdahl’s law: due to the small

dimension of the tiles, the parallel fraction of the code

is not sufficient to yield quasilinear speedup. This is

clearly visible in that the same ConvNet applied to a 4x

bigger input image yields much better results in terms

of performance scaling. The size of the input image itself

is mainly limited by the availability of L2 memory. The

plot also shows that, due to the higher computation to

communication ratio, the impact of data transfers on

the speedup scales nicely with the size of the workload,

i.e. the bigger the input image and/or the CNN is, the

less limiting impact DMA transfers have over parallel

execution speedup.
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To estimate how much the accuracy may vary be-

tween the small, medium and big CNNs, we trained

them to classify the CIFAR-10 dataset [?], a well known

and freely available set of 60000 32x32 images labeled

in 10 classes 3. Figure ?? shows that the difference can

be significant: after 500 epochs of training the final

accuracy is 70.64% for the big CNN, which drops to

64.38% for the medium one and to 50.05% for the small

one. The difference is greatly reduced if we compare the

CNNs for a one versus all classification task over the

same dataset: the final accuracy in this case is 95.1%,
94.2% and 93.3% for the big, medium and small CNNs

respectively.

In Figure ??, we plot the energy efficiency in terms of

GOPS/W for the execution of the big ConvNet (results

are practically identical for the other benchmarks). Com-

pared with the peak theoretical value of 211 GOPS/W,

we measured a peak of 150 GOPS/W in this benchmark,

which correspond to an average IPC of 0.71 per core. By
comparison, average single-core IPC in the inner con-

volutional loops is 0.96, and average single-core overall
IPC is 0.87. The IPC reduction in the multi-core tests

is mainly accounted for by contention on the shared

TCDM and, to a lesser extent, by contention on the

I$ refill bus. Still, IPC in the inner-loops is as high as

0.90 per core when executing with 8 cores. The energy

efficiency results mimic the peak ones presented in Fig-

ure ??, and peak efficiency (125 MOPS @ 834 µW) at

the same operating point (0.4V without FBB) in the

near-threshold region.

3 As our CNNs work on grayscale images, the training and
test samples where converted from RGB to grayscale. Training
consisted in 500 epochs of mini-batch stochastic gradient
descent with momentum µ = 0.9 and starting learning rate
λ0 = 0.01 (dropping exponentially as λ = λ0 · 0.995nepoch),
using 20% dropout [?] layers for better regularization.
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Fig. 9: Test error of small, medium and big CNNs on

the CIFAR-10 set over 500 training epochs.
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Fig. 10: Energy efficiency for execution of the small

CNN on a 64x64 image, while sweeping the number of

cores.

4.5 Optical flow benchmark

As a representative application for the usage of PULP

as an accelerator for an autonomous nano-UAV, we

developed an optical flow benchmark that is meant to

be integrated in the drone control loop to make com-

pletely autonomous hovering and navigation possible.

In this scenario, a low-resolution (e.g. 128x128 pixel)

ultra-low-power imager such as a CentEye Stonyman

[?] continuously feeds frames to PULP via the QSPI

slave interface. On turn, PULP computes the optical

flow and uses its QSPI master to report the flow vectors

back to the microcontroller driving the vehicle, where

they are used to estimate rotations and translations of

the drone.

The benchmark is composed of three kernels: FAST

corner detection [?][?], non-maximal suppression and

Lucas-Kanade optical flow estimation [?]. Since Lucas-

Kanade should be applied to strong corners to yield

high-quality, it is generally not advisable to drop either

the non-maximal suppression step or the whole corner

detection. Nonetheless, since the users of the flow vectors

(i.e. the aerial vehicle software developers) might want

to trade off optical flow accuracy for performance and

energy, we decided to explore also these non-optimal

cases. Therefore, we present results for three separate

implementations: FAST+NMS+LK that feeds corners

produced by the FAST algorithm in non-maximal sup-

pression before computing optical flow; FAST+LK that

uses all corners produced by FAST for the optical flow;

LK that drops corner detection and computes optical

flow on all pixels.

The input of the optical flow application are two

128x128 8-bit grayscale frames stored in the L2 memory

by the QSPI slave module. To cope with the dimension
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Fig. 11: Optical flow benchmark results.

of the input frames, we divided them in stripes of 128x16

pixels; we use double buffering to transfer the stripes

from the L2 to the TCDM while we are computing the

optical flow of the previous stripe.

Figure ?? reports the execution time in cycles for all

versions of the benchmark, sweeping the number of cores

in the PULP cluster from 1 to 16. The first observation

is that the FAST+LK benchmark is the slowest; this

is due to the fact that if non-maximal suppression is

dropped, the Lucas-Kanade step has to be performed on
a much higher number of corners, in the order of several

hundreds. The LK benchmark drops FAST altogether

and is therefore the fastest, even if it computes optical

flow on the full 16384 pixels of the image. Conversely,

the FAST+NMS+LK benchmarks spends most of its

time in computing the best corners (in the order of some
tens) in the picture and much less time in the actual

optical flow, as it is computed only on those corners. In

all cases, optical flow computation on the 128x128 input

frames takes more than 1 million cycles when performed

with 8 cores: intuitively, this means that the workload

to perform this task at 60fps is bigger than 60 MOPS.

Figure ?? helps to understand whether this is a fea-

sible target, and at what power budget, by plotting

energy efficiency in terms of GOPS versus watt mea-

sured by profiling the optical flow FAST+NMS+LK

benchmark. At the most efficient operating point (0.4V

with no FBB, 834 µW of power consumption) the 8-core

cluster achieves a performance of 127 MOPS, with an

efficiency of 152 GOPS/W. The peak efficiency is sim-

ilar to that of the CNN benchmark but this is due to

a different mixture of effects from the result obtained

in Section ??. First, the lower internal regularity of

the FAST benchmark (which is responsible for the ma-

jority of the execution time) hits the inner-loop IPC

with respect to the very regular and manually optimized

convolutional kernels employed in the ConvNet. At the

same time, however, it also significantly lowers data

contention, leading to a similar overall efficiency result.

At this operating point, optical flow would be feasible

for a micro-UAV application as it would add less than

a mW to the total vehicle power, which nicely fits in

the 5 mW budget for computing in Wood et al. [?].

The energy budget to compute a frame is 13.9 µJ; to

make this measure concrete let us take for example the

commercial Crazyflie Nano Quadcopter [?], that mounts

a 240 mAh 3.3V battery, hosting approximately 2850

J of energy destined primarily to power DC motors. If

we suppose a flight time of one hour, the battery con-

sumption due to the PULP accelerator would amount

to ∼3 J, i.e. 0.1% of the total battery, which is almost
negligible with respect to the energy consumed by the

vehicle actuators.

5 Conclusions

As our main contribution, we have introduced the PULP

(Parallel processing Ultra-Low Power) platform that fea-

tures clusters of tightly-coupled OpenRISC cores to

achieve high energy efficiency through parallelism. We

have analyzed the platform, showing that its perfor-

mance can be scaled by the dramatic factor of 354x and

that it features a peak energy efficiency of 211 GOPS/W.

As a use case for PULP, we show a motion estima-

tion algorithm for smart surveillance which almost fully

exploits the available performance, with a peak energy

efficiency of 192 GOPS/W, i.e. 90% of the theoretical

peak. We also implemented a ConvNet-based algorithm

for video surveillance, showing that it can be switched

from a low-power state consuming just 1.18 mJ per
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frame with a rate of 0.7 fps to a high-performance state

running at 27 fps and consuming 12.6 mJ per frame.

Finally, we wrote a sample benchmark for applications

in the nano-UAV field, where we use PULP to accelerate

estimation of optical flow from frames produced by a

ULP imager, with the objective of autonomous hover-

ing and navigation; we show that it is possible to meet

tight timing constraints (60fps frame rate) at the energy

budget of 14 µJ per frame. These benchmarks showcase

the high level of flexibility and programmability of the

PULP platform, that does not come at the expense of
energy efficiency: all of them were able to reach at least

70% of the peak efficiency overall, with much higher

peaks in highly parallel regions such as in the motion

detection and inner convolutional kernels.

A fully functional PULP test chip featuring 4 Open-

RISC cores, 64 kB of L2 memory and 24 kB of TCDM

has been submitted for fabrication in 28nm STMicro-

electronics FD-SOI technology in December 2014. We

decided to submit a 4-core version of the platform out of

two main considerations: first, due to the relative novelty

of the FD-SOI technology, we chose to be conservative

and take into account a bigger leakage contribution to

power consumption, which would level out the efficiency

gap between 4- and 8-core PULP clusters. Second, the

higher complexity of the shared-memory interconnect

in a 8-core cluster with respect to a 4-core one cou-

pled with the constrained wafer area allotted to our

chips could make optimal placement & routing and tim-

ing closure more difficult, resulting in a slower or less

energy-efficient chip.

Our work is now focusing on pushing the PULP

architecture to the 1 GOPS/mW limit, making it com-

petitive with special purpose mixed-signal accelerators

such as the 1.57 TOPS/W in Kim et al. [?] in terms of

energy efficiency, while also preserving general software

programmability. This is being tackled with a complete

redesign of the core, with microarchitectural changes

to improve IPC and programmability, a new custom

compiler toolchain based on LLVM and architectural

improvements to the platform to improve its perfor-

mance and energy efficiency, such as a more efficient

instruction cache hierarchy and the addition of special-

ized blocks for selected macro-operations.
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